
A tighter lower bound on the circuit size

of the hardest Boolean functions

Masaki Yamamoto ∗

Abstract

In [IPL2005], Frandsen and Miltersen improved bounds on the circuit size L(n) of the
hardest Boolean function on n input bits: for some constant c > 0:(

1 +
log n

n
− c

n

)
2n

n
≤ L(n) ≤

(
1 + 3

logn

n
+

c

n

)
2n

n
.

In this note, we announce a modest improvement on the lower bound: for some constant
c > 0 (and for any sufficiently large n),

L(n) ≥
(
1 + 2

log n

n
− c

n

)
2n

n
.

1 Introduction

For any positive integer n, let L(n) be the circuit size of the hardest Boolean function on n
input bits. We assume that the in-degree of gates of a circuit is at most two, and hence each
gate computes a binary function. Shannon [3] proved that for any ϵ > 0 and for any sufficiently
large n,

(1− ϵ)
2n

n
≤ L(n) ≤ O(1)

2n

n
.

Here, we note that we can easily improve the lower bound into 2n/n by slightly modifying
his proof. Lupanov [2] improved, via a novel representation of a Boolean function, the upper
bound into

L(n) ≤
(
1 +

O(1)√
n

)
2n

n
.

It means that L(n) is essentially 2n/n, that is, L(n) = (1 + o(1))2n/n. Most of researchers
may regard this bound to be tight, and hence may regard the research on this topic to end
with this result.

After Lupanov’s result, in 2005, Frandsen and Miltersen [1] developed a novel representa-
tion of a circuit, and estimated a more precise value of L(n) hidden by the notation o(1): for
some constant c > 0 (and for any sufficiently large n),(

1 +
log n

n
− c

n

)
2n

n
≤ L(n) ≤

(
1 + 3

log n

n
+

c

n

)
2n

n
.

The lower bound was obtained via their representation scheme for circuits. The upper bound
was obtained by improving the circuit implementation of Lupanov representation, and by
setting parameters optimally.

∗Kwansei-Gakuin University, masaki.yamamoto@kwansei.ac.jp

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 86 (2011)

In this note, we further improve the lower bound: for some constant c > 0,

L(n) ≥
(
1 + 2

log n

n
− c

n

)
2n

n
.

Our idea

Our bound is obtained in the same way as [1]: they showed an algorithm for transforming a
circuit into a sequence of instructions for a “stack program” so that circuits are one-to-one
mapped to stack programs. Then, they estimated the length of descriptions of such stack
programs. (Their lower bound was obtained by comparing the number of stack programs with
the total number of Boolean functions of n variables.)

The difference from theirs is the way of analyzing the number of stack programs: We
partition the family of circuits of size s into s+1 sets, say, C(t) for 0 ≤ t ≤ s, according to the
number of gates of out-degree at least two. That is, C(t) is the set of circuits of size s where the
number of gates of out-degree at least two is t. Then, we estimate the length of descriptions
of stack programs for C(t). The crucial point is that by using the fact that the number of
gates of out-degree at least two is t for any circuit of C(t), (1) we can reduce the length of
descriptions of stack programs, and (2) we can estimate the number of stack programs that
can be constructed from the same circuit. Taking the maximum of |C(t)| over 0 ≤ t ≤ s, we
obtain an improved upper bound of the number of stack programs, from which we obtain the
desired lower bound on the circuit size.

2 Preliminaries

Let Fn be the family of functions on n variables. (Thus, |Fn| = 22
n
.) Let Cn be an arbitrary

circuit on n input bits. For any function s(n), let SIZE(s(n)) be the set of functions of Fn

that can be computed by a circuit Cn of size at most s(n). Then, the definition of L(n) we
study here is as follows:

L(n)
def
= max

f∈Fn

min{s(n) : f ∈ SIZE(s(n))}.

Theorem 2.1 (Frandsen & Miltersen [1]). There is a constant c > 0 such that L(n) ≥
(2n/n)(1 + log n/n− c/n).

They proved this theorem by showing an algorithm for transforming a circuit into a se-
quence of instructions for a “stack program”. We briefly review their proof of the theorem.

Let Cn be an arbitrary circuit of size s = s(n). We assume that letting input gates
g1, . . . , gn, operational gates are labelled with gn+1, . . . , gn+s arbitrarily, and the output gate

with gs. Moreover, Cn is represented by the set {gi = g
(1)
i opi g

(2)
i : n+ 1 ≤ i ≤ n+ s}, where

opi is the operation of gi. A stack program constructed from a circuit is a sequence of the
following types of instructions:

• “push i” for some 1 ≤ i ≤ n+ s

• “operate opi” for some n+ 1 ≤ i ≤ n+ s

Such a stack program is constructed as shown in Fig. 1. Intuitively, given a circuit, the
algorithm traverses the circuit staring with the output gate in the depth-first-search manner.
In doing so, it simulates the process of evaluating a circuit value: it marks a gate, which means
that it implicitly keeps its gate value.

2

transform(Cn)

Let Pn be empty
construct(gn+s)
output Pn

construct(g)

if g = gi for some 1 ≤ i ≤ n, then add “push i” to the last of Pn

else // i.e., g = gi for some n+ 1 ≤ i ≤ n+ s
if gi is marked, then add “push i” to the last of Pn

else // i.e., gi is not marked
mark gi
construct(g

(1)
i)

construct(g
(2)
i)

add “operate opi” to the last of Pn

Figure 1: The construction of Pn

A stack program constructed in this way is executed as shown in Fig. 2. It is easy to
see that Pn ≡ Cn, where Pn is constructed from Cn. Moreover, if Cn ̸≡ C ′

n, then Pn ̸≡ P ′
n,

where Pn (resp. P ′
n) is constructed from Cn (resp. C ′

n). That is, circuits are mapped to stack
programs in the one-to-one sense.

Now, we estimate the length ℓ(s) = ℓn(s) of the description (i.e., the binary representation)
of Pn constructed from Cn of size s. (Later, we see that this value is independent of the
structure of Cn.) Note here that circuits of size s are one-to-one mapped to stack programs
of description length ℓ(s). (From the estimation of ℓ(s), we obtain the number of possible
stack programs, which is an upper bound on the number of circuits of size s.) Recall that
Pn is a sequence of two types of instructions. For each type of instructions, we estimate the
number of its occurrences in Pn. First, from the construction of Pn, we see that the number of
occurrences of type “operate opi” is exactly s. Next, considering the execution of Pn, we can
estimate the number of occurrences of type “push i” as follows: the size of the stack (in the
execution of Pn) increases by one due to “push i” while it decreases by one due to “operate
opi”. Thus, since the stack is empty at the first (i.e., before the execution of Pn) and its size is
one at the end, the number of occurrences of type “push i” is one more than that of “operate
opi”, that is, exactly s+ 1.

The description of Pn is a sequence of blocks of bits, which are of fixed lengths according
to types of instructions. Thus, we save one bit per one block for recognizing types (and block
lengths). A block for type “push i” further needs length ⌈log(n+ s)⌉ since i can take its value
from one to n+ s. A block for type “operate opi” further needs length a constant since opi
is a binary function, and hence it can be recognized by a constant bits. Thus, the total length
of the description of Pn is

ℓ(s) = (s+ 1)(1 + ⌈log(n+ s)⌉) +O(s),

that is, ℓ(s) = s log(s + n) + O(s). From this, the number of circuits of size at most s is
at most s · 2ℓ(s) = 2ℓ(s)+log s = 2ℓ, where ℓ = s log(s + n) + O(s). Thus, we need ℓ ≥ 2n if
any function of Fn can be computed by a circuit of size at most s. Therefore, the theorem is

3

Pn(x)

Let (g1, . . . , gn) = (x1, . . . , xn)
Let S be the empty stack

for j : 1 ≤ j ≤ |Pn| // |Pn| is the number of instructions in Pn

if Pn[j] is “push i”, then push the value of gi to S
if Pn[j] is “operate opi”, then

1. pop the top two s1 and s2 from S,
2. let gi = s1opis2
3. push the value of gi to S

Output the value of the top of S

Figure 2: The execution of Pn

proved by showing the following for any constant c > 0: if s = (2n/n)(1+ log n/n− c/n), then
s log(s+ n) + cs < 2n. This is checked by an elementary calculation.

3 A tighter lower bound

In the previous section, we see that the stack program constructed from a circuit Cn of size
s is described by at most ℓ(s) = s log(n+ s) + O(s) bits. Thus, the number of possible stack
programs for circuits of size at most s is at most 2ℓ, where ℓ = s log(n + s) + O(s). In this
section, we improve this upper bound, from which we obtain an improved lower bound on
L(n).

For any non-negative integer t : 0 ≤ t ≤ s, let C(t) be the set of circuits of size s such that
the number of gates of out-degree at least two is (exactly) t. (Thus, [C(t) : 0 ≤ t ≤ s] is a
partition of the set of circuits of size s.) We first estimate |C(t)| for any t : 0 ≤ t ≤ s.

Lemma 3.1.

|C(t)| ≤ 2s log(t+n)+O(s)

t!
.

Proof. We prove it in the similar way to the proof of Theorem 2.1: There are two different
things to estimate |C(t)|. One of the two is the way of estimating the length needed for the
description of type “push i”: we have seen that ⌈log(n + s)⌉ bits are needed to describe the
value of i since i can take its value from one to n+s. We will shortly see that if Pn is constructed
from a circuit Cn ∈ C(t), then we can reduce this number by applying a suitable labelling:
Let Cn ∈ C(t) be an arbitrary circuit of size s, and let Pn be the stack program constructed
from Cn. Then, we let {gn+1, . . . , gn+t} be the set of gates of out-degree at least two, and let
{gn+t+1, . . . , gn+s} be the set of the other gates. Observe that “push i” for n+ 1 ≤ i ≤ n+ s
appears in Pn if and only if gi is of out-degree at least two. Thus, i takes its value from one
to n+ t, and hence we only need ⌈log(n+ t)⌉ bits for describing the value of i. By the proof
of Theorem 2.1, the length of the description of Pn is

(s+ 1)(1 + ⌈log(n+ t)⌉) +O(s),

which is s log(n+ t) +O(s). From this, we have |C(t)| ≤ 2s log(n+t)+O(s).

4

The other different thing is that we estimate how much we get to over-estimate |C(t)| if we
apply the same analysis as that in the proof of Theorem 2.1. Note here that we already have
|C(t)| ≤ 2s log(n+t)+cs, which is still an over-estimated bound. Let Cn ∈ C(t) be an arbitrary
circuit of size s. Recall that {gn+1, . . . , gn+t} is the set of gates of out-degree at least two.
Consider that we arbitrarily number {gn+1, . . . , gn+t} with n+1, . . . , n+ t, and the other gates
with n + t + 1, . . . , n + s. (In the above, we have numbered gi with i for n + 1 ≤ i ≤ n + s.)

Note that there are t!(s − t)! such numberings for the circuit Cn. Let C
(1)
n and C

(2)
n be two

circuits identical to Cn that have distinct numberings. Let P
(1)
n and P

(2)
n be the stack programs

constructed from C
(1)
n and C

(2)
n , respectively. The constructions are done by the algorithm

shown in Fig. 1, but, in case that “push i” for n+1 ≤ i ≤ n+ s is added to Pn, we add “push
a” to Pn, where gi is numbered with a. (Note that “push a” does not appear in Pn for any
n+ t+ 1 ≤ a ≤ s.) Then, it is easy to see the following claim.

Claim 1. If C
(1)
1 and C

(2)
n have different numberings on gates gn+1, . . . , gn+t, then the two

descrptions of P
(1)
n and P

(2)
n are different. Otherwise, these two are same.

Besides this claim, for any two distinct circuits of C(t), the descriptions of the two stack
programs constructed are different (however those gates are numbered). Thus, there are
exactly t! (distinct) descriptions for each circuit of C(t) that are also different from those for
the other circuits. Therefore, we conclude that |C(t)| is at most 2s log(n+t)+O(s)/t!.

From this lemma (and using t! ≥ (t/e)t = 2t log t−t log e), we see that the total number of
circuits Cn of size at most s is at most

s ·

∣∣∣∣∣∣
∪

0≤t≤s

C(t)

∣∣∣∣∣∣ = s ·
∑

0≤t≤s

|C(t)| ≤ s2 · max
0≤t≤s

{
2s log(t+n)+O(s)

t!

}

≤ max
0≤t≤s

{
22 log s+s log(t+n)+O(s)−t log t+t log e

}
≤ max

0≤t≤s

{
2s log t−t log t+O(s)

}
. (asumming t ≥ n)

Let t = αs for any α = α(s) : 0 ≤ α ≤ 1. We estimate the maximum of f(α) = logαs−α logαs
over 0 ≤ α ≤ 1. By an elementary calculation, f(α) is maximized at α = c0/ log s for some
c0 : 1.44 < 1/ ln 2 < c0 < 1.5 if s is sufficiently large. Let t = c0s/ log s. (This value of t is
at least n when s = Ω(n2).) Since there are 22

n
distinct Boolean functions on n inputs, we

must have s log t− t log t+O(s) ≥ 2n. Then, we derive a contradiction to this inequality if we
assume s = (2n/n)(1 + 2 log n/n− c/n) for some constant c > 0:

s log
c0s

log s
− c0s

log s
log

c0s

log s
+O(s) = s

(
log

c0s

log s
− c0

log s
log

c0s

log s
+O(1)

)
≤ s (log s− log log s+O(1))

≤ s(n− 2 log n+O(1)).

Applying the above value of s with sufficiently large constant c > 0, we have

2n

n

(
1 +

2 log n

n
− c

n

)
(n− 2 log n+O(1)) ≤ 2n

n
(n− c+O(1))

< 2n.

5

References

[1] G. S. Frandsen and P. B. Miltersen, Reviewing bounds on the circuit size of the hardest
functions, Information Processing Letters 95, pp. 354-357, 2005.

[2] O. B. Lupanov, The synthesis of contact circuits, Dokl. Akad. Nauk SSSR (N.S.) 119, pp.
23-26, 1958.

[3] C. E. Shannon, The synthesis of two-terminal switching circuits, Bell System Tech. J. 28,
pp. 59-98, 1949.

6

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

