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Abstract

Ben-Sasson and Sudan (RSA 2006) showed that repeated tensor products of linear codes with a very
large distance are locally testable. Due to the requirement of a very large distance the associated tensor
products could be applied only over sufficiently large fields. Then Meir (SICOMP 2009) used this result
(as a black box) to present a combinatorial construction of locally testable codes that match best known
parameters. As a consequence, this construction was obtained over sufficiently large fields.

In this paper we improve the result of Ben-Sasson and Sudan and show that for any linear codes the
associated tensor products are locally testable. Consequently, the construction of Meir can be taken over
any field, including the binary field.

Moreover, a combination of our result with the result of Spielman (IEEE IT, 1996) implies a con-
struction of linear codes (over any field) that combine the following properties:

• have constant rate and constant relative distance;

• have blocklength n and testable with nε queries, for any constant ε > 0;

• linear time encodable and linear-time decodable from a constant fraction of errors.

Furthermore, a combination of our result with the result of Guruswami et al. (STOC 2009) implies a
similar corollary regarding the list-decodable codes.

1 Introduction

Locally testable codes (LTCs) are error correcting codes that have a tester, which is a randomized algorithm
with oracle access to the received word x. The tester reads a sublinear amount of information from x and
based on this “local view” decides if x ∈ C or not. It should accept codewords with probability one, and
reject words that are far (in Hamming distance) from the code with noticeable probability.

Such codes are of interest in computer science due to their numerous connections to probabilistically
checkable proofs (PCPs) and property testing (see the surveys [29, 14] for more information). LTCs were
implicit already in [2] (cf. [14, Sec. 2.4]) and they were explicitly studied by Goldreich and Sudan [16]. By
now several different constructions of LTCs are known including codes based on low-degree polynomials
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over finite fields [23, 1], constructions based on PCPs of proximity/assignment testers [3, 12]1 and sparse
random linear codes [9, 20, 21]. In this paper we study a different family of LTC constructions, namely,
tensor codes. Given two linear error correcting codes C ⊆ Fn1 , R ⊆ Fn2 over a finite field F, we define
their tensor product to be the subspace R ⊗ C ⊆ Fn1×n2 consisting of n1 × n2 matrices M with entries in
F having the property that every row of M is a codeword of R and every column of M is a codeword of C.
If C = R we use C2 to denote C ⊗ C and for i > 2 define Ci = C ⊗ Ci−1. Note that the blocklength of
Ci is ni1.

Recently, tensor products were used to construct new families of LTCs [6, 24], new families of list-
decodable codes [17], to give an alternative proof (see [25]) for IP=PSPACE theorem of [26, 27] etc.

Ben-Sasson and Sudan [6] suggested to use tensor product codes as a means to construct LTCs com-
binatorially. A natural hope would be to expect that given a code C ⊆ Fn1 , whenever the task is to test
whether an input word M ∈ Fn1×n1 is in C2, the tester for C2 can choose a random row (or column) of
M ; and if M was far from C2, its typical row/column is far from C and hence can be tested on being in C.
As was shown in [30, 15, 10] this approach fails in general and is known to work only for the base codes
having some non-trivial properties [13, 7, 8].

Nevertheless, Ben-Sasson and Sudan [6] showed that taking the repeated tensor products of any code
C ⊆ Fn with sufficiently large distance results in a locally testable code with sublinear query complexity.
More formally, they showed [6, Theorem 2.6] that for every m ≥ 3 if

(
∆(C)−1

n

)m
≥ 7

8 then Cm is locally

testable using n2 queries. Note that the blocklength of Cm is nm and query complexity is n2. Hence, for
example, if m = 10 we obtain a code with blocklength N = n10 and query complexity N0.2 = n2, under

the assumption that
(

∆(C)−1
n

)10
≥ 7

8 .
Let us explain some issues that remained open. First of all, it was remained unclear if the assumption

about a very large distance of the base codes is necessary. Moreover, the requirement on the distance of
the base code is dependent on the number of tensor products (m) one should apply. Note that less query
complexity (relatively to the blocklength) one should get more tensor product operations should be applied.
Thus the requirement about the distance of the base code is increased when the number of queries one
should get is decreased. We notice also that the larger distance implies the larger underlying field. It follows
that this result can not provide (via tensor products) arbitrary low sublinear query complexity (N ε for every
constant ε > 0) over a fixed field.

In this paper we ask the following question: is it possible to achieve a similar result to [6] but with no
requirements about the base codes at all? A positive result to this question might seem surprising since it
would imply that any linear error-correcting code can be involved in the construction of LTCs via tensor
products.

We give a positive answer on this question and show that no assumptions about the base codes (or
underlying fields) are not needed. Our result does not make any assumptions about the base codes, and
in particular we do not assume that the base codes involved in tensor products have very large distance
and hence it holds over any fields. This contrasts with previous works on the combinatorial constructions of
LTCs due to Ben-Sasson and Sudan [6] and Meir [24] which required very large base-code distance implying
large field size. The constructions of best known LTCs [5, 11, 24] were obtained over the large fields (when
finally, the field size can be decreased through code concatenation). Our improvement of the result of [6]
implies that the construction of Meir [24] (which achieves LTCs of best known parameters) can be taken
directly over any field (including the binary field). We think that this improvement has a non-negligible

1As was pointed out in [16], not all PCP constructions are known to yield LTCs, but some of them (e.g., PCPs of proxim-
ity/assignment testers) can be adapted to yield LTCs.
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role since the LTCs construction of Meir is combinatorial and the combinatorial constructions of LTCs (or
PCPs) should be independent, as much as possible, of the algebraic terms such as “polynomials”, “field
size”, “extension field” etc.

Given the fact that error-correcting codes play an important role in a complexity theory, and in particular,
in different iterative protocols, it might be helpful to develop a general scheme for constructing the error-
correcting codes that combine several different properties. E.g., it might be helpful to have a high-rate codes
which combine such properties as local testing, efficient encoding and decoding from a constant fraction of
errors.

We show that a combination of our results with the results of [28, 17] implies the construction of high-
rate codes which are both testable with sublinear query complexity, linear-time encodable and efficiently
decodable (or list-decodable) from the constant fraction of errors.

Organization of the paper. In the following section we provide background regarding tensor codes and
locally testable codes. In Section 3 we state our main results. We prove our main theorem (Theorem 3.2) in
Section 4. Finally, in Section 5 we prove our auxiliary statements.

2 Preliminaries

Throughout this paper, F is a finite field, [n] denotes the set {1, . . . , n} and Fn denotes F[n]. All codes
discussed in this paper will be a linear. Let C ⊆ Fn be a linear code over F.

For w ∈ Fn let supp(w) = {i|wi 6= 0}, |w| = | supp(w)| and wt(w) = |w|
n . We define the distance

between two words x, y ∈ Fn to be ∆ (x, y) = |{i | xi 6= yi}| and the relative distance to be δ(x, y) =
∆(x,y)
n . The distance of a code is defined by ∆ (C) = minx 6=y∈C ∆ (x, y) and its the relative distance is

denoted δ(C) = ∆(C)
n . A [n, k, d]F-code is a k-dimensional subspace C ⊆ Fn of distance d. The rate of the

code C is defined by rate(C) = dim(C)
n . For x ∈ Fn and C ⊆ Fn, let δ(x,C) = δC(x) = min

y∈C
{δ(x, y)} to

denote the relative distance of x from the code C. We note that ∆ (C) = min
c∈C\{0}

{wt(c)}. If δ(x,C) ≥ ε

we say that x is ε-far from C and otherwise x is ε-close to C. We let dim(C) denote the dimension of C.
The vector inner product between u = (u1, u2, . . . , un) ∈ Fn and v = (v1, v2, . . . , vn) ∈ Fn is defined
to be 〈u, v〉 =

∑
i∈[n] ui · vi. We let C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0} be the dual code of C and

C⊥t =
{
u ∈ C⊥ | |u| = t

}
. In a similar way we define C⊥≤t =

{
u ∈ C⊥ | |u| ≤ t

}
. For t ∈ Fn and

T ⊆ Fn we say that t ⊥ T if 〈t, t′〉 = 0 for all t′ ∈ T .
For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm, we let w|S = (wj1 , . . . , wjm)

be the restriction of w to the subset S. We let C|S = {c|S | c ∈ C} denote the restriction of the code C to
the subset S.

2.1 Tensor Product Codes

The definitions appearing here are standard in the literature on tensor-based LTCs (e. g. [13, 6, 24, 8, 30]).
For x ∈ FI and y ∈ FJ we let x ⊗ y denote the tensor product of x and y (i. e., the matrix M with

entries M(i,j) = xi · yj where (i, j) ∈ I × J). Let R ⊆ FI and C ⊆ FJ be linear codes. We define the
tensor product code R ⊗ C to be the linear space spanned by words r ⊗ c ∈ FI×J for r ∈ R and c ∈ C.
Some known facts regarding the tensor products (see e. g., [13]):
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• The code R ⊗ C consists of all I × J matrices over F whose rows belong to R and whose columns
belong to C.

• dim(R⊗ C) = dim(R) · dim(C)

• rate(R⊗ C) = rate(R) · rate(C)

• δ(R⊗ C) = δ(R) · δ(C)

We let C1 = C and Ct = Ct−1 ⊗C for t > 1. Note by this definition, C20 = C and C2t = C2t−1 ⊗C2t−1

for t > 0. We also notice that for a code C ⊆ Fn and m ≥ 1 it holds that rate(Cm) = (rate(C))m,
δ(Cm) = (δ(C))m and the blocklength of Cm is nm.

The main drawback of the tensor product operation is that this operation strongly decreases the rate and
the distance of the base codes. We refer the reader to [24] which showed how to use tensor products and
avoid the decrease in the distance and the strong decrease in the rate.

2.2 Locally testable codes and Robustly Testable Codes

A standard q-query tester for a linear code C ⊆ Fn is a randomized algorithm that on the input word
w ∈ Fn picks non-adaptively a subset I ⊆ [n] such that |I| ≤ q. Then T reads all symbols of w|I and
accepts if w|I ∈ C|I , and rejects otherwise (see [4, Theorem 2]). Hence a q-query tester can be associated
with a distribution over subsets I ⊆ [n] such that |I| ≤ q.

For purposes of composition we want to define a generalized tester (Definition 2.1) which does not make
queries, but selects and returns a “view” (a subset I ⊆ [n]) which can be considered as a code by itself (C|I ).

Definition 2.1 (Tester of C and Test View). A q-query tester D is a distribution D over subsets I ⊆ [n]
such that |I| ≤ q. Let w ∈ Fn (think of the task of testing whether w ∈ C) and let I ⊆ [n] be a subset.
We call w|I the view of a tester. If w|I ∈ C|I we say that this view is consistent with C, or when C is clear
from the context we simply say w|I is consistent.

When considering a tensor code Cm ⊆ Fn
m

, an associated tester will be a distribution over subsets
I ⊆ [n]m. Although the tester does not output accept or reject, the way a standard tester does, it can be
converted to output accept, reject as follows. Whenever the task is to test whether w ∈ C and a subset
I ⊆ [n] is selected by the tester, the tester can output accept if w|I ∈ C|I and otherwise output reject.

Definition 2.2 (LTCs and strong LTCs). A code C ⊆ Fn is a (q, ε, δ)-LTC if it has a q-query tester D such
that for all w ∈ Fn, if δ(w,C) ≥ δ we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε.

A code C ⊆ Fn is a (q, ε)-strong LTC if it has a q-query tester D such that for all w ∈ Fn, we have
Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w,C).

We notice that a (q, ε)-strong LTC is a (q, εδ, δ)-LTC for every δ > 0. Note that given a code C ⊆ Fn,
the subset I ⊆ [n] uniquely defines C|I . Moreover, the linearity of C implies that C|I is a linear subspace of
FI . In the rest of this section we formally define the notion of robustness (Definition 2.4) as was introduced
in [6]. To do that we start from the definition of local distance (Definition 2.3), which will be used in
Definition 2.4 and later in our proofs.

Definition 2.3 (Local distance). Let C be a code and w|I be the view on the coordinate set I obtained from
the word w. The local distance of w from C with respect to I (also called the I-distance of w from C) is
∆ (w|I , C|I) = min

c∈C
{∆ (w|I , c|I)} and similarly the relative local distance of w from C with respect to I

(relative I-distance of w from C) is δ(w|I , C|I) = min
c∈C
{δ(w|I , c|I)}.
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Informally, robustness implies that if a word is far from the code then, on average, a test’s view is far
from any consistent view that can be accepted on the same coordinate set I . This notion was defined for
LTCs following an analogous definition for PCPs [3, 11]. We are ready to provide a general definition of
robustness.

Definition 2.4 (Robustness). Given a tester (i. e., a distribution) D for the code C ⊆ Fn, we let

ρD(w) = E
I∼D

[δ(w|I , C|I)] be the expected relative local distance of input w.

We say that the tester D has robustness ρD(C) on the code C if for every w ∈ Fn it holds that ρD(w) ≥
ρD(C) · δC(w).

Let {Cn}n be a family of codes where Cn is of blocklength n and Dn is a tester for Cn. A family of
codes {Cn}n is robustly testable with respect to testers {Dn}n if there exists a constant α > 0 such that for
all n we have ρDn(Cn) ≥ α.

3 Main Results

The tester we consider in this paper is the plane tester (suggested in [6]).

Definition 3.1 (Plane Tester). Let m ≥ 3. Let M ∈ Fn
m

be an input word and think of testing whether
M ∈ Cnm . The plane tester D picks (non-adaptively) a random b ∈ [3] and random i ∈ [n], and returns
(b, i)-plane (the corresponding local view is M |(b,i)). Note that if M is a candidate word to be in Cm then
M |(b,i) is a candidate word to be in Cm−1.

Now we state our main technical theorem which says that the tensor product of any base code (with
constant relative distance) is robustly testable. This extends the result of [6] which showed that this claim
holds for base codes with a very large distance.

Theorem 3.2 (Main Theorem). Let C ⊆ Fn be a linear code and m ≥ 3. Let D be the plane tester for Cm.
Then

ρD(Cm) ≥ (δ(C))m

2m2
.

The proof of Theorem 3.2 is postponed to Section 4. Theorem 3.2 extends the main result of Ben-
Sasson and Sudan [6] since it implies that the m-wise tensor product of linear codes is robust for any linear
base codes with constant relative distance. In particular, the tensor product can be applied over any field,
including the binary field. So, as explained in the introduction, the combinatorial construction of LTCs in
[24] can be taken over any field (regardless of the field size).

Ben-Sasson and Sudan [6] explained that plane testers can be composed and the robustness of the plane
testers implies the strong local testability. For the sake of completeness we state this claim formally in
Corollary 3.3, and provide a proof-sketch in Section 5 (see [6, 7] for more information about composition
of the testers).

Corollary 3.3. Let C ⊆ Fn be a linear code and m ≥ 3 is a constant. Then Cm is a (n2, αm)-strong LTC,
where αm > 0 is a constant that depends only on m and δ(C). Note that the blocklength of Cm is nm.

Corollary 3.3 implies that any linear code can be used to define a locally testable code with sublinear
query complexity. Claim 3.4 shows that if a linear code C is linear-time encodable then so is Ci for any
constant i. Later we will use this claim together with Corollary 3.3 to show Corollary 3.5.
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Claim 3.4. Let m ≥ 1 be a constant. If C ⊆ Fn is a linear-time encodable linear code then Cm is
linear-time encodable.

The proof of Claim 3.4 is postponed to Section 5. Now, we combine Corollary 3.3 and Claim 3.4 to
show a simple construction of strong LTCs with arbitrary small sublinear query complexity and arbitrary
high rate from any linear code with sufficiently high rate.

Corollary 3.5. Let C ⊆ Fn be a linear code and let m ≥ 3 be a constant. Then Cm ⊆ Fn
m

is a (n2, αm)-
strong LTC, where αm > 0 is a constant that depends only on m and δ(C).

In particular, for every ε > 0, m = d1
ε e, N = nm and C ⊆ Fn such that rate(C) ≥ (1 − ε)1/m we

have Cm ⊆ FN is a (N ε, α)-strong LTC and rate(Cm) ≥ 1 − ε, where α > 0 is a constant that depends
only on ε. Moreover, if C is a linear-time encodable then Cm is a linear-time encodable.

Usually, in the areas of locally testable and locally decodable codes the main interest was given to the
constant query complexity. Recently, Kopparty et al. [22] showed the construction of high-rate locally de-
codable codes with sublinear query complexity (see [22] for the motivation behind this range of parameters).
Since then, the interest to the other range of parameters, and in particular, to sublinear query complexity was
increased.

We would like to stress that Corollary 3.5 is quite powerful for this range of parameters (sublinear query
complexity and high rate). First of all, there are different constructions of linear-time encodable codes
with constant rate and constant relative distance [18, 19, 28], and them all can be involved to define high-
rate LTCs with sublinear query complexity that are linear-time encodable. The other advantage of such
constructions is that the repeated tensor product of the base code is known to inherit some properties of
the base codes besides local testability. E.g., Gopalan et al. [17] showed that the tensor product operation
preserves list-decodability properties. Furthermore, we know about nice constructions of error-correcting
codes that can be efficiently encoded and decoded (list-decoded) from a constant fraction of errors (see e.g.,
[18, 19]).

In Section 3.1 we show how testing with sublinear query complexity can be combined with a linear time
encoding and decoding. Then, in Section 3.2 we show that Corollary 3.5 can be combined with the result of
[17] to define asymptotically good codes that can be encodable in linear time, testable with sublinear query
complexity and list-decodable in polynomial time.

3.1 Linear-time decodable codes

Proposition 3.6 shows that the tensor product operation preserves the “unique-neighbor” decoding property.
In particular, if C is a linear code that is linear time unique-neighbor decodable from a constant fraction
of errors then so is C2. Hence this observation, together with a result of, e.g. [28], can result in the
construction of asymptotically good locally testable codes with sublinear query complexity that can be
linear-time encoded and decoded to the closest neighbor after a constant fraction of errors.

Proposition 3.6. Assume C ⊆ Fn is a linear code that is linear-time decodable from α · n errors. Then
C2 = C ⊗ C is a linear code that is linear-time decodable from α2

100 · n
2 errors.

Proof. Let DecC be a linear-time decoder for the code C that can correct any α · n errors. Note that in
particular, DecC correct any α · n erasures in the linear time. We define the linear-time decoder DecC2 for
the code C2 that will correct any α2

100 · n
2 errors.

To do this, let M ∈ Fn×n be an input word. The decoder DecC2 will decode every row of M using
DecC and every column of M using DecC . Note that every entry of M is contained in (exactly) one row
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and one column. Call the entry (i, j) of M an inconsistent if row decoding gives to M |(i,j) a different value
from column decoding, and otherwise the entry is called consistent.

We call the row (column) of M bad if it contains at least αn inconsistent entries. Let Badr be a
number of bad rows and Badc be a number of bad columns. It holds that Badr · αn ≤ α2n2

100 and hence
Badr ≤ αn/100. Similarly, Badc ≤ αn/100.

The decoder DecC2 removes all bad rows and bad columns that have at least αn/2 inconsistent entries
and obtains a large submatrix of size at least (1−α/100)n×(1−α/100)n. It is easy to see that all consistent
entries in the above large submatrix were decoded correctly.

In the last step, the decoder DecC2 decodes, using DecC , every row of the large submatrix of M (of
size at least (1− α/100)n× (1− α/100)n) from at most αn/100 erasures and obtains a submatrix of size
at least (1−α/100)n×n. Now, it decodes every column of the submatrix to the full matrix. It can be easily
verified that the decoder DecC2 obtains a correct codeword of C2 and runs in linear time.

While the results of [28] were improved, for our purpose (Corollary 3.8) this result is sufficient.

Theorem 3.7 ([28]). There exists an (explicit) family of linear error correcting codes C ⊆ Fn2 such that
rate(C) = Ω(1), δ(C) = Ω(1), C is a linear-time encodable and linear-time decodable from the constant
fraction of errors.

A combination of Theorem 3.7, Proposition 3.6 and Claim 3.4 results in the following corollary.

Corollary 3.8. For every constant ε > 0 there exists an (explicit) family of linear error correcting codes
C ⊆ FN2 (obtained by tensor products on the codes from Theorem 3.7) that

• have constant rate and constant relative distance,

• linear time encodable and linear time decodable from the constant fraction of errors,

• are (N ε, α)-strong LTCs, where α = α(ε) > 0 is a constant.

3.2 Locally testable and list-decodable codes

In this section we recall some constructions of the list-decodable codes. We start by defining the list-
decodable codes.

Definition 3.9 (List-decodable codes). A code C is a (α,L)-list decodable if for every word w ∈ Fn,
δ(w,C) ≤ α we have |{c ∈ C | δ(c, w) ≤ α}| ≤ L. The code is said to be (α,L)-list decodable in time T
if there exists algorithm which on the input w ∈ Fn such that δ(w,C) ≤ α outputs all codewords c ∈ C
such that δ(c, w) ≤ α (at most L codewords).

Guruswami et al. [17] showed that the list-decodability is preserved in the tensor product operation.
More formally, they showed the following theorem stated in [17, Theorem 5.7].

Theorem 3.10 ([17]). Let F be a finite field and q = |F|. Given two linear codes C1, C2 ⊆ Fn, for every
ε > 0, the number of codewords of C2 ⊗ C1 within distance η∗ = min(δ1η2, δ2η1) − 3ε of any received

word is bounded by l(C2 ⊗ C1, η
∗) ≤ 4q

1

4δ21ε
2 ln

8l1(η1)
ε

ln
8l2(η2)

ε .
Further, if C1 and C2 can be efficiently list decoded up to error rates η1, η2 and C2 is a linear code,

then C2 ⊗ C1 can be list decoded efficiently up to error rate η∗. Specifically, if T denotes the time com-
plexity of list decoding C1 and C2, then the running time of the list decoding algorithm for C2 ⊗ C1 is

O(4q
1

4δ21ε
2 ln

8l1(η1)
ε

ln
8l2(η2)

ε · Tn1n2).
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Then, Gopalan et al. used Theorem 3.10 to conclude the following theorem, appearing in [17, Theorem
5.8].

Theorem 3.11 ([17]). Let C be a linear code with distance δ, list decodable up to an error rate η. For every
δ > 0, the m-wise tensor product code Cm can be list decoded up to an error rate δm−1η − ε with a list
size exp((O( ln l(η)/ε

ε2
))m). Moreover, if m ≥ 1 is constant and C is polynomial-time list decodable then the

running time of the list decoding algorithm for Cm is polynomial (depending on m).

The next fact is known due to the several constructions of list-decodable codes.

Fact 3.12. There exist linear error-correcting codes of constant rate and constant relative distance that can
be encoded in linear time and list-decoded in polynomial time.

We use the combination of Theorem 3.11, Fact 3.12, Claim 3.4 and Corollary 3.5 to conclude the fol-
lowing corollary.

Corollary 3.13. Let F be any field. For every constant ε > 0 there exists a code C ′ ⊆ FN such that
C ′ = Cm, where C ⊆ Fn is a linear code, rate(C) = Ω(1), δ(C) = Ω(1) and C is (ρ, L)-list decodable
in polynomial time.

• C ′ is a (N ε, α)-strong LTC, where α = α(ε) > 0 is a constant,

• C ′ is linear time encodable and list-decodable in polynomial time from the constant fraction of errors,

• rate(C ′) ≥ Ω(1) and δ(C ′) = Ω(1).

4 Proof of Theorem 3.2

Throughout this paper we assume thatC ⊆ Fn is a linear code. We shall consider anm-wise tensor product,
i.e., Cm ⊆ Fn

m
. Note that the blocklength of Cm is nm. Throughout this paper we assume that m ≥ 3 and

for the case of m = 2 we refer a reader to [7, 8, 13, 30, 15, 10, 10]). We start this section by defining the
concepts of points, lines and planes (some of the terms were defined following [6]).

4.1 Preliminary notations: Points, Lines and Planes

A point in such a code can be associated with an m-tuple (i1, i2, ..., im) such that ij ∈ [n]. Next we define
an axis parallel line, or shortly, a line which can be associated with a subset of points. For b ∈ [m] and
i ∈ [n] we say that l is a (b, (i1, i2, ..., ib−1, ib+1, ..., im))-line if

l = {(i1, i2, ..., ib−1, i, ib+1, ..., im) | for all j ∈ [m] \ {b} we have ij = ij}.

Note that (b, (i1, i2, ..., ib−1, ib+1, ..., im))-line is parallel to the b-th axis. A line l contains a point p if p ∈ l.
Note that a (b, (i1, i2, ..., ib−1, ib+1, ..., im))-line contains a point p = (j1, i2, ..., jm) if for all k ∈ [m] \ {b}
we have ik = jk. Two (different) lines intersects on the point p if both lines contain the point p.

We say that pl is a (b, i)-plane if

pl = {(i1, i2, ..., im) | ib = i and for all j ∈ [m] \ {b} we have ij ∈ [n]}.

A (b, i)-plane contains a point p = (i1, i2, ..., im) if ib = i, i.e., b-th coordinate of the point is i. A (b, i)-
plane contains a line l if it contains all points of the line. We say that two (different) planes are intersected if
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both planes contain at least one common point. Note that two (different) planes: (b1, i1)-plane and (b2, i2)-
plane are intersected iff b1 6= b2, moreover, they are intersected on all points p = (i1, . . . , im) such that
i1 = ib1 and i2 = ib2 , i.e., are intersected on nm−2 points.

Assume that pl1 is a (b1, i1)-plane and pl2 is a (b2, i2)-plane such that b1 < b2 (in particular b1 6= b2).
Let pl1∩ pl2 = {(i1, . . . , im) | ib1 = i1, ib2 = i2} be an intersection of two planes and Cm|pl1∩pl2 be a code
Cm restricted to the points in pl1 ∩ pl2. Note that δ(Cm|pl1∩pl2) = δ(Cm−2) = δ(C)m−2.

Given a word M ∈ Fn
m

, b ∈ [m] and i ∈ [n] we let M(b,i) be a restriction of M to the (b, i)-plane, i.e.,
to all points of the plane. We say that M(b,i) is a (b, i)-plane of M . Similarly, for the point p = (i1, . . . , im)
let M |p be a restriction of M to the point p and for the line l we let M |l be a restriction of M to the line l.
We say that M |l is a line l of M .

4.2 The proof itself

Let M ∈ Fn
m

be an input word. We prove that ρD(M) ≥ (δ(C))m−1

2m2 δ(M,Cm).
For every plane pl of M let r(pl) be the closest codeword of Cm−1 to M |pl (if there are more than one

such codewords fix anyone arbitrarily). Intuitively, the plane pl of M “thinks” that the symbols of M |pl
should be changed to r(pl). In this sense every plane of M has its own “opinion”. Then we have

ρD(M) = E
pl∼D

[δ(M |pl, r(pl))]. (4.1)

We say that the (b1, i1)-plane and the (b2, i2)-plane disagree on the point p = (i1, . . . , im) if (b1, i1)-
plane and (b2, i2)-plane are intersected, both contain the point p and r(pl1)|p 6= r(pl2)|p. We say that two
planes disagree on the line l if both planes are intersected, both contain the line l and r(pl1)|l 6= r(pl2)|l.

Note that if (b1, i1)-plane pl1 and (b2, i2)-plane pl2 are intersected and disagree on at least one point
then letting reg = pl1 ∩ pl2 we have r(pl1)|reg 6= r(pl2)|reg and moreover, δ(r(pl1)|reg, r(pl2)|reg) ≥
(δ(C))m−2. This is true since r(pl1)|reg, r(pl2)|reg ∈ Cm−2 are non-equal codewords of Cm−2 and
δ(Cm−2) = (δ(C))m−2.

Let E ∈ Fn
m

2 be a binary matrix such that E|p = 1 if at least two planes disagree on the point p, and
otherwise E|p = 0. For the point p we say that the point is almost fixed if E|p = 0 but p is contained in
some plane pl such that r(pl)|p 6= M |p. Intuitively, a point p is almost fixed if all planes containing this
point agree on this point but “think” that its value in M (M |p) should be changed (to r(pl)|p).

We let ToFix = {p = (i1, i2, . . . , im) | p is almost fixed} and let NumToFix = |ToFix|.

Proposition 4.1. It holds that ρD(M) ≥ wt(E)
m + NumToFix

nm .

Proof. Equation 4.1 says that ρD(M) is a relative distance of a typical plane of M (which is a word in
Fn

m−1
) from Cm−1. Note that for every point p = (i1, . . . , im): if E|p 6= 0 then p /∈ NeedToFix. That

means for every point p at most one condition is satisfied: E|p 6= 0 or p ∈ NeedToFix.
Note also that for every point p ∈ NeedToFix, for all planes pl of M we have (M |pl)|p 6= r(pl)|p.

Now, every point p is contained in m different planes. Hence if E|p 6= 0 then for at least one plane pl (of m
planes containing the point p) it holds that r(pl)|p 6= M |p.

Hence a relative distance between a typical plane (pl) of M and r(pl) is at least wt(E)
m + NumToFix

nm .

Next we define an important concept of “heavy planes (lines)” in the inconsistency matrixE. Intuitively,
a heavy plane (line) of the matrix E is a plane (line) where many inconsistencies occur, i.e., many non-zero
symbols.
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Definition 4.2 (Heavy lines and planes). A line l of E is called heavy if |E|l| ≥ δ(C) · n. A plane (b, i) of
E is called heavy if |E|(b,i)| ≥

(δ(C)·n)m−1

2 .

Lemma 4.3 is our main observation in the proof of Theorem 3.2. It says that any non-zero element of E
is located in some heavy plane of E.

Lemma 4.3 (Main Lemma). Let p = (i1, i2, . . . , im) be a point such that Ep 6= 0. Then p is contained in
some heavy plane of E.

The proof of Lemma 4.3 is postponed to Section 4.2.1. Corollary 4.4 shows that it is sufficient to remove
at most wt(E) · (δ(C))m−1/2 · n2 planes from E to get a zero submatrix.

Corollary 4.4. There exists S1, . . . , Sm ⊆ [n] such that n−|S1|+n−|S2|+. . .+n−|Sm| ≤ 2|E|
(δ(C)n)m−1 ·m

and letting S = S1 × S2 × . . .× Sm we have E|S = 0.

Proof. Let HeavyP lanes = {(b, i) | (b, i) is a heavy plane} to be a subset of pairs associated with heavy
planes. For b ∈ [m] let Sb = {i ∈ [n] | (b, i) ∈ HeavyP lanes} and Sb = [n] \ Sb.

We claim that |HeavyP lanes| ≤ 2|E|
(δ(C)·n)m−1 ·m. This is true since every heavy plane contains at least

(δ(C)·n)m−1

2 non-zero elements of E and the total number of non-zero elements of E is |E|. Furthermore,
every non-zero element of E is contained in at most m (heavy) planes. Thus n − |S1| + n − |S2| + . . . +

n− |Sm| =
∑

b∈[m] |Sb| ≤
2|E|

(δ(C)n)m−1 ·m.
Now, note that Lemma 4.3 implies that for every point p = (i1, i2, . . . , im) such that E|p 6= 0 is

contained in some heavy plane, i.e., in some plane from HeavyP lanes. Hence if all heavy planes are
removed from E we obtain a zero submatrix. So, it follows that E|S = 0.

Proposition 4.5 says that if after removing small fraction of planes from M we obtain a submatrix that
is close to the legal submatrix then M is close to Cm.

Proposition 4.5. Let S1, S2, ..., Sm ⊆ [n] be such that n−|S1|+n−|S2|+ ...+n−|Sm| ≤ τn < δ(C) ·n
and let S = S1 × S2 × . . . × Sm. Let C ′ = C|S1 ⊗ C|S2 ⊗ . . . ⊗ C|Sm . Recall that M |S is a submatrix
of M obtained by removing at most τ -fraction of planes. Assume that ∆ (M |S , C ′) ≤ α · nm. Then
δ(M,Cm) ≤ τ + α.

The proof of Proposition 4.5 appears in Section 4.2.2. Let us prove Theorem 3.2.

Proof of Theorem 3.2. By Proposition 4.1 we have ρD(M) ≥ wt(E)
m + NumToFix

nm . If wt(E) ≥ (δ(C))m

2m then
we are done. Otherwise, assume that wt(E) < (δ(C))m

2m .
Corollary 4.4 implies that it is sufficient to remove at most 2|E|

(δ(C)n)m−1 ·m < δ(C) · n planes from E to

get a zero submatrix. Proposition 4.5 implies that δ(M,Cm) ≤ 2 wt(E)
(δ(C))m−1 ·m+ NumToFix

nm .

Let β = 2m2

(δ(C))m−1 . Then ρD(M) ·β ≥ (wt(E)
m + NumToFix

nm ) ·β ≥ δ(M,Cm) and ρD(M) ≥ (δ(C))m−1

2m2 ·
δ(M,Cm).

4.2.1 Proof of Main Lemma 4.3

In this section we prove Lemma 4.3.
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Proof od Main Lemma 4.3. By definition of E we know that there are (at least) two planes that disagree on
the point p. Assume without loss of generality (symmetry) that the planes p1 = (1, i1) and p2 = (2, i2)
disagree on the point p. We will prove that either p1 is a heavy plane or p2 is a heavy plane.

Consider the intersection of p1 and p2, i.e., reg = pl1 ∩ pl2 = {(i1, i2, j3, j4, . . . , jm) | jk ∈ [n]}. Note
that p ∈ reg. Let ln be a line, which is parallel to the axis 3 and contains a point p (recall that m ≥ 3). Then
the planes p1 and p2 disagree on this line (since they disagree on the point p contained in the line ln), i.e.,
r(p1)|ln 6= r(p2)|ln. But r(p1)|ln, r(p2)|ln ∈ C by definition. This implies that ∆ (r(p1)|ln, r(p2)|ln) ≥
δ(C) · n, i.e., for at least δ(C) · n points p ∈ ln it holds that r(p1)|p 6= r(p2)|p.

Let BadPoints = {p ∈ ln | p1 and p2 disagree on p}. Note that |BadPoints| ≥ δ(C) · n. Note that
|BadPoints| ≥ δ(C)·n. LetBadP lanes = {(3, i)− plane | i ∈ [n],∃p ∈ BadPoints s.t. p ∈ (3, i)− plane}.
Note that |BadP lains| ≥ δ(C) · n.

We claim that for every plane ∈ BadP lanes we have that either plane disagrees with p1 on some point
p ∈ BadPoints or with p2 on some point p ∈ BadPoints. Hence at least one of p1, p2 disagrees with at
least 1

2 · |BadP lanes| ≥
1
2 · δ(C)n planes from BadP lanes. Without loss of generality assume that p1

disagrees with at least 1
2 · δ(C) · n planes from BadP lanes.

Let BadP lanesp1 = {plane ∈ BadP lanes | plane disagrees with p1}. Note that all planes from
BadP lanes are non-intersecting and thus all planes from BadP lanesp1 are non-intersecting. Every plane
pl ∈ BadP lanesp1 disagrees with the plane p1 on some point and hence disagree on at least (δ(C)n)m−2

points in their intersection region (pl ∩ p1) since r(pl)|pl∩p1 6= r(p1)|pl∩p1 ∈ Cm−2.
Let total = {p = (i1, j2, . . . , jm) | ∃plane ∈ BadP lanesp1 s.t. p ∈ p1 ∩ plane, r(plane)|p 6= r(p1)|p}.

We have |total| ≥ (δ(C)n)m−2 · δ(C)·n
2 = (δ(C)·n)m−1

2 since every intersection region (as above) contains at
least (δ(C)n)m−2 inconsistency points and there are at least 1

2 · δ(C) · n such regions. We stress that we do
not count any inconsistency point more than once, since the planes in BadP lanesp1 are non-intersecting.

Hence the plane p1 disagree with other planes in at least (δ(C)·n)m−1

2 points (on the plane). Thus E|p1
has at least (δ(C)·n)m−1

2 non-zero symbols. We conclude that p1 is a heavy plane of E and the point p is
contained in the plane p1.

4.2.2 Proof of Proposition 4.5

In this section we prove Proposition 4.5.

Proof of Proposition 4.5. Note that for every i ∈ [n] we have |Si| > n − δ(C) · n. The following simple
claim was proven in [6, Proposition 3.1]. For the sake of completeness we provide its proof.

Every codeword c′ of C ′ can be extended to a unique codeword c of Cm. To see this note that the
projection ofC toC|Si is bijective. It is surjective because it is a projection, and it is injective because |Si| >
n − ∆ (C). So, the projection of C to C ′ is bijection, because both codes are of dimension (dim(C))m.
Thus, every word in C ′ has a unique preimage in C.

We turn to prove Proposition 4.5. We know thatM can be modified in at most α-fraction of points p ∈ S
to get M |S ∈ C ′. Then, by the claim above, M can be modified (outside the submatrix M |S) to a codeword
of Cm by changing at most τ -fraction of symbols (since all symbols outside the submatrix M |S are at most
τ -fraction of all symbols). We conclude that δ(M,Cm) ≤ τ + α.

5 Proofs of Auxiliaries Corollaries and Claims

In this section we first proof Corollary 3.3.

11



Proof Sketch: For i ≥ 3 let Di be the plane tester for the code Ci. Note that the tester Dm returns a local
view that is a candidate to be in the code Cm−1. Hence Dm−1 can be invoked on the local view of Dm, etc.
So, the testers Dm,Dm−1, . . . ,D3 can be composed to result in a n2-query tester Dcomp for the code Cm.

The robustness of the composed tester will be ρDcomp(Cm) ≥ ρDm(Cm) ·ρDm−1(Cm−1) · . . . ·ρD3(C3).
To see this let w ∈ Fn

m
be a word such that δ(w,Cm) = δ. Then the local view of the tester Dm is

expected to be ρDm(Cm) · δ far from Cm−1. When Dm−1 will be invoked, its local view will be ρDm(Cm) ·
ρDm−1(Cm−1) · δ far from Cm−2, etc. Finally, the local view of D3 will be (ρDm(Cm) · ρDm−1(Cm−1) ·
. . . · ρD3(C3)) · δ far from C2.

Theorem 3.2 says that ρDm(Cm) ≥ (δ(C))m

2m2 . Hence for constant m ≥ 3 it holds that ρDcomp(Cm) > 0
is a constant that depends only on δ(C) and m.

Now, let αm = ρDcomp(Cm) and note that the query complexity of Dcomp is n2. Let M ∈ Fn
m

such
that δ(M,Cm) = δ and think of testing whether M in Cm. We argue that PrI∼Dcomp [M |I ∈ Cm|I ] ≥ αm.
This is true since otherwise, PrI∼Dcomp [M |I /∈ Cm|I ] < αm, and then the robustness ρDcomp(Cm) < αm ·1
(even assuming that whenever M |I /∈ Cm|I we have δ(M |I , Cm|I) = 1). Contradiction.

This proves that Cm is a (n2, αm)-strong LTC.

Now we prove Claim 3.4.

Proof of Claim 3.4. Let k = dim(C). Let EC be an encoder for the code C, which receives a message
x ∈ Fk and outputs a codeword EC(x) ∈ C such that C =

{
EC(x) | x ∈ Fk

}
. Assume that EC has

running time T = O(k). Note that this implies that n ≤ T = O(k) since the blocklength can not exceed
the running time of the encoder.

For every i ≥ 1 we define ECi to be the encoder for Ci, i.e., Ci =
{
ECi(x) | x ∈ Fk

i
}

. We will argue

that the running time of ECi is i · ni−1 · T . Since n ≤ T = O(k) we will conclude that for any constant
i ≥ 1 the running time of ECi is linear (in ki).

We prove the claim by induction on i. The encoder EC = EC1 was defined and its running time is
T = 1 · n1−1 · T . Assume that we defined the encoder ECi−1 for the code Ci−1 and its running time is
(i− 1) · n(i−1)−1 · T .

Let us define the encoder ECi for the code Ci. Note that the code Ci has message length ki and its
blocklength is ni. Hence the message x ∈ Fk

i
can be viewed as a matrix k× ki−1 and the encoder ECi will

first encode (by the encoder ECi−1) every row of the matrix, obtaining the matrix k × ni−1. Then ECi will
encode every column of the obtained matrix to get a codeword of Ci. The running time of the encoder Ci is
k · ((i− 1) · ni−2T ) + ni−1T ≤ ((i− 1) · ni−1T ) + ni−1T = i · ni−1 · T .
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