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Abstract

Ben-Sasson and Sudan (RSA 2006) showed that repeated tensor products of linear codes with a very
large distance are locally testable. Due to the requirement of a very large distance the associated tensor
products could be applied only over sufficiently large fields. Then Meir (SICOMP 2009) used this result
(as a black box) to present a combinatorial construction of locally testable codes that match best known
parameters. As a consequence, this construction was obtained over sufficiently large fields.

In this paper we improve the result of Ben-Sasson and Sudan and show that for any linear codes the
associated tensor products are locally testable. Consequently, the construction of Meir can be taken over
any field, including the binary field.

Moreover, a combination of our result with the result of Spielman (IEEE IT, 1996) implies a con-
struction of linear codes (over any field) that combine the following properties:

• have constant rate and constant relative distance;

• have blocklength n and testable with nε queries, for any constant ε > 0;

• linear time encodable and linear-time decodable from a constant fraction of errors.

Furthermore, a combination of our result with the result of Guruswami et al. (STOC 2009) implies a
similar corollary regarding the list-decodable codes.

1 Introduction

Over the last decades coding theory and complexity theory have benefited from numerous interesting in-
terconnections. Recent major achievements in complexity theory, e.g., showing IP = PSPACE [39, 40, 34]
and giving PCP characterization of NP [4, 3] have strongly relied on connections with coding theory either
explicitly or implicitly.

Most of the well-studied and practically used codes are linear codes. A linear code C ⊆ Fn is a linear
subspace, where n is a called the blocklength of C and dim(C) denotes the dimension of the code. The rate
of the code is defined by rate(C) = dim(C)

n . The distance of the code C, denoted by ∆ (C), is the minimal
hamming distance between two different codewords of C. Typically, one is interested in the codes whose
distance is linear to the blocklength.

∗The research was partially supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement number 240258 and by grant number 2006104 by the US-Israel Binational Science Foundation.
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The central algorithmic problem in coding theory is the explicit construction of error-correcting codes
with best possible parameters together with fast encoding and decoding algorithms. I.e., given a message
w ∈ Fk the goal is efficiently encode this message (in the best case we have linear running time), and given
a corrupted codeword the goal is efficiently decode it and obtain the original message (again, in the best case
this can be done in the linear time). These features were proved to be useful also in the complexity theory.

Besides the efficient encoding/decoding algorithms we know the following well-studied properties: local
testing and local decoding (correction). The combination of these properties is highly useful, e.g., PCPs
based on the Hadamard code [3] relied on the fact that the Hadamard code is testable with 3 queries [31]
and locally decodable (correctable) with 2 queries.

Given the fact that error-correcting codes play an important role in the complexity theory, and in par-
ticular, in different iterative protocols (see e.g., [6]), it might be helpful to develop a general scheme for
constructing the error-correcting codes that combine several different properties. E.g., it might be helpful to
have high-rate codes which combine such properties as local testing, efficient encoding and decoding from
a constant fraction of errors. This is what we do in this paper. In the rest of the introduction we provide a
brief background and explain our contribution.

Locally Testable Codes. Locally testable codes (LTCs) are error correcting codes that have a tester, which
is a randomized algorithm with oracle access to the received word x. The tester reads a sublinear amount
of information from x and based on this “local view” decides if x ∈ C or not. It should accept codewords
with probability one, and reject words that are far (in Hamming distance) from the code with noticeable
probability.

Such codes are of interest in computer science due to their numerous connections to probabilistically
checkable proofs (PCPs) and property testing (see the surveys [43, 20] for more information). LTCs were
implicit already in [5] (cf. [20, Sec. 2.4]) and they were explicitly studied by Goldreich and Sudan [22]. By
now several different constructions of LTCs are known including codes based on low-degree polynomials
over finite fields [2, 31, 3], constructions based on PCPs of proximity/assignment testers [7, 17]1 and sparse
random linear codes [13, 27, 29]. In this paper we study a different family of LTC constructions, namely,
tensor codes. Given two linear error correcting codes C ⊆ Fn1 , R ⊆ Fn2 over a finite field F, we define
their tensor product to be the subspace R ⊗ C ⊆ Fn1×n2 consisting of n1 × n2 matrices M with entries in
F having the property that every row of M is a codeword of R and every column of M is a codeword of C.
In this case, we say that C and R are base-codes. If C = R we use C2 to denote C⊗C and for i > 2 define
Ci = C ⊗ Ci−1. Note that the blocklength of Ci is ni1.

Recently, tensor products were used to construct new families of LTCs [10, 33], new families of list-
decodable codes [24], to give an alternative proof [34]2 for IP=PSPACE theorem of [39, 40] etc.

Ben-Sasson and Sudan [10] suggested to use tensor product codes as a means to construct LTCs com-
binatorially. Let C ⊆ Fn1 be a linear code and let us consider the following approach. Suppose that the
task is to test whether an input word M ∈ Fn1×n1 belongs to C2, where M is far from C2. One could
expect that in this case the typical row/column of M is far from C, and hence the tester for C2 can choose a
random row (or column) of M . Then this selected row/column could be tested on being in C. However, as
was shown in [44, 21, 15] this approach fails in general and is known to work only under assumptions that
C has some non-trivial properties [18, 11, 12] (see also [32]).

1As was pointed out in [22], not all PCP constructions are known to yield LTCs, but some of them (e.g., PCPs of proxim-
ity/assignment testers) can be adapted to yield LTCs.

2Meir [34] showed that the “multiplication” property and the “sum-check” protocol can be designed by tensor products. We
consider this surprising, since previously such features were achieved only by low degree polynomials.
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In spite of this fact, Ben-Sasson and Sudan [10] showed that taking the repeated tensor products of any
code C ⊆ Fn with sufficiently large distance results in a locally testable code with sublinear query com-
plexity. Although it was not explicitly stated in [10], it follows that [10, Theorem 2.6] gives the following
result.

Theorem 1.1 (Informal). For every ε > 0 there exists a sufficiently large field F = F(ε) such that letting

m = d2
ε e for every C ⊆ Fn,

(
∆(C)−1

n

)m
≥ 7

8 it holds that Cm is testable with N ε queries, where N = nm

is the blocklength of Cm.

Let us explain some issues that remained open. First of all, it was remained unclear if the assumption
about a very large distance of the base codes is necessary. Moreover, the requirement on the distance of the
base code (∆ (C)) is dependent on the number of tensor products (m) one should apply. Note that less query
complexity (relatively to the blocklength) one should get more tensor product operations should be applied.
Thus the requirement about the distance of the base code is increased when the number of queries one should
get is decreased. We notice also that the requirement for larger ∆ (C) implies the larger underlying field F.
As a consequence, a similar theorem could not be argued for some fixed field.

In this paper we ask the following question: is it possible to achieve a similar result to [10] but with
no requirements about the base codes at all? A positive result to this question might seem surprising since
it would imply that any linear error-correcting code can be involved in the construction of LTCs via tensor
products. Nevertheless, we give a positive answer on this question and show that no assumptions about the
base codes (or underlying fields) are needed. I.e., informally, we show the following result (stated formally
in Theorem 3.1).

Theorem 1.2 (Informal). For every ε > 0 and for every field F letting m = d2
ε e it holds that for every

C ⊆ Fn we know that Cm is testable with N ε queries, where N = nm is the blocklength of Cm. The
rejection probability of the tester is proportional to ∆ (C).

This contrasts with the previous works on the combinatorial constructions of LTCs due to Ben-Sasson
and Sudan [10] and Meir [33] which required very large base-code distance, and as a consequence required
the large field size. Moreover, the constructions of best known LTCs [9, 16, 33] were obtained over the large
fields (when finally, the field size can be decreased through code concatenation). Our improvement over the
result of [10] implies that the construction of Meir [33] (which achieves LTCs of best known parameters3)
can be taken directly over any field (including the binary field). Thus our results imply that LTCs having
the best known parameters can be constructed directly over any field. On the other hand, we think that this
improvement has a non-negligible role since the LTCs construction of Meir [33] is combinatorial and the
combinatorial constructions of LTCs (or PCPs) should be independent, as much as possible, of the algebraic
terms such as “polynomials”, “fields” etc. Furthermore, our proof is much simpler than the proof provided
in [10] and simultaneously we obtain some quantitative improvements in the related parameters (see Section
A and in particular Remark A.6).

Efficient encoding and decoding. Let us ask the following natural question. Whether tensor products of
codes can be encoded efficiently ? It is quite simple to show (Claim 3.2) that if the code C has an efficient
(linear time) encoder then Cm has an efficient (linear time) encoder.

3The best known LTCs achieve constant relative distance, inverse poly-logarithmic rate, constant query complexity and constant
rejection probability. This range of parameters was initially achieved by Dinur [16] based on the results of Ben-Sasson and Sudan
[9]. Later, Meir [33], based on [10], gave a combinatorial construction of LTCs that matched the same range of parameters.

3



Let us turn to the decoding properties of the tensor products, e.g., the natural question here would
be whether tensor products of codes preserve the decoding properties provided that the base codes are
efficiently decodable. This question was studied by Gopalan et al. [24] who showed that tensor products
preserve the list-decoding properties, i.e., ifC is list-decodable in polynomial time thenCm is list-decodable
in polynomial time.4 Our contribution to this question is as follows. We show (Proposition 3.6) that if C is
decodable from a constant fraction of errors in linear time then Cm is decodable from a constant fraction of
errors in linear time.

Then, we show (Corollaries 3.10, 3.15) that a combination of our results with the results of [42, 24]
implies the construction of constant-rate codes which are both testable with sublinear query complexity,
linear-time encodable and efficiently decodable (or list-decodable) from the constant fraction of errors.

Tensor product of codes preserves the local correction properties. Informally, locally correctable codes
(LCCs) are error-correcting codes that allow to retrieve each codeword bit using a small number number of
queries even after a constant fraction of it is adversely corrupted. The most famous LCCs include Hadamard
and Reed-Muller codes. Recently, Kopparty et al. [30] presented a new family of LCCs called multiplicity
codes.

In Section 3.3 we prove that tensor product of codes preserve the local correction property. That means
if C is an LCC with query complexity q then C2 is an LCC with query complexity q2. On the one hand,
this observation discovers additional families of locally correctable codes and on the other hand, it suggests
a simple way to combine two different properties: local correction and local testing. E.g., let C ⊆ Fn be a
linear LCC with query complexity q and let C ′ = C10 ⊆ Fn

10
. Then C ′ has blocklength N = n10, C ′ is an

LCC with query complexity q10 and is an LTC (with query complexity N0.2).

Organization of the paper. In the following section we provide background regarding tensor codes and
locally testable codes. In Section 3 we state our main results. We state our main technical theorem (Theorem
A.5) in Section A. The proof of Theorem A.5 is postponed to Section B and the proofs of auxiliary statements
appear in Section C.

2 Preliminaries

Throughout this paper, F is a finite field, [n] denotes the set {1, . . . , n} and Fn denotes F[n]. All codes
discussed in this paper will be a linear. Let C ⊆ Fn be a linear code over F.

For w ∈ Fn let supp(w) = {i|wi 6= 0}, |w| = | supp(w)| and wt(w) = |w|
n . We define the distance

between two words x, y ∈ Fn to be ∆ (x, y) = |{i | xi 6= yi}| and the relative distance to be δ(x, y) =
∆(x,y)
n . The distance of a code is defined by ∆ (C) = minx 6=y∈C ∆ (x, y) and its the relative distance is

denoted δ(C) = ∆(C)
n . A [n, k, d]F-code is a k-dimensional subspace C ⊆ Fn of distance d. The rate of the

code C is defined by rate(C) = dim(C)
n . For x ∈ Fn and C ⊆ Fn, let δ(x,C) = δC(x) = min

y∈C
{δ(x, y)} to

denote the relative distance of x from the code C. We note that ∆ (C) = min
c∈C\{0}

{wt(c)}. If δ(x,C) ≥ ε

we say that x is ε-far from C and otherwise x is ε-close to C. We let dim(C) denote the dimension of C.
The vector inner product between u = (u1, u2, . . . , un) ∈ Fn and v = (v1, v2, . . . , vn) ∈ Fn is defined
to be 〈u, v〉 =

∑
i∈[n] ui · vi. We let C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0} be the dual code of C and

4The main focus in [24] was done on the designing polynomial-time list-decoding algorithms and on the combinatorial bounds
for the list-decoding tensor products of codes and interleaved codes.
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C⊥t =
{
u ∈ C⊥ | |u| = t

}
. In a similar way we define C⊥≤t =

{
u ∈ C⊥ | |u| ≤ t

}
. For t ∈ Fn and

T ⊆ Fn we say that t ⊥ T if 〈t, t′〉 = 0 for all t′ ∈ T .
For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm, we let w|S = (wj1 , . . . , wjm)

be the restriction of w to the subset S. We let C|S = {c|S | c ∈ C} denote the restriction of the code C to
the subset S.

2.1 Tensor Product Codes

The definitions appearing here are standard in the literature on tensor-based LTCs (e. g. [18, 10, 33, 12, 44]).
For x ∈ FI and y ∈ FJ we let x ⊗ y denote the tensor product of x and y (i. e., the matrix M with

entries M(i,j) = xi · yj where (i, j) ∈ I × J). Let R ⊆ FI and C ⊆ FJ be linear codes. We define the
tensor product code R ⊗ C to be the linear space spanned by words r ⊗ c ∈ FI×J for r ∈ R and c ∈ C.
Some known facts regarding the tensor products (see e. g., [18]):

• The code R ⊗ C consists of all I × J matrices over F whose rows belong to R and whose columns
belong to C.

• dim(R⊗ C) = dim(R) · dim(C)

• rate(R⊗ C) = rate(R) · rate(C)

• δ(R⊗ C) = δ(R) · δ(C)

We let C1 = C and Ct = Ct−1 ⊗C for t > 1. Note by this definition, C20 = C and C2t = C2t−1 ⊗C2t−1

for t > 0. We also notice that for a code C ⊆ Fn and m ≥ 1 it holds that rate(Cm) = (rate(C))m,
δ(Cm) = (δ(C))m and the blocklength of Cm is nm.

The main drawback of the tensor product operation is that this operation strongly decreases the rate and
the distance of the base codes. We refer the reader to [33] which showed how one can use tensor products
and avoid the decrease in the distance and the strong decrease in the rate.5

2.2 Locally testable codes and Robustly Testable Codes

A standard q-query tester for a linear code C ⊆ Fn is a randomized algorithm that on the input word
w ∈ Fn picks non-adaptively a subset I ⊆ [n] such that |I| ≤ q. Then T reads all symbols of w|I and
accepts if w|I ∈ C|I , and rejects otherwise (see [8, Theorem 2]). Hence a q-query tester can be associated
with a distribution over subsets I ⊆ [n] such that |I| ≤ q.

Definition 2.1 (Tester of C and Test View). A q-query tester D is a distribution D over subsets I ⊆ [n]
such that |I| ≤ q. Let w ∈ Fn (think of the task of testing whether w ∈ C) and let I ⊆ [n] be a subset.
We call w|I the view of a tester. If w|I ∈ C|I we say that this view is consistent with C, or when C is clear
from the context we simply say w|I is consistent.

Although the tester in Definition 2.1 does not output accept or reject, the way a standard tester does,
it can be converted to output accept, reject as follows. Whenever the task is to test whether w ∈ C and

5Meir [33] demonstrated how one can combine the tensor product operation with two additional operations: random projections
and distance amplification. In this way, on the one hand repeated tensor products could be applied, while on the other hand these
supplementary operations prevent the distance loss and the strong rate reduction.
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a subset I ⊆ [n] is selected by the tester, the tester can output accept if w|I ∈ C|I and otherwise output
reject.

When considering a tensor code Cm ⊆ Fn
m

, an associated tester will be a distribution over subsets
I ⊆ [n]m.

Definition 2.2 (LTCs and strong LTCs). A code C ⊆ Fn is a (q, ε, δ)-LTC if it has a q-query tester D such
that for all w ∈ Fn, if δ(w,C) ≥ δ we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε.

A code C ⊆ Fn is a (q, ε)-strong LTC if it has a q-query tester D such that for all w ∈ Fn, we have
Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w,C).

We notice that a (q, ε)-strong LTC is a (q, εδ, δ)-LTC for every δ > 0. Note that given a code C ⊆ Fn,
the subset I ⊆ [n] uniquely defines C|I . Moreover, the linearity of C implies that C|I is a linear subspace
of FI .

3 Main Results

We start this section by presenting our main theorem. Theorem 3.1 implies that any linear code over any
field can be used to define a locally testable code with sublinear query complexity.

Theorem 3.1 (Main Theorem). Let C ⊆ Fn be a linear code and m ≥ 3 is a constant. Then Cm is
a (n2, αm)-strong LTC, where αm > 0 is a constant that depends only on m and δ(C). Note that the
blocklength of Cm is nm.

The proof-sketch of Theorem 3.1 appears in Section C.1 and is based on the main technical theorem
(Theorem A.5). We continue to the “encoding” property of tensor products. Claim 3.2 shows that if a linear
code C is linear-time encodable then so is Ci for any constant i. Later we will use this claim together with
Theorem 3.1 to show Corollary 3.3.

Claim 3.2. Let m ≥ 1 be a constant. If C ⊆ Fn is a linear-time encodable linear code then Cm is
linear-time encodable.

The proof of Claim 3.2 is postponed to Section C.2. Note that every linear code can be encoded is
quadratic time (multiplication by a generator matrix). Now, we combine Theorem 3.1 and Claim 3.2 to
show a simple construction of strong LTCs with arbitrary small sublinear query complexity and arbitrary
high rate from any linear code with sufficiently high rate.

Corollary 3.3. Let F be any field. Let C ⊆ Fn be a linear code and let m ≥ 3 be a constant. Then
Cm ⊆ Fn

m
is a (n2, αm)-strong LTC, where αm > 0 is a constant that depends only on m and δ(C). In

particular, for every ε > 0, m = d2
ε e, N = nm and C ⊆ Fn such that rate(C) ≥ (1 − ε)1/m we have

Cm ⊆ FN is a (N ε, α)-strong LTC and rate(Cm) ≥ 1− ε, where α > 0 is a constant that depends only on
ε. Moreover, if C is a linear-time encodable then Cm is a linear-time encodable.

Remark 3.4. We notice that there are linear error-correcting codes with arbitrary high rate that can be
encodable in the linear time (see e.g., [38]6). Thus Corollary 3.3 provides a construction of high-rate LTCs
with constant relative distance and arbitrary low sublinear query complexity that can be encoded in linear
time. Moreover, this construction can be taken over any field.

6This result improves the previous result of [26] and presents the construction of linear codes that lie close to the singleton
bound, and have linear time encoding/decoding algorithms.
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We also notice that any simple approach, based on the testing of (low-degree) polynomials [2], to achieve
the similar result to Corollary 3.3 fails shortly. In particular, let us consider the testing of Reed-Muller codes
of degree d and recall that informally, Reed-Muller codes of degree d can be tested by making≈ 2d queries.
If d is large then the associated codes must be constructed over the very large field (depending on the
blocklength of the code), since otherwise cannot have constant relative distance. However, if d is small then
the rate of the associated code is very low. Furthermore, the linear-time encoding of the codes based on
high-degree polynomials is problematic.

Usually, in the areas of locally testable and locally decodable codes the main interest was given to the
constant query complexity. Recently, Kopparty et al. [30] showed the construction of high-rate locally de-
codable codes with sublinear query complexity (see [30] for the motivation behind this range of parameters).
Since then, the interest to the other range of parameters, and in particular, to sublinear query complexity was
increased.

We would like to stress that Corollary 3.3 is quite powerful for this range of parameters (sublinear
query complexity and high rate). First of all, there are different constructions of linear-time encodable
and decodable codes with constant rate and constant relative distance [25, 26, 42], and them all can be
involved to define high-rate LTCs with sublinear query complexity that are linear-time encodable. The other
advantage of such constructions is that the repeated tensor products of the base code are known to inherit
some properties of the base codes besides local testability. E.g., Gopalan et al. [24] showed that the tensor
product operation preserves list-decodability properties.

In Section 3.1 we show how the local testing with sublinear query complexity can be combined with
the linear-time encoding and decoding. Then, in Section 3.2 we show that Corollary 3.3 can be combined
with the result of [24] to define asymptotically good codes that can be encodable in linear time, testable with
sublinear query complexity and list-decodable in polynomial time.

Tensor Products of Codes can have nice distance. As was said in Section 2.1, Meir [33] explained that
one of the standard procedures for distance amplification of the code [1] can be combined together with
the repeated tensor product operations. He also proved that this procedure preserves the local testability
of the underlying code. The simplest way to see this is as follows. Let DistAmp(·) be a procedure that
increases the relative distance of the code C ′ ⊆ Fn2 , e.g., from 0.001 to 0.49. I.e., if δ(C ′) ≥ 0.001 then
δ(DistAmp(C ′)) ≥ 0.49. Moreover, it holds that if C ′ was locally testable then DistAmp(C ′) is locally
testable, where the query complexity of the code DistAmp(C ′) is increased by only a constant factor,
independent on the other parameters of the code). It can be readily verified that the distance amplification
procedure preserves the encoding time, and in particular, ifC ′ was linear-time encodable then DistAmp(C ′)
is linear-time encodable. Thus, one can pick any linear-time encodable code C with linear distance, obtain
a linear-time encodable LTC C ′ = C10 and then increase its distance by DistAmp(C ′). We refer the reader
to [33, Section 4.3] for further information about distance amplification procedures and its affect on local
testability.

In this paper we won’t use any distance amplification procedures and restrict our attention only to the
tensor product operation.

3.1 Locally testable and Linear-time decodable codes

Let us first recall the definition of decodable codes.

Definition 3.5. Let C ⊆ Fn be a code and let α < δ(C)/2. We say that C is decodable from αn errors in
time T if there exists a decoder DC which on the input word w ∈ Fn such that δ(w,C) ≤ α outputs c ∈ C

7



such that δ(w, c) ≤ α and its runtime is upper-bounded by T . If T = O(n) we say that C is decodable in
linear time.

Proposition 3.6 shows that the tensor product operation preserves the “unique-neighbor” decoding prop-
erty. In particular, if C is a linear code that is linear time decodable from a constant fraction of errors then
so is C2. Hence this observation, together with a result of, e.g. [42], can result in the construction of asymp-
totically good locally testable codes with sublinear query complexity that can be linear-time encoded and
decoded to the closest codeword after a constant fraction of errors.

Proposition 3.6. Assume C ⊆ Fn is a linear code that is linear-time decodable from α · n errors. Let
m ≥ 1 be a fixed constant. Then Cm is a linear code that is linear-time decodable from αm · nm errors.

The proof of Proposition 3.6 is postponed to Section C.3. Spielman [42] (based on [41]) was first who
provided the (explicit) construction of linear codes that can be encoded in linear time and decoded in linear
time from the constant fraction of errors. The construction of these codes was achieved over the binary field,
but it can be easily extended to any other field as well.

Theorem 3.7 ([42]). There exists an (explicit) family of linear error correcting codes C ⊆ Fn2 such that
rate(C) = Ω(1), δ(C) = Ω(1), C is a linear-time encodable and linear-time decodable from the constant
fraction of errors.

A combination of Theorem 3.7, Proposition 3.6 and Claim 3.2 together with Theorem 3.1 results in the
following corollary. Note that it considers binary linear codes.

Corollary 3.8. For every constant ε > 0 there exists an (explicit) family of linear error correcting codes
C ⊆ FN2 (obtained by tensor products on the codes from Theorem 3.7) that

• have rate and relative distance Ωε(1),

• linear time encodable and linear time decodable from the constant fraction (Ωε(1)) of errors,

• are (N ε, α)-strong LTCs, where α = α(ε) > 0 is a constant.

Proof. Let ε > 0 and m = d2
ε e. Let C ′ ⊆ Fn2 be a code from Theorem 3.7 such that rate(C ′) = Ω(1),

δ(C ′) = Ω(1) and C ′ is linear-time encodable and decodable from the constant fraction of errors. Let
C = (C ′)m and note that the blocklength ofC isN = nm. It follows that rate(C) = (rate(C ′))m = Ωm(1)
and δ(C) = (δ(C ′))m = Ωm(1). Moreover, Claim 3.2 and Proposition 3.6 imply that C is encodable in
linear time and decodable from the constant fraction (Ωε(1)) of errors in linear time. By Theorem 3.1 it
holds that C is a (N ε, α)-strong LTC, where α is a constant that depends on ε.

The work of Spielman [42] was improved later (e.g., [26, 38]) and in particular, the construction of codes
with arbitrary high rate was achieved over the fields of constant size.7

The next theorem is due to Guruswami and Indyk [26].8

Theorem 3.9 ([26]). For every ε > 0 there exist a field F = F(ε) and an (explicit) family of linear error
correcting codes C ⊆ Fn such that rate(C) ≥ 1 − ε, δ(C) = Ωε(1), C is a linear-time encodable
and linear-time decodable from the constant fraction (Ωε(1)) of errors, where F is a field of constant size
(independent of the blocklength).

7The code constructions suggested in [26, 38] correct a larger fraction of errors than in [42], and even almost optimal given the
distance parameter. However, for our result (Corollary 3.10) it is sufficient to say that the codes are decodable from the constant
fraction of errors.

8The Theorem was improved later by Roth and Skachek [38].

8



Note that the underlying field F has a constant size that depends only on the parameter ε. Again, a
combination of Theorem 3.7, Proposition 3.6 and Claim 3.2 together with Theorem 3.1 results in Corollary
3.10. Note that Corollaries 3.8 and 3.10 present a construction of error-correcting codes that combine
different non-trivial and useful properties. The difference between these two corollaries is in the binary field
versus a larger field and the constant rate versus arbitrary high rate.

Corollary 3.10. For every constant ε > 0 there exist a field F and an (explicit) family of linear error
correcting codes C ⊆ FN (obtained by tensor products on the codes from Theorem 3.9) that

• have rate at least 1− ε and relative distance Ωε(1),

• linear time encodable and linear time decodable from the constant fraction (Ωε(1)) of errors,

• are (N ε, α)-strong LTCs, where α = α(ε) > 0 is a constant.

Proof. The proof of this corollary is very similar to the proof of Corollary 3.8 with the difference that the
base code is taken from Theorem 3.9.

Let ε > 0 andm = d2
ε e. LetC ′ ⊆ Fn be a code from Theorem 3.9 such that rate(C ′) ≥ (1−ε)1/m, and

recall that δ(C ′) = Ωε(1), C ′ is linear-time encodable and decodable from the constant fraction of errors.
Let C = (C ′)m and note that the blocklength of C is N = nm. It follows that rate(C) = (rate(C ′))m ≥
1 − ε and δ(C) = (δ(C ′))m = Ωε(1). Moreover, Claim 3.2 and Proposition 3.6 imply that C is encodable
in linear time and decodable from the constant fraction of errors in linear time. By Theorem 3.1 it holds that
C is a (N ε, α)-strong LTC, where α is a constant that depends on ε.

3.2 Locally testable and List-decodable codes

In this section we recall some constructions of the list-decodable codes. We start by defining the list-
decodable codes.

Definition 3.11 (List-decodable codes). A code C is a (α,L)-list decodable if for every word w ∈ Fn,
δ(w,C) ≤ α we have |{c ∈ C | δ(c, w) ≤ α}| ≤ L. The code is said to be (α,L)-list decodable in time T
if there exists algorithm which on the input w ∈ Fn such that δ(w,C) ≤ α outputs all codewords c ∈ C
such that δ(c, w) ≤ α (at most L codewords).

Guruswami et al. [24] showed that the list-decodability is preserved in the tensor product operation.
More formally, they showed the following theorem stated in [24, Theorem 5.7].

Theorem 3.12 ([24]). Let F be a finite field and q = |F|. Given two linear codes C1, C2 ⊆ Fn, for every
ε > 0, the number of codewords of C2 ⊗ C1 within distance η∗ = min(δ1η2, δ2η1) − 3ε of any received

word is bounded by l(C2 ⊗ C1, η
∗) ≤ 4q

1

4δ21ε
2 ln

8l1(η1)
ε

ln
8l2(η2)

ε .
Further, if C1 and C2 can be list decoded in polynomial time up to error rates η1, η2 and C2 is a linear

code, then C2⊗C1 can be list decoded in polynomial time up to error rate η∗. Specifically, if T denotes the
time complexity of list decoding C1 and C2, then the running time of the list decoding algorithm for C2⊗C1

is O(4q
1

4δ21ε
2 ln

8l1(η1)
ε

ln
8l2(η2)

ε · Tn1n2).

Then, Gopalan et al. used Theorem 3.12 to conclude the following theorem, appearing in [24, Theorem
5.8].
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Theorem 3.13 ([24]). Let C be a linear code with distance δ, list decodable up to an error rate η. For every
δ > 0, the m-wise tensor product code Cm can be list decoded up to an error rate δm−1η − ε with a list
size exp((O( ln l(η)/ε

ε2
))m). Moreover, if m ≥ 1 is constant and C is polynomial-time list decodable then the

runtime of the list decoding algorithm for Cm is polynomial (depending on m).

The next fact is known due to the several constructions of list-decodable codes ([25, 37]).

Fact 3.14. There exist linear error-correcting codes (over any field) of constant rate and constant relative
distance that can be encoded in linear time and list-decoded in polynomial time.

We use the combination of Theorem 3.13, Fact 3.14, Claim 3.2 and Corollary 3.3 to conclude Corol-
lary 3.15 which shows that the tensor products can be used to combined local testability and list-decoding
properties.

Corollary 3.15. Let F be any field. For every constant ε > 0 there exists a code C ⊆ FN such that
C = (C ′)(d2/εe), where C ′ ⊆ Fn is a linear code, rate(C ′) = Ω(1), δ(C ′) = Ω(1) and C ′ is (ρ, L)-list
decodable in polynomial time (ρ, L > 0 are constants).

• C is a (N ε, α)-strong LTC, where α = α(ε) > 0 is a constant,

• C is linear time encodable and list-decodable (constant list size) in polynomial time from the constant
fraction of errors (depending on ε),

• rate(C) = Ωε(1) and δ(C) = Ωε(1).

Proof. The proof of Corollary 3.15 is similar to the proof of Corollary 3.10. The base-code C ′ can be
taken any linear code that match the requirements written in Fact 3.14. Then, letting m = d2

ε e it holds that
C = (C ′)m is the required code due to Claim 3.2,Theorem 3.13 and Theorem 3.1.

3.3 Tensor Products preserve Local Correction properties

Informally, locally decodable codes (LDCs) allow to recover each message entry with high probability by
reading only a few entries of the codeword even if a constant fraction of it is adversely corrupted. These
codes are related to private information retrieval protocols, initiated by [14]. The best construction of LDCs
was initiated by the breakthrough results of Yekhanin [45] who showed a (conditional) subexponential con-
struction of 3-query LDCs. Later Efremenko [19] showed unconditional subexponential construction of
LDCs. Gopalan [23] showed that these codes can be considered as a sub-family of Reed-Muller codes.
On the other hand, locally correctable codes (LCCs) are error-correcting codes that allow to retrieve each
codeword bit using a small number number of queries even after a constant fraction of it is adversely cor-
rupted. The well-known LCCs include the Hadamard and Reed-Muller codes. Recently, Kopparty et al.
[30] presented a new family of LCCs with constant rate and sublinear number of queries.

In this section we explain that the tensor product of codes preserves the local decoding (correction)
properties as well as local testability. Although it is not hard to see that the repeated tensoring preserves
these properties, this fact seems to have remained unnoticed.

Let us start from the formal definition of LCCs.

Definition 3.16 (LCCs). Let C ⊆ Fn be a code. Then C is a (q, ε, δ)-LCC if there exists a self-corrector
(SC) that reads at most q entries and the following condition holds:

10



• For all c ∈ C, i ∈ [n] and ĉ ∈ Fn such that ∆ (c, ĉ) ≤ δn we have Pr
[
SCĉ[i] = ci

]
≥ 1 − ε, i.e.,

with probability at least 1− ε entry ci will be recovered correctly.

The parameter q is known as the query complexity, ε is the error probability of the self-corrector and δ is the
distance threshold.

Sometimes, the LCCs are defined using the requirement Pr
[
SCĉ[i] = ci

]
≥ 1

|F|
+ ε to stress that the

success probability of the self-corrector should be higher than trivial (1/|F|). In this paper, we use the
requirement Pr

[
SCĉ[i] = ci

]
≥ 1− ε to treat the ε as the error probability.

While the definition of LCCs may seem similar to the definition of LDCs these types of codes are
different, and as was pointed out, e.g., in [28] every LCC is an LDC with the same parameters but some
LDCs are not LCCs. The standard range of parameters for an LCC is related to q, ε, δ > 0 are constants.

Remark 3.17. We stress that the error probability ε may be arbitrary small when the distance threshold δ
converges to 0. For example, the well-known Hadamard code is a (2, ε = 2δ, δ)-LCC and hence ε can be
picked as arbitrary small constant.

The following proposition shows that the tensor product preserves the local correction property. It can
be readily verified that a similar statement holds for the locally decodable codes for the case of systematic
codes (the codes whose first codeword entries are message symbols)9.

Proposition 3.18. Let C ⊆ Fn be a code. If C is a (q, ε, δ)-LCC then C2 = C⊗C is a (q2, (q+1) · ε), δ2)-
LCC.

The proof of Proposition 3.18 appears in Section C.4. The following corollary summarizes the effect
of repeated tensoring on an LCC. We recall that as was said in Remark 3.17, the error probability ε can be
arbitrary small when δ is taken arbitrary small.

Corollary 3.19. Let C ⊆ Fn be a code and i ≥ 1 be an integer. If C is a (q, ε, δ)-LCC such that

(Πj=i
j=1(q2j−1

+ 1))ε < |F|−1
|F| then C2i ⊆ Fn

2i

is a (q2i , (Πj=i
j=1(q2j−1

+ 1))ε, δ2i)-LCC.

In Corollary 3.19 we required that the error probability of the obtained LCCs will be below |F|−1
|F| ,

which is trivial. In this way, the LCCs can be involved in the tensor products resulting in the code which are
both locally testable and locally correctable, similarly to the combination of local testability and efficient
decodability (see Section 3.1).
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A Main Technical Theorem — Theorem A.5

We start this section by defining the notion of robustness (Definition A.2) as was introduced in [10]. To do
that we start from the definition of local distance (Definition A.1), which will be used in Definition A.2 and
later in our proofs.

Definition A.1 (Local distance). Let C be a code and w|I be the view on the coordinate set I obtained from
the word w. The local distance of w from C with respect to I (also called the I-distance of w from C) is
∆ (w|I , C|I) = min

c∈C
{∆ (w|I , c|I)} and similarly the relative local distance of w from C with respect to I

(relative I-distance of w from C) is δ(w|I , C|I) = min
c∈C
{δ(w|I , c|I)}.
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Informally, robustness implies that if a word is far from the code then, on average, a test’s view is far
from any consistent view that can be accepted on the same coordinate set I . This notion was defined for
LTCs following an analogous definition for PCPs [7, 16]. We are ready to provide a general definition of
robustness.

Definition A.2 (Robustness). Given a tester (i. e., a distribution) D for the code C ⊆ Fn, we let

ρD(w) = E
I∼D

[δ(w|I , C|I)] be the expected relative local distance of input w.

We say that the tester D has robustness ρD(C) on the code C if for every w ∈ Fn it holds that ρD(w) ≥
ρD(C) · δC(w).

Let {Cn}n be a family of codes where Cn is of blocklength n and Dn is a tester for Cn. A family of
codes {Cn}n is robustly testable with respect to testers {Dn}n if there exists a constant α > 0 such that for
all n we have ρDn(Cn) ≥ α.

In the rest of the section we consider the “hyperplane tester” defined in the work of Ben-Sasson and
Sudan [10], which generalized in some sense the work of Raz and Safra [36]. To do this let us define
two auxiliary notations: points and hyperplanes. A point in m-dimensional cube can be associated with an
m-tuple (i1, i2, ..., im) such that ij ∈ [n]. We say that τ is a (b, i)-hyperplane if

τ = {(i1, i2, ..., im) | ib = i and for all j ∈ [m] \ {b} we have ij ∈ [n]}.

Definition A.3 (Hyperplane Tester). Let m ≥ 3. Let M ∈ Fn
m

be an input word and think of testing
whether M ∈ Cnm . The hyperplane tester D picks (non-adaptively) a random b ∈ [m] and random i ∈ [n],
and returns (b, i)-hyperplane (the corresponding local view is M |(b,i)). Note that if M is a candidate word
to be in Cm then M |(b,i) is a candidate word to be in Cm−1.

For the first reading we suggest to think about the binary field F = F2 and m = 3, and look on the
matrix M ∈ Fn

m
as on the boolean 3-dimensional cube. Throughout this paper we assume that m ≥ 3 and

for the case of m = 2 we refer a reader to [11, 12, 18, 44, 21, 15, 15]).
Now we state the main result of Ben-Sasson and Sudan [10].

Theorem A.4 ([10]). Let C ⊆ Fn be a linear code and m ≥ 3. Let D be the hyperplane tester for Cm. If(
∆(C)−1

n

)m
≥ 7

8 then

ρD(Cm) ≥ 2−16.

Now we state our main technical theorem which says that the tensor product of any base code (with
constant relative distance) is robustly testable. This extends the result of [10] (Theorem A.4) which showed
that this claim holds for base codes with a very large distance.10

Theorem A.5 (Main Technical Theorem). Let C ⊆ Fn be a linear code and m ≥ 3. Let D be the
hyperplane tester for Cm. Then

ρD(Cm) ≥ (δ(C))m

2m2
.

10We notice that a similar requirement for the very large distance/field was done in the work of Raz and Safra [36], although due
to the different reasons.
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The proof of Theorem A.5 is postponed to Section B. Ben-Sasson and Sudan [10] explained that hyper-
plane testers can be composed and the robustness of the hyperplane testers implies the strong local testability.
So, Theorem A.5 is our main step to conclude Theorem 3.1, and we provide a proof-sketch in Section C.1
(see [10, 11] for more information about composition of the testers).11

Remark A.6. First, we note that Theorem A.5 can be extended straightforward to the tensor products of
different linear base codes, i.e, C1 ⊗ C2 ⊗ . . .⊗ Cm, where the codes Cj might have different blocklength.

We also note that ρD(Cm) in Theorem A.5 is lower-bounded by the expression depending on m. Thus
one could think that for the “large” values of m this bound becomes bad. This issue can be easily solved
using the next observation: Cm = Cm1⊗Cm2⊗Cm3 , wherem1 +m2 +m3 = m. E.g., C10 can be viewed
as C3 ⊗ C3 ⊗ C4, which is a 3-wise tensor product of C1 = C3, C2 = C3 and C3 = C4, i.e., m = 3. In
this case, one can work withm = 3 such that the hyperplane tester selects the local views (hyperplanes) that
will be tested recursively on the membership to Cmi ⊗ Cmj .

Finally, we note that Theorem A.5 achieves quantitative improvement versus Theorem A.4. E.g., taking
m = 3 and (δ(C))m ≥ 7/8 (as required by [10]) Theorem A.4 guarantees that ρD(Cm) ≥ 2−16 ≈
0.000015, while our result (Theorem A.5) guarantees that ρD(Cm) ≥ 7

8·18 ≈ 0.048611. We also notice that
our proof of Theorem A.5 is simpler than the proof of Theorem A.4 in [10].

Remark A.7. We would like to notice that our proof of Theorem A.5 might be very interesting with regards
to the PCPs with subconstant error probability due to Raz and Safra [36], improved later in the breakthrough
results of Moshkovitz and Raz [35]. One of the main ingredients in these works is a tight analysis related
to the tester similar to the “hyperplane tester” in Definition A.3. The main difference was that in [36, 35]
the underlying code was low-degree polynomial over the large field, and as a consequence one could select
much more different “hyperplanes” than in the tensor product of general codes (see [36]).

Now, the intriguing detail in the proof of [36] was that the proof was achieved via reduction to the graphs
and the analysis of the obtained graph. Ben-Sasson and Sudan [10] followed the proof-style (on the high
level) of [36] and in particular, they also defined a reduction from the code and the hyperplanes to the graph
and analyzed the graph. However, in our proof we do not go to the graphs and analyzed the code and the
hyperplanes directly, and this is one of the reasons behind the improvement in Theorem A.5 versus Theorem
A.4 of [10].

B Proof of Theorem A.5

Throughout this paper we assume thatC ⊆ Fn is a linear code. We shall consider anm-wise tensor product,
i.e., Cm ⊆ Fn

m
. Note that the blocklength of Cm is nm. For simplicity we recommend to the reader to

think about the case where m = 3, F = F2 and then every word in Fn
m

can be viewed as a boolean
3-dimensional cube.

We start this section by defining the concepts of points, lines and hyperplanes (some of the terms were
defined following [10]).

B.1 Preliminary notations: Points, Lines and Hyperplanes

Recall that a point in the m-dimensional cube can be associated with an m-tuple (i1, i2, . . . , im) such that
ij ∈ [n]. Next we define the axis parallel line, or shortly, the line which can be associated with a subset of

11Given Theorem A.5, the proof of a similar statement to Theorem 3.1 can be found in [10]. For the sake of completeness we
provide the proof-sketch for Theorem 3.1 in Section C.1.
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points. For b ∈ [m] and i ∈ [n] we say that l is a (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line if

l = {(i1, i2, . . . , ib−1, i, ib+1, . . . , im) | where i ∈ [n]}.

Note that (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line is parallel to the b-th axis. A line l contains a point p if
p ∈ l. Note that a (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line contains a point p = (j1, i2, . . . , jm) if for all
k ∈ [m] \ {b} we have ik = jk. Two (different) lines intersects on the point p if both lines contain the point
p.

We recall that τ is a (b, i)-hyperplane if

τ = {(i1, i2, . . . , im) | ib = i and for all j ∈ [m] \ {b} we have ij ∈ [n]}.

A (b, i)-hyperplane contains the point p = (i1, i2, . . . , im) if ib = i, i.e., the b-th coordinate of the point
p is i. A (b, i)-hyperplane contains a line l if it contains all points of the line. We say that two (different)
hyperplanes are intersected if both hyperplanes contain at least one common point. Note that two (different)
hyperplanes: (b1, i1)-hyperplane and (b2, i2)-hyperplane are intersected iff b1 6= b2, moreover, they are
intersected on all points p = (i1, . . . , im) such that i1 = ib1 and i2 = ib2 , i.e., are intersected on nm−2

points.
Assume that τ1 is a (b1, i1)-hyperplane and τ2 is a (b2, i2)-hyperplane such that b1 < b2 (in particular

b1 6= b2). Let τ1 ∩ τ2 = {(i1, . . . , im) | ib1 = i1, ib2 = i2} be an intersection of two hyperplanes and
Cm|tau1∩tau2 be a code Cm restricted to the points in τ1 ∩ τ2. Note that δ(Cm|tau1∩tau2) = δ(Cm−2) =
δ(C)m−2.

Given a wordM ∈ Fn
m

, b ∈ [m] and i ∈ [n] we letM |(b,i) be a restriction ofM to the (b, i)-hyperplane,
i.e., to all points of the hyperplane. We say that M |(b,i) is a (b, i)-hyperplane of M . Similarly, for the point
p = (i1, . . . , im) let M |p be a restriction of M to the point p and for the line l we let M |l be a restriction of
M to the line l. We say that M |l is a line l of M .

B.2 The proof

Let M ∈ Fn
m

be an input word. We prove that ρD(M) ≥ (δ(C))m−1

2m2 · δ(M,Cm).
For every hyperplane τ of M let r(τ) be the closest codeword of Cm−1 to M |τ (if there are more than

one such codewords fix any of them arbitrarily). Intuitively, the hyperplane τ ofM “thinks” that the symbols
of M |τ should be changed to r(τ). In this sense every hyperplane of M has its own “opinion”. Then we
have

ρD(M) = E
τ∼D

[δ(M |τ , r(τ))]. (B.1)

We say that the (b1, i1)-hyperplane and the (b2, i2)-hyperplane disagree on the point p = (i1, . . . , im)
if both hyperplanes contain the point p and r(τ1)|p 6= r(τ2)|p. We say that two hyperplanes disagree on the
line l if both hyperplanes contain the line l and r(τ1)|l 6= r(τ2)|l.

Note that if (b1, i1)-hyperplane τ1 and (b2, i2)-hyperplane τ2 are intersected and disagree on at least one
point then letting reg = τ1 ∩ τ2 we have r(τ1)|reg 6= r(τ2)|reg and moreover, δ(r(τ1)|reg, r(τ2)|reg) ≥
(δ(C))m−2. This is true since r(τ1)|reg 6= r(τ2)|reg ∈ Cm−2 and δ(Cm−2) = (δ(C))m−2.

Let E ∈ Fn
m

2 be a binary matrix such that E|p = 1 if there are at least two hyperplanes which disagree
on the point p, and otherwise E|p = 0. For the point p we say that the point is almost fixed if E|p = 0
but p is contained in some hyperplane τ such that r(τ)|p 6= M |p. Intuitively, a point p is almost fixed if
all hyperplanes containing this point agree on this point but “think” that its value in M (M |p) should be
changed (to r(τ)|p).
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We let ToFix = {p = (i1, i2, . . . , im) | p is almost fixed} and let NumToFix = |ToFix|. Recall that
wt(E) = |E|

nm , i.e., wt(E) is the relative weight of the matrix E.

Proposition B.1. It holds that ρD(M) ≥ wt(E)
m + NumToFix

nm .

Proof. Equation B.1 says that ρD(M) is a relative distance of a typical hyperplane of M (which is a word
in Fn

m−1
) from Cm−1. Note that for every point p = (i1, . . . , im): if E|p 6= 0 then p /∈ NeedToFix. That

means for every point p at most one condition is satisfied: E|p 6= 0 or p ∈ NeedToFix.
Note also that for every point p ∈ NeedToFix, for all hyperplanes τ of M we have (M |τ )|p 6=

r(τ)|p. Now, every point p is contained in m different hyperplanes. Hence if E|p 6= 0 then for at least one
hyperplane τ (of m hyperplanes containing the point p) it holds that r(τ)|p 6= M |p.

Hence a relative distance between a typical hyperplane (τ ) of M and r(τ) is at least wt(E)
m + NumToFix

nm .

Next we define an important concept of “heavy hyperplanes (lines)” in the inconsistency matrix E.
Intuitively, a heavy hyperplane (line) of the matrix E is a plane (line) where many inconsistencies occur,
i.e., many non-zero symbols.

Definition B.2 (Heavy lines and hyperplanes). A line l of E is called heavy if |E|l| ≥ δ(C) · n. A (b, i)-
hyperplane of E is called heavy if |E|(b,i)| ≥

(δ(C)·n)m−1

2 .

Lemma B.3 is our main observation in the proof of Theorem A.5. It says that any non-zero element of E
is located in some heavy hyperplane ofE. This lemma plays a crucial role since it gives us an understanding
of how the inconsistent points of the input matrix are distributed. Again, as was pointed in Remark A.7, this
lemma can be of independent interest due to the plausible connections to [36, 35].

Lemma B.3 (Main Lemma). Let p = (i1, i2, . . . , im) be a point such that Ep 6= 0. Then p is contained in
some heavy hyperplane of E.

The proof of Lemma B.3 is postponed to Section B.2.1. Using Lemma B.3 it is quite simple to prove
Corollary B.4 which shows that it is sufficient to remove at most 2|E|

(δ(C)·n)m−1 ·m hyperplanes from E to get
a zero submatrix.

Corollary B.4. There exists S1, . . . , Sm ⊆ [n] such that n−|S1|+n−|S2|+. . .+n−|Sm| ≤ 2|E|
(δ(C)·n)m−1 ·m

and letting S = S1 × S2 × . . .× Sm we have E|S = 0.

The proof of Corollary B.4 appears in Section B.2.2. Proposition B.5 says that if after removing a small
fraction of hyperplanes from M we obtain a submatrix that is close to the legal submatrix then M is close
to Cm.

Proposition B.5. Let S1, S2, . . . , Sm ⊆ [n] be such that n − |S1| + n − |S2| + . . . + n − |Sm| ≤ γn <
δ(C) · n and let S = S1 × S2 × . . . × Sm. Let C ′ = C|S1 ⊗ C|S2 ⊗ . . . ⊗ C|Sm . Recall that M |S is a
submatrix of M obtained by removing at most γ · n hyperplanes. Assume that ∆ (M |S , C ′) ≤ α · nm. Then
δ(M,Cm) ≤ γ + α.

The proof of Proposition B.5 appears in Section B.2.3. Let us prove Theorem A.5.
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Proof of Theorem A.5. By Proposition B.1 we have ρD(M) ≥ wt(E)
m + NumToFix

nm . If wt(E) ≥ (δ(C))m

2m

then we are done. Otherwise, assume that wt(E) < (δ(C))m

2m .
Corollary B.4 implies that it is sufficient to remove at most 2|E|

(δ(C)n)m−1 ·m < δ(C) ·n hyperplanes from

E to get a zero submatrix. Proposition B.5 implies that δ(M,Cm) ≤ 2 wt(E)
(δ(C))m−1 ·m+ NumToFix

nm .

Let β = 2m2

(δ(C))m−1 . Then, by Proposition B.1 we have ρD(M)·β ≥ (wt(E)
m +NumToFix

nm )·β ≥ δ(M,Cm)

and ρD(M) ≥ (δ(C))m−1

2m2 · δ(M,Cm).

B.2.1 Proof of Main Lemma B.3

In this section we prove Lemma B.3.

Proof of Main Lemma B.3. By definition of E we know that there are (at least) two hyperplanes that dis-
agree on the point p. Assume without loss of generality (symmetry) that the hyperplanes τ1 = (1, i1) and
τ2 = (2, i2) disagree on the point p. We will prove that either τ1 is a heavy hyperplane or τ2 is a heavy
hyperplane.

Consider the intersection of τ1 and τ2, i.e., reg = τ1 ∩ τ2 = {(i1, i2, j3, j4, . . . , jm) | jk ∈ [n]}. Note
that p ∈ reg. Let l be a line, which is parallel to the axis 3 and contains a point p (recall that m ≥ 3). Then
the hyperplanes τ1 and τ2 disagree on this line (since they disagree on the point p contained in the line l), i.e.,
r(τ1)|l 6= r(τ2)|l. But r(τ1)|l, r(τ2)|l ∈ C by definition. This implies that ∆ (r(τ1)|l, r(τ2)|l) ≥ δ(C) · n,
i.e., for at least δ(C) · n points p ∈ l it holds that r(τ1)|p 6= r(τ2)|p.

Let BadPoints = {p ∈ l | τ1 and τ2 disagree on p}. Note that |BadPoints| ≥ δ(C) · n. Let

BadP lanes = {(3, i)− hyperplane | i ∈ [n],∃p ∈ BadPoints s.t. p ∈ (3, i)− hyperplane}.

Note that |BadP lains| ≥ δ(C) · n.
We claim that for every τ ∈ BadP lanes we have that either τ disagrees with τ1 on some point p ∈

BadPoints or with τ2 on some point p ∈ BadPoints. Hence at least one of τ1, τ2 disagrees with at least
1
2 · |BadP lanes| ≥

1
2 · δ(C)n hyperplanes from BadP lanes. Without loss of generality assume that τ1

disagrees with at least 1
2 · δ(C) · n hyperplanes from BadP lanes.

Let BadP lanesτ1 = {τ ∈ BadP lanes | τ disagrees with τ1}. All hyperplanes from BadP lanes are
non-intersecting and thus all hyperplanes from BadP lanesτ1 are non-intersecting. Every hyperplane τ ∈
BadP lanesτ1 disagrees with the hyperplane τ1 on some point and hence disagree on at least (δ(C)n)m−2

points in their intersection region (τ ∩ τ1) since r(τ)|τ∩τ1 6= r(τ1)|τ∩τ1 ∈ Cm−2.
Let total = {p = (i1, j2, . . . , jm) | ∃τ ∈ BadP lanesτ1 s.t. p ∈ p1 ∩ τ, r(τ)|p 6= r(τ1)|p}. We have

|total| ≥ (δ(C)n)m−2 · δ(C)·n
2 = (δ(C)·n)m−1

2 since every intersection region (as above) contains at least
(δ(C)n)m−2 inconsistency points and there are at least 1

2 · δ(C) · n such regions. We stress that we do not
count any inconsistency point more than once, since the hyperplanes in BadP lanesτ1 are non-intersecting.

Hence the hyperplane τ1 disagree with other hyperplanes in at least (δ(C)·n)m−1

2 points (on the hyperplane

τ1). Thus E|τ1 has at least (δ(C)·n)m−1

2 non-zero symbols. We conclude that τ1 is a heavy hyperplane of E
and the point p is contained in the hyperplane τ1.

Remark B.6. We notice that the proof of Lemma B.3 shows even a stronger claim than it is needed. Namely,
it shows that if two different hyperplanes τ1 and τ2 disagree on some point then at least one of them disagree
with a lot of different non-intersecting hyperplanes, and as a consequence, is heavy. This lemma can be
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easily reformulated and shown for the low-degree test analysis in [36], and it remains an interesting question
whether this will affect the work of [36].

B.2.2 Proof of Corollary B.4

Let us prove Corollary B.4.

Proof of Corollary B.4. Let HeavyP lanes = {(b, i) | (b, i) is a heavy hyperplane} to be a subset of pairs
associated with heavy hyperplanes. For b ∈ [m] let Sb = {i ∈ [n] | (b, i) ∈ HeavyP lanes} and Sb =
[n] \ Sb.

We claim that |HeavyP lanes| ≤ 2|E|
(δ(C)·n)m−1 · m. This is true since every heavy hyperplane con-

tains at least (δ(C)·n)m−1

2 non-zero elements of E and the total number of non-zero elements of E is
|E|. Furthermore, every non-zero element of E is contained in at most m (heavy) hyperplanes. Thus
n− |S1|+ n− |S2|+ . . .+ n− |Sm| =

∑
b∈[m] |Sb| ≤

2|E|
(δ(C)n)m−1 ·m.

Now, note that Lemma B.3 implies that every point p = (i1, i2, . . . , im) such that E|p 6= 0 is contained
in some heavy hyperplane, i.e., in some hyperplane of HeavyP lanes. Hence if all heavy hyperplanes are
removed from E we obtain a zero submatrix. So, it follows that E|S = 0.

B.2.3 Proof of Proposition B.5

In this section we prove Proposition B.5.

Proof of Proposition B.5. Note that for every i ∈ [n] we have |Si| > n − δ(C) · n. The following simple
claim was proven in [10, Proposition 3.1]. For the sake of completeness we provide its proof.

Every codeword c′ of C ′ can be extended to a unique codeword c of Cm. To see this note that the
projection ofC toC|Si is bijective. It is surjective because it is a projection, and it is injective because |Si| >
n − ∆ (C). So, the projection of C to C ′ is bijection, because both codes are of dimension (dim(C))m.
Thus, every word in C ′ has a unique preimage in C.

We turn to prove Proposition B.5. We know that M can be modified in at most α-fraction of points
p ∈ S to get M |S ∈ C ′. Then, by the claim above, M can be modified (outside the submatrix M |S) to get a
codeword of Cm, by changing at most γ-fraction of symbols (since all symbols outside the submatrix M |S
are at most γ-fraction of all symbols). We conclude that δ(M,Cm) ≤ γ + α.

C Proofs of Auxiliaries Claims and Propositions

C.1 Proof Sketch of Theorem 3.1

Let us start from the following simple claim proved in [10]. For the sake of completeness we give its proof
in this paper.

Claim C.1. Let C ⊆ Fn be a code and assume that D is its q-query tester such that ρD(C) ≥ α. Then C is
a (q, α)-strong LTC.

Proof. Recall thatD can be associated to a distribution over subsets I ⊆ [n] such that |I| ≤ q. It is sufficient
to prove that for every w ∈ Fn we have PrI∼D[w|I /∈ C|I ] ≥ α · δ(w,C).

Fix any w ∈ Fn. Note that for I ⊆ [n] if w|I ∈ C|I then δ(w|I , c|I) = 0 and if w|I /∈ C|I then
δ(w|I , c|I) ≤ 1. Hence α · δ(w,C) ≤ ρD(C) · δ(w,C) ≤ EI∼D[δ(w|I , CI)] ≤ PrI∼D[w|I /∈ C|I ].
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Using Claim C.1 we prove Theorem 3.1.

Proof Sketch: For i ≥ 3 let Di be the hyperplane tester for the code Ci. Note that the tester Dm returns a
local view that is a candidate to be in the code Cm−1. We first explain a simple way to compose the testers
and then show how to improve this.

Note that Dm−1 can be invoked on the local view of Dm, etc. So, the testers Dm,Dm−1, . . . ,D3 can be
composed to result in an n2-query tester Dcomp for the code Cm.

The robustness of the composed tester will be ρDcomp(Cm) ≥ ρDm(Cm) ·ρDm−1(Cm−1) · . . . ·ρD3(C3).
To see this let w ∈ Fn

m
be a word such that δ(w,Cm) = δ. Then the local view of the tester Dm is

expected to be ρDm(Cm) · δ far from Cm−1. When Dm−1 will be invoked, its local view will be ρDm(Cm) ·
ρDm−1(Cm−1) · δ far from Cm−2, etc. Finally, the local view of D3 will be (ρDm(Cm) · ρDm−1(Cm−1) ·
. . . · ρD3(C3)) · δ far from C2.

Theorem A.5 says that for every i ≥ 3 we have ρDm(Cm) ≥ (δ(C))m

2m2 . Hence for constant m ≥ 3 it
holds that ρDcomp(Cm) > 0 is a constant that depends only on δ(C) and m.

Recall that the query complexity of Dcomp is n2. Claim C.1 implies that Cm is a (n2, ρDcomp(Cm))-
strong LTC.

Now, let us show a more efficient way to compose the testers. Without loss of generality let us assume
that m/3 is an integer, otherwise we would use bm/3c and dm/3e. Then we have Cm = Cm/3 ⊗ Cm/3 ⊗
Cm/3, i.e., Cm is a 3-wise tensor product of Cm/3 with itself. Hence we can test it using a tester with
robustness (δ(Cm/3))3

2·32 = (δ(C))m

18 . The local view produced by this tester will be a candidate to be the
codeword of Cm/3⊗Cm/3 = C2m/3. I.e., we decreased the tensor degree of the underlying code from m to
2m/3 in the single step. It follows that after log(3/2)

m
2 steps we obtain the local view that is a candidate to

be the codeword of C2 that is entirely read by the composed tester. The robustness of this composed tester
is

(δ(C))m

18
· (δ(C))(2m/3)

18
· (δ(C))(4m/9)

18
· . . . · (δ(C))2

18
≥ (δ(C))2m

18log1.5m
.

C.2 Proof of Claim 3.2

Proof of Claim 3.2. Let k = dim(C). Let EC be an encoder for the code C, which receives a message
x ∈ Fk and outputs a codeword EC(x) ∈ C such that C =

{
EC(x) | x ∈ Fk

}
. Assume that EC has

running time T = O(k). Note that this implies that n ≤ T = O(k) since the blocklength can not exceed
the running time of the encoder.

For every i ≥ 1 we define ECi to be the encoder for Ci, i.e., Ci =
{
ECi(x) | x ∈ Fk

i
}

. We will argue

that the running time of ECi is i · ni−1 · T . Since n ≤ T = O(k) we will conclude that for any constant
i ≥ 1 the running time of ECi is linear (in ki).

We prove the claim by induction on i. The encoder EC = EC1 was defined and its running time is
T = 1 · n1−1 · T . Assume that we defined the encoder ECi−1 for the code Ci−1 and its running time is
(i− 1) · n(i−1)−1 · T .

Let us define the encoder ECi for the code Ci. Note that the code Ci has message length ki and its
blocklength is ni. Hence the message x ∈ Fk

i
can be viewed as a matrix k × ki−1. So, we assume that

x ∈ Fk×k
i−1

. Note that every row of x belongs to Fk
i−1

.
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The encoder ECi will first encode (by the encoder ECi−1) every row of the matrix x, obtaining the
matrix x′ ∈ Fk×n

i−1
. The runtime of this step is k · ((i− 1) · ni−2T ). Then ECi will encode every column

of the obtained matrix x′ to get a codeword of Ci, and the runtime of this step is ni−1T .
Hence the runtime of the encoder ECi is k · ((i− 1) · ni−2T ) + ni−1T ≤ ((i− 1) · ni−1T ) + ni−1T =

i · ni−1 · T , where we used the fact that k ≤ n.

C.3 Proof of Proposition 3.6

Proof of Proposition 3.6. Recall that Cm = Cm−1 ⊗ C. It is sufficient to prove by induction on j =
1, . . . ,m that Cj is linear-time decodable from αjnj errors. For j = 1 the claim holds since C1 = C.
Let DecC be a linear-time decoder for the code C that can correct any α · n errors. Assume that Cj−1 is
linear-time decodable from αj−1nj−1 errors and let DecCj−1 be its decoder.

We prove that Cj = Cj−1 ⊗ C is linear-time decodable from αjnj errors. We define the linear-time
decoder DecCj for the code Cj that will correct any αj · nj errors. Let M ∈ Fn×n

j−1
be an input word

such that δ(M,Cj) ≤ αj .12 The decoder DecCj decodes every row of M (using DecCj−1) to obtain the
matrix X1 ∈ Fn×n

j−1
. Then DecCj−1 decodes every column of X1 (using DecC) to obtain the matrix

X2 ∈ Fn×n
j−1

. Finally, the decoder outputs X2.
Clearly, the runtime of DecCj is O(nj), i.e., linear to the blocklength of Cj . Assume X ∈ Cj is

the closest codeword, i.e., δ(M,X) ≤ αj . We argue that X2 = X , i.e., the decoder outputs the closest
codeword.

For every (a, b) ∈ [n]× [nj−1] such that M |(a,b) 6= X|(a,b) we say that (a, b) is an error of M . Let

Badr =
{
i ∈ [n] | δ(M |{i}×[nj−1], X|{i}×[nj−1]) > αj−1

}
be the set of rows containing more than αn errors. Since δ(M,X) ≤ αj we conclude that |Badr| < αn.

Note that if i ∈ [n] \ Badr then the i-th row of X1 is equal to the i-th row of X , because DecCj−1

corrects up to αj−1nj−1 errors. That means less than αn rows of X1 are different from the corresponding
rows of X . It follows that every column of X1 is α-close to the corresponding column of X , i.e., for every
a ∈ [nj−1] we have δ(X1|[n]×{a}, X|[n]×{a}) < α. Moreover, every column ofX belongs toC by definition.
We conclude that for every j ∈ [n] the decoder DecC on the input X1|[n]×{j} will output X|[n]×{j}. This
implies that X2 = X .

This completes the induction and the proof of the proposition.

C.4 Proof of Proposition 3.18

Proof of Proposition 3.18. Let SC be the self-corrector for the codeC and assume without loss of generality
that SC always queries exactly q queries. Let M ∈ Fn×n be an input word (we view M as a matrix n× n)
and let (i, j) ∈ [n] × [n] be an input entry coordinate, the local-corrector for C2 should retrieve. Assume
that δ(M,C2) ≤ δ2 and let X ∈ C2 be the closest codeword, i.e., δ(M,X) ≤ δ2.

We turn to describe the self-corrector for the code C2 and recall that the inputs are the matrix M and the
coordinate (i, j).

1. Invoke SC on the row i of M , i.e., M{i}×[n] to retrieve the entry (i, j). Call this the first invocation of
SC.

12We can view the matrix M ∈ Fn
j

as a matrix in Fn×n
j−1

.
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2. For every queried coordinate (i, jk) by the self-corrector SC (in the first invocation) return to it
SCM |[n]×{jk} [(i, jk)] as an answer instead instead of M |(i,jk), i.e., return the output of the self-
corrector SC on the column jk of M and the input coordinate (i, jk).

3. After q queries in the stage 2 were obtained, return the output of the first invocation of SC.

Clearly, the self-corrector for C2 queries at most q2 entries. In the rest of the proof we prove that with
probability at least 1− (q + 1) · ε the self-corrector for C2 outputs X|(i,j).

Assume that the first invocation of SC queried the coordinates (i, j1), (i, j2), . . . , (i, jq). Note that this
coordinate are on the row i of M .

Recall that to receive the value for the entry (i, j1) the self-corrector SC was invoked on the column j1
of M , i.e., on the vector M |[n]×{j1} and received the predicted value for the entry (i, j1) (using q queries).
In the similar way, to receive the value for the entry (i, j1) the self-corrector SC was invoked on the column
j2 of M etc. Finally, after q2 queries the values for the entries (i, j1), (i, j2), . . . , (i, jq) are retrieved and
using these values the first invocation of the self-corrector SC predicts the value for the entry (i, j).

We turn to analyze the error probability of retrieving the entry (i, j). Let us call the column k of M
bad if δ(M |[n]×{k}, X|[n]×{k}) > δ, i.e., the column k of M has more than δ-fraction of noise. Since
δ(M,X) ≤ δ2 the number of bad columns is upper-bounded by bδnc. Let f = bδnc and assume without
loss of generality that columns indexed by {1, 2, . . . , f} are bad, while all other columns of M are good.

Now, let x be the i-th row ofX and note that x ∈ C. Note that for every x̂ ∈ Fn such that supp(x−x̂) ⊆
[f ] we have that the error probability of SC to retrieve correctly any entry of x̂ is at most ε. That means
regardless of the values of entries indexed by [f ], the self-corrector succeeds with probability at least 1− ε.

Now, let us turn to our analysis of the retrieving the entry (i, j) from M and recall that the self-
corrector for C2 achieves this via retrieving the entries (i, j1), (i, j2), . . . , (i, jq) via columns indexed by
{j1, j2, . . . , jq}. The central point is that regardless of whether {j1, . . . , jq} ∩ [f ] = ∅ or not the error
probability of the retrieving (i, j) is upper-bounded by q · ε+ ε. This is true since the self-corrector uses at
most q good columns, and for each good column the error probability in the retrieving the appropriate entry
(i, jl) is bounded by ε. Hence the total probability to error on at least one good column is at most q · ε. On
the other side, the values retrieved from the bad columns (indexed by [f ]) are irrelevant as was explained
above. Given the fact that the self-corrector for C2 retrieved correctly the entries from all good columns it
queried, its error probability is at most ε.

Thus the total error probability of the self-corrector for C2 is at most q · ε+ ε. This completes the proof
of the Proposition.
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