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Abstract

Let f be a non-commutative polynomial such that f = 0 if we assume
that the variables in f commute. Let Q(f) be the smallest k such that
there exist polynomials g1, g

′
1, g2, g

′
2, . . . , gk, g′

k with

f ∈ I([g1, g
′
1], [g2, g

′
2], . . . , [gk, g′

k]) ,

where [g, h] = gh − hg. Then Q(f) ≤
`

n
2

´
, where n is the number of

variables of f . We show that there exists a polynomial f with Q(f) =
Ω(n2). We pose the problem of constructing such an f explicitly, pointing
out that the solution may have applications to complexity of proofs.

1 Introduction

In this note, we address the following question. Assume that we have a poly-
nomial f in n mutually non-commuting variables which has the property that
f is zero when the variables are assumed to commute. What is the smallest
number of commutativity axioms of the form gh = hg one needs to use to make
f vanish? More precisely: what is the smallest k such that f lies in the ideal
generated by k polynomials of the form [g, h], with [g, h] = gh − hg? We de-
note this k by Q(f) and call it the commutative complexity of f . The simplest
example is the polynomial f = xy − yx. As a non-commutative polynomial f
is non-zero, but it vanishes when the variables commute, and lies in the ideal
of [x, y]. Another example is the polynomial zxy + xyz − 2yzx. Clearly, f lies
in the ideal generated by [x, y], [x, z], [y, z], which shows that Q(f) ≤ 3. But f
can also be written as [z, xy]− 2[y, zx] which implies that Q(f) ≤ 2. In general,
f vanishes whenever we assume that all the variables of f commute and hence
Q(f) ≤

(
n
2

)
. However, the last example illustrates the fact that the commuta-

tive complexity of f can be reduced if more sophisticated commutativity axioms
are employed.

The scenario we have in mind is that f is presented by an arithmetic formula,
or a circuit. Imagine that we have an arithmetic formula F– that is, a syntactic
expression such as (x−y)(x+y)−xx+yy. Such a formula is intended to compute
a commutative polynomial. In the example when F = (x−y)(x+y)−xx−yy, it
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computes the polynomial 0. On the other hand, since F is a syntactic expression,
it can also be interpreted as computing a non-commutative polynomial F̂ . In
this case, F̂ = xy − yx, which is a non-trivial non-commutative polynomial.
This allows to associate with a formula F a non-commutative polynomial which
is non-zero despite the fact that F is trivial when interpreted commutatively.
The quantity Q(F̂ ) is one possible way how to use the properties of F̂ to argue
about the formula F .

The intended meaning of Q(F̂ ) is to capture the number of commutativity
axioms needed to prove the equation F = 0. Its intended application is to serve
as a lower bound on lengths of proofs of polynomial identities. For specific sys-
tems for proving polynomial identities (see [3, 6] and Section 4), one can show
that a good enough lower bound on the commutative complexity implies new
lower bounds on lengths of proofs. This approach could potentially work not
only for systems proving polynomial identities, but also for propositional proof
systems such as extended Frege. Extended Frege is one the most fundamental
propositional proof systems (see [2, 7]). To give superpolynomial lower-bounds
on the size of extended Frege proofs is one of the main open problems of proof
complexity. However, even proving superlinear lower bounds has been an unan-
swered challenge. In the perfect world where Q has been completely understood,
one can proceed to modify Q so that it is a lower bound to extended Frege proofs.
This way, one may hope to achieve up to a quadratic lower bound.

Our main result is to show that there exists a polynomial f in n variables
such that Q(f) ≥ Ω(n2). This qualitatively matches the generic upper-bound
Q(f) ≤

(
n
2

)
and shows that Q is a non-trivial complexity measure. The main

drawback of our proof is that it gives no indication how to construct such an
f explicitly. Most importantly, the result is not sufficient for the purported
proof complexity applications. We are thus lead to two open questions. The
first is to construct an explicit non-commutative polynomial with a superlinear
commutative complexity, in terms of its number of variables. The second is to
find a non-commutative polynomial with a superlinear commutative complex-
ity, in terms of its circuit size. For the first question, we will present several
candidates. The second appears much more intricate, but it is this one which
would be interesting in the proof complexity context.

2 Commutative complexity of non-commutative
polynomials

We will be interested in non-commutative polynomials over a field F. A non-
commutative polynomial is a formal sum of products of variables and field
elements, where we assume that the variables do not multiplicatively com-
mute. That is, xy 6= yx whenever x 6= y but the variables commute with
elements of F. A non-commutative polynomial can be uniquely written as a
finite sum

∑
j cjαj , where cj ∈ F and αj is a monomial - a product of variables.

Since most polynomials will be non-commutative, a “polynomial” will mean
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’“non-commutative polynomial”, unless stated otherwise. Non-commutative
polynomials over a given field form a non-commutative ring. For polynomials
g1, . . . , gk, I(g1, . . . , gk) will denote the two-sided ideal generated by g1, . . . , gk
in this ring.

Let f be a non-commutative polynomial in variables x1, . . . , xn. By f c we
mean the same polynomial in which the variables are allowed to commute. That
is, if f =

∑
j cjαj , then f c is the commutative polynomial

∑
j cjαj . Note that

it is possible that f c = 0 while f 6= 0, as in the example f = x1x2 − x2x1. We
will be interested precisely in such polynomials1. Let

[g, h] := gh− hg

be the commutator of g, h. Then the condition f c = 0 is equivalent to the
assumption that f lies in the ideal generated by all the polynomials [xi, xj ], i < j.
In other words

f ∈ I([xi, xj ]; i < j ∈ {1, . . . , n}) .

Let Q(f) denote the smallest k such that there exist polynomials g1, g′1, g2, g′2, . . . ,
gk, g

′
k with

f ∈ I([g1, g′1], [g2, g′2], . . . , [gk, g′k]) .

We will call Q(f) the commutative complexity of f . One can think of Q(f)
as the smallest number of commutativity assumptions g.g′ = g′.g one needs to
make in order to prove that f c = 0.

We already know that

Q(f) ≤
(
n

2

)
,

where n is the number of variables of f . It is easy to present a polynomial
with Q(f) ≥ n. We now want to show that there exists a polynomial such that
Q(f) = Ω(n2).

For a set of polynomials f1, . . . fm such that f c1 , . . . , f
c
m = 0, let us define

Q(f1, . . . , fm) as expected: it is the smallest k such that there exist polynomials
g1, g

′
1, g2, g

′
2, . . . , gk, g

′
k with

f1, . . . , fm ∈ I([g1, g′1], [g2, g′2], . . . , [gk, g′k]) .

An easy observation is that

Q([xi, xj ]; i < j ∈ {1, . . . , n}) =
(
n

2

)
.

This fact, however, is not very useful since the number of the polynomials [xi, xj ]
is itself quadratic. Instead, we will show that there exist n polynomials f1, . . . , fn
such that Q(f1, . . . , fn) ∼ n2.

1The set {f ; fc = 0} is an ideal in the ring of non-commutative polynomials and is some-
times called the commutator ideal.
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Lemma 1. There exist polynomials f1, . . . , fn in n variables such that f c1 , . . . , f
c
n =

0 and Q(f1, . . . , fn) = Ω(n2). Moreover, the polynomials are of degree two and
have coefficients from {0, 1,−1}.

Proof. This is mainly a standard counting argument. Consider n-tuples of poly-
nomials f1, . . . fn with each fi of the form

fi =
∑

j<k∈{1,...,n}

ci,j,k[xj , xk] , with ci,j,k ∈ {0, 1} .

Then f ci = 0 and different choices of the coefficients ci,j,k give distinct polyno-
mials. Let p be a natural number such that we have Q(f1, . . . fn) ≤ p for every
such n-tuple.

First, show the following: for every f1, . . . , fn as above there exist homoge-
neous linear polynomials g1, g′1, . . . , gp, g

′
p such that f1, . . . , fn are linear com-

binations of [g1, g′1], . . . , [gp, g′p]. That is, for every i ∈ {1, . . . , n}, there exist
ai,1, . . . , ai,p ∈ F such that

fi =
∑

j∈{1,...,p}

ai,j [gj , g′j ] . (1)

This holds because fi are homogeneous degree-two polynomials. For let h(j)

denote the j-homogeneous part of h. Then fi = f
(2)
i and for every g, g′, we

have [g, g′](0) = [g, g′](1) = 0 and [g, g′](2) = [g(1), g′(1)]. Hence (u[g, g′]v)(2) =
u(0)[g(1), g′(1)]v(0) = a[g(1), g′(1)], with a ∈ F. If we assume that f1, . . . , fn ∈
I([g1, g′1], . . . , [gp, g′p]), we have

fi =
∑
j

∑
k∈{1,...,p}

uk,j [gk, g′k]vk,j ,

where uk,j , vk,j are some polynomials. Hence fi = f
(2)
i =

∑
k,j ak,j [g

(1)
k , g

′(1)
k ]

with ak,j ∈ F, and so f1, . . . , fn are linear combinations of [g(1)
1 , g

′(1)
1 ], . . . , [g(1)

p , g
′(1)
p ].

If the field F is finite, (1) already gives that p is roughly n2. For let q :=
n
(
n
2

)
be the number of the coefficients ci,j,k.Then f1, . . . , fn are given by 2q

different choices of the coefficients. By (1), f1, . . . , fn is determined by the
linear functions g1, g′1, . . . , gp, g

′
p and the coefficients ai,j , with i ∈ {1, . . . , n}, j ∈

{1, . . . , p}. The linear functions are given by the list of their 2np coefficients
and, altogether, f1, . . . , fn are determined by 3np choices of elements of F. This
gives 2q ≤ |F|3np and so p = Ω(n2). In general, assuming nothing about the
field size, consider f1, . . . , fn as a 0, 1-vector in Fq, and the list gk, g′k, ai,k, with
i ∈ {1, . . . , n}, k ∈ {1, . . . , p}, as a vector in F3np. Then (1) gives a degree-three
polynomial map µ : F3np → Fq such that every 0, 1-vector in Fq is in the range
of µ. By [9] or [4], this implies that c3np ≥ 2q for a constant c > 1. Hence
p ≥ c′q/n = c′

(
n
2

)
= Ω(n2).

Next, we would like to use the polynomials f1, . . . , fn to obtain a single
polynomial f with Q(f) ∼ n2. The obvious choice is to introduce fresh variables
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z1, . . . , zn and let f := z1f1 + . . . znfn. The next lemma shows that that Q(f)
and Q(f1, . . . , fn) differ at most by a constant.

Lemma 2. Let f1, . . . , fn be polynomials not containing the variables z1, . . . , zn
such that f c1 , . . . , f

c
n = 0. Let f := z1f1 + . . . znfn. Then

Q(f) ≥ 1
3

Q(f1, . . . , fn) .

Proof. Assume that Q(f) = k. We would like to show that there exist 3k
polynomials gi, hi which do not depend on the variables Z = {z1, . . . , zn} such
that f ∈ I([g1, h1], . . . , [g3k, h3k]). Since gi, hi do not depend on Z, this implies
that also f1, . . . , fn ∈ I([g1, h1], . . . , [g3k, h3k]) and therefore Q(f1, . . . , fn) ≤ 3k.

In order to show this, we will define a map 〈·〉 which transforms a polynomial
g to a polynomial 〈g〉, with 〈·〉 having the following properties:

(i). 〈f〉 = f ,

(ii). 〈·〉 is linear, in the sense that 〈ag + bh〉 = a〈g〉+ b〈h〉 for any polynomials
g, h and a, b ∈ F.

(iii). For every polynomials g, h and u1, . . . , um, v1, . . . , vm there exist polyno-
mials g1, g2, g3, h1, h2, h3 not depending on Z such that〈∑

j

uj [g, h]vj
〉
∈ I([g1, h1], [g2, h2], [g3, h3]) .

The existence of such a map implies the Lemma, for if Q(f) = k then f can be
written as

f =
∑

i∈{1,...,k}

(
∑
j

ui,j [gi, hi]vi,j) .

By (i) and (ii), this gives

f =
∑

i∈{1,...,k}

〈∑
j

ui,j [gi, hi]vi,j
〉
.

By (iii), 〈
∑
j uj [gi, hi]vj〉 ∈ I([gi,e, hi,e]; e ∈ {1, 2, 3}), where the latter poly-

nomials do not depend on Z. Altogether f ∈ I([gi,e, hi,e]; e ∈ {1, 2, 3}, i ∈
{1, . . . , k}), where gi,e, hi,e do not depend on Z.

Let us now construct 〈·〉. For a monomial α, define its Z-degree as the
number of occurrences of variables from Z in α. If α has Z-degree 1, it can be
uniquely written as α = βzγ where z ∈ Z and β, γ do not depend on Z. Then
let 〈

α
〉

=
〈
βzγ

〉
:= zγβ .

If α has Z-degree not equal to 1 (that is, α either does not depend on Z,
or contains more than one occurrence of variables from Z), let 〈α〉 := 0. For a
polynomial g =

∑
j cjαj , let 〈g〉 :=

∑
j cj〈αj〉. This guarantees that 〈·〉 is linear.
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(i) is also satisfied: if z ∈ Z and γ does not depend on Z then λ(zγ) = zγ, and
the polynomial f is a sum of monomials of this form.

It remains to show that 〈·〉 satisfies (iii). First, it is easy to see that if g, h
do not depend on Z then

〈
∑
j

uj [g, h]vj〉 ∈ I([g, h]). (2)

Second, assume that the Z-degree of every monomial in g is 1 and that h, uj , vj
do not depend on Z. Then we claim that〈∑

j

uj [g, h]vj
〉
∈ I([h,

∑
j

ujvj ]) . (3)

If α1, α2, γ, ω1, ω2 are monomials not depending on Z and z ∈ Z, we have〈
ω1[α1zα2, γ]ω2

〉
=
〈
ω1(α1zα2γ − γα1zα2)ω2

〉
=
〈
ω1α1zα2γω2

〉
−
〈
ω1γα1zα2ω2

〉
= zα2γω2ω1α1 − zα2ω2ω1γα1

= zα2[γ, ω2ω1]α1

By linearity of 〈·〉 and bilinearity of the commutator [·, ·] this gives that〈
u[α1zα2, h]v

〉
= zα2[h, uv]α1

whenever u, v, h are polynomials not depending on Z. To finish the proof of
(3), write g as g =

∑
i αize(i)α

′
i where ze(i) ∈ Z and αi, α′i do not depend on Z.

Then〈∑
j

uj [g, h]vj
〉

=
〈∑
j

uj [
∑
i

αize(i)α
′
i, h]vj

〉
=
∑
j

∑
i

〈
uj [αize(i)α′i, h]vj

〉
=

=
∑
j

∑
i

ze(i)α
′
i[h, ujvj ])αi =

∑
i

ze(i)α
′
i[h,

∑
j

ujvj ]αi .

The final term lies in I([h,
∑
j ujvj) as required in (3).

Any polynomial h can be written as h{0}+h{1}+h{>1}, where h{0} does not
depend on Z, every monomial in h{1} has Z-degree 1, and in h{>1} Z-degree
bigger than 1. Let us have a general polynomial

∑
j uj [g, h]vj as in (iii). Since

〈α〉 = 0 whenever α has Z-degree bigger than one, we can write〈∑
j

uj [g, h]vj
〉

=
〈∑
j

uj [g{0}, h{0}]vj
〉

+
〈∑
j

u
{0}
j [g{1}, h{0}]v{0}j

〉
+

+
〈∑
j

u
{0}
j [g{0}, h{1}]v{0}j

〉
.

By (2), the first term is in I([g{0}, h{0}]). By (3}, the second term is in
I([h{0},

∑
j u
{0}
j v

{0}
j ]) and the third is in I([g{0},

∑
j u
{0}
j v

{0}
j ]). This completes

the proof of the condition (iii) and hence the proof of the lemma.
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Lemma 1 and Lemma 2 directly imply the following:

Theorem 3. There exists a polynomial f in n variables such that f c = 0
and Q(f) = Ω(n2). Moreover, f is of degree three and has coefficients from
{0, 1,−1}.

The statement of Lemma 2 is reminiscent of Baur-Strassen’s algorithm for
computing partial derivatives of a (commutative) polynomial. see[1]. This shows
that, commutatively, the complexity of computing z1f1 + . . . znfn is at least the
complexity of computing f1, f2, . . . , fn. However, the proof of Lemma 2 is quite
different. We should also warn the reader that the lemma is a bit more intricate
than it may appear. One may suspect that in order to have, for example,
z[x, y] ∈ I([g1, g′1], [g2, g′2], . . . ) the ideal must contain [x, y]. However, note that
z[x, y] = [zx, y]− [z, y]x and so z[x, y] ∈ I([zx, y], [z, y]). For this reason, we fall
short of proving the following generalization:

Let fij , i ∈ {1, . . . , p}, j ∈ {1, . . . , n}, be a set of np polynomials with f cij = 0.
Let fi := z1fi1 + · · ·+ znfin, where z1, . . . , zn are fresh variables. Then

Q(f1, . . . fp) ≥ c.Q(fij ; i ∈ {1, . . . , p}, j ∈ {1, . . . , n}) ,

for a constant c > 0.

This version would be strong enough to give directly an explicit f with Q(f) =
Ω(n2). For if fij , i, j ∈ {1, . . . , n} are polynomials not depending on z1, . . . , zn,
y1, . . . , yn, we obtain that Q(

∑
i,j ziyjfij) ≥ c2Q(fij ; i, j ∈ {1, . . . , n}). Hence

Q(
∑
i,j ziyj [xi, xj ]) ≥ c2Q([xi, xj ]; i < j) = c2

(
n
2

)
. This polynomial will be

discussed later.

3 Questions

The main drawback of Theorem 3 is that it proves existence of f without con-
structing it explicitly. The first question therefore is:

Problem 1. Construct an explicit polynomial f in n variables such that f c = 0
and Q(f) is superlinear (ideally, Ω(n2)).

Let us give some comments. First, if f has degree two then Q(f) ≤ n. Hence
the candidate should be of degree at least three. In view of Theorem 3, looking
for a degree-three polynomial seems to be the simplest choice. However, this
has a different obstacle:

Proposition 4. Assume that the underlying field has characteristic zero. Let
f be a homogeneous polynomial of degree d such that f c = 0 and

f =
∑

i∈{1,...,m}

gi,1gi,2 . . . gi,d ,

where gi,j are linear. Then Q(f) ≤
(
d
2

)
m.
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Proof. Let I be the ideal generated by [gi,j1 , gi,j2 ] with i ∈ {1, . . . ,m} and j1 <
j2 ∈ {1, . . . , d}. We want to show that f ∈ I. Let f =

∑
i1,...,id

ai1...idxi1 . . . xid .
For a permutation σ of {1, . . . , d}, define fσ :=

∑
i1,...,id

ai1...idxiσ(1) . . . xiσ(d) .
The assumption that f c = 0 implies∑

σ

fσ = 0 ,

where the summation ranges over all permutations of {1, . . . , d}. On the other
hand, we have

fσ =
∑

i∈{1,...,m}

gi,σ(1)gi,σ(2) . . . gi,σ(d) ,

which implies that f − fσ ∈ I. Hence
∑
σ(f − fσ) ∈ I. But

∑
σ(f − fσ) =∑

σ f −
∑
σ f

σ = d!f. Hence d!f ∈ I and f ∈ I.

If d = 3, the proposition tells us that f cannot be written as a sum of less than
Q(f)/3 products of linear forms. The latter problem corresponds to the rank
of a dimension three tensor. In other words, if we construct a polynomial with
superlinear Q(f) then we have also constructed a tensor of superlinear rank. To
construct such a tensor is a well-known open question, which is probably more
interesting than our Problem 1.

For degree-four polynomials the situation is slightly better. Motivated by
Lemma 2, one may guess that the polynomial

∑
i,j ziyj [xi, xj ] is the right can-

didate for a solution to Problem 1. This polynomial has many variants, such as∑
i,j [xi, xj ]

2, but we shall focus on the following one:

Cn :=
∑

i,j∈{1,...,n}

zixj [xi, xj ] .

We can show that Q(Cn) is superlinear assuming a conjecture from circuit com-
plexity. Cn is related to the polynomial

IDn :=
∑

i,j∈{1,...,n}

xixjxixj ,

which was investigated in [5]. There, the authors hoped to prove that ID re-
quires superlinear non-commutative arithmetic circuits, showing that this would
imply an exponential lower bound on the circuit size of the non-commutative
permanent. The lower-bound approach in [5] can be rephrased as follows. Define
S(n) as the smallest k so that there exist homogeneous degree-two polynomials
g1, . . . , gk so that IDn ∈ I(g1, . . . , gk). Then S(n) is a lower-bound to the circuit
complexity of IDn. Moreover, the authors gatherered some evidence that S(n)
is superlinear and, optimistically, of the order n2−o(1). Let us show that if such
an approach can be successful then Cn is a solution to Problem 1:

Proposition 5. Q(Cn) ≥ c.S(n), for a constant c > 0.

8



Proof. For i ∈ {1, . . . , n} let fi =
∑
j∈{1,...,n} xj [xi, xj ]. By Lemma 2 it is

sufficient to show that Q(f1, . . . , fn) ≥ cS(n). So assume that

f1, . . . , fn ∈ I([g1, g′1], . . . , [gk, g′k]) .

Since f1, . . . , fn are homogeneous polynomials of degree three, we can assume
that for every i, gi, g′i are homogeneous polynomials such that the sum of their
degrees is at most three (this may cost a constant factor). The degree of each
gi, g

′
i is at least one for otherwise [gi, g′i] = 0. This means that either both

gi, g
′
i have degree 1, or one of them has degree 2. In both cases there exists a

homogeneous degree-two polynomial hi such that [gi, g′i] ∈ I(hi). (In the former
case take hi := [gi, g′i], in the latter set hi is the degree two polynomial from
{gi, g′i}). Hence we have

f1, . . . , fn ∈ I(h1, . . . , hk) ,

with h1, . . . , hk homogeneous of degree two. Note that

fi =
∑
j

(xjxixj − x2
jxi) =

∑
j

xjxixj − (
∑
j

x2
j )xi .

Denoting vi :=
∑
j xjxixj , this means that

v1, . . . , vn ∈ I(h1, . . . , hk,
∑
j

x2
j ) .

Since IDn =
∑
i xivi, we also have IDn ∈ I(h1, . . . , hk,

∑
j x

2
j ) and so S(n) ≤

k + 1.

For polynomials of unbounded degree, the range of apparently good candi-
dates is unlimited. A guess would be

∏
i,j([xi, xj ]+1)−1, or

∑
σ sgn(σ)xσ(1)...xσ(n)

.
Moreover, note that any correct identity between commutative polynomials
gives rise to a potential candidate. For example, take det(XY ) = det(X) det(Y ).
This identity holds when the variables commute but is false in the non-commutative
setting. This means that f = det(XY ) − det(X) det(Y ) is a non-trivial non-
commutative polynomial, f c = 0, and one may expect that Q(f) is fairly large.
The problem here is not the lack of candidates, but the lack of proof techniques.

Since Problem 1 already appears difficult, one hesitates to present the more
challenging Problem 2. However, this problem would have interesting applica-
tions:

Problem 2. Find a polynomial f such that f c = 0, f can be computed by a
non-commutative arithmetic circuit of size s (or better, a formula) and Q(f) is
superlinear in s

For a background on non-commutative arithmetic circuits, see [8, 5]. The main
difference between Problems 1 and 2 is that here we want a superlinear bound in
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terms of the circuit size of s. Since Q(f) ≤
(
n
2

)
, such an f must be computable

by a circuit of subquadratic size. This severely restricts the range of candidates.
Proposition 4 indicates that f should not have too small depth-three circuit and,
more importantly, that Problem 2 has no solution for degree d = 3 – for the m
in Proposition 4 is also a lower bound to the circuit size. Proposition 5 is even
more embarrasing. The circuit size of Cn is at least S(n) and so the assumption
which guarantees that Q(Cn) is large also implies that the circuit complexity of
Cn is large. It may happen that Problem 2 does not have a solution for a rather
banal reason: it may turn out that non-commutative polynomials computable
be subquadratic circuits are extremely simple objects, simple enough to have
linear Q.

Finally, let us address a detail that we omitted in the Introduction. There
we claimed that a formula or a circuit can be interpreted as a non-commutative
formula or a circuit, which is not entirely true. In the usual definition of a
commutative circuit C, there is no distinction between multiplication from left or
right. Hence such a circuit implicitly assumes commutativity relations gh = hg,
where g, h are inputs of a product gate in the circuit. We may arbitrarily fix
the order of multiplication in C to obtain a proper non-commutative circuit
C ′. Every such circuit may compute a different non-commutative polynomial,
from some family F . However, all polynomials in F are equivalent modulo
the ideal generated by the commutativity conditions imposed by the gates of
C. The number of such conditions is at most the size of the circuit C. Hence
|Q(f1) − Q(f2)| is at most the size of C, for every f1, f2 ∈ F , and so if one
polynomial from F has superlinear commutative complexity then the same holds
for every polynomial in F .

4 Proof complexity

The commutative complexity of f corresponds to the number of commutativity
axioms gg′ = g′g one needs to use in order to prove that f c = 0. It is this
interpretation which makes Q(f) relevant to the study of complexity of proofs.
The first connection is immediate. In [3] and [6], there were introduced proof
systems proving polynomial identities. In [6], the authors focus on two dominant
systems, called arithmetic Frege and arithmetic circuit Frege. Arithmetic Frege
proves equations of the form F = G, with F,G arithmetic formulas, and where
F = G is provable iff F,G compute the same commutative polynomial. The
inferences in arithmetic Frege are syntactic operations on formulas, such as
F (G+H) = FG+FH, FG = GF , . . . , corresponding to the defining axioms of
commutative rings. One can as well consider just equations of the form F = 0,
asserting that F computes the zero polynomial. The main open question in this
context is to show that there exist correct equations F = 0 which require long
arithmetic Frege proofs. That is, we want to find an arithmetic formula F of
size s such that F computes the zero polynomial but every proof of F = 0 in
arithmetic Frege must have size superpolynomial in s. The truth is that the
best known lower bound is Ω(s2) on the proof size, and Ω(s) on the number of
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proof-lines (i.e., the number of inferences)2. Arithmetic circuit Frege is similar
to arithmetic Frege except that it uses circuits instead of formulas. There, the
best lower-bound on either the size or number of inferences is only linear.

One option, how to obtain a superlinear bound, is to count the number of
commutativity axioms needed to prove F = 0. Recall that F is an arithmetic
formula such that F , when interpreted commutatively, computes the zero poly-
nomial. However, when we interpret F as a non-commutative circuit then F
computes a non-commutative polynomial F̂ . This non-commutative polynomial
is in general non-zero but satisfies F̂ c = 0. The following is immediate from the
definition of the proof systems mentioned:

Observation 1. Any arithmetic Frege or arithmetic circuit Frege proof of
F = 0 has at least Q(F̂ ) proof-lines.

This means that a positive solution to Problem 2 implies a superlinear lower
bound on proof-size. More exactly, to obtain a lower bound on arithmetic Frege,
we need Q to be superlinear in terms of the formula size, and for circuit Frege,
it is sufficient in terms of the circuit size.

Propositional proof systems

A similar line of reasoning can be applied to lower bounds on propositional
Frege or extended Frege proofs. We refer the reader to [2, 7] for background on
propositional proof systems. Propositional proof systems operate with Boolean
formulas and prove Boolean tautologies. We find it convenient to view a Boolean
formula as an arithmetic formula over the field GF (2). A formula F is a tau-
tology if F = 0 for any 0, 1-assignment to the variables of F . The challenging
problem is to find a tautology of size s which requires superpolynomial size
proof in Frege or extended Frege. The best know lower bounds on size of Frege
proofs is quadratic, and linear when one counts the number of inferences. For
extended Frege, the lower bound is linear in both cases.

When we think of a Boolean formula F as computing a commutative poly-
nomial f , the requirement that F is a tautology is equivalent to the assumption
that f lies in the ideal generated by x2

1 + x1, . . . , x
2
n + xn for the variables

in F . We may again again view F as computing a non-commutative polyno-
mial F̂ . Here, the assumption that F is a tautology is no longer equivalent to
F̂ ∈ I(x2

1 + x1, . . . , x
2
n + xn). This is witnessed by the identity

(g + h)2 + (g + h) = g2 + g + h2 + h+ [g, h] , (4)

where we write g, h = x1, x2. The tautology (x1 + x2)2 + (x1 + x2) does not lie
in the ideal generated by x2

1 +x1, x
2
2 +x2 but rather in the ideal I(x2

1 +x1, x
2
2 +

x2, [x1, x2]) – which illustrates the relevance of the commutativity axiom in the
Boolean setting. The condition that F is a tautology can be stated in two
different ways:

2Those bounds follow from bounds on propositional Frege and Extended Frege, mentioned
below.
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(i). There exist g1, . . . , gk such that F̂ ∈ I(g2
1 + g1, . . . , g

2
k + gk).

(ii). There exist g1, g′1 . . . , gk, g
′
k such that F̂ ∈ I([g1, g′1], . . . , [gk, g′k], x2

1+x1, . . . , x
2
n+

xn), where x1, . . . xn are the variables of F .

Let us denote the smallest k such that (i) holds, by R(F̂ ), and the smallest k such
that (ii) holds by Q∗(F̂ ). As before, we can see that Q∗(F̂ ) ≤

(
n
2

)
. Exploiting

the identity (4) shows that R(F̂ ) ≤ 3Q?(F̂ ) + n and also R(F̂ ) ≤
(
n
2

)
+ n. We

see no obvious reason why either of the quantities should be linear in terms of
the formula size of F . Hence we could potentially obtain a superlinear lower
bounds as follows:

Observation 2. The number of proof-lines in an extended Frege proof of a
tautology F is at least Ω(R(F̂ )) and its size is at least Ω(Q∗(F̂ )).
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