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Abstract

We formulate a notion of evolvability for functions with domain and range that are
real-valued vectors, a compelling way of expressing many natural biological processes.
We show that linear and fixed degree polynomial functions are evolvable in the following
dually robust sense: There is a single evolution algorithm that for all convex loss
functions converges for all distributions. Existing results suggest that for Boolean
function evolution no correspondingly general result is possible.

It is possible that such dually robust results can be achieved by simpler and more
natural evolution algorithms. In the second part of the paper we introduce a simple and
natural algorithm that we call “wide-scale random noise” and prove a corresponding
result for the L2 metric. We conjecture that the algorithm works for more general
classes of metrics.
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1 Introduction

Since the introduction of the evolvability model by L. Valiant in [11], significant work has
been done to show both the power and the robustness to modeling variations of this com-
putational framework for investigating how complexity can arise in a fixed environment
[2, 3, 4, 7, 10]. In this work we present two complementary constructions, which extend this
body of work in a new and very natural direction: while previous papers studied evolvability
of Boolean functions (from {0, 1}n → {−1, 1}) we here consider functions from Rn → Rm.
One could imagine that many of the functions that evolve in biology, for example, “how
should the concentration of protein A in this cell vary in response to the concentrations
of proteins B through Z?”, might be much more naturally represented as real functions as
opposed to Boolean functions. Of course, real functions, when restricted to Boolean domain
and range, become Boolean functions, so in some sense this model is more general than the
original Boolean model of evolvability.

We first define the notion of evolvability over the reals, and then proceed in two directions.
The first direction consists of an adaptation of Feldman’s results on evolvability from [4] to
our setting, which, because of the different setting, immediately yields results of a somewhat
different nature: evolvability can simulate arbitrary polynomial-time optimization algorithms
that only require approximate access to the function being optimized. In the terminology
of Lovasz [9], this is weak optimization, and in particular, we may leverage his construction
of polynomial time weak convex optimization to yield the evolvability of linear functions,
and further, polynomials, in a distribution-independent sense, for any convex loss function—
including a fortiori the commonly considered linear and quadratic (L1 and L2-squared) loss
functions.

For the original Boolean framework of evolvability, perhaps the first result along these
lines was Feldman’s characterization that, as long as the underlying distribution is known,
then the class SQ (statistical queries) defined by Kearns in [8] exactly characterizes the
classes of evolvable functions [2]. SQ is both a powerful and natural framework, and seems
to capture most of the power of PAC learning. However, the assumption that the evolution
algorithm must know the underlying distribution is decidedly unnatural, as one would hope
for evolution to function across a broad range of potentially quite intricate and varying
distributions of conditions for its creatures. In subsequent work, Feldman showed that if one
reinterprets the Boolean model by allowing hypotheses that take real values (even though
the target functions are Boolean), then if the performance metric is non-linear, one can take
advantage of a “kink” in it to, in fact, evolve everything in SQ [4]. In contrast, we show that
evolvability of linear and polynomial functions over the reals is distribution-independent,
and works for both L1 and L2 metrics.

While this result demonstrates the power of the evolvability framework, it comes at the
expense of a certain “unnaturalness” of the resulting algorithm. We balance this out in the
second part of this paper by considering perhaps the simplest and most natural algorithm
that could be hoped to work, and showing that it in fact can reproduce a significant portion
of these results, albeit less efficiently. In a generation of this algorithm, a parent produces
a polynomial number of nearby children, each chosen in a uniformly and independently
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random direction. “Survival of the fittest” turns this into a kind of “steepest descent”
strategy, which enables us to prove that, for quadratic loss functions, constant progress is
made in each generation, which will rapidly lead to the optimum.

This algorithm, which we call “wide-scale random noise” to emphasize its simple unstruc-
tured nature, has in fact been found in simulations to converge rapidly in many cases beyond
that of the quadratic loss function, though how it achieves this convergence seems rather
different than its provable behavior in the quadratic case. In particular, while for quadratic
loss functions, the algorithm provably consistently produces offspring which perform better
than the parent, leading to a guaranteed improvement, in the case of the L1 loss function,
the ability to evolve to a descendent whose performance is worse than that of the parent
seems crucial for efficient progress. It would seem counterintuitive that such “backtracking”
would help in a convex landscape with no spurious local minima. However, this was exactly
the effect found in a paper on simulated annealing that also considered a very similar L1

optimization setting [6]. It would appear that both evolvability and simulated annealing
seem effective in unexpected cases, and one might hope that new analysis of one might shed
light on the other.1

2 Definitions

We adapt much of our notation from [4].
We note a concrete example to motivate the following definitions: consider the task of

trying to evolve linear functions. Namely, there is an unknown linear function f : Rn → Rm

refered to as the target function, and an unknown distributionD over Rn from which “nature”
draws test cases to evaluate the performance of a creature. Creatures are distinguished by
the hypothesis encoded in their genome, namely a function h : Rn → Rm. The creature’s
“life” consists of being presented a set of samples from the distribution D; on each sample,
it evaluates h and is penalized by nature according to how its answers differ from the target
function f . To make this precise, we must introduce the notion of a loss function.

Definition 1. For hypotheses having range Rm, a loss function is a nonnegative function
L : Rm × Rm → [0,∞) such that for any x ∈ Rm, L(x, x) = 0.

Definition 2. Given a loss function L and a target function f : Rn → Rm, the performance
of a hypothesis function h : Rn → Rm relative to a distribution D (over Rn) is defined as
LPerff,D(h) = Ex←D[L(f(x), h(x))]. Given a positive integer s, the s-sample empirical per-
formance LPerfsf,D(h) is defined to be the random variable resulting from drawing s samples
z1, . . . , zs ← D and evaluating 1

s

∑s
i=1 L(f(zi), h(zi)).

1Feldman has defined “monotone” evolvability to be the restriction where each generation’s performance
must be at least that of the previous generation, in part inspired by a desire to consider evolution algorithms
that seem more “natural”. Monotone evolvability has been shown in a distribution-independent setting for
point functions under the L1 metric [4], conjunctions under the L2 metric [3], and very recently, for linear
threshold functions with “non-negligible margin”, for L2 and related metrics [5].
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In a manner which will be made precise shortly, evolution picks a hypothesis h which,
empirically, is chosen to have small loss.

In general, instead of considering the class of linear functions, we consider the evolvability
of a concept class C, consisting of a subset of the functions f : Rn → Rm. And, as there may
be some pathological distributions that bar progress, we may restrict ourselves to a class D
of distributions over Rn.

In particular, working over the real numbers introduces problems of scale that are not
present in the Boolean case. For example, since the “feedback” that nature gives the evolu-
tion algorithm in any generation is simply the choice of which, of a bounded (polynomial)
number of potential children, survives to the next generation, there is no way to evolve in
bounded time a good approximation to an unbounded real number. It is thus important to
work with concept classes C that are in some sense bounded. A related issue arises with the
distribution class D. Suppose we are working with the L1 loss function, L(x, y) = |x−y|, and
suppose D is such that, with probability 1− τ , D samples the point 0, and with probability
τ samples a point more than 1

τ
-far from the origin. If τ is super-polynomially small, then

evolution will likely never see any samples other than 0, but meanwhile, the expected loss
of hypotheses is unknown and potentially huge. Thus D (and L) must also be reasonably
bounded. We make precise the kinds of bounds we use in the particular theorems.

We now define the components of evolvability.

Definition 3 (Definition 3.6 in [4]). Given parameter ϵ > 0, a mutation algorithm A is
defined by a pair (R,M) where

• R is a representation class of functions Rn → Rm.

• M is a randomized polynomial (in n, m, and 1/ϵ) time Turing machine that, given
r ∈ R and 1/ϵ as inputs outputs a representation r1 ∈ R with probability that we denote
PrA(r, r1). The set of representations that can be output by M(r, ϵ) is referred to as
the neighborhood of r for ϵ and is denoted by NeighA(r, ϵ).

As far as the representation class, recall that the hypothesis functions are ultimately
stored as the “genomes” of our creatures, and thus are represented as strings over a finite
alphabet. For the results of Section 3 we explicitly represent functions as binary strings,
though the class of functions represented by the scheme of Section 3 is somewhat artifi-
cial. In Section 4 we consider genomes that can represent the entire class of fixed-degree
polynomial functions, and implicitly consider these polynomials as being represented by
approximately representing each coefficient as a short string in the genome—only limited
precision is required.

The mutation algorithm is the source of potential genomes for the next generation; which
one survives is determined by the selection rule, an efficiently-implementable algorithm that
we imagine nature running, defined as follows (from Definition 3.7 of [4]).

Definition 4. For a loss function L, tolerance t, candidate pool size p, and sample size s,
selection rule SelNB[L, t, p, s] is an algorithm that for any function f , distribution D, muta-
tion algorithm A = (R,M), representation r ∈ R and accuracy ϵ, SelNB[L, t, p, s](f,D,A, r)
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outputs a random variable that takes a value r1 determined as follows. First run M(r, ϵ) p
times and let Z be the set of representations obtained. For r′ ∈ Z, let PrZ(r

′) be the rela-
tive frequency with which r′ was generated among the p observed representations. For each
r′ ∈ Z ∪ {r}, compute an empirical value of performance v(r′)← LPerfsf,D(r

′). Let Bene(Z)
denote the set of empirically beneficial mutations, {r′ ∈ Z | v(r′) ≤ v(r) − t} and Neut(Z)
denote the set of empirically neutral mutations, {r′ ∈ Z | |v(r′)− v(r)| < t}. Then

(i) If Bene(Z) ̸= ∅ then output a random r1 ∈ Bene(Z) distributed with relative probabilities
according to PrZ.

(ii) If Bene(Z) = ∅ and Neut(Z) ̸= ∅ then output a random r1 ∈ Neut(Z) distributed with
relative probabilities according to PrZ.

(iii) If Neut(Z) ∪ Bene(Z) = ∅ then output ⊥.

The situation where all children perform noticeably worse than the parent, in which case
the selection rule outputs “⊥” is viewed as unnatural, and we view such a case as aborting.
Otherwise, if for a concept class (and class of distributions) there exists a mutation algorithm
that, under selection rule SelNB, efficiently converges to the target function, then we say that
the concept class is evolvable:

Definition 5 (See Definition 3.3 of [4]). A concept class C, distribution class D, and loss
function L are said to be evolvable if there exists a mutation algorithm A = (R,M), polyno-
mials p(n,m, 1

ϵ
), s(n,m, 1

ϵ
), a poly-bounded tolerance t(r, n,m, 1

ϵ
) and a polynomial number

of generations g(n,m, 1
ϵ
) such that for all n,m, target functions f ∈ C, distributions D ∈ D,

ϵ > 0, and any initial genome r0 ∈ R, with probability at least 1 − ϵ the random sequence
defined by ri ← SelNB[L, t, p, s](f,D,A, ri−1) will have LPerff,D(rg) ≤ ϵ.

(We note that the sign convention most natural for the real case is opposite that used in
previous work for the Boolean case, and in particular, a “perfect organism” in our setting
has LPerf = 0 while in [4] would have LPerf = 1.)

3 Evolvability as “Weak” Optimization

The idea at the center of this section is that evolvability can reproduce any result efficiently
obtainable from approximate oracle access to LPerf. In this section we demonstrate this
connection, which lets us then leverage the entire field of optimization algorithms towards
our goal of evolvability, yielding immediate fruits at the end of this section.

As noted in the introduction, we prove this via an adaptation of the analogous result
from the Boolean case—which appears in [4]. The main hurdle in both cases is showing that
the selection rule SelNB can efficiently simulate approximate responses to questions of the
form: “is LPerff,D(h) greater than a threshold θ?” In particular, this will be achieved in a
single generation of evolution.

One difference between the real case and the Boolean case—or, more specifically, be-
tween how LPerf is defined here versus in [4]—is that in our case we have no functions whose
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performance we know a priori, while in their case, the Boolean function that returns an in-
dependent unbiased coin flip is guaranteed to have performance 0. Without such a reference
point, evolvability has no hope of addressing such threshold queries. In lieu of an abso-
lute benchmark like that, we instead adopt a relative benchmark, comparing performance
always against LPerf(0).2 Namely, our evolution algorithm will function as though it had
approximate oracle access to LPerf(·)− LPerf(0).

We give an overview of the intuitive idea for the construction to approximately answer,
in a single generation, queries of the form “is LPerf(h) − LPerf(0) > θ?”. We assume
genomes may represent probabilistic functions, and, moreover, assume that the parent’s
genome defines a function that is the 0 function a large fraction of the time. Letting q =
q(n,m, 1

ϵ
) be a bound on the total number of threshold queries we would ever need to

resolve, the guarantee is that the difference between the parent’s probability of expressing
the 0 function and any child’s is at most 1

q
.

Denoting the parent’s genome by r, its performance is LPerfsf,D(r), and for a given tol-
erance t, the selection rule SelNB treats children very differently, according to whether their
observed loss is within t of this (neutral mutations), more than t lower than this (beneficial
mutations), or more than t higher than this and doomed to be culled. Since our goal is
to make the selection rule have a sharp threshold near LPerf(h) − LPerf(0) ≈ θ, and the
selection rule already has these natural sharp thresholds, the natural approach, as in [4] is
to make use of these thresholds for our purposes, having r produce two types of children, r0
that outputs identically to the parent r, and r1 that outputs the function 0 with probability
t
θ
less than its parent and h with probability t

|θ| more than its parent.

The details of the proof follow the ideas in the appendix of [4] (specifically Theorem A.3)
and are given below.

To state the result more cleanly, we introduce “weak” optimization terminology adapted
from [9]:

Definition 6. A µ-weak evaluation oracle for a function f : Rk → R is an oracle that on
input x returns a number a such that |f(x)− a| < µ.

Definition 7. The ν-weak function minimization problem for a function f : Rk → R is that
of finding an x such that ∀y ∈ Rk, f(y) > f(x)− ν.

Definition 8. A class of functions is weakly optimizable if there exists a randomized poly-
nomial time oracle algorithm A and a polynomial µ = µ(ν, 1

k
) such that for every ν > 0, and

any function f : Rk → R in the class, A solves the ν-weak function minimization problem
when given access to a µ(ν, 1

k
)-weak evaluation oracle for f .

2We note that here and for the rest of the paper, we use no special properties of the 0 function, and
indeed any arbitrary function from the hypothesis class could be substituted here and throughout the paper.
We use 0 simply to avoid introducing further notation. A more meticulous reader might mentally substitute
an arbitrarily chosen element of the hypothesis class for 0 as it appears in the results below, to handle the
odd but perfectly legitimate case that 0 is not in the hypothesis class of Theorem 1.
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Theorem 1. If L is a loss function, C is a concept class, and D is a distribution class such
that there is a polynomial b(n,m) that bounds L(f1(x), f2(x)) for any f1, f2 ∈ C and any
x in the support of a distribution in D, and such that the class of functions LPerff,D(h) −
LPerff,D(0) indexed by f ∈ C,D ∈ D and evaluated on h ∈ C is weakly optimizable, then
(C,D, L) is evolvable.

We will find it convenient to first prove this result in a restricted model referred to as
“evolvability with initialization”, where Definition 5 is modified so that instead of assum-
ing evolution starts with an arbitrary genome r0 ∈ R, we instead assume a fixed starting
configuration. (See Theorem A.1 of [4].)

Lemma 1. Theorem 1 holds under the restricted evolvability with initialization model where
Definition 5 is changed by replacing the phrase “any initial genome r0 ∈ R” by “initial
genome r0 = ⋆”.

Proof. By assumption, there is a randomized polynomial time algorithm and a polynomial
µ = µ(ν, k) such that for every ν > 0 and any f ∈ C and D ∈ D, the algorithm, when given
µ-weak oracle access to LPerff,D(·) − LPerff,D(0), will return a hypothesis h ∈ C that is
within ν of optimal. Denoting by T a (polynomial) bound on the runtime of this algorithm,
we note that we may equivalently reexpress it as a deterministic algorithm that is given
as auxiliary input a T -bit uniformly random string. Our goal will be to show that we can
simulate the operation of this algorithm in the evolvability framework

As a first step, we will replace the weak evaluation oracle with a simpler oracle, the weak
comparison oracle.

The µ-weak comparison oracle for a function g will, on given an input x and a
threshold θ, return 1 if g(x) ≥ θ+µ, 0 if g(x) ≤ θ−µ, and either 1 or 0 otherwise.

We note that since by assumption, b bounds the value of the function in question, that is,
LPerff,D(·)−LPerff,D(0), we have that log

b
µ
bounds the number of rounds of binary search

we need to µ-weakly approximate the value of the function via weak comparison queries.
Denote this bound by β, which since b and µ are polynomial, is hence polynomially bounded
itself. We note, as will be important later, that such a binary search can be designed so that
none of the thresholds queried ever have magnitude less than µ.

We have thus trivially shown that there is a deterministic algorithm that, when given
as an auxiliary input a T -bit uniformly random string, and given weak comparison oracle
access to LPerff,D(·) − LPerff,D(0), will return a ν-weak minimum within Tβ steps. We
denote this algorithm A, and for the sake of concreteness, assume that after Tβ steps have
passed, it halts and outputs a hypothesis, no matter what.

We now turn to the task of expressing algorithm A in the evolvability framework. Recall
that by assumption, the initial genome is uniquely fixed as “⋆”. We thus ask the mutation
algorithm to, upon seeing the initial genome, produce children whose genome encodes T bits
uniformly generated at random. In each subsequent stage of mutation, these bits will be
preserved in the genome; in this manner, future generations will have access to this randomly
generated T -bit string, as desired.
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All that remains is to describe how to simulate weak comparison queries. We will simulate
one query per generation, with the result of the query being stored in the genome for the
duration. Thus at time 0 the genome will consist of “⋆”, at time 1, of a T -bit random string,
and at time 1+ j we aim for the genome to consist of the concatenation of this string with a
j-bit string that stores the results of the first j weak comparison queries as specified by the
algorithm A under simulation. For each such genome, we must specify how the corresponding
creature responds to inputs. For the genome “⋆” and any genome consisting solely of a T -bit
string, we return the 0 vector. Otherwise, let R be this T -bit random string, and let z be
the remainder of the genome, whose length we denote by j, and whose ith bit we denote
zi. Recall the algorithm A whose results we are trying to reproduce. Iteratively simulate A
starting with string R, and let (h1, θ1) be the first query sent to the weak comparison oracle;
interpreting z1 as the result of this query, let (h2, θ2) be the next query asked by A, and so
on. We thus derive (hi, θi) for each i ∈ {0, . . . , j − 1}, all computed in polynomial time. We
thus define the output behavior of our genome on input x ∈ Rn: for each i ∈ {0, . . . , j − 1}
such that zi = 1, output hi(x) with probability µ

|θi|·Tβ
and otherwise output the vector 0. Since

|θi| is guaranteed to be at least µ by construction, the sum of the probabilities over the (up
to) Tβ generations involved will never exceed 1.

A complete specification of the scheme requires only that we now specify the mutation
probabilities. Namely, given the (random) string R of length T and a string z of length j,
where we may determine that (hj+1, θj+1) is the next query to be simulated, we must choose
with what probability the mutation algorithm M should output Tz0 as opposed to Tz1.
Very simply, if θj+1 < 0 then output Tz0 with probability 1 −∆ and Tz1 with probability
∆, otherwise output Tz1 with probability 1−∆ and Tz0 with probability ∆, where ∆ = ϵ

3g

is chosen so that in g (our target number of generations) rounds of coin flips, a ∆-biased
coin will never land heads, except with probability somewhat less than ϵ.

We choose the tolerance parameter t, which specifies the width of the “neutral” zone
of performance, to equal µ

Tβ
. We choose s, the number of samples taken to evaluate the

empirical performance, to be large enough so that with probability > 1 − ϵ
3
the empirical

estimates are never off by more than t µ
2b

over the entire course of g generations. We analyze
the scheme in two cases, noting that, if we denote the expected performance of genome Tz
by ρ, then the expected performance of Tz0 equals ρ while the expected performance of Tz1
equals ρ+ µ

|θj+1|·Tβ
[LPerff,D(hj+1)− LPerff,D(0)], where as just defined, µ

Tβ
= t.

Case 1: θj+1 < 0. If the weak comparison query must return negative, that is, if the expected
value of LPerff,D(hj+1)−LPerff,D(0) is at most θj+1− µ, then the expected performance of
Tz1 is at most ρ+ t

|θj+1|(θj+1−µ) ≤ ρ− t− tµ
b
. Since by assumption, except with probability

< ϵ
3
, the empirical performance will always approximate the expected performance to within

tµ
2b
, we have that Tz1 will be found to be beneficial, while Tz0 will be found to be neutral,

and thus the next genome will be Tz1, correctly encoding the answer to the weak comparison
query. Conversely, if the weak comparison query should return positive, then by analogous
argument, the expected performance of Tz1 is at least ρ − t + tµ

b
, and Tz1 is thus either

a neutral or negative mutation. Recall that by construction, in this case, an overwhelming
majority of the mutations in this generation were constructed to be Tz0 instead of Tz1, and
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thus in either case, with very high probability (specifically, at least ∆ = ϵ
3g
) Tz0 will thus

be correctly chosen for the next generation.
Case 2: θj+1 > 0. If the weak comparison query must return positive then, from the
above argument, the expected loss of Tz1 is at least ρ + t + tµ

b
, in which case Tz1 is a

negative mutation, and Tz0 will be chosen for the next generation, as desired. Otherwise,
the expected loss of Tz1 is at most ρ+ t− tµ

b
, which will be either neutral or beneficial; since

the mutation algorithm will construct Tz1 instead of Tz0 an overwhelming fraction of the
time (1−∆), with overwhelming probability Tz1 will thus by correctly chosen for the next
generation.

We conclude by stipulating that once the simulation of A has completed (which will occur
with probability at least 1−ϵ), the mutation algorithm will compute the result that A would
have computed, and thus return a satisfactory hypothesis.

We now prove Theorem 1, resulting from Lemma 1 and a short argument that initial-
ization is not necessary for the successful evolution of our algorithm. We take a simpler
approach than [4] though at the expense of looser bounds.

Proof of Theorem 1. We note that the parameters in the proof of Lemma 1 were chosen
so that the probabilistic procedure described will deviate from its expected behavior with
probability at most ϵ over g generations, where, significantly, g is a parameter that we are still
free to specify. Intuitively, evolution will follow the procedure set up in the proof of Lemma 1,
which takes 1+Tβ generations, except that at every generation, there is probability ρ to be
defined shortly of reinitializing, that is, attempting to start evolution from scratch again. We
will exhibit a reinitialization procedure that takes 2b

t
generations. Thus one round of complete

reinitialization and evolution will take 1+Tβ+ 2b
t
generations, while in expectation this will

happen only once every 1
ρ
generations. Let ρ = 1

2
ϵ
/
(1 + Tβ + 2b

t
) . Since after 1

ρ
|1 + log ϵ|

generations, this procedure will have occurred at least once with probability at least 1− ϵ
2
,

we have that for any moment in time after this, the probability that evolution is at a weak
optimum is at least 1− ϵ. Thus letting g = 1

ρ
|1 + log ϵ| yields the theorem with probability

of success at least 1− 2ϵ. We thus reparameterize 2ϵ→ ϵ.
We now illustrate the very simple reinitialization procedure, which will take 2b

t
genera-

tions, a number we denote here as c. For each genome representation G in the scheme of
Lemma 1, with the exception of “⋆”, we add copies labeled by integers i ∈ {0, . . . c − 1},
which we denote as Gi with the interpretation that Gi is “G after i out of c steps towards
reinitialization.” The mutator described in Lemma 1 we modify so that every time it might
output a certain representation G, now with probability ρ it will instead output G0. The
mutation rule for Gi is even simpler: if i ̸= c − 1 then output Gi+1, and if i = c − 1 then
output “⋆”, that is, reinitialize.

We now define how elementsGi evaluate an input x: with probability c−i
c

output whatever
G would output; with probability i

c
output the 0 vector. We note that since the performance

difference between 0 and any other hypothesis is at most b, that the expected change in
performance over any generation of reinitialization is thus at most b

c
= t

2
, namely, these are
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all neutral mutations, and, by the parameter choice of Lemma 1 will be recognized as such,
which guarantees that this procedure will operate as claimed.

While it is fairly immediate that our notion of evolvability itself is indeed a weak op-
timization procedure, the surprising consequence of this theorem is the converse, that any
optimization technique that is “noise-tolerant”—or in our notation “weak”—may be lever-
aged by evolution.

We may thus immediately leap to what is perhaps the most powerful and robust frame-
work for optimization: the ellipsoid method. The ellipsoid method is famously known to solve
any (reasonably bounded) convex optimization problem, and in particular, its weak formu-
lations [9]. (Specifically, both the domain and range of the functions should be bounded.)
We thus have that, as long as we can arrange for LPerf to be convex and bounded, the
associated triple (C,D, L) is evolvable.

As an immediate and important consequence, consider a degree d polynomial p : Rn →
Rm, with D a distribution of bounded support. Then for a hypothesis h, performance is
evaluated by taking a sample x ← D and evaluating L(p(x), h(x)). We note that if h is a
degree d polynomial, considered as a vector of its m ·

(
n+d
n

)
coefficients, then h(x) is a linear

function of this coefficient vector (though not linear in x!). Thus, if L is a convex function
of its arguments, L will be a convex function of the coefficients of h. In short, finding the
coefficients of h is a convex optimization problem when L is convex:

Theorem 2. For any constant positive integer d and positive number r, and an arbitrary
convex loss function L bounded on the radius r ball, the class of degree ≤ d polynomials from
Rn → Rm with coefficients bounded by r is evolvable with respect to all distributions over the
radius r ball.

We note that the case where m > 1, though trivial for us to incorporate here, is in fact
quite powerful for general choices of loss function L. For example, it might seem natural
and sufficient to decompose a function p : Rn → Rm into a vector of m separate functions
Rn → R and optimize the performance of each separately, applying the loss function to the
vector where each of the other functions is assumed to take some default value. However, this
approach is perhaps in some sense analogous to trying to evolve walking by optimizing each
leg separately, assuming each other leg were fixed immobile. Evolution seems an inherently
high-dimensional problem, in many senses, thus why we emphasize the m > 1 case here.

We note that we insist on constant r and d in Theorem 2 because the definition of
evolvability (Definition 5) insists that each parameter of performance must be bounded by
a (polynomial) function of only n,m, and 1

ϵ
. However, each of the parameters of evolution

in fact depends as mildly as might be expected on r and d, depending polynomially on the
number of coefficients needed to describe the class of degree-d polynomials, k = m ·

(
n+d
n

)
,

and on rd, which captures the growth of degree–d polynomials on inputs of magnitude up to
r. This same will hold true for the main result of the next section, Theorem 3.

10



4 A Direct Approach

In this section we construct what is perhaps the simplest conceivable random mutator that
could hope to do “evolutionary hill-climbing” (technically, in our case, the less glamorous
sounding “valley descent”) and show that it is in fact surprisingly adept. In particular,
it is capable of efficiently evolving the same class of general multivariate polynomials as
we considered at the end of the last section. While we only derive results for the case of a
quadratic loss function, that is, L(x, y) = ||x−y||22, we conjecture that similar results hold for
a much wider range of loss functions, including, perhaps, any loss function L(x, y) = ||x−y||c
for c > 0 – including specifically those functions for c < 1 which are not convex.

Definition 9. The k-dimensional wide-scale random noise parameterized by a lower and
upper bound (ℓ, u) is the result of the following process: choose a uniformly random number
ρ from the interval [ln ℓ, lnu]; return eρ times a randomly chosen element of the k-dimensional
unit ball.

Our mutation algorithm consists simply of producing several offspring each chosen by
adding to the parent an independent sample of wide-scale random noise.3 Specifically:

Definition 10. Given a concept class of degree d polynomials from Rn → Rm with bounded
coefficients, consider their coefficients as k = m ·

(
n+d
n

)
-dimensional vectors in Rk. The

mutation algorithm A = (R,M) for wide-scale random noise is defined as:

• R is the representation of vectors in Rk, and

• M consists of generating wide-scale random noise and adding it to the parent.

Theorem 3. Given any positive integer constant d then, for any real number r there exist
bounds ℓ, u and an integer c = poly(n,m, r) such that the wide-scale random noise mutator
with scale in [ℓ, u] and c children per generation evolves the class of degree ≤ d polynomials
from Rn → Rm with coefficients at most r over the class of distributions on the n-dimensional
radius r ball, with respect to the quadratic loss function.

To prove this theorem, we first will show that progress can always be made if we choose
the “right” radius, and then will observe that, because of the exponential way in which the
radius is chosen, it is very likely to choose a radius that is almost exactly “right”.

For the first part, we note that the expectation (over any distribution) of the quadratic
loss function between a polynomial and an arbitrary function, is a positive semidefinite
quadratic function of the polynomial’s parameters. This is simply because, for any element
in the support of the distribution, x ∈ Rn, the value of the polynomial is a linear function of
its coefficients; the value of the other function is fixed; and hence the square of the discrepancy

3Vitaly Feldman has pointed out [personal communication] that one can “derandomize” this procedure
by instead of choosing random elements of the k-dimensional unit ball, rather taking each of the k standard
unit basis vectors, and their negations. It may be, however, that in evolution randomization is the more
natural.
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between these two is positive semidefinite. Integrating these positive semidefinite functions
over the distribution will thus yield a positive semidefinite function. Consider a rotation
and translation of this positive semidefinite function so that it has the form

∑k
i=1 ci · x2

i , for
nonnegative ci, where {xi} are a rotated and translated form of the polynomial’s k = m·

(
n+d
n

)
parameters. Viewing the expected loss of a genome evolving in the context of Theorem 3 in
this form, we show the following lemma, implying that progress can always be made:

Lemma 2. Given ϵ > 0 and a vector of non-negative coefficients, (c1, . . . , ck), with σ =∑k
i=1 ci, then the quadratic function p : Rk → R defined as p(x) =

∑k
i=1 ci · x2

i has the
property that for any vector x of length at most 1, if p(x) > ϵ then with probability at least 1

4
,

a randomly chosen vector y in the ball of radius ϵ
6σ
√
k
about x will have p(y) < p(x)− ϵ2

12σk
.

The restriction that x has length at most 1 is for the sake of convenience of the proof;
when we apply the lemma in the context of Theorem 3, we will scale the inputs so that the
radius r ball becomes a diameter 1 ball.

Proof of Lemma 2. To aid with the proof, we first note the following elementary fact: (see
for example Chapter 1 of [1])

Fact: A k-dimensional ball of unit radius has at least 1
4
of its volume in the region

where its first coordinate exceeds 1
3
√
k
.

Consider p restricted to the line connecting x to the origin. Since p has value 0 and
derivative 0 at the origin, and is quadratic, it must have derivative (along this line) of 2p(x)

|x|
at x; since by assumption p(x) ≥ ϵ and |x| ≤ 1, this is at least 2ϵ. Since this is just the
derivative in one direction, the gradient at x must have magnitude at least this.

We further note that the second derivative in any direction is at most 2σ, from the
definition of σ.

Consider the value of p in the ball of radius r , ϵ
6σ
√
k
around x, and specifically, in the

portion that is at least r
3
√
k
in the direction of the (downward) gradient from x. By the above

fact, this portion comprises at least a quarter of the ball.
Considering the second-degree Taylor expansion of p about x—which is exact, since p

is quadratic—we note that the linear contribution is a decrease of at least 2ϵ (our lower
bound on the magnitude of the gradient) times the distance traveled in the direction of the
gradient, namely r

3
√
k
= ϵ

18σk
, yielding ϵ2

9σk
. The quadratic contribution is bounded by 1

2
times

the directional second derivative in our direction times the square of the distance, which is
bounded by r in our ball, yielding σr2 = ϵ2

36σk
. Subtracting yields the desired bound.

We now assemble the pieces into a proof of Theorem 3.

Proof of Theorem 3. Let k = m ·
(
n+d
n

)
be the dimension of our degree d polynomials when

viewed as a vector space, and let b be a bound on the loss of any pair of hypotheses functions
evaluated at any point in the n-dimensional radius r ball. These are both bounded by
polynomials for constant d.
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For any k-dimensional unit vector v, regarded as a degree d polynomial, and any point
x in the n-dimensional radius r ball, the loss of an arbitrary multiple of v, αv, relative to
the zero polynomial, evaluated on the point x must be a quadratic function cα2, for c ≤ b

r2
.

Thus for an arbitrary distribution in the n-dimensional radius r ball, and arbitrary target
function, the expected loss will be a positive semidefinite quadratic form that can be rotated
and translated into the form

∑k
i=1 cix

2
i with each ci ≥ 0, and if we further scale the input by

1
2r

so that the radius r ball in k dimensions maps into a region of diameter 1, then we have

σ ,
∑k

i=1 ci ≤ 4kb.
We thus consider the application of Lemma 2 to this transformed expected loss function.

If there exists a genome in the ball with expected loss greater than ϵ, then Lemma 2 guar-
antees that there exists this “magic radius” µ = ϵ

6σ
√
k
such that moving the genome by a

vector randomly chosen in the k-dimensional ball of radius µ will, with probability at least
1
4
, improve the expected loss by at least ϵ2

12σk
. Since we have polynomial upper bounds on σ,

Lemma 2 thus provides for inverse-polynomial progress, in exactly those cases where we are
not already within ϵ of optimal.

We note that we have already bounded µ ≥ ϵ
24k
√
k
; to upper bound µ, we note that∑k

i=1 cix
2
i is bounded by σ since ||x|| ≤ 1, and hence by assumption, σ > ϵ, yielding the

bound µ < 1
6
√
k
. Recalling that we scaled the coordinates by a factor of 1

2r
to apply Lemma 2,

we have that in the original coordinates and problem setup: either evolution is within ϵ (plus
sampling error) of optimal, or there is a “magic radius” between rϵ

12k
√
k
and r

3
√
k
such that

a randomly chosen mutation in the k-dimensional ball of this radius will yield significant
improvement. We thus declare the lower and upper bounds of our wide-scale random noise
to be rϵ

12k
√
k
and r

3
√
k
respectively.

We note in general that a pair of k-dimensional balls whose radii r, r′ have logarithms
are within 1

k
of each other will share a constant fraction of their volume. Thus with at

least inverse-polynomial probability, choosing a radius that is e to the power of a number

uniformly chosen between ln
(

rϵ
12k
√
k

)
and ln

(
r

3
√
k

)
will yield with constant probability a

mutation that improves the expected loss by at least ϵ2

12σk
. The candidate pool size is chosen

so that with overwhelming probability, say, at least 1 − ϵ
2
, such a mutation will be present

in each generation.
Thus we may choose s—the number of samples with which to evaluate the empirical

performance—high enough that with probability at least 1 − ϵ
2
, over the entire course of

the algorithm all estimates will be accurate to within a third of the minimum improvement,
ϵ2

36σk
. Further, we choose t, the threshold for declaring a mutation beneficial, to be equal to

ϵ2

18σk
, so that, assuming each empirical estimate is in fact accurate to within ϵ2

36σk
, then each

of the beneficial mutations guaranteed by Lemma 2 will be recognized and declared to be
beneficial. Thus with probability at least 1 − ϵ, the performance of every generation will
be at least ϵ2

36σk
better than that of the previous, unless we are already within ϵ + ϵ2

36σk
of

optimum, yielding the desired result.
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