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Abstract

The existence of optimal algorithms is not known for any decision problem in NP \ P.
We consider the problem of testing the membership in the image of an injective function. We
construct optimal heuristic algorithms for this problem in both randomized and deterministic
settings (a heuristic algorithm can err on a small fraction 1

d of the inputs; the parameter d is
given to it as an additional input). Thus for this problem we improve an earlier construction of
an optimal acceptor (that is optimal on the negative instances only) and also give a deterministic
version.

1 Introduction

1.1 Optimal algorithms

When we face a computational problem that is not known to be solved in a reasonable (say,
polynomial) amount of time, we are still interested to solve it as fast as possible. The existence
of an optimal algorithm that for every possible input returns its answer at least as fast (up to a
polynomial) as any other algorithm for the same problem does, is an important structural feature
of the problem and the model of computation (deterministic algorithms, bounded-error randomized
algorithms, etc.).

While Levin’s optimal algorithm for NP search problems is known for decades [Lev73], it does
not give an optimal algorithm for any decision problem, because, while for NP-complete problems
the worst-case complexity of search and decision are polynomially related, a decision algorithm still
can be exponentially faster for some inputs. Also Levin’s algorithm does not stop at all on the
negative instances. For many interesting languages including the language of Boolean tautologies
TAUT, the existence of an algorithm that is optimal on the positive instances only (such algorithm
is called an optimal acceptor) is equivalent to the existence of a p-optimal proof system (that
is, a proof system that has the shortest possible proofs, and these proofs can be constructed by
a polynomial-time algorithm given proofs in any other proof system) [KP89, Sad99, Mes99] (see
[Hir10] for survey). Monroe [Mon11] recently gave a conjecture implying that optimal acceptors
for TAUT do not exist.
∗Supported in part by Federal Target Programme “Scientific and scientific-pedagogical personnel of the innovative

Russia” 2009-2013, by the grants NSh-5282.2010.1 and MK-4089.2010.1 from the President of RF, by the Programme
of Fundamental Research of RAS, and by RFBR grants. The second author is also supported by Rokhlin Fellowship.
†Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences. Web: http://logic.pdmi.

ras.ru/{~hirsch,~dmitrits,~smal}
‡St.Petersburg Academic University, Russian Academy of Sciences

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 91 (2011)



1.2 Optimal heuristic randomized acceptors

An obvious obstacle to constructing an optimal algorithm by enumeration is that no efficient pro-
cedure is known for enumerating the set of all correct algorithms for, say, TAUT or SAT. A possible
workaround is to check the correctness for a particular input; however, even for SAT, a search-to-
decision reduction maps the input instance to a different instance and thus potentially increases
the complexity.

The correctness can be, however, checked in the heuristic setting. A heuristic algorithm for a
language L and probability distribution D on the inputs is allowed to make errors for some inputs;
the probability of error according to D must be kept below 1

d , where d is an integer parameter given
to the algorithm. In [HIMS10] an optimal heuristic randomized acceptor for every r.e. language L
and every polynomial-time samplable D concentrated on L is constructed. In other words, this is
an algorithm that accepts (with bounded probability of error) every x ∈ L in the fastest possible
way, and accepts x /∈ L for inputs of total D-probability at most 1

d .

1.3 Our results: derandomization and optimal heuristic algorithms

In this paper we consider the decision problem for the image of an injective function (under the
uniform distribution) that maps n-bit strings to (n + 1)-bit strings. Its study is motivated, for
example, by the fact that a particular case of this problem is the problem of recognizing the
image of an injective pseudorandom generator, which has no polynomial-time heuristic randomized
algorithm [HIMS10, Theorem 5.2]. It is known that injective pseudorandom generators exist if
one-way permutations exist [Gol95].

For this problem, we extend the previous results in two directions. First, we devise an optimal
algorithm, while [HIMS10] gave a construction of an optimal acceptor. In [HIMS10], the correctness
test was performed by repeated sampling inputs in L and running a candidate acceptor on them.
In our case L is the image of an injective function and we can still sample it. However, we still do
not have a samplable distribution on L, i.e., on the complement to the image. The check is then
done by testing the algorithm on a random input from {0, 1}n and computing its overall probability
of acceptance.

Our second result is a derandomization of this construction, namely, a deterministic algorithm
that is optimal on the average. To do this, we use an expander-based construction of Goldreich
and Wigderson [GW97] of small families of functions with good mixing properties, and also use
the input as a source of pseudorandomness. It also derandomizes the construction of [HIMS10] of
optimal acceptors if we consider it for the same class of problems (i.e., recognizing the complement
of the image of an injective function).

A byproduct of the derandomization is the existence of optimal automatizable proof system for
the complement of the image. For our problem, this extends [HIMS10, Theorem 4.1], where only
an optimal weakly automatizable randomized heuristic proof system is constructed, i.e., a proof
system where the automatization procedure outputs a proof in a stronger system. (The necessary
definitions and the corollary are given in the Appendix.)

1.4 Organization of the paper

In Section 2 we give the necessary definitions. Then in Section 3 we give a general construction
of an optimal algorithm that suits both the deterministic and randomized cases but misses an
important part: the procedure for estimating the frequency of a particular answer of an algorithm
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on a particular distribution of the inputs. In Section 4 we give a (rather simple) randomized testing
procedure, and in Section 5 we give a (somewhat more complicated) deterministic one. Finally, we
present directions for further research in Section 6.

2 Definitions

2.1 Basic notation

An ensemble of probability distributions is a sequence of probability distributions {Dn}n∈N, where
Dn is concentrated on {0, 1}n. We will denote such an ensemble by a single letter D and abuse the
language by calling D a distribution.

Let U denote the ensemble {Un}n∈N, where Un is uniformly distributed on {0, 1}n. For every
language L ⊆ {0, 1}∗, we denote the uniform distribution on L ∩ {0, 1}n by Un(L); then U(L) =
{Un(L)}n∈N.

A distributional problem is a pair (L,D) consisting of a language L ⊆ {0, 1}∗ and a distribution
D.

We use subscripts to denote the probability space; for example, Prx←Dn means that the proba-
bility is taken over x distributed according to Dn and PrA means that the probability is taken over
the internal random bits of the algorithm A.

The algorithms that we study can output either 1 (accept) or 0 (reject), or ⊥ (give up). They
can also diverge, i.e., run forever (denoted ∞). For an algorithm A and an integer T , we denote by
A≤T the algorithm that behaves as A until the step T , and then gives up.

The time spent by a randomized algorithm A on input x is defined as the median time

tA(x) = min

{
t ∈ N

∣∣∣∣ Pr
A

[A(x) stops in time at most t] ≥ 1

2

}
.

We will also use a similar notation for the order statistics the “probability p time”:

t
(p)
A (x) = min

{
t ∈ N

∣∣∣∣ Pr
A

[A(x) stops in time at most t] ≥ p
}
.

2.2 Randomized heuristic algorithms

Definition 2.1. A(x, d) is a randomized heuristic algorithm for a distributional problem (L,D) if
for every n,

Pr
x←Dn;A

[A(x, d) 6= L(x)] <
1

d
.

Remark 2.1. Note that [BT06] and [HIMS10] define randomized heuristic algorithms and accep-
tors in a different way separating the probabilities over x and over A. Note also that [HIMS10,
Sect. 2] proves that algorithms defined in these two different ways simulate each other (the proof
is given there for acceptors and goes for algorithms without changes).

Definition 2.2. A function f : {0, 1}∗ × N → N is polynomially bounded on a set X if there is a
polynomial p such that for every x ∈ X and d ∈ N, f(x, d) ≤ p(|x|d).

A heuristic algorithm A is polynomially bounded on set X if its median time tA is polynomially
bounded on X. If X is equal to {0, 1}∗ we omit it.
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Definition 2.3 ([BT06]). HeurBPP is the class of distributional problems that can be solved by
polynomially bounded randomized heuristic algorithms.

Definition 2.4. Function f : {0, 1}∗ × N → N dominates function g : {0, 1}∗ × N → N on set X
(denoted f � g), if there are polynomials p and q such that for all x ∈ X and d ∈ N,

g(x, d) ≤ max
d′≤q(|x|d)

{p(f(x, d′)d|x|)}.

Remark 2.2.

1. If f � g on X and f is polynomially bounded on X, then so is g.

2. � is transitive.

Definition 2.5. For heuristic algorithms A and A′ for the same distributional problem (L,D), the
algorithm A simulates A′ if tA′ � tA on suppD.

An optimal randomized heuristic algorithm for a distributional problem (L,D) simulates every
heuristic algorithm for (L,D).

2.3 Deterministic heuristic algorithms

Definition 2.6. A deterministic heuristic algorithm is a randomized heuristic algorithm that does
not use its randomness.

The running time tA is now simply the number of steps made by the algorithm A. However,
for deterministic heuristic algorithms, the notions of the polynomial boundness and the simulation
will be relaxed by allowing the restrictions not to hold on a small number of inputs.

Definition 2.7. A function f : {0, 1}∗ × N → N is polynomially bounded on the average w.r.t.
distribution D, if there is a polynomial p such that for every n, d ∈ N,

Pr
x←Dn

[f(x, d) ≤ p(n · d)] ≥ 1− 1

d
.

A deterministic heuristic algorithm is polynomially bounded on the average if its running time
is polynomially bounded on the average.

Definition 2.8. A function f : {0, 1}∗ × N → N, dominates g : {0, 1}∗ × N → N on the average
w.r.t. distribution D (denoted f % g), if there are polynomials p and q such that q(n, d) ≥ 2d and
for every n, d ∈ N,

Pr
x←Dn

[g(x, d) ≤ p(n · d · f(x, q(n, d)))] ≥ 1− 1

d
.

It is easy to see that the class of functions polynomially bounded on the average is closed under
domination on the average.

Proposition 2.1. Let f % g and f is polynomially bounded on the average w.r.t. D. Then g is
also polynomially bounded on the average w.r.t. D.
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Proof. Let p and q be two polynomials in the definition of %, and p′ be a polynomial in the definition
of polynomial boundness of g; without loss of generality we can assume that p is non-decreasing.
The polynomial boundness and the restriction on q give Prx←Dn [f(x, q(n, d)) ≤ p′(n · q(n, d))] ≥
1− 1

q(n,d) ≥ 1− 1
2d . Substituting it into the domination condition we get Prx←Dn [g(x, d) ≤ p(n · d ·

p′(n · q(n, d)))] ≥ 1− 1
2d −

1
2d = 1− 1

d .

Definition 2.9. For heuristic algorithms A and A′ for a distributional problem (L,D), we say that
A simulates A′, if tA′ % tA w.r.t. D.

A deterministic heuristic algorithm for a distributional problem (L,D) is optimal on the average
if it simulates every other deterministic heuristic algorithm for (L,D).

Definition 2.10 ([BT06]). HeurP is the class of distributional problems that can be solved by
deterministic heuristic algorithms that are polynomially bounded on the average.

2.4 The problem of recognizing the image of an injective function

In this paper we concentrate on the following problem.

Definition 2.11. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable injective function such
that |f(x)| = |x|+ 1. The problem of recognizing the image is the distributional problem (Im f, U)
where U is the uniform distribution. We will also denote by Im f the corresponding characteristic
function, i.e., (Im f)(x) = 1 if x ∈ Im f and (Im f)(x) = 0 if x /∈ Im f .

To show the importance of this problem and its non-triviality for heuristic algorithms let us
consider a particularly hard case when f is a pseudorandom generator.

Definition 2.12 (see, e.g., [Gol95, Section 3]). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time
computable function such that |f(r)| = |r|+ 1 for all r ∈ {0, 1}∗. Then f is called a pseudorandom
generator if for every polynomial-time randomized algorithm A and for every polynomial p,

∃n0 ∀n > n0

∣∣∣∣ Pr
x←Un

[A(f(x)) = 1] − Pr
x←Un+1

[A(x) = 1]

∣∣∣∣ < 1

p(n)
.

It is known that injective pseudorandom generators exist if one-way permutations exist [Gol95].

Proposition 2.2 ([HIMS10, Theorem 5.2]). If f is a pseudorandom generator, then there are no
randomized heuristic algorithms for the problem (Im f, U) with running time that is polynomialy
bounded on Im f .

2.5 Estimator

Definition 2.13. We call an estimator an algorithm Estimate(A, x, S, v, ε, T ) that given

• an algorithm A (i.e., its Goedel number), which can be either randomized or deterministic,

• an input x ∈ {0, 1}n,

• a function S : {0, 1}n → {0, 1}n (as an oracle),

• a value v ∈ {0, 1},
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• a rational number ε ∈ (0; 1),

• an integer T ,

runs in time upper bounded by a polynomial of T , n, and 1
ε and outputs a rational number ρ such

that

Pr

[∣∣∣ρ − Pr
y←S(Un);A

[A≤T (y) = v]
∣∣∣ ≥ ε] < ε,

where the outermost probability is taken over the internal random bits of Estimate and over uni-
formly distributed x ∈ {0, 1}n.

Remark 2.3. At first glance, it may seem that the expected answer of Estimate is not related
to x and therefore Estimate does not need x. However, we will see later that in the deterministic
case the input x is the only source of pseudorandomness and thus it does matter for deterministic
heuristic estimators. For the randomized case it can be indeed ignored.

Remark 2.4. In this paper, we use estimators for two functions: the identity function and the
function S that cuts the last bit of the input and applies the injective function f whose image
we are trying to recognize, to the first n − 1 bits of the input to get an n-bit string uniformly
distributed on Im f ∩ {0, 1}n.

3 The general construction of an optimal algorithm

In this section we describe the “main” algorithm Opt for a distributional problem (Im f, U), which
we use both in the deterministic and in the randomized case. It uses an enumerator A• for algo-
rithms of certain type (that is, Ai is a Turing machine with Goedel number i, and it can be either a
randomized or a deterministic machine depending on the enumerator), and an estimator Estimate
for the same type of algorithms. Let A0 be a deterministic brute-force algorithm for testing the
membership in Im f running in 2cn steps for a constant c ≥ 1 (note that Im f can be certainly
accepted in time O(2n · p(n)), where p(n) is the complexity of f).

Algorithm 3.1. Opt(A•,Estimate, x, d)

1. Let d′ = 20cn2d.

2. For every i ∈ {0, 1, . . . , n}, execute the following process in parallel:

• Run Ai(x, d
′).

• If i = 0 and A0 outputs v ∈ {0, 1}, then stop all parallel processes and output v.

• If i > 0 andAi(x, d
′) outputs v ∈ {0, 1} in T steps, run Test(v,Estimate, Ai, 2

dlog T e, x, d′).
If Test accepts, then stop all parallel processes and output v.

Algorithm 3.2. Test(v,Estimate, A, T, x, d′)

1. Let ε = 2
d′ and let A′(x) = A(x, d′).

2. If v = 0:

(a) Compute ρ = Estimate(A′, x, S, 0, ε, T ),
where S(y ◦ b) = f(y) for y ∈ {0, 1}|x|−1, b ∈ {0, 1}.
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(b) If ρ < 2ε, accept; otherwise reject.

3. If v = 1:

(a) Compute α = Estimate(A′, x, S, 1, ε, T ).

(b) Compute β = Estimate(A′, x, id, 1, ε, T ).

(c) Accept, if 2β − α < 4ε; otherwise reject.

In what follows d′ = 20cn2d and ε = 2
d′ = 1

10cn2d
as in the algorithms above.

Lemma 3.1. For an algorithm A, denote ρ = Prx←Un(Im f);A[A≤T (x, d′) = 1]. Let α and β be the

random variables computed at step 3 of Test(1,Estimate, A, T, x, d′). Then Pr[|ρ − (2β − α)| ≥
3ε] < 2ε.

Proof. Let

a = Prx←f(Un−1);A[A≤T (x, d) = 1] = Prx←Un(Im f);A[A≤T (x, d) = 1]

and let b = Prx←Un;A[A≤T (x, d) = 1]. Clearly, ρ = 2b − a. By the definition of an estimator
Pr[|a−α| ≥ ε] < ε and Pr[|b−β| ≥ ε] < ε. Using the triangle inequality we get Pr[|(2b−a)− (2β−
α)| ≥ 3ε] < 2ε.

Theorem 3.1. The algorithm Opt(A•,Estimate, x, d) is a correct heuristic algorithm for (Im f, U)
(a deterministic or a randomized one depending on what machines does A• enumerate).

Proof. Since A0 always gives the correct answer, it suffices to prove that

Pr
x←Un;Ai;Test

 Ai(x, d
′) outputs 0 or 1 in some T ≤ 2cn steps ∧

Ai(x, d
′) 6= (Im f)(x) ∧

Test(v,Estimate, Ai, 2
dlog T e, x, d′) = 1

 < 1

dn
.

Since A0 runs in 2cn steps, no other algorithm Ai is allowed to run longer. Thus we can split
every algorithm into cn “parts”: A≤1

i , A≤2
i , A≤4

i , . . . and it now suffices to prove that

Pr
x←Un;Ai;Test

 A≤2k

i (x, d′) ∈ {0, 1} ∧
A≤2k

i (x, d′) 6= (Im f)(x) ∧
Test(v,Estimate, Ai, 2

k, x, d′) = 1

 < 1

cdn2
.

This probability can be split into two parts depending on the correct answer:

1

2
· Pr
x←f(Un−1);Ai

[A≤2k

i (x, d′) = 0 ∧ . . .] +
1

2
· Pr
x←Un(Im f);Ai

[A≤2k

i (x, d′) = 1 ∧ . . .].

To bound the first part, note that if Prx←f(Un−1);Ai [A
≤2k

i (x, d′) = 0] > 3ε, then by the definitions

of Estimate and Test we have Pr[Test(0,Estimate, Ai, 2
k, x, d′) = 1] < ε. Thus the first part of the

probability is less than 3
2ε.

We now consider the case when x← Un(Im f). By Lemma 3.1, if Pr[A≤2k

i (x, d′) = 1] > 7ε, then
Pr[Test(1,Estimate, Ai, 2

k, x, d′) = 1] < 2ε. Thus the second part of the probability is less than 7
2ε.

In total we have 3
2ε+ 7

2ε <
1

cdn2 by the definition of ε and d′.
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Lemma 3.2. Let A be a correct heuristic algorithm for (Im f, U). Then for every integer T and
any v ∈ {0, 1},

Pr
x←Un;Test

[Test(v,Estimate, A, T, x, d′) = 0] < 2ε.

Proof. Consider v = 0. Then Test rejects with probability Pry←f(Un−1);A[A≤T (y, d′) = 0] < 2
d′ = ε.

Consider now v = 1. Since by Lemma 3.1 Prx←Un(Im f);A[A≤T (y, d′) = 1] < 2
d′ = ε, Test rejects

with probability less than 2ε.

4 An optimal randomized heuristic algorithm

In this section we describe the randomized estimator for randomized algorithms, which completes
the construction of an optimal randomized heuristic algorithm.

Algorithm 4.1. Estimate-Random(A, x, S, v, ε, T )

• Let s =
⌈

ln(2/ε)
ε2

⌉
+ 1.

• For i = 1, 2, . . . , s, do

1. Generate y ← S(Un).

2. Execute A≤T (y); let ui = 1 if the answer equals v, and let ui = 0 otherwise.

• Output 1
s

∑s
i=1 ui.

Lemma 4.1. The algorithm Estimate-Random is an estimator for randomized algorithms.

Proof. By Chernoff bounds (see, e.g., [McD98]), Pr
[∣∣1
s

∑s
i=1 ui − Pry←S(Un),A[A≤T (y) = v]

∣∣ ≥ ε] <
2e−2ε2s < ε.

Remark 4.1. In fact, a slightly stronger statement holds. Namely, the probability can be taken
over internal random bits only and not also over the inputs as it is stated in the definition of an
estimator.

Theorem 4.1. For any randomized heuristic algorithm B for the problem (Im f, U),

tB � t1/4Opt(A•,Estimate-Random, x, d), where A• enumerates all randomized algorithms.

Proof. Let B = Ai. To show the asymptotic bound, it suffices to consider |x| ≥ i. Then Ai
is executed by Opt. Since Estimate-Random does not use x, Lemma 3.2 implies that for any
x, PrTest[Test(v,Estimate-Random, Ai, T, x, d

′) = 0] is less than 2ε. Therefore, for every x, the
algorithm Opt stops in time polynomial in n, d, and the median time tAi(x, d

′) with probability at
least 1

2 − 2ε.

Corollary 4.1. Three parallel copies of Opt(A•,Estimate-Random, x, 3d) run in parallel make
an (the parallel execution is stopped as soon as one of the copies accepts or rejects). optimal
randomized heuristic algorithm for (Im f, U)
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5 An optimal deterministic heuristic algorithm

To derandomize the construction of an optimal heuristic algorithm, we use the following result by
Goldreich and Wigderson.

Theorem 5.1 ([GW97]). Let n be an integer and δ ≥ 2−γn, where γ is some positive constant.
Then there exists a family of functions Fδ, each mapping {0, 1}n to itself, satisfying the following
properties.

• Succinctness: there exists a bijection between {0, 1}l(δ) and Fδ, where l(δ) = O(log 1
δ ). Let

φα denote the function from Fδ corresponding to α ∈ {0, 1}n. This property means that the
family Fδ contains a polynomial in 1

δ number of functions

• Efficient evaluation: there exists a logspace algorithm that takes two inputs: α ∈ {0, 1}l(δ), a
string x ∈ {0, 1}n and returns φα(x).

• Mixing property: for every two subsets A,B ⊆ {0, 1}n there exists FA,B,δ ⊂ Fδ such that
|FA,B,δ| ≥ (1− δ)|Fδ| and for every function φ ∈ FA,B,δ:∣∣∣∣ Pr

x←Un
[x ∈ A ∧ φ(x) ∈ B]− ρ(A)ρ(B)

∣∣∣∣ ≤ δ,
where ρ(S) = |S|

2n denotes the density of the set S.

Corollary 5.1. In terms of Theorem 5.1, for every two subsets A,B ⊆ {0, 1}n,∣∣∣∣ Pr
x←Un,φ←U(Fδ)

[x ∈ A ∧ φ(x) ∈ B]− ρ(A)ρ(B)

∣∣∣∣ ≤ 2δ.

Proof. Prx←Un,φ←U(Fδ)[x ∈ A ∧ φ(x) ∈ B] = Pr[x ∈ A ∧ φ(x) ∈ B | φ ∈ FA,B,δ] Pr[φ ∈ FA,B,δ] +
Pr[x ∈ A∧φ(x) ∈ B | φ 6∈ FA,B,δ] Pr[φ 6∈ FA,B,δ]. Mixing property implies that the last quantity can
be bounded from above by ρ(A)ρ(B)+2δ, and from below by (ρ(A)ρ(B)−δ)(1−δ) ≥ ρ(A)ρ(B)−2δ,
since ρ(A)ρ(B) ≤ 1.

We now describe a (deterministic) estimator for deterministic algorithms. Let Fδ be the family
of functions from Theorem 5.1.

Algorithm 5.1. Estimate-Deterministic(A, x, S, v, ε, T )

• Let n = |x| and δ = 1
8ε

2.

• If δ < 2−γn, then execute A≤T (y) for every y ∈ {0, 1}n, compute the frequency of the answer
v and output this number.

• If δ ≥ 2−γn, then for every φ ∈ Fδ, execute A≤T (S(φ(x))), compute the frequency of the
answer v and output this number.

Proposition 5.1. The algorithm Estimate-Deterministic is an estimator.
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Proof. If δ < 2−γn, the algorithm Estimate-Deterministic computes the exact answer, and it has
enough time for that, because δ is so small.

Otherwise, let B = {y ∈ {0, 1}n | A≤T (S(y)) = v}. Let C+ = {x ∈ {0, 1}n | Prφ←U(Fδ)[φ(x) ∈
B] ≥ ρ(B) + ε}, and let C− = {x ∈ {0, 1}n | Prφ←U(Fδ)[φ(x) ∈ B] ≤ ρ(B)− ε}.

Let ρ(C+) ≥ ε
2 . Then Prx←Un,φ←U(Fδ)[x ∈ C+∧φ(x) ∈ B] ≥ ρ(C+)(ρ(B)+ε) ≥ ρ(C+)ρ(B)+ ε2

2 ,
which contradicts Corollary 5.1. Therefore, ρ(C+) < ε

2 . Similarly, ρ(C−) < ε
2 . Thus ρ(C− ∪C+) <

ε.

Theorem 5.2. The algorithm Opt(A•,Estimate-Deterministic, x, d) is optimal on the average,
where A• enumerates all deterministic algorithms.

Proof. Let Ai be a (correct) deterministic heuristic algorithm for (Im f, U). To show the asymptotic
bound, it suffices to consider |x| ≥ i. Then the algorithm Ai is executed by Opt.

To estimate the fraction of the inputs x such that Test(v,Estimate-Deterministic, Ai, T, x, d
′)

rejects, note that Estimate-Deterministic does not use randomness. Therefore Lemma 3.2 implies
that this fraction is less than 2ε < 1

2d .
For every other x, the running time of Opt is polynomial in n, d, and tAi(x, d

′).

Remark 5.1. The algorithm constructed in Theorem 5.2 is also an optimal-on-the-average deter-
ministic acceptor for the distributional problem (Im f, U) as well as for the problem (Im f, U). (We
refer the reader to the Appendix for the precise definitions and statements.)

6 Further research

A natural question is to generalize the construction to suit any (not necessarily injective) function.
However, a much more challenging question is to construct an optimal heuristic proof system

for (Im f, U) (see [HIMS10] and Appendix for the rigorous definition of a heuristic proof system).
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[KP89] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of first
order theories and the complexity of computations. The Journal of Symbolic Logic,
54(3):1063–1079, September 1989.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problems of Information Trans-
mission, 9:265–266, 1973.

[McD98] C. McDiarmid. Concentration, volume 16 of Algorithms and Combinatorics, pages 195–
248. Springer-Verlag, 1998.

[Mes99] Jochen Messner. On optimal algorithms and optimal proof systems. In Proceedings of
the 16th Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture
Notes in Computer Science, pages 361–372, 1999.

[Mon11] Hunter Monroe. Speedup for natural problems and noncomputability. Theoretical Com-
puter Science, 412(4-5):478–481, 2011.

[Sad99] Zenon Sadowski. On an optimal deterministic algorithm for SAT. In Proceedings of
CSL’98, volume 1584 of Lecture Notes in Computer Science, pages 179–187. Springer,
1999.

A Appendix: Deterministic heuristic acceptors and proof systems

In this section we give the definitions of deterministic heuristic acceptors and automatizable deter-
ministic heuristic proof systems and prove that they are equivalent in terms of the running time vs
proof length. While this is not difficult to see, it is in contrast with the situation in the randomized
setting where only the equivalence to weakly automatizable proof systems is proved [HIMS10].

Note that [HIMS10] considers distributional proving problems, i.e., distributional problems
(L,D) with L ∩ suppD = ∅. In this appendix we use a natural generalization of these definitions
to arbitrary distributions in order to keep the same notation as in the main part of the paper.

Definition A.1. A deterministic heuristic acceptor for a distributed problem (L,D) is a deter-
ministic algorithm A(x, d) such that

• For every x and d, the algorithm A(x, d) either does not stop or outputs 1 (i.e., accepts).

• For every x ∈ L and d ∈ N, A(x, d) = 1.

• For every d, Prx←Dn [x /∈ L ∧A(x, d) = 1] < 1
d .

Proposition A.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable injective function
such that |f(x)| = |x| + 1. The problem (Im f, U) has a deterministic heuristic acceptor that is
optimal on the average with respect to f(U). Similarly the problem (Im f, U) has a deterministic
heuristic acceptor that is optimal on the average with respect to U(Im f).

Proof. Note that by running a brute-force search in parallel we can transform an acceptor into an
algorithm. If we run a brute-force search for a negative response we transform an algorithm into
an acceptor (that does not err on the language). Then we can apply Theorem 5.2.
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Definition A.2. A deterministic heuristic proof system for a distributed problem (L,D) is a
deterministic algorithm Π(x,w, d) such that

• Π(x,w, d) runs in time (|x|d)O(1).

• For every x ∈ L and d ∈ N, there exists w ∈ {0, 1}∗ such that Π(x,w, d) = 1. We call such a
string w a Π(d)-proof of x.

• For every d, Prx←Dn [x /∈ L ∧ ∃w Π(x,w, d) = 1] < 1
d .

If for x /∈ L, there is a string w such that Π(x,w, d) = 1, we call w a fake Π(d)-proof of x.

For x ∈ L, we denote by `Π(x, d) the length of the shortest Π(d)-proof of x.

Definition A.3. A deterministic algorithm B(x, d) is an automatization procedure for a heuristic
deterministic proof system Π if for every x ∈ L and d ∈ N, the algorithm B(x, d) takes time
polynomial in |x|, d, and `Π(x, d) and outputs a Π(d)-proof. For x /∈ L, the behavior of the
algorithm B is not restricted.

A proof system is automatizable if there is an automatization procedure for it.

Simlarly to the classical case, heuristic deterministic acceptors and proof systems can be con-
verted into each other. The details follow.

Let A(x, d) be a deterministic heuristic acceptor for a distributed problem (L,D). The corre-
sponding proof system ΠA can be defined as follows: ΠA(x, 1T , d) = 1 if A(x, d) accepts in at most
T steps. Clearly, ΠA is an automatizable heuristic proof system; the automatization procedure just
simulates A(x, d), computes the number of steps T required for the acceptance, and outputs 1T .
Also `ΠA(x, d) ≤ (tA(x, d) + |x|+ d)O(1).

Assume now that Π is an automatizable proof system for (L,D), and B is its automatization
procedure. The corresponding acceptor AΠ(x, d) can be defined as follows: simulate B(x, d); if it
outputs a proof, accept; otherwise do not stop.

Since these transformations translate the running time into the proof length and vice versa,
we can avoid going into the details of specific heuristic simulations (similar to � we defined for
heuristic algorithms) and prove a more general statement.

Definition A.4. Let ≺ be a transitive relation on the set of functions from L × N to N. We call
it a simulation if for every two such functions f, g, if f(x, d) ≤ (g(x, d) + |x|+ d)O(1) then f ≺ g.

Proposition A.2. Let ≺ be a simulation. Then a distributed problem (L,D) has an acceptor A
with the smallest tA under ≺ (in the set of the running time functions for all possible acceptors)
iff there is a deterministic heuristic automatizable proof system with the smallest `Π under ≺.

Proof. We use the correspondence described above (AΠ and ΠA). Assume that A is an acceptor
with the smallest running time tA. Then ΠA is a proof system with the smallest `ΠA . Indeed,
consider another proof system Π. The construction of AΠ implies that tAΠ

≺ `Π. Since tA is the
smallest running time for acceptors, tA ≺ tAΠ

. The construction of ΠA implies that `ΠA ≺ tA. By
transitivity, `ΠA ≺ `Π.

The proof of the converse is similar.

Corollary A.1. The distributional problem (Im f, U) has a deterministic heuristic automatizable
proof system Π that is optimal on the average with respect to f(U) (i.e., its length function `Π is
the smallest under �).
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