
Memory-Restricted Black-Box Complexity

Benjamin Doerr and Carola Winzen

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract

We show that the black-box complexity with memory restriction one
of the n-dimensional OneMax function class is at most 2n. This dis-
proves the Θ(n log n) conjecture of Droste, Jansen, and Wegener (Theory
of Computing Systems 39 (2006) 525–544).

Keywords: Algorithms; black-box complexity; query complexity; bounded
memory.

1 Introduction

The black-box complexity of a set F of functions S → R, roughly speaking,
is the number of function evaluations necessary to find the maximum of any
member of F which—apart from the points evaluated so far—is unknown. This
and related notions are used to describe how difficult a problem is to be solved
via general-purpose (randomized) search heuristics. We refer to the seminal
paper by Droste, Jansen, and Wegener [1] for a more detailed discussion. In
contexts not dealing with randomized search heuristics, the term (randomized)
query complexity or (randomized) decision tree complexity is more common,
cf. [2] for a survey.

It turns out that there exist problems with surprisingly low black-box com-
plexities. Droste, Jansen, and Wegener [1] note that the black-box complexity
of MaxClique is polynomial, when the search space S consists of all subsets
V ′ of the vertex set V and the objective function equals 0 for all subsets V ′ that
do not form a clique and is equal to the size |V ′| if V ′ forms one. The algorithm
which first queries all

(
n
2

)
possible edges and then computes a maximum clique

from this information has a black-box complexity of
(
n
2

)
+ 1.

Also the basic OneMaxn function class has a surprisingly low black-box
complexity. For every z ∈ {0, 1}n we define the function Omz : {0, 1}n →
{0, . . . , n}, x 7→ |{j ∈ [n] | xj = zj}|, that is, Omz(x) equals the number of bit
positions in which z and x agree. The problem class OneMaxn is the set of all
functions Omz, z ∈ {0, 1}n. Optimizing OneMaxn in a black-box fashion can
be seen as a mastermind-like game. By guessing bit stings and learning in how
many positions our guess agrees with the hidden string z, we try to find z.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 92 (2011)

Anil and Wiegand [3] show that by sampling O(n/ log n) random bit strings,
it is possible to determine the optimum of any f ∈ OneMaxn with O(n/ log n)
queries.

Of course, all classic randomized search heuristics are not able to solve
MaxClique with a polynomial number of queries or find an n-bit string with
less than n queries. In fact, many standard heuristics like the Randomized Local
Search algorithm and the (1 + 1) Evolutionary Algorithm— confer the book [4]
for definitions and results—need an expected number of Θ(n log n) queries for
maximizing any f ∈ OneMaxn.

For this reason, in [1] a more restrictive black-box model is suggested, in
which the size of the memory is bounded (see [5, 6] for two other attempts to
obtain more realistic black-box complexity notions). It is conjectured in [1] that
any black-box optimization algorithm with a memory that can store only one
solution candidate x and its objective value f(x) needs an expected number of
Ω(n log n) queries to optimize a worst-case input function f ∈ OneMaxn.

The aim of this note is to disprove this conjecture and to show that there
exists a black-box algorithm with memory size one that optimizes any function
Omz ∈ OneMaxn in O(n) queries.

2 The Black-Box Model with Bounded Memory

Our original motivation for studying query complexity models is the following.
Let us assume that we aim at maximizing some function f : S → R. Gen-
eral purpose algorithms (also referred to as search heuristics) learn about the
objective function f only by evaluating solution candidates x ∈ S. That is,
the objective function f : S → R is given as a black-box and the algorithm
may optimize it by iteratively evaluating the objective value of search points
s ∈ S. We are typically interested in expected first hitting times, i.e., the ex-
pected number of function evaluations until an optimal search point is queried
for the first time. The general scheme of a black-box algorithm is given by Algo-
rithm 1. Note that this algorithm runs forever. Since our performance measure
is the expected number of iterations needed until for the first time an optimal
search point is queried, we do not specify a termination criterion for black-box
algorithms here.

2.1 Black-Box Complexity

Let A be a class of algorithms and F be a class of functions. For every
A ∈ A and f ∈ F let T (A, f) ∈ R ∪ {∞} be the expected number of func-
tion evaluations until A queries for the first time some x ∈ arg max f . We
call T (A, f) the runtime of A for f . The A-black-box complexity of F is
T (A,F) := supf∈F T (A, f), the worst-case runtime of A on F . The A-black-
box complexity of F is infA∈A T (A,F). We drop the “A”-prefix when referring
to all black-box algorithms (that is, if we consider the class of all algorithms
that can be expressed via the scheme of Algorithm 1).

2

Initialization:1

Sample x(0) according to some probability distribution p(0) on S;2

Query f(x(0));3

Optimization:4

for t = 1, 2, 3, . . . do5

Depending on
(
(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))

)
choose a6

probability distribution p(t) on S;
Sample x(t) according to p(t);7

Query f(x(t));8

Algorithm 1: Scheme of a black-box algorithm for optimizing f : S → R

2.2 Black-Box Algorithms with Memory of Size One

As discussed in the introduction, the black-box complexity can be surprisingly
low even for NP-hard optimization problems. To obtain more realistic estimates
on problem difficulties, Droste, Jansen, and Wegener [1] suggested to restrict
the algorithms by allowing only a limited memory. This is inspired by the fact
that many heuristics do not take advantage of knowing the full history of the
search points queried so far.

Let f : S → R be the objective function to be maximized. A black-box
algorithm with bounded memory of size one can be described as follows. In
each iteration the algorithm has access to at most one previously queried search
point x and its objective value f(x). Depending on the content (x, f(x)) of his
memory, it chooses a probability distribution on the search space S, samples
from it a new search point y ∈ S and queries its objective value f(y). In the
selection step, based only on (x, f(x)) and (y, f(y)), it decides which of the
pairs (x, f(x)), (y, f(y)) to store in the memory (it “forgets” the other). This is
formalized in Algorithm 2.

It is important to note that a black-box algorithm with bounded memory
is not allowed to access any other information than the one (x, f(x)) stored
currently in the memory and, in the selection step, also the information provided
by (y, f(y)). In particular, the algorithm does not have access to an iteration
counter.

Let A1 be the class of all black-box algorithms with bounded memory of size
one. In what follows, the A1-black-box complexity of F is called the memory-1
black-box complexity of F .

3 The Memory-1 Black-Box Complexity of
OneMaxn

In this section, we prove that the memory-1 black-box complexity of OneMaxn

is at most linear in n.
As mentioned in the introduction, the two standard search heuristics Ran-

3

Initialization:1

Sample x according to some probability distribution p on S;2

Query f(x);3

Optimization:4

for t = 1, 2, . . . do5

Variation step:6

Depending only on (x, f(x)) choose a probability distribution p7

on S;
Sample y ∈ S according to p;8

Query f(y);9

Selection step:10

Depending only on (x, f(x)) and (y, f(y)), decide whether or not11

to update (x, f(x))← (y, f(y));
Algorithm 2: Scheme of a black-box algorithm with memory of size one for
optimizing f : S → R

domized Local Search and the (1+1) Evolutionary Algorithm need an expected
number of Θ(n log n) queries to optimize any Omz ∈ OneMaxn, that is, to find
z = arg max Omz, cf. [7]. Since both algorithms are black-box algorithms with
bounded memory of size one, this shows that the memory-1 black-box com-
plexity of OneMaxn is O(n log n). Droste, Jansen, and Wegener [1, Section 6]
conjectured that this bound is tight, i.e., they conjectured that the memory-1
black-box complexity of OneMaxn is Θ(n log n). We show that this is not the
case.

Theorem 1. The memory-1 black-box complexity of OneMaxn is at most 2n.

Before we give the proof, let us briefly fix some notation. For all positive
integers k ∈ N we abbreviate [k] := {1, . . . , k}. By en

k we denote the k-th
unit vector (0, . . . , 0, 1, 0, . . . , 0) of length n. The bitwise exclusive-or is denoted
by ⊕.

Proof of Theorem 1. We give an algorithm that finds the unknown string
z ∈ {0, 1}n using an expected number of at most 2n queries, given that it
has access to an Omz-oracle.

The basic idea of our algorithm (Algorithm 3) is to learn z bit by bit from
left to right, i.e, from z1 to zn. Since the algorithm does not have access to
an iteration counter or to any other storage, we need to encode all necessary
information in the string stored in the memory.

This we do as follows. Let (x,Omz(x)) denote the current search point and
its corresponding objective value. Set s(x) := min{i ∈ [n] | ∀j ≥ i : xj = xn},
the smallest index such that all bits in the tail (xs(x), . . . , xn) are identical.
Throughout the run of the algorithm we shall ensure that in the memory we
only store such x for which all bits which are not in the tail are already optimal,
that is, we ensure that xi = zi for all i < s(x). The key idea is that we can mark
a newly learned bit as optimal by suitably setting the remaining tail to all zeros

4

or all ones. Since memory is sparse, we have to guess the correct value of the
bit and accept only if our guess is right. For the details refer to Algorithm 3.

Initialization:1

Initialize x← (0, . . . , 0);2

Query Omz(x);3

Optimization:4

while true do5

if s(x) = n and Omz(x) = n− 1 then6

y ← x⊕ en
n;7

Query Omz(y); // optimum necessarily found8

else9

Sample y ∈ {x⊕ en
s(x), x⊕ en

s(x)+1 ⊕ . . .⊕ en
n} uniformly at10

random;
Query Omz(y);11

if y = x⊕ en
s(x) then12

if Omz(y) > Omz(x) then (x,Omz(x))← (y,Omz(y));13

else14

if Omz(x) + Omz(y) = n + s(x) then15

(x,Omz(x))← (y,Omz(y));

Algorithm 3: A black-box algorithm with memory of size one for maximiz-
ing Omz ∈ OneMaxn. Recall that we have defined s(x) := min{i ≤ n |
∀ j ≥ i : xj = xn}.

Note that Algorithm 3 is indeed a black-box algorithm with bounded memory
of size one: If the memory is empty, we do a trivial variation and selection step
filling it with

(
(0, . . . , 0),Omz((0, . . . , 0))

)
. If the memory is not empty, the

(random) choice of the new search point y depends solely on the memory content
(x,Omz(x)). Lastly, the selection step is only based on the content (x,Omz(x))
of the memory and the newly created candidate solution (y,Omz(y)).

We claim that this algorithm queries the optimum z within an expected
number of at most 2n queries. To this end, let us first show that indeed we
have xi = zi for all bits which are not in the tail, i.e, for all i < s(x). This
is trivially satisfied after initialization. We show the claimed via induction
over s(x). To this end, let x ∈ {0, 1}n be a string with s(x) < n and xi = zi for
all i < s(x). Let y be created from x as in the algorithm above. It is immediate
that s(y) = s(x) + 1 for all outcomes of the random y. Thus, all we need to
show is that the algorithm updates its memory to (y,Omz(y)) if and only if
ys(x) = zs(x).

Let us first consider the case y = x⊕en
s(x), i.e., y is created from x by flipping

the s(x)-th bit of x. Clearly, Omz(y) > Omz(x) if and only if ys(x) = zs(x).
The case y = x ⊕ en

s(x)+1 ⊕ . . . ⊕ en
n is more involved. Assume first

that ys(x) = zs(x). Then we also have xs(x) = ys(x) = zs(x). By the
induction hypothesis also yi = xi = zi holds for all i < s(x). Conse-

5

quently, the two substrings (y1, . . . , ys(x)) and (x1, . . . , xs(x)) contribute 2s(x)
to Omz(x) + Omz(y). For all indices i > s(x) we either have yi = zi or
xi = zi. Therefore, the contribution of the substrings (ys(x)+1, . . . , yn) and
(xs(x)+1, . . . , xn) to Omz(x) + Omz(y) is exactly n− s(x). Altogether we have
shown that Omz(x) + Omz(y) = 2s(x) + n− s(x) = n + s(x).

If ys(x) 6= zs(x), then by similar arguments as above we obtain Omz(x) +
Omz(x⊕ y) = 2(s(x)− 1) + n− s(x) 6= n + s(x).

Since y is only accepted if Omz(x) +Omz(y) = n+ s(x), this happens if and
only if ys(x) = zs(x) as claimed.

Since the algorithm samples y ∈ {x⊕ en
s(x)+1⊕ . . .⊕ en

n, x⊕ en
s(x)} uniformly

at random, it takes in expectation two queries to increase s(x) (i.e., to shorten
the length of the tail) by one. After an expected number of 2(n− 1) iterations,
we end up with an x in the memory satisfying s(x) = n. By the above, this
implies Omz(x) ≥ n − 1. If Omz(x) = n, we are done. Otherwise, in lines 7
and 8 of Algorithm 3 the last missing bit of x is flipped and y = z is created.
Together with the query of the initial string x = (0, . . . , 0), the expected number
of queries needed to find z is at most 2(n− 1) + 1 + 1 = 2n.

Acknowledgment. Carola Winzen is a recipient of the Google Europe
Fellowship in Randomized Algorithms, and this research is supported in part
by this Google Fellowship.

References

[1] S. Droste, T. Jansen, I. Wegener, Upper and lower bounds for randomized
search heuristics in black-box optimization, Theory of Computing Systems
39 (2006) 525–544.

[2] H. Buhrman, R. de Wolf, Complexity measures and decision tree complexity:
a survey, Theoretical Computer Science 288 (2002) 21–43.

[3] G. Anil, R. P. Wiegand, Black-box search by elimination of fitness functions,
in: Proc. of Foundations of Genetic Algorithms (FOGA’09), ACM, 2009, pp.
67–78.

[4] A. Auger, B. Doerr, Theory of Randomized Search Heuristics, World Scien-
tific, 2011.

[5] P. K. Lehre, C. Witt, Black-box search by unbiased variation, in: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’10), ACM,
2010, pp. 1441–1448.

[6] B. Doerr, C. Winzen, Towards a complexity theory of randomized search
heuristics: Ranking-based black-box complexity, To appear in Proc. of Com-
puter Science Symposium in Russia (CSR’11), Springer. Available also as
ArXiv e-prints 1102.1140.

6

[7] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary
algorithm, Theoretical Computer Science 276 (2002) 51–81.

7

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

