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Abstract

In order to study the complexity of counting problems, several inter-
esting frameworks have been proposed, such as Constraint Satisfaction
Problems (#CSP) and Graph Homomorphisms. Recently, we proposed
and explored a novel alternative framework, called Holant Problems. It is
a refinement with a more explicit role for constraint functions. Both graph
homomorphism and #CSP can be viewed as special sub-frameworks of
Holant Problems. One reason such frameworks are interesting is because
the language is expressive enough so that they can express many natural
counting problems, while specific enough so that it is possible to prove
complete classification theorems on their complexity, which are called di-
chotomy theorems. From the unified prospective of a Holant framework,
we summarize various dichotomies obtained for counting problems and
also proof techniques used. This survey presents material from the talk
given by the author at the 4-th International Congress of Chinese Math-
ematicians (ICCM 2010).

1 Introduction

The complexity of counting problems is a fascinating subject. Valiant defined
the class #P to capture most of these counting problems [Val79b]. Beyond
the complexity of individual problems, there has been a great deal of interest
in proving complexity dichotomy theorems which state that for a wide class of
counting problems, every problem in the class is either computable in polynomial
time (tractable) or #P-hard. One such framework is called counting Constraint
Satisfaction Problems (#CSP) [CH96, BD03, DGJ07, Bul08, CLX09b, DR10b,
CCL11]. Another well studied framework is called Graph Homomorphisms or
H-coloring problems, which can be viewed as a special case of #CSP prob-
lems [DG00, BG05, DGP07, GGJT10, CCL10, CC10]. One reason such frame-
works are interesting is because the language is expressive enough so that they
can express many natural counting problems, while specific enough so that it is
possible to prove complete classification theorems on their complexity [CKS01].
According to a theorem of Ladner [Lad75], if P 6= NP, or P 6= #P, then such a
dichotomy for NP or #P is false.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 93 (2011)



The study of “tractable #CSP” type problems has a much longer history in
the statistical physics community (under different names). Ever since Wilhelm
Lenz invented what is now known as the Ising model, and asked his student
Ernst Ising [Isi25] to work on it, physicists have studied so-called “Exactly
Solved Models” [Bax82, MW73]. In the language of modern complexity theory,
physicists’ notion of an “Exactly Solvable” system corresponds to systems with
polynomial time computable partition functions. This is captured completely
by the computer science notion of “tractable #CSP”. Many great researchers
in physics made remarkable contributions to this intellectual edifice, including
Ising, Onsager, C.N.Yang, T.D.Lee, Fisher, Temperley, Kasteleyn, Baxter, Lieb,
Wilson etc [Isi25, Ons44, Yan52, YL52, LY52, TF61, Kas61, Kas67, Bax82,
LS81]. A central question is to identify what “systems” can be solved “exactly”
and what “systems” are “difficult”.

The natural counting problems which can be expressed as graph homomor-
phism problems include counting the number of vertex covers, the number of
k-colorings in a graph, and many others. However, there are some natural
and important counting problems, which cannot be expressed as a graph ho-
momorphism problem. In [FLS07], it is proved that counting the number of
perfect matchings in a graph cannot be expressed as a graph homomorphism
function. Additionally, sometimes a problem can be expressed in the existing
framework, such as #CSP, but only with some contrived restrictions. Recently,
we proposed and explored an alternative framework to study the complexity of
counting problems, called Holant Problems. This notion is motivated by holo-
graphic reductions proposed by Valiant [Val08, Val06]. Compared to #CSP, it
is a refinement with a more explicit role for the constraint functions. Both graph
homomorphism and #CSP can be viewed as special cases of Holant Problems.
We give a brief description here and a more formal definition is given in Sec-
tion 2. A signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is a graph,
F is a set of functions, and π maps each v ∈ V (G) to a function fv ∈ F . Edges
are variables, and we consider all edge assignments. An assignment σ for every
e ∈ E gives an evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the incident

edges of v, and fv is evaluated on the restriction of σ on E(v). The counting
problem on an input instance Ω is to compute

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This problem
corresponds to attaching the Exact-One function at every vertex of G. Con-
sider all 0-1 edge assignments σ. The product

∏
v∈V fv(σ |E(v)) evaluates to 0

or 1, and is 1 iff σ−1(1) ⊆ E is a perfect matching. Hence in this case, HolantΩ

counts the number of perfect matchings. If we use the At-Most-One function
at every vertex, then we are counting all (not necessarily perfect) matchings.
So this new framework can express some natural counting problems which are
not expressible as graph homomorphisms.

Our Holant Problem framework is strongly influenced by the development of
holographic algorithms and holographic reductions [Val08, Val06, CL11, CLX08].
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Indeed, we use and develop holographic reductions as one of the primary tech-
niques, which has not previously been used in the studied of #CSP. One ad-
vantage of our new framework is that one can naturally consider new subclasses
of counting problems as special cases of Holant problems other than #CSP
problems. Indeed, there are many dimensions of the framework. #CSP can
be viewed as a special sub-framework of Holant by assuming that all equality
functions are freely available. This gives one dimension of the framework. By
assuming other freely available functions, we can define other interesting sub-
frameworks. Graph Homomorphism can be viewed as a further special case of
#CSP, whose function set contains only one single binary function. To study a
single function or to study a set of functions is the second dimension we discuss
in this survey. The third dimension is the domain size. For example, Boolean
#CSP restricts #CSP to a domain of size 2. We can also restrict the func-
tions in the set F . For example, the value range of the functions can be {0, 1},
non-negative, real or complex. And we can also restrict to symmetric functions.
In addition, we can restrict the input instants. For example, we can consider
only inputs with a planar structure. From this unified perspective, most of the
known dichotomies of counting can be viewed as dichotomy for a sub-framework
of Holant by restricting its dimensions to a certain setting. For example, real
weighted symmetric Boolean planar #CSP is a sub-framework of Holant that
assumes that all equality functions are freely available, the domain size is 2, all
functions are symmetric and real valued and the inputs are of planar structure.
In this survey, we analyze these important dimensions of the framework, and
summarize various known dichotomies and main proof techniques along the way.

Organization of the Survey

In Section 2, we formally define the framework of Holant Problems and some
other basic notations. Section 3 summarizes some reduction techniques in this
framework, which are also main proof approaches used in various results. Sec-
tion 4 is the main section. We carefully discuss many dimensions of the frame-
work, summarize various known complexity dichotomies, and propose many
open questions.

2 Definitions and Background

A signature grid Ω = (H,F , π) is a tuple. H = (V,E) is a graph. F is a set
of functions and a function F ∈ F with arity k is a mapping [q]k → C. π is a
mapping from the vertex set V to F , satisfying that the arity of π(v) is the same
as the degree of v for any v ∈ V . We use Fv to denote the function π(v). An
assignment σ is a mapping E → [q] and gives an evaluation

∏
v∈V Fv(σ |E(v)),

where E(v) denotes the incident edges of v. The counting problem on the
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instance Ω is to compute

HolantΩ =
∑
σ

∏
v∈V

Fv(σ |E(v)).

The term Holant was first introduced by Valiant in [Val08] to denote a related
exponential sum. Cai, Xia and the current author first formally introduced
this framework of counting in [CLX08, CLX09b]. We can view each function

Fv as a truth table, and then we can represent it by a vector in Fq
d(v)

, or a
tensor in (Fq)⊗d(v). This is called a signature. When we say “function”, we
slightly emphasize that it is a mapping. When we say “signature”, we slightly
emphasize that we view it as one objectee and that it is ready to do some linear
transformations. We do not really distinguish “function” and “signature” in
this survey.

A Holant problem is parameterized by a set of functions.

Definition 2.1. Given a set of functions F , we define a counting problem
Holant(F):
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

The main goal here is to characterize what kind of function set F makes the
problem Holant(F) tractable (hard).

We use following notations to denote some special functions. =k denotes the
equality function of arity k. ∆s denotes the unary function which gives value 1
on inputs s ∈ [q], and 0 on all other inputs.

A function is symmetric iff to apply a permutation of its input will not
change value of the function. A symmetric function F on Boolean variables can
be expressed by [f0, f1, . . . , fk], where fj is the value of F on inputs of weight
j. For Boolean domain [2] = {0, 1}, =k= [1, 0, . . . , 0, 1] and ∆0 = [1, 0].

Replacing a signature F ∈ F by its scale cF , where c 6= 0, will not change the
complexity of Holant(F). So we always view F and cF as the same signature.
Another important property of signatures is degeneracy.

Definition 2.2. A signature is called degenerate iff it can be decomposed into
a tensor product of unary signatures.

In particular, a symmetric signature over a Boolean domain is degenerate iff
it can be expressed as λ[x, y]⊗k.

3 Reductions Among Problems

To prove dichotomy theorems for Holant problems, the main approach is to
build reductions among different problems. In this section, we highlight several
important methods to establish reductions.
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3.1 Gadget Construction

A signature from F at a vertex is considered a basic realizable function. Instead
of a single vertex, we can use graph fragments to generalize this notion. An F-
gate Γ is a tuple (H,F , π), where H = (V,E,D) is a graph with some dangling
edges D. Other than these dangling edges, an F-gate is the same as a signature
grid. The role of dangling edges is similar to that of external nodes in Valiant’s
notion [Val02, Val08], however we allow more than one dangling edge for a node.
In H = (V,E,D) each node is assigned a function in F by the mapping π (we do
not consider “dangling” leaf nodes at the end of a dangling edge among these),
E is the set of regular edges, denoted as 1, 2, . . . ,m, and D is the set of dangling
edges, denoted as m + 1,m + 2, . . . ,m + n. Then we can define a function for
this F-gate Γ = (H,F , π),

Γ(y1, y2, . . . , yn) =
∑

x1x2···xm

H(x1x2 · · ·xmy1y2 · · · yn),

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges
and H(x1x2 · · ·xmy1y2 · · · yn) denotes the value of the signature grid on an
assignment of all edges. We will also call this function the signature of the F-
gate Γ. An F-gate can be used in a signature grid as if it is just a single node
with the particular signature.

Using the idea of F-gates, we can reduce one Holant problem to another.
Let g be the signature of some F-gate Γ. Then

Holant(F ∪ {g}) ≤T Holant(F).

The reduction is quite simple. Given an instance of Holant(F∪{g}), by replacing
every appearance of g by an F-gate Γ, we get an instance of Holant(F). Since
the signature of Γ is g, the values for these two signature grids are identical.

3.2 Polynomial Interpolation

Polynomial interpolation is a powerful tool in the study of counting problems
initiated by Valiant [Val79b] and further developed by Vadhan, Dyer and Green-
hill [Vad01, DG00] and others [XZZ07].

We will use unary signatures f = [x, y] over a Boolean domain as an example
to introduce the idea of polynomial interpolation.

For some set of signatures F , suppose we want to show that for all unary
signatures f = [x, y], we have

Holant(F ∪ {[x, y]}) ≤T Holant(F).

Let Ω = (G,F ∪ {[x, y]}, π). We want to compute HolantΩ in polynomial time
using an oracle for Holant(F).

Let Vf be the subset of vertices in G assigned f in Ω. Suppose |Vf | = n.
We can classify all 0-1 assignments σ in the Holant sum according to how many
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vertices in Vf whose incident edge is assigned a 0 or a 1. Then the Holant value
can be expressed as

HolantΩ =
∑

0≤i≤n

cix
iyn−i, (1)

where ci is the sum over all edge assignments σ, of products of evaluations at all
v ∈ V (G)− Vf , where σ is such that exactly i vertices in Vf have their incident
edges assigned 0 (and n − i have their incident edges assigned 1.) If we can
evaluate these ci, we can evaluate HolantΩ.

Now suppose {Gs} is a sequence of F-gates, and each Gs has one dangling
edge. Denote the signature of Gs by fs = [xs, ys], for s = 0, 1, . . .. If we replace
each occurrence of f by fs in Ω we get a new signature grid Ωs, which is an
instance of Holant(F), with

HolantΩs =
∑

0≤i≤n

cix
i
sy
n−i
s . (2)

One can evaluate HolantΩs
by oracle access to Holant(F). Note that the same

set of values ci occurs. We can treat ci in (2) as a set of unknowns in a linear
system. The idea of interpolation is to find a suitable sequence {fs} such that
the evaluation of HolantΩs gives a linear system (2) of full rank, from which we
can solve all ci.

3.3 Holographic Reduction

To introduce the idea of holographic reduction, it is convenient (but not neces-
sary) to consider bipartite graphs. We note that this is without loss of generality.
For any general graph, we can make it bipartite by adding an additional vertex
on each edge, and for each new vertex by giving it the Equality function on 2
inputs =2.

We use Holant(G|R) to denote all the counting problem, expressed as Holant
problem on bipartite graphs H = (U, V,E), where each signature for a vertex in
U or V is from G or R, respectively. An input instance of the Holant problem is
a signature grid and is denoted as Ω = (H,G|R, π). Signatures in G are called
generators, which are denoted by column vectors (or contravariant tensors);
signatures in R are called recognizers, which are denoted by row vectors (or
covariant tensors) [DP91].

One can perform (contravariant and covariant) tensor transformations on
the signatures, which may produce exponential cancelations in tensor spaces.
We will define a simple version of holographic reductions, which are invertible.
Suppose Holant(G|R) and Holant(G′|R′) are two Holant problems defined for
the same family of graphs, and T ∈ GL(C) is a basis. We say that there is a
holographic reduction from Holant(G|R) to Holant(G′|R′), if the contravariant
transformation G′ = T⊗gG and the covariant transformation R = R′T⊗r map
G ∈ G to G′ ∈ G′ and R ∈ R to R′ ∈ R′, where G and R have arity g and r
respectively. (Notice the reversal of directions when the transformation T⊗n is
applied. This is the meaning of contravariance and covariance.)

6



Theorem 3.1 (Holant Theorem). Suppose there is a holographic reduction from
Holant(G|R) to Holant(G′|R′) mapping signature grid Ω to Ω′, then

HolantΩ = HolantΩ′ .

This theorem is due to Valiant [Val08]. The proof of this theorem follows
from general principles of contravariant and covariant tensors [DP91], and a
complete proof can be found in [CC07].

In particular, for invertible holographic reductions from #G|R to #G′|R′,
one problem is in P iff the other one is, and similarly one problem is #P-complete
iff the other one is also.

The following theorem is very useful as a way to normalize the given signa-
ture set F .

Theorem 3.2. Let F be a set of signatures and M be a q × q orthogonal
matrix, i.e., MMT = Iq. For any signature grid Ω = (G,F , π), replacing every
signature F ∈ F by M⊗nF , where n is the arity of F , we can get a new signature
grid Ω′. Then

HolantΩ = HolantΩ′ .

Proof. First we use the standard technique to reformulate the signature grid
Ω = (G,F , π). We insert a new vertex at each edge of G with signature =2.
This will not change the value of the signature grid. Then for the new bipartite
signature grid F | =2, we apply a holographic reduction on basis M . This will
map a signature F ∈ F to M⊗nF , where n is the arity of F . It is an algebraic
fact that the =2 will map to itself. Then we view these (new) =2 as an edge
and ignore these vertices. This gives the signature grid Ω′ as required. Due to
the Holant theorem, its value is the same as Ω.

3.4 Existential Argument

This method is quite different from the above three. In the above, the reductions
are quite constructive. The existential argument goes as follows. For a certain
function set F , if there exist some F-gates which do not have some desired
property, then we can prove #P-hardness or build a reduction. Otherwise, if
all F-gates satisfy the desired property, then we can make use of this fact and
this desired property to give a polynomial time algorithm for Holant(F). We
will give an example in Section 4 when we discuss dichotomies proved by such
an argument.

This kind of existential argument shares commonalities with the probabilis-
tic method. Often, it is very powerful and we can find no proof of the dichotomy
without using such an argument. However, this type of proof has some draw-
backs. An existential argument that proves a dichotomy only states that there
is a classification of the problems. However, the criterion of this classification
is not clear and may not even be decidable for a given set of functions. When
all F-gates satisfy the desired property, we have a polynomial time algorithm.
The correctness of the algorithm is proved given the premise that all F-gates
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satisfy the desired property. However, the algorithms itself may not be able to
verify the fact that the promise is satisfied.

4 Many Dimensions and Dichotomy Theorems

A complete dichotomy for the whole Holant is most desirable but on the other
hand very difficulty. The main reason is that there are many dimensions of
the framework. In this section, we carefully discuss these dimensions and many
know dichotomy theorems for subclasses of Holant problems.

4.1 Freely available functions

Freely available functions are a set of functions which are always assumed to be
in the set F . More precisely, let A be a freely available set. Then, we can define
a sub-framework HolantA of Holant as

HolantA(F) = Holant(F ∪A).

This is a sub-framework since HolantA can only express and classify the function
set which contains A. To make the sub-framework meaningful, we should have
that Holant(A) is tractable. Otherwise, all problems in HolantA are hard.

This dimension of the framework usually defines a sub-framework of the
Holant. Most importantly, if all equality functions are assumed to be available,
it is exactly the #CSP problem.

#CSP (F) = Holant(F ∪ Equalities).

The usual definition of weighted #CSP goes as follows. Let [q] be a domain
set. A weighted constraint language F over the domain [q] is a finite set of
functions {f1, . . . , fh} in which fi : [q]ri → C is an ri-ary function over [q] for
some ri ≥ 1. Then #CSP (F) is the following problem.

1. Let x = (x1, . . . , xn) ∈ [q]n be a set of n variables over [q]. The input is
then a collection I of m tuples (f, i1, . . . , ir) in which f is an r-ary
function in F and i1, . . . , ir ∈ [n].

2. The output of the problem is the following sum:

Z(I)
def
=

∑
x∈[q]n

∏
(f,i1,...,ir)∈I

f(xi1 , . . . , xir ).

We show that every #CSP problem can be simulated by a Holant prob-
lem. Represent an instance of a #CSP problem by a bipartite graph where the
Left-Hand-Side (LHS) is labeled by variables and the Right-Hand-Side (RHS) is
labeled by constraints (functions) . Now the signature grid Ω on this bipartite
graph is as follows: Every variable node on LHS is attached an Equality func-
tion and every constraint node on RHS has the given constraint function. Then
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HolantΩ is exactly the answer to the #CSP problem. In effect, the Equality
function on each variable node forces the incident edges to take the same value;
this effectively reduces edge assignments to vertex assignments assigning values
to each variable on LHS as in #CSP. It follows that #CSP problems are pre-
cisely the special case of Holant problems on bipartite graphs where every node
on LHS is attached an Equality function. It is easy to show that the class of
#CSP problems is equivalent to Holant problems where all Equality functions
(of arbitrary arities) are always assumed to be freely available, and implicitly
so.

To specify other freely available function sets, we can have other sub-frameworks
of Holant problems. Well-studied ones include

Definition 4.1. let U denote the set of all unary signatures. Given a set of
signatures F , we use Holant∗(F) to denote Holant(F ∪ U).

Definition 4.2. Given a set of signatures F , we use Holantc(F) to denote
Holant(F ∪ {∆1,∆2, · · · ,∆q}).

With few or no freely available constraint functions, the framework is more
expressive and contains more interesting tractable cases, while on the other
hand, it is more challenging to prove a dichotomy theorem for. To see an
example, let NTW3 be the NOT TWO function of arity 3 over Boolean do-
main defined as NTW3(x1x2x3) = 0 if x1x2x3 has exact two ones; otherwise
the function value is 1. Then #CSP(NTW3) is #P-complete. However with-
out all equality functions, Holant(NTW3) is in P. To see the algorithm for
Holant(NTW3), please ref to [CLX08].

By definition, it is clear that Holantc is a super framework of Holant∗ since
it has fewer freely available functions. In the general setting, Holantc can be
also viewed as a super framework of CSP . This is due to the following pinning
lemma from [DGJ07].

Lemma 4.3.

#CSP (F ∪ {∆1,∆2, · · · ,∆q}) ≤T #CSP (F).

One can also study other sub-frameworks by allowing other freely available
function sets. For example, one can define #CSP∗ by allowing both equality
and unary functions to be available. A dichotomy for #CSP∗ would be very
interesting.

4.2 Single function or a set of functions

In the definition of Holant(F), F is a set of functions. Sometimes, the set-
ting that F only contains one single function (except maybe the freely available
functions) is already very interesting. The most well studied setting for a sin-
gle function is in the #CSP sub-framework containing a single binary function
(except all equality functions). These are known as the counting Graph Homo-
morphisms problems.
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A binary function can be written as a q× q matrix H. When all the matrix
entries are {0, 1}, it can be viewed as a graph. An instance of the problem can
also be viewed as a graph: The variables are vertices and the constraints are
edges. The final value of the partition function can be viewed as the number of
graph homomorphisms from the instance graph to the constraint graph. This
is the reason why it is called graph homomorphisms.

In the #CSP framework, a single high arity function has also been studied
by Dyer, Goldberg and Jerrum, called Hypergraph Homomorphisms [DGJ10].

For a Holant framework without equality functions, if the set of functions
only contains binary functions, then the problem is always tractable. The sim-
plest non-trivial setting starts with a ternary function. A dichotomy for a single
symmetric ternary function was first proved in the Holant∗ framework [CLX09b],
then in a pure Holant framework [CLX09a, KC10, CHL10]. These dichotomies
for a single function serve as the starting points to prove general dichotomies
for a set of functions. The Holant problem with one single high arity function
was also studied by Cai and Kowalczyk [CK10].

4.3 Domain Size

The case q = 1 is meaningless since the final summation only contains one
term. The case q = 2, which is usually called the Boolean domain, is already
very non-trivial, interesting and important. Many combinatorial problems are
in the Boolean domain. For the SAT problem, the Boolean domain is “True” or
”False”; for many graph problems like matching, vertex cover and independent
set , the Boolean domain corresponds to an edge or a vertex is “chosen” or “not
chosen”.

The complexity of the Holant problem on the Boolean domain is relatively
well understood. For many special subfamilies, like Boolean #CSP, Boolean
Holant∗ and symmetric Boolean Holantc, a dichotomy was known. However, a
complete dichotomy for Boolean Holant remains open.

When we move from the Boolean domain to an arbitrary finite domain, the
difficulty of the problem increases significantly. Even extending known results of
the Boolean domain to a domain of size 3 is already highly non-trivial [Bul06].
For example, proving a dichotomy for Holant∗ over a domain of size 3 is an
interesting open question.

To attack the problem of a large domain, certain domain reduction tech-
niques were invented. The simplest one is to decompose the domain into con-
nected components then we need only focus on each component separately. A
very clever twin reduction was proposed by Goldberg, Grohe, Jerrum ,Thur-
ley [GGJT10], which can combine domain items that behave similarly into one
and reduce the size of the domain. The idea was further extended to Cyclotomic
Reduction in complex field by Cai, Chen and the current author. In a recent
paper to prove the dichotomy for directed graph homomorphisms by Cai and
Chen, a recursive domain reduction is the key of their proof [CC10].

To sum up the previous three subsections, we can draw a picture (Figure 1)
to show the relation of several well studied sub-frameworks of Holant.
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Figure 1: Relations of sub-frameworks of Holant Problems.

4.4 Value Range

The value range of the functions is another important dimension. If all functions
take values from {0, 1}, they can be viewed as relations or constraints. This is
usually called the unweighted setting. Beyond the unweighted setting, we can
consider non-negative weighted, real weighted and finally complex weighted set-
tings. Beyond the unweighted setting, we can consider non-negative weighted,
real weighted and finally complex weighted settings. From unweighted to com-
plex weighted, the framework becomes more and more general while the proof
of a dichotomy becomes more and more difficult. For unweighted setting, one
can use some logical or combinatorial tools which may not be available to the
weighted settings. Starting from the real weighted case, the appearance of pos-
sible cancelation offers more polynomial algorithms.

Another possibility is consider the problem over finite fields, and using mod-
ular arithmetic, which is interesting for complexity class ⊕P,Modk P, or #k

P.

4.4.1 Graph Homomorphisms

The first dichotomy theorem for counting unweighted undirected graph homo-
morphisms was proved by Dyer, Greenhill [DG00].

Theorem 4.4. The counting graph homomorphisms problem of an undirected
graph H is in P if every connected component of H is complete or complete
bipartite. Otherwise, the problem is #P-complete.

This was extended to the non-negatively weighted setting by Bulatov and
Grohe [BG05]. Basically, the completeness in the unweighted setting is trans-
lated to rank one condition for the non-negatively weighted setting. For a
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weighted matrix, we define its unweighed version (support) by viewing all its
non-zero entries as 1s. A connected component for a matrix is defined as the
connected component of its support.

Theorem 4.5. Let H be a symmetric non-negative matrix. The graph homo-
morphisms problem of H is in P if every connected component of H is of rank
one or bipartite rank 2. Otherwise, the problem is #P-hard.

This criterion is no longer true for real or complex weights. For example,

the Hadamard matrix H =

(
1 1
1 −1

)
presents an obstacle. In general, unlike

the non-negative weighted setting, when there are both positive and negative
entries, there can be substantial cancelations in the exponential summation,
which may yield surprisingly efficient computations. This is not dissimilar to
monotone versus non-monotone complexity. Indeed, the Hadamard matrix turns
out to be one such case. This is the starting point of the next great chapter
by Goldberg, Grohe, Jerrum and Thurley. In a paper comprising 73 pages
of beautiful proofs of both exceptional depth and conceptual vision, Goldberg,
Jerrum, Grohe, and Thurley [GGJT10] proved a complexity dichotomy theorem
for all real valued symmetric matrices. Their result is too intricate to give a
short and accurate summary here, but essentially it states that the problem of
computing graph homomorphisms for any real symmetric matrix is either in P
or is #P-hard.

In the new tractable problems of real weighted graph homomorphisms, “−1”
plays an important role. The reason is that “−1” is a non-trivial root of unity.
When moving further to complex field, there are infinite many other roots of
unity and indeed all of them bring new tractable problems. For example, the
following complex matrix is tractable1 1 1

1 ω ω2

1 ω2 ω

 , where ω is a primative third root of unity.

Finally, the dichotomy for all complex weighted symmetric matrices was ob-
tained by Cai, Chen and the current author [CCL10].

Theorem 4.6. Let H be a symmetric complex matrix. Then counting graph
Homomorphisms to H either can be computed in polynomial time or is #P-hard.

4.4.2 Boolean #CSP

An unweighted function can be viewed as a relation. A relation R ⊆ {0, 1}k
being affine means it is the affine linear subspace composed of the solutions of
a system of affine linear equations over F2. Clearly, if all the relations are affine
then the Boolean #CSP can be solved in polynomial time, since the problem
is exactly asking the number of solutions for a linear system in the field F2.
Creignou and Hermann proved that these are the only tractable problems for
unweighted Boolean #CSP [CH96].
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For non-negatively weighted Boolean #CSP, one obvious generalization of
affine relations to functions is a globe scale of an unweighted affine relation.
If the scale factor is c, then the function takes value c if the input is in the
affine space and 0 otherwise. These scaled affine functions are called pure affine
in [DGJ07]. In their paper, Dyer, Goldberg, Jerrum also introduced another
family as follows, which is called product type.

P denotes the class of functions which can be expressed as a product of
unary functions, binary equality functions and binary disequality functions.

Then they prove that

Theorem 4.7. Let F be a set of non-negative functions over Boolean domain.
Then #CSP(F) is #P-hard unless all the functions in F are pure affine or all
the functions are of the product type P, in which case the problem is in P.

When looking at the complex field, there are more interesting tractable prob-
lems. Let X denote the k+ 1 dimensional column vector (x1, x2, . . . , xk, 1) over
the Boolean field F2. Suppose A is a Boolean matrix. χAX denotes the affine
relation on inputs x1, x2, . . . , xk, whose value is 1 if AX is the zero vector, 0 if
AX is not the zero vector.

A denotes all functions which have the form χAX i
L1(X)+L2(X)+···+Ln(X),

where i =
√
−1, Lj is a 0-1 indicator function χ〈αj ,X〉, where αj is a k + 1

dimensional vector, the inner product 〈·, ·〉 is over Z2. The additions among
LjX are just the usual addition in Z. (Since we ignore global constant, all
functions that are constant multiples of these functions are also in this class.)

Cai, Xia and the current author proved that

Theorem 4.8. ([CLX09b]) Suppose F is a class of functions mapping Boolean
inputs to complex numbers. If F ⊆ A or F ⊆ P, then #CSP(F ) is com-
putable in polynomial time. Otherwise, #CSP(F ) is #P-hard.

Independently, a dichotomy for a real weighted Boolean #CSP was given by
Bulatov, Dyer, Goldberg, Jalsenius and Richerby [BDG+09].

4.4.3 #CSP

Moving from Boolean #CSP to #CSP over arbitrary finite domains, the prob-
lem becomes much more difficult. Even for the unweighted setting, the problem
was open for a long time. In a recent breakthrough result, Bulatov [Bul08]
proved a sweeping dichotomy theorem. He gave a criterion, congruence singu-
larity, and showed that for any finite set of constraint predicates Γ over any
finite domain D, if Γ satisfies this condition, then #CSP(Γ) is solvable in P;
otherwise it is #P-complete. His proof uses deep structural theorems from uni-
versal algebra [BS81]. Indeed this approach using universal algebra has been
one of the most exciting developments in the study of the complexity of CSP
in recent years, and has been called the Algebraic Approach. A more careful
discussion of this Algebraic Approach is beyond the scope of this survey.

In [DR10b] Dyer and Richerby showed an alternative proof of the dichotomy
theorem for unweighted #CSP. Their proof is considerably more direct, and
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uses no universal algebra other than the notion of a Mal’tsev polymorphism. A
key idea is a data structure called a frame, which is a succinct representation
of a strongly rectangular relation (and is similar to the “compact representa-
tion” of Bulatov and Dalmau [BD06]). Dyer and Richerby gave a combina-
torial criterion, strong balance, and showed that this criterion is equivalent to
Bulatov’s congruence singularity, and determines the tractability of #CSP(Γ).
They also showed that this criterion is a decidable criterion [DR10a, DR11].
Furthermore, by treating rational weights as integral multiples of a common de-
nominator, the dichotomy theorem can be extended to include positive rational
weights [BDG+10].

Recently, the result was improved by Cai, Chen and the current author
to non-negatively weighted #CSP(F) [CCL11]. Surprisingly, our tractability
criterion is simpler than the previous criteria for the more restricted classes of
problems, although when specialized to those cases, they are logically equivalent.
Here is our dichotomy:

Theorem 4.9. ([CCL11]) Let F be a set of non-negative functions over domain
[q]. The problem is polynomial computable if the following condition satisfied:
For any input instance I over n variables of #CSP(F) and for any integers
a, b : 1 ≤ a < b ≤ n, the following qa×qb−a matrix M is block-rank-1: The rows
of M are indexed by u ∈ Da and the columns are indexed by v ∈ Db−a, and

M(u,v) =
∑

w∈Dn−b

F (u,v,w), for all u ∈ Da and v ∈ Db−a.

For the special case when b = n, we have that M(u,v) = F (u,v) is block-rank-1.
Otherwise, the problem is #P-hard.

This is an example of the existential argument discussed in Section 3.4. The
desired property here is block-rank-1. To extend these work to real weighted or
complex weighted is a major open question here.

4.4.4 Boolean Holant

For Boolean symmetric Holant∗, a dichotomy was proved for the complex weighted
case directly by Cai, Xia and the current author [CLX09b].

Theorem 4.10. Let F be a set of non-degenerate symmetric signatures over
C. Then Boolean Holant∗(F) is computable in polynomial time in the following
three Classes. In all other cases, Holant∗(F) is #P-hard.

1. Every signature in F is of arity no more than two;

2. There exist two constants a and b (not both zero, depending only on F),
such that for all signatures [x0, x1, . . . , xn] ∈ F one of the two conditions is
satisfied: (1) for every k = 0, 1, . . . , n−2, we have axk+bxk+1−axk+2 = 0;
(2) n = 2 and the signature [x0, x1, x2] is of the form [2aλ, bλ,−2aλ].
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3. For every signature [x0, x1, . . . , xn] ∈ F one of the two conditions is sat-
isfied: (1) For every k = 0, 1, . . . , n− 2, we have xk +xk+2 = 0; (2) n = 2
and the signature [x0, x1, x2] is of the form [λ, 0, λ].

For Boolean symmetric Holantc, a dichotomy was first proved for the real
weighted case in the same paper [CLX09b]. The main idea is to interpolate all
the unary functions and reduce the Holant∗ problem to it.

Theorem 4.11. Let F be a set of real symmetric signatures, and let F1,F2

and F3 be three families of signatures defined as

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3}.

Then Holantc(F) is computable in polynomial time if (1) Holant∗(F) is com-
putable in polynomial time or (2) F ⊆ F1 ∪ F2 ∪ F3. Otherwise, Holantc(F) is
#P-hard.

The above three families F1,F2 and F3 are exactly the functions in A (de-
fined in Section 4.4.2) after being restricted to symmetric ones. This dichotomy
was obtained before the one for Boolean #CSP and it suggested and helped
the prove for the dichotomy for Boolean #CSP. The main difficulty to further
extend it to the complex weighted setting is that some desirable properties of
real numbers to make the interpolation work do not hold for the complex field.
Finally, we solved this problem but used a very different approach. We in turn
make use of the dichotomy of Boolean #CSP and reduce the Boolean #CSP to
Holantc problems. In [CHL10], Cai, Huang and the current author proved that

Theorem 4.12. Let F be a set of complex symmetric signatures. Holantc(F )
is #P-hard unless F satisfies one of the following conditions, in which case it
is tractable:

1. Holant∗(F ) is tractable (for which we have an effective dichotomy in
[CLX09b]);

2. There exists a T ∈ T such that F ⊆ TA , where

T , {T | [1, 0, 1]T⊗2, [1, 0]T, [0, 1]T ∈ A }

In Figure 1, we can see that both Holant∗ and #CSP can be viewed as a
sub-framework of Holantc. In the above dichotomy, we can see that essentially
the tractable problems for Holantc are the union of these for Holant∗ and #CSP.
Also, the dichotomy for Holant∗ and #CSP plays an important role in the proof
of dichotomy for Holantc.
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4.4.5 Counting Mod k

In this section, we discuss the counting problem modulo some integer k. This
is the Holant problem where the functions take values in a finite field or ring.

There does exist several problems for which counting the number of solutions
is #P-complete whereas computing it modulo some integer k is polynomial
time computable. One prime example is computing the permanent of a 0/1
matrix, which is #P-complete [Val79a]. The parity version of this problem
corresponds to computing the permanent modulo 2, which is the same as the
determinant modulo 2, and is therefore computable in polynomial time via linear
algebra computations. Some more such tractable parity problems were recently
given by Valiant [Val10]. Furthermore, the characteristic of the finite field may
affect the tractability. For example, Valiant showed that #7Pl-Rtw-Mon-3CNF
(counting the number of satisfying assignments of a planar read-twice monotone
3CNF formula, modulo 7) is solvable in P by a holographic algorithm [Val06],
while the parity or general version of the same problem is ⊕P-hard or #P-hard,
respectively.

For the main reduction techniques summarized in Section 3, as pointed out
by Valiant [Val10], for finite fields, holographic transformations and interpo-
lation both appear to offer less flexibility than they do for general counting
problems.

These two facts (some useful techniques cannot be adopted in finite fields
and there exist some more complicated tractable cases) make it more challenging
to obtain a dichotomy for #kHolant problems.

In [Fab08], Faben obtained a dichotomy theorem for unweighted Boolean
#kCSP.

Theorem 4.13. [Fab08] Given an unweighted function set F , and an integer k,
#kCSP(F) is computable in polynomial time if all the relations in F are affine,
or if k = 2 and all functions in F are closed under complement. Otherwise it
is #kP-hard .

Essentially, there is no additional tractable case in his dichotomy theorem
(except one obvious case). However, when we allow functions to take weights in
the ring Zk, some new non-trivial tractable cases do emerge, which are similar
to weighted vs. unweighted #CSP without a modulus. As noted before, roots
of unity play essential roles [GGJT10, CLX09b, BDG+09, CCL10]. In finite
fields, interesting cancelations do appear and every nonzero element is a root of
unity. For general k, which may not be a prime, another subtlety is that the
computation is performed in a ring Zk rather than a field, where some desirable
property of a field no longer holds.

In [GHLX11], Guo, Huang, Xia and the current author proved a dichotomy
for Weighted Boolean #CSP Mod k, for any integer k. Our result starts from
the finite field case, where the modulus k is an odd prime. In this case, the
final result is algebraically the same as the dichotomy for complex weighted
#CSP. The imaginary unit i =

√
−1 plays an important role in the dichotomy

for the complex weighted #CSP [CLX09b]. Here by “algebraically”, we mean
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that we view i as a fourth primitive root of unity which is also well defined
in a finite field (or its extension). Then the dichotomy for #kCSP is identical
to that for complex weighted #CSP. Some of the proof techniques are fairly
similar to those in the proof for the complex weighted case [CLX09b], while
others are completely different. For example, polynomial interpolation is one of
the most important techniques in [CLX09b], but it is not available for the finite
field. Such kinds of similarity and difference between fields with zero and finite
characteristic p is one of the main themes of algebraical geometry [Har77]. It is
interesting to observe similar phenomena in complexity theory.

For general k, let k = pr11 p
r2
2 · · · prmm , where pi’s are distinct primes, be the

prime factorization of k. By the Chinese Remainder Theorem, solving the prob-
lem of #kCSP(F ) is equivalent to solving all #p

ri
i

CSP(F ). For #prCSP and p

being an odd prime, we prove a surprising result that states that #prCSP(F ) is
tractable iff #pCSP(F ) is, assuming #P is not equal to P. One direction is triv-
ial, namely if #prCSP(F ) can be solved in polynomial time, so can #pCSP(F ).
The reduction in the other direction is not of the black box style. We need the
dichotomy for #pCSP(F ) to state all the tractable cases, assuming #P is not
equal to P, and we also need to explicitly use algorithms to solve such tractable
cases. The algorithm for #prCSP(F ) has a time complexity which is nr times
larger than that of the algorithm for #pCSP(F ). We use a different treatment
to solve the case that p = 2.

To sum up, we have

Theorem 4.14. Let k > 1 and F be a set of functions. Then #kCSP(F ) is
either in P or #pP-hard for some p|k.

The p = 2 is of particular interest since ⊕P is an important complexity
class. Guo, Valiant and the current author proved a complete dichotomy for
symmetric Boolean Holant problems. We note that this is for the whole Holant
framework without assuming any freely available functions. Such a dichotomy
is open without mod.

Theorem 4.15. ([GLV11]) Let F be a set of symmetric signatures. Then the
parity problem ⊕Holant(F) is either computable in polynomial time or ⊕P-
complete.

4.5 Symmetric or not

In this section, we discuss another property of the functions: Are the func-
tions symmetric of not? We recall that a function is symmetric iff to apply a
permutation of its input will not change the value of the function. Symmetric
functions are important since they have clear combinatorial meanings. Many
combinatorial counting problems can be formalized as Holant problems only
with symmetric functions such as graph coloring, (perfect) matching, indepen-
dent set and so on. In terms of proving dichotomy theorems, in many cases, to
restrict the functions to be symmetric makes the problem significantly easier.
On the other hand, to prove a dichotomy for general functions is more desirable
and sometimes provides a more complete picture of the underlying structure.
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4.5.1 Graph Homomorphisms

In section 4.4.1, all the dichotomies discussed are for an undirected graph which
corresponds to symmetric functions. To extend these results to directed graph
even for unweighted case, was an open question for a long time. To see one
superficial reason why the problem become much difficult is that the definition
of “connected component” is not as well defined as in undirected setting while
to decompose into connected components is the first step for the dichotomy for
undirected graph Homomorphisms

In [DGP07], Dyer, Goldberg, Paterson proved a dichotomy for a family of
directed graphs which are acyclic. The problem was recently solved by Cai
and Chen for all directed graphs even with non-negative weight [CC10]. They
introduced some nice new domain reduction techniques. Since Graph Homomor-
phisms is a sub-framework of CSP, we note that these results were subsumed
by recent dichotomy theorems of weighted or unweighted #CSP. To extend the
weight to real or complex numbers remains open even for Graph Homomor-
phisms.

4.5.2 Boolean Holant∗ Problems

For graph homomorphisms, both the statement of dichotomy criterion and proof
techniques for directed graphs are quite different from those for undirected
graphs. Now we show another example of extending symmetric dichotomy to
asymmetric dichotomy which suggests a clear relation between them. In Section
4.4.4, we stated a dichotomy for the symmetric Boolean Holant∗ problem from
[CLX09b]. We now show an extension of this to general Boolean function set
by Cai, Xia and the current author [CLX11].

We say a function set F is closed under the tensor product (or more precisely
under juxtaposition), if for any A,B ∈ F and I = {I1, I2},

⊗
I(A,B) ∈ F .

Tensor closure 〈F〉 of a set F is the minimum set containing F , closed under
the tensor product. This closure exists, being the set of all functions obtained
by taking a finite sequence of tensor products from F .

Next we define several important sets of functions on Boolean variables. E is
the set of all functions F such that F is zero except on two inputs (a1, . . . , an)
and (ā1, . . . , ān) = (1 − a1, . . . , 1 − an). In other words, F ∈ E iff its support
is contained in a pair of complementary points. We think of E as a generalized
form of Equality. M is the set of all functions F such that F is zero except
on n+ 1 inputs whose Hamming weight is at most 1, where n is the arity of F .
The nameM is given for matching. T is the set of all functions of arity at most
2. Note that U is a subset of E , M and T .

Suppose F is a function set and M is a 2 × 2 matrix. We use M ◦ F to
denote the set consisting of all functions in F transformed by a matrix M ,

M ◦ F = {M⊗rFF |F ∈ F , rF = arity(F )}.

If the transformation matrix M is an orthogonal matrix, then we denote it by

H; if M is one of Z1 =
(

1 1
i −i

)
or Z2 =

(
1 1
−i i

)
, we denote it by Z.
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The following sets of functions will play a pivotal role: H◦E , Z◦E and Z◦M.
Our main theorem is the following complete classification of the complexity of
Boolean Holant∗ problems.

Theorem 4.16. Let F be any set of complex valued functions in Boolean vari-
ables. The problem Holant∗(F) is polynomial time computable, if (1) F ⊆ 〈T 〉,
or (2) there exists an orthogonal matrix H such that F ⊆ 〈H ◦ E〉, or (3) there

exists a matrix Z ∈ {Z1 =
(

1 1
i −i

)
, Z2 =

(
1 1
−i i

)
} such that F ⊆ 〈Z ◦ E〉,

or (4) there exists a matrix Z ∈ {Z1, Z2} such that F ⊆ 〈Z ◦M〉. In all other
cases, Holant∗(F) is #P-hard.

To prove an asymmetric dichotomy for Boolean Holantc is an interesting
open question. For its two special sub families Boolean CSP and Holant∗,
asymmetric dichotomies were known. A plausible conjecture could be that the
union of these two tractable families is the tractable family for Holantc.

4.6 Special Family of Graphs

In a general setting, most of the Holant problems are #P-hard. Sometimes,
we would like to give further classification among all the hard problems. There
are at least two different angles for this. One is to decrease the requirement of
the algorithms. For example, we can satisfy with an approximation solution.
Approximate counting is a fantastic subject with many good results. However,
a discussion of these are out of the scope of this survey and we omit these
here. Another angle is to restrict the input. For example, the counting perfect
matching problem is #P-complete for general graphs but is polynomial time
computable for planar graphs by the famous FKT method [Kas61, TF61, Kas61].
Recently, Valiant proposed a beautiful theory of holographic algorithms, which
reduce other problems to the planar perfect matching problems. Using holo-
graphic algorithms, Valiant gave polynomial time algorithms for several in-
teresting problems. After a sequence of papers developing a structural the-
ory [CC06, CL10, CCL09, CL08, CL09], Cai and the current author give a
more systemical characterization of what kind of problems can be solved by
Holographical algorithms [CL11].

In [CLX10], Cai, Xia and the current author prove that holographic algo-
rithms capture precisely those problems which are #Phard on general graphs
but computable in polynomial time on planar graphs. More precisely, we prove
three trichotomies of three different sub-frameworks of Holant.

Theorem 4.17. Let F be a set of real symmetric signatures. Planar Holantc(F)
is #P-hard unless F satisfies one of the following conditions, in which case it
is tractable:

1. Holantc(F) (for general graphs) is tractable (for which we have an effective
dichotomy [CLX09b]); or

2. Every signature in F is realizable by some matchgate (for which we have
a complete characterization [CCL09]).
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Theorem 4.18. Let F be a set of real symmetric functions. Planar #CSP(F)
is #P-hard unless F satisfies one of the following conditions, in which case it
is tractable:

1. #CSP(F) (for general instants) is tractable (for which we have an effective
dichotomy [CLX09b]); or

2. Every function in F is realizable by some matchgate under basis

[
1 1
1 −1

]
(for which we have a complete characterization [CCL09]).

Theorem 4.19. Let [y0, y1, y2] and [x0, x1, x2, x3] be two complex symmetric
signatures with arity 2 and 3 respectively. Then Planar Holant([y0, y1, y2]|[x0, x1, x2, x3])
is #P-hard unless [y0, y1, y2] and [x0, x1, x2, x3] satisfy one of the following con-
ditions, in which case it is tractable:

1. Holant([y0, y1, y2]|[x0, x1, x2, x3]) (for general graph) is tractable (for which
we have an effective dichotomy [CHL10]); or

2. There exists a basis T such that both [y0, y1, y2](T−1)⊗2 and T⊗3[x0, x1, x2, x3]
are realizable by some matchgates (for which we have a complete charac-
terization [CL11]).

5 Conclusion

This survey summarizes various dichotomies obtained for counting problems
from the unified framework of Holant problems. Every such dichotomy can be
viewed as a dichotomy for certain sub-framework of Holant by restricting some
of its dimensions. Such unified perspective does not only offer a language to
summarize these results but also suggests interesting relations among differ-
ent dichotomies. To extend any known dichotomy along any dimension of the
framework is an interesting open question.
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