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Abstract
A folklore result in arithmetic complexity shows that the number of multiplications

required to compute some n-variate polynomial of degree d is (”:d). We complement
this by an almost matching upper bound, showing that any n-variate polynomial of

degree d over any field can be computed with only ("Zd) - (nd)°M multiplications.

1 Introduction

Arithmetic complexity is a branch of theoretical computer science which studies the minimal
number of operations (additions and multiplications) required to compute polynomials. A
basic question is the following: what is the minimal number of operations required to compute
any n-variate polynomial of degree d? A folklore result (see, e.g., [1, Theorem 4.2]) shows
that the number of multiplications required to compute any polynomial is at least the square
root of the total number of monomials. That is, there exist n-variate polynomials of degree

n+d

N ) multiplications. The aim of this note is to complement this lower

d which require (
bound by an almost matching upper bound.

Theorem 1. Any n-variate polynomial of degree d over any field can be computed by at most

(n:d) : (nd)o(l) multiplications.

The best previous upper bound on the number of multiplications was O(% (”Zd))

2 General framework

We first fix notations: let N := {0,1,...} and [n] := {1,...,n}. We identify monomials in
Z1,...,%, with their degree vector e € N", where we shorthand z¢ := z7' ... 2%, We denote
the set of all n-variate degree d monomials by M(n,d) := {e € N" : Y e; < d}, where
IM(n,d)| = (""). The weight of a monomial is |e| := 3" e;.
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The main idea is to cover the set of monomials by a few sums of pairs of sets. For sets
A, B C N" denote their sum by A+ B := {a+bla € A,b € B}. A set Ais monotoneife € A
implies ¢’ € A for all ¢’ < e (that is, €] < ¢; for all i € [n]).

Claim 2. Let {(4;, B;)}iey) be pairs of monotone sets such that M(n,d) C U, (A; + B;).
Then any n-variate polynomial of degree d can be computed by an arithmetic circuit with
S O(|A| + | B|) maultiplications.

Proof. Compute first all monomials z¢ for e € Ay, By,..., A, Bx. This can be done with
> (|A;|+|B;|) multiplications since the sets are monotone. By assumption, for each monomial
e € M(n,d) there exists ¢ € [k] such that e € A; + B;. Thus for any set of coefficients
{Ae e € M(n,d)} we can find coefficients {\; o : ¢ € [k],€ € A;,€” € B;} such that

k
SRS 3o P opvey |
eeM(n,d) i=1 e’€A; e'’eB;

This requires additional ) |A;| multiplications. O

An easy way to show the existence of pairs {(A;, B;) }icix is to exhibit a distribution over
pairs (A, B) such that each monomial belongs to A + B with a noticeable probability.

Claim 3. Assume there is a distribution over pairs (A, B) of monotone sets of bounded size
|Al,|B| < N, such that for any monomial e € M(n,d),

Prlec A+ B| > .
AB

Then any n-variate polynomial of degree d can be computed with O(N - (n + d)/e) multipli-
cations.

Proof. Sample (A, By),. .., (A, Bx) independently. For each e € M(n,d), the probability
that e ¢ A; + B; for all i € [k] is at most (1 — &)*. Thus for k = O(elog | M(n,d)|) <
O((n + d)/e) we have by the union bound that M(n,d) C UL (A; + B;) almost surely. [
3 Constructing a distribution
We construct in this section a distribution over pairs of monotone sets (A, B) such that

(1) For each monomial e € M(n,d), Pragle € A+ B] > 1/n.

(2) AL 1Bl < /(") - (nd)?O).

We can assume w.l.o.g that n is odd and d is even, at the price of increasing the number
of monomials at most by a factor of O(nd). For a set of variables S C [n] we denote by
M(S,d) the set of degree d polynomials with variables restricted to S. We construct the
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distribution over pairs A, B as follows: let S,T" C [n] be chosen uniformly conditioned on
S| =|T|=(n+1)/2and |[SNT|=1. Set A:= M(S,d/2) and B := M(T,d/2).

First note that |Al,|B| = (("+§721)/2) <A/ (Y < (n+d)V2 1/ (M) as claimed. To
conclude we need to show that any monomial belongs to A + B with noticeable probability.

Lemma 4. Let e € M(n,d). Then Pragle € A+ B] > 1/n.

Proof. Fix a monomial e € M(n,d). Let {¢} = SNT,S" := S\ {¢},7" := T\ {¢} and define
the sums s := .o, e; and ¢ := Y., ;. Consider the event

E:=[s<d/2 and t<d/2].

We first claim that if £ holds then e € A + B. Define a € A,b € B as follows: a; = e; for
i€ S b =e; forieT'; and set ay + by = ey where ay +s < d/2 and by +t < d/2.

We analyze Pr[E] by considering an equivalent event. The distribution of S, T can be
sampled as follows: first choose a random permutation on [n], then choose a uniform index
¢ e [n]andset S ={n(l),7({+1),....,71(l+(n—1)/2)} and T = {n({—(n—1)/2),...,7({)},
where sums are evaluated modulo n. Thus, we have

0+(n—1)/2 -1
P = , .
r[E] Ijg Z er) < d/2 and Z ers) < df2
=011 i—l—(n—1)/2

We will lower bound Pr[E|r] for any permutation 7, which implies a lower bound on Pr[E].
Fix a permutation 7 and set f; := ex(;). Define the sums w; := Zg:ﬁ;lm fi for j € [n], i.e.
all possible consecutive sequences of (n—1)/2 elements. We will show there exists j* = j*()
for which w;- < d/2 and Wi 4 (n-1)/2 < d/2. This implies that if we choose £ = j* then the

event F indeed holds, which implies
Per[E|7r] > Per[é =j*(m)] > 1/n.

Thus to conclude we just need to establish the existence of such j*. If w; < d/2 for all j € [n]
then any j* will do. Otherwise, there must exist j' for which w; > d/2. There also must
exist j” for which w;» < d/2, since %Zje[n] w; = Zle|(n—1)/2 < d/2. Thus there must exist
two consecutive sums with this property, i.e k for which wy > d/2 and wyy1 < d/2. Setting
J* = k—1 concludes the proof, since wj» = w41 < d/2 and wjsy(n_1)2 = |e| —wr < d/2. O
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