
Low uniform versions of NC1

Christoph Behle1, Andreas Krebs1, Klaus-Jörn Lange1, and Pierre McKenzie2

1 Wilhelm-Schickard-Institut, Universität Tübingen
{behlec,krebs,lange}@informatik.uni-tuebingen.de

2 DIRO, Université de Montréal
mckenzie@iro.umontreal.ca

Abstract. In the setting known as DLOGTIME-uniformity, the funda-
mental complexity classes AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1 have several
robust characterizations. In this paper we refine uniformity further and
examine the impact of these refinements on NC1 and its subclasses. When
applied to the logarithmic circuit depth characterization of NC1, some
refinements leave NC1 unchanged while others collapse NC1 to NC0.
Thus we study refinements of other circuit characterizations of NC1.
In the case of the AC0(A5) characterization of NC1, where A5 is the
NC1-complete word problem of the group A5, our refinements collapse
NC1 to a subset of the regular languages. For the AC0(D+) characteri-
zations of NC1, where D+ is the NC1-complete language capturing the
formula value problem, interestingly, these refinements scale down to
circuits with linear fan-in. In particular, the latter refinements bring to
the fore two classes, denoted FO[<]-uniform AC0(D+)LIN and FO[<]-
uniform TC0

LIN , whose separation may be within the reach of current
lower bound techniques, and whose separation would amount to distin-
guishing the power of a MAJ gate from that of a D+ gate.

1 Introduction

Uniformity conditions on Boolean circuits were introduced in order to exclude
undecidable languages from circuit-based complexity classes, thus allowing a fair
comparison between these and machine-based classes. In some cases, the circuit
complexity of a language seems largely independent from the chosen uniformity.
In other cases, our ability or inability to tighten circuit uniformity holds the key
to long-standing open questions in complexity theory. In this paper we study
strict uniformity notions and mainly examine their impact on circuit classes
below and including NC1.

Borodin [Bor77] and Cook [Coo79] first imposed circuit uniformity by means
of space-bounded Turing machines computing entire circuit descriptions. This
worked well for NC2 and above. Inspired by Goldschlager [Gol78], Ruzzo [Ruz81]
then tied uniformity to the ability to answer local circuit connectivity queries,
defining an ALOGTIME-uniformity notion under which NC1 meaningfully equals
ALOGTIME. Yet tighter uniformities were needed to investigate AC0 ⊂ ACC0 ⊆
TC0 ⊆ NC1. Barrington, Immerman and Straubing [BIS90] thus developed

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 95 (2011)

DLOGTIME-uniformity, proving that Immerman’s model-theoretic notion
[Imm87] and Buss’ Turing machine-based notion [Bus87] were equivalent to their
own robust notion.

Barrington, Immerman and Straubing [BIS90] also showed how to translate
back and forth between an extended first-order formula ϕ describing a language
L and a FO[bit]-uniform family of generalized bounded-depth circuits recognizing
L. (Here ϕ is an ExtFO[bit] formula, that is, a FO formula using the bit pred-
icate and using ordinary quantifiers as well as other quantifiers such as “there
exist r values modulo q” and “monoidal quantifiers” implementing the product
operation in the transformation monoid of a finite automaton; for their part,
generalized bounded-depth circuits are Boolean circuits with oracle gates that
perform the product operations underlying the quantifiers used in ϕ).

Roy and Straubing [RS07] later triggered the need for an even stronger notion
of uniformity than DLOGTIME. Loosely speaking, Roy and Straubing proved
that any regular language described in ExtFO[+] can be described without +.
This was an interesting step in light of the conjecture
[STT95,BCST92,Pél92,MPT91], central to the structure of NC1 and expressed
in crisp model-theoretic terms by Straubing [Str94, IX.3.4], that the ExtFO de-
scription of a regular language does not require the use of nonregular numerical
predicates. Answering Roy and Straubing, the first and third authors [BL06]
provided a circuit interpretation for ExtFO[+] by proposing a new encoding
of circuit connections. This made it possible to speak meaningfully of FO[+]-
uniform and FO[<]-uniform circuit families. The new uniformity, yet finer than
FO[bit]-uniformity, meant that Roy and Straubing had separated a very uniform
variant of ACC0 from NC1.

Having the framework of [BL06] at hand for ascribing circuit interpretations
to very tightly-uniform subclasses of NC1, it is of interest to study how these
classes change as the uniformity changes. It is also of interest to determine the
impact of tightening the uniformity on the problems that were shown complete
for DLOGTIME-uniform NC1 under DLOGTIME-reductions. This is the pur-
pose of the present paper.

In a nutshell, our definitions of uniformity refine the FO[bit]-uniformity of
[BIS90] and the FO[<]-uniformity of [BL06] in two directions. First, different
renderings of the direct connection language of a circuit family as a language
over a fixed alphabet are considered: in the binary shuffled encoding, the pa-
rameters describing a circuit gate are expressed in binary notation (following
[BCGR92]) and intertwined (following [BL06]); in the unary shuffled encoding,
the parameters are expressed in unary notation prior to intertwining. Second,
a range of weak numerical predicates, such as the successor predicate +1 and
the doubling predicate x2, are considered as replacements for < and bit. For
instance, FO[+1]-uniformbin refers to the uniformity resulting from replacing <
with +1 under the binary shuffled encoding. (See Section 3 for details and precise
definitions.) We show:

– In the FO[<]-uniformun world, NC1 collapses to NC0, thus trivialising the
class of languages defined from logarithmic depth bounded fan-in circuits.

This is shown by proving that the length of maximal paths in polynomial
size graphs represented by FO[<] formulas cannot be logarithmic.

– In the FO[<, x2]-uniformun world, NC1 includes DLOGTIME-uniform NC1.
Hence adding x2, a weaker predicate than + or bit, to FO[<] under the unary
shuffle encoding suffices to simulate FO[bit]-uniformity on logarithmic depth
circuits.

– In the FO[+1]-uniformbin world, NC1 includes DLOGTIME-uniform NC1.
Hence replacing < with the provably weaker predicate +1 under the binary
shuffle encoding also suffices to simulate FO[bit]-uniformity on logarithmic
depth circuits.

– In the FO[+1]-uniformbin world, polynomial size circuits capture P. This is
another instantiation of the qualitative statement that complexity classes
defined from a single machine are very uniform.

Our delineated results concerning NC1 above raise the question of how ex-
treme uniformity interacts with the classes sitting between NC0 and NC1. Many
such classes, including AC0, TC0 and NC1 itself, are the closure of specific lan-
guages under AC0-reducibility. Recall the two major NC1-complete problems,
namely the formula value problem FVP [Bus87,BCGR92] and the word prob-
lem, which we will simply denote A5, over the alternating group A5 [Bar89] (tree
isomorphism is a third NC1-complete problem [JKMT03] but it behaves in many
ways like FVP). A robust uniformity for AC0-reductions is FO[bit]-uniformity
[BIS90]. We can thus apply our tighter uniformity notions to closures of FVP
and of A5. Instead of FVP per se, we will use the NC1-complete variant D+

[BKL] defined as the subset of the Dyck language over one pair of parentheses
that encodes the FVP over the basis NAND (see Definition 2). Our results are:

– In the FO[<]-uniformun world, AC0(A5) ⊂ ACC0(A5) ⊂ REGULAR. This
uniformity is too strict for AC0(A5) to capture even uniform TC0.

– In the FO[+1]-uniformbin world, AC0 recognizes {02n

: n ≥ 0} and this
heavily depends on marginal properties of the shuffled encoding. This sug-
gests that the binary shuffled encoding as a basis for defining uniform AC0

closures is inadequate.
– In the FO[<]-uniformun world, AC0(D+) ⊇ TC0 and the same inclusion

holds when linear fan-in is imposed on both circuit classes. The proof is a
tight reduction from the majority language MAJ to the Dyck language and
then from the latter to D+.

– In the FO[<]-uniformun world, the bit numerical predicate cannot be ex-
pressed in AC0(D+)LIN .

The last two points make FO[<]-uniformunAC0(D+)LIN an interesting candidate
for a separation from FO[<]-uniformunTC0

LIN . It is known that
FO[<]-uniformunTC0 can already simulate the bit numerical predicate.
Hence, by our tight reduction, its D+ counterpart, i.e. FO[<]-uniformunAC0(D+)
can, too, and is therefore equal to uniform NC1. If one believes that TC0 6=
NC1 then one might also suspect that FO[<]-uniformunTC0

LIN does not equal
FO[<]-uniformunAC0(D+)LIN . A separation of the latter two classes is perhaps

within the reach of current techniques due to the fact that FO[<]-uniformun

AC0(D+)LIN does not contain the bit numerical predicate. Further, a separa-
tion of these two classes would be interesting even if TC0 = NC1, because this
would shed light on the internal structure of NC1.

2 Preliminaries

We assume the reader to be familiar with circuits and thus only recall some
fundamental definitions. The class NC0 is the set of languages recognized by
circuit families of constant depth and polynomial size built from bounded fan-in
AND, OR and NOT gates. The class AC0 is obtained instead when the AND
and OR gates have unbounded fan-in. The class ACC0 is further obtained when
unbounded fan-in MODq gates are also permitted. The class TC0 is the set of
languages recognized by circuit families of constant depth and polynomial size
built from unbounded fan-in MAJORITY gates. The class NC1 is the set of
languages recognized by circuit families of depth O(log n) built from bounded
fan-in AND, OR and NOT gates. We write AC0(G) for the class AC0 in which
the circuits are additionally equipped with unbounded fan-in gates of type G.

The direct connection language of a circuit family consists of the set of all
tuples 〈t, a, b, y〉, where t is the type of gate a, b is a predecessor of a and y
equals the number of inputs n. If a has no inputs, then b may be arbitrary,
if a is an input gate, then t tells the letter and b the position to question.
We allow gates that are either in a non-connected component or connected to
input gates but not connected to the output gate. The size of the circuit is the
size of the underlying graph and the depth is the length of the longest path
of that graph. Note that this includes also gates that lead not to the output
gate and unconnected components. Hence, the uniformity language may produce
unnecessary gates and wires for the computation, but these unnecessary gates
and wires still add up to the size of the circuit.

Definition 1 (Semantics of the direct connection language). Let Cn be
a circuit with n inputs and size ≤ nc. We label the gates by c-tuples of numbers
from 1 to n. Then direct connection language of Cn is

LCn = {〈t,a, b, y〉 | the gate labeled by a has type t and has gate b as input}.

For a sequence of circuits C = (C1, . . .) the direct connection language is LC =⋃
n LCn

. The predecessors of a gate are fed into the gate in ascending order of
their numbers. The output gate is always numbered by (1, . . . , 1).

We have yet to fix an encoding that will turn the above direct connection
language into a set of words over a fixed alphabet. We will define two such
encodings in Section 3, inspired by [BIS90,BL06].

The unary encoding of a number 1 ≤ i ≤ n over Σ = {a, b} is defined by
i 7→ aibn−i. Similarly, the binary encoding of a number 0 ≤ i < 2n is defined by
w1 . . . wn ∈ {0, 1}n such that i =

∑
j 2j−1wj .

Given a list of words w1, . . . , wc with common length n over a common al-
phabet Σ, the shuffle of these words is the unique word u of length n over Σc,
defined by setting the i-th letter of u to (σ1, . . . , σc) iff σj is the i-th letter of wj
for 1 ≤ j ≤ c.

When dealing with the Dyck language D1 over one pair of parentheses we
will use the letters {a, b} instead of {(,)} to improve readability.

Definition 2 (D+ language [BKL]). Any word in the Dyck language D1 cor-
responds to a tree. If we let every leaf of the tree be a false node and every inner
node be a NAND, the tree is a formula evaluating either to true or false. We
let D+ ⊂ {a, b}∗ be the set of words that are in the Dyck language and whose
corresponding formula evaluates to true.

We assume familiarity with first order logic and its application to words. We
follow the notations of [Str94] and recall only some facts used in this paper.
We write FO to denote first order logic and write the set of allowed numerical
predicates in brackets. We will use the binary predicates bit, <, +1, and x2. Since
the value of a numerical predicate depends only on the position of the variables
and the word length, we will freely switch between variables and natural numbers
denoting their positions. To make this transition clearer we write “x = i” for
a variable x and a natural number i when x points to the i-th position. The
predicate bit(i, j) is true if the i-th bit of the binary representation of j is a 1.
The successor predicate +1(i, j) is true i = j + 1. The double predicate x2(i, j)
is true if i = 2j. Recall that FO[<] only describes regular languages (it in fact
captures the aperiodic regular languages [MP71]). The class FO[+1] is a proper
subclass of FO[<] that in fact captures the threshold testable languages [Tho78].

The class FO can also be extended by adding additional quantifiers. We write
FO + MAJ for the class FO which is also equipped with the majority quantifier.

3 Definitions

We now define two different encodings for the direct connection language. The
first is the unary shuffled encoding introduced in [BL06]:

Definition 3 (Unary shuffled encoding). Let a1, . . . ac, b1, . . . , bc, t, n be
numbers between 1 and n. We let 〈t,a, b, y〉u denote the shuffled unary encoding
of this (2c+ 2)-tuple. (Note: |〈t,a, b, y〉u| = n)

Encoding numbers in binary instead of unary yields our second encoding.
Note that this second encoding differs from the encoding in [BIS90] not only in
the shuffling, but in the fact that here y is also given in binary:

Definition 4 (Binary shuffled encoding). For n ∈ N, let a1, . . . ac, b1, . . . , bc,
t be numbers between 1 and n. We let 〈t,a, b, y〉b denote the shuffled binary en-
coding of this (2c+ 2)-tuple. (Note: |〈t,a, b, y〉b| = dlog(n+ 1)e)

We say that a circuit family (Cn) is FO[X]-uniformun (FO[X]-uniformbin) if
the language formed by the unary (resp. binary) shuffled encoding of the tuples
in its direct connection language can be described by an FO[X] formula.

We now define two gate types based on languages that are complete for NC1,
even in the case of DLOGTIME-uniformity.

Definition 5 (A5 Gate). Let A5 be the alternating group over 5 elements and
g0, g1 ∈ A5 be two 5 cycles that span the whole group. An A5 gate with k Boolean
inputs x1, . . . xk evaluates to 1 if gx1 . . . gxk

= 1, otherwise to 0.

Recall that we write the Dyck language over the alphabet {a, b}.

Definition 6 (D+ Gate). A D+ gate with k Boolean inputs x1, . . . xk evaluates
to 1 if replacing every 0 by a and every 1 by b in the word x1 . . . xk yields a word
in D+.

We will encounter the following classes, both in their FO[<]-uniformun and
their FO[+]-uniformbin versions: AC0(A5), AC0(D+), NC1.

4 Uniform versions of log depth circuits

In this section we consider tightly uniform versions of NC1. Our first theorem
shows that FO[<]-uniformun NC1 is too restrictive as the class collapses into
NC0. If we add a simple numerical predicate like x2 we obtain full DLOGTIME-
uniform NC1.

To prove our first theorem we show that FO[<] cannot express an edge rela-
tion such that the resulting graph has paths of length Θ(log n). We first explain
why we need only to consider the expressiveness of FO[<] in terms of numerical
predicates.

The proofs in [BL06] relied heavily on the fact that a word in unary shuffled
encoding can be translated to a tuple of variables and vice versa: For any k-
ary numerical predicate expressible in FO[<] one can easily construct a FO[<]
formula that recognizes exactly the unary shuffled encodings of all (i1, . . . , ik)
of length n such that the numerical predicate is true for the variables x1, . . . , xk
with xj = ij 1 ≤ j ≤ k. Conversely, for each formula ϕ recognizing a subset L
of all valid unary shuffled encodings of k numbers one can construct a formula
without Qa predicates and free variables x1, . . . , xk ϕ

′(x1, . . . , xk), such that if
the shuffled encoding of (i1, . . . , ik) ∈ L, then ϕ(x1, . . . , xk) is true for xj = ij
1 ≤ j ≤ k.

The expressive power of FO[<] is well understood. One important restriction
of FO[<] is that a fixed formula can only count up to a constant. Beyond this
constant it can only check the relative ordering. It is for example known that
for quantifier depth d a formula cannot distinguish between the words a2d

and
a2d+1. We first prove a similar technical result which says that for a fixed formula
φ with k free variables and sufficient large n holds: If there is a V-structure w
such that w |= φ of length n then there is a V-structure w′ of length n− 1 that
is also a model for φ.

Lemma 1. Let φ(x1, . . . , xk) be a FO[<] formula of quantifier depth d. If there
is a V-structure w with |w| ≥ (k + 1) · (2d + 1) such that w |= φ then there is a
V-structure w′ of length |w| − 1 such that w′ |= φ.

Proof. Consider the positions of all xi on w. Without loss of generality we assume
that xi < xi+1. These k variables split our word w in k + 1 intervals. Since
|w| ≥ (k + 1) · (2d + 1) one of the intervals has to be greater than (2d), i.e., of
the following conditions must be true: (i) x1 ≥ 2d + 1, (ii) n− xk ≥ 2d + 1 (iii)
there are two consecutive variables xi, xi+1 with xi+1−xi−1 ≥ 2d+ 1. If all the
intervals would have length ≤ 2d and there are k variable that occupy k position,
the word length would be bounded by 2d · (k + 1) + k = (2d + 1) · (k + 1)− 1,

We construct a new word w′ from w by removing one of the letters of w. If
we are in the case (i) we remove the first letter from w, for (ii) the last letter.
For case (iii) we remove one letter between xi+1 and xi.

We have to show that in each case w |= φ if w′ |= φ.
It is known that a FO[<] formula of quantifier depth d cannot distinguish

between words of length 2d and 2d + 1, see Theorem IV.2.1 in [Str94]. This can
be proved using Ehrenfeucht-Fräıssé games and we call duplicator’s strategy A.

The strategy for duplicator is as follows: assume that spoiler puts a pebble in
one of the intervals that was not modified then duplicator answers at the same
position within this interval. In the case that spoiler puts a pebble in the interval
that was modified duplicator plays the strategy A within this interval. ut

Lemma 1 allows us to prove the following theorem:

Theorem 1. FO[<]-uniformun NC1=FO[<]-uniformun NC0

Proof. We prove the theorem by showing that FO[<] cannot define graphs having
the property that the length of maximal paths is sublinear but not constant.
If one could define NC1 circuits with logarithmic depth in FO[<]-uniformun

then the underlying graph of the circuit defined by the formula checking the
uniformity language, could be used as a formula that defines the edge relation
for such graphs.

Assume there exists a family of graphs (Gn) with vertices labeled by k-tuples
whose edge relation E(x,y) is described by the formula φ(x1, . . . , xk, y1, . . . yk)
of quantifier depth d. Let l(n) be the length of a longest path in Gn. We will
show that l ∈ o(n) implies l ∈ O(1). The idea is to show that for large enough n
the following holds: For a path πn of length l(n) we can construct a path π′ in
Gn−1 of length l(n), so the longest path in Gn−1 has length at least l(n). This
implies that l(n) ≤ l(n − 1) for all n large enough and hence l is bounded for
n large enough and therefore in O(1). Since l(n) is in o(n) there is a value N0

such that for all n > N0 we have n ≥ (l(n) · k + 1) · (2d + 1).
Choose any n > N0. Let πn = (v1, . . . , vl) be a path of length l with l =

l(n). Let xi be the tuple of variables (xi1, . . . , x
i
k) denoting vi. The formula∧l−1

i=1 φ(xi, xi+1) is true iff πn exists and the xis are the labels of the vertices in
πn. So we will apply Lemma 1 and obtain as set of variables x′1, . . . ,x′l on a
word of length n−1. We can interpret the tuple x′i as the label of a vertex v′i in

Gn−1 and by 1 we know that π′ = (v1, . . . , vl) forms a path in Gn−1. It follows
that l(n− 1) ≥ l(n).

So we have shown that for all n > N0 we have l(n− 1) ≥ l(n), by induction
we get that l(N0) ≥ l(n). Since l(n) is bounded by l(N0) it follows that l is
bounded, and hence in O(1). ut

While FO[<] cannot describe circuits of logarithmic length adding a simple
binary predicate like x2, which is much weaker than for example +, already
allows to describe DLOGTIME uniform circuits:

Theorem 2. The classes FO[<, x2]-uniformunNC1 and FO[+1]-uniformbinNC1

each contain DLOGTIME-uniform NC1.

Proof. We let M be a ALOGTIME machine that recognizes the language of
the DLOGTIME-uniform NC1 circuit. Our model is similar to the one of Ruzzo
[Ruz81], with the exception that we do not use an extra index tape. The index
tape of the ALOGTIME machine are the first log n bits to the right of the head
of the working tape and the machine queries the input only in the last step
by switching into a state sσ. Further we choose c such that the ALOGTIME
machine uses at most c log n steps in every run.

We will build a FO[<, x2]-uniformun NC1 circuit that recognizes the same lan-
guage. We label the gates of the circuits by a tuple:
(t1, . . . , tc, s, l, l1, . . . , lc, r, r1, . . . , rc). The idea is the following: (t1, . . . , tc) de-
notes the time step of the machine. We can count from 1 to x log n by starting
from (t1, . . . , te) and doubling t1 each time, until 2 · t1 would be greater than n,
then we continue by doubling t2 and so on. In the following, we write x to denote
the vector x1, . . . , xc. A tuple s, l, r will denote the configuration of the machine,
where s is the state of the machine and l, r are the parts of the working tape
left and right of the head. The auxiliary variables l and r will keep track of how
many bits of l1 and r1 are used. Hence, the type of the gate depends directly
on s, the only problem is to test if two gates are predecessors. Given two gates
(t, s, l, l, r, r), (t′, s′, l′, l′, r′, r′) we have to check the following conditions:

Time The formula has to ensure that t′ describes one timestep after t. We say
that an entry ti is maximal if there is no position z such that z = x2(ti). By
our encoding the formula has to check: There is an i such that tj = t′j for
j < i and the tj are maximal. For i we have x2(ti) = t′i and tk = t′k are at
the first position for k > j.

Tape We assume that the lowest bit of l is the bit under the working head. We
can check if that bit is 0 by checking if l1 is even, i.e. ∃xx = x2(l1). We can
write a 0 on that position by first shifting l to the right and then to the
left, i.e. the formula first determines the largest x such that x2(x) ≤ n and
takes then x2(x). To write 1 we take x2(x) + 1 of said x. The case of r1 is
handled analogously. Before writing a 1, the formula has to make sure that
x2(x) + 1 ≤ n. If that is not the case, we copy all li 6= 0 to li+1 and set
l1 = 0. This means, we just shift the vector (l1, . . . , lc) to the right.

State and head movement The transition from s to s′ can be checked by
reading the lowest bit of l1. The movement of the head to the right is sim-
ulated by reading the lowest bit of l1, shifting l1 to the right, and writing
that bit on r1. Note, if l1 was already zero, we have to shift (l1, . . . , lc) to
the left, i.e. set li to li+1. We keep track of the bits stored in l1 and r1 by
the variables l, r. This way we can distinguish between the vectors 1 and 10
for example. In both cases l1 would equal 1, but l is 1 in the first case and
2 in the second.

Input The input gates are labeled by (σ, i), where i is given in unary. If the
ATM makes a transition into state READ(σ), we connect to the input gate
(σ, lj), where j is the maximal used block.

Note that the so constructed circuit also connects a lot of configurations that
are not reachable by the ALOGTIME machine. Still any path in the circuit has
a length of at most c log n because of t in our labeling. Hence, the circuit fulfills
the required depth restrictions.

The same construction works for FO[+1]-uniformbin NC1 circuits. We do not
need a double predicate here since we only need to check if the binary numbers
are shifted by one. ut

We obtain a dichotomy for our uniformity definitions and circuits of logarith-
mic depth. The classes result either in subclasses of NC0 or contain DLOGTIME-
uniform NC1. The fact that even low uniform circuit classes capture DLOGTIME-
uniform NC1 seems to stem from its equivalence to ALOGTIME. Turing ma-
chines are uniform and operate only locally. As noted in [BL06] this also allows
strict uniform circuit characterizations for polynomial time. In Section 6 we dis-
cuss how this can be extended to a general framework.

5 Uniform versions of NC1-complete problems

In this section we will not consider log depth circuits but constant depth circuits
equipped with gates that compute NC1 complete languages. We consider D+

and the word problem over A5 as complete problems.
Extending AC0 by A5 gates gives a proper subclass of the regular languages.

Theorem 3. FO[<]-uniformun AC0(A5) ⊂ REGULAR.

Proof. This follows by translating the circuit into a FO + A5[<] formula and
applying Theorem 11.6 from [BIS90]. ut

Actually the previous proof does not only show that FO[<]-uniformun AC0(A5)
circuits are contained in the regular language but that even
FO[<]-uniformun ACC0(A5) recognize only a subset of the regular languages.
The only way to obtain something containing an acceptably large subclass of
TC0 seems to be the bit predicate, but this immediately yields uniform NC1. If
we switch to binary encoding we do not obtain a suitable class either:

While FO[+1]-uniformbinAC0(A5) can compute if the word length is a power
of 2, there is no indication that it can compute if the word length is a power
of 3. The problem with binary encoding in this case is that the uniformity can
exploit the representation. Hence, binary encoding differs strongly from ternary
encoding. This does not matter for log depth circuits as in Section 4 where we
immediately obtain ALOGTIME.

So instead of choosing gates based on finite non-solvable groups, we choose
a gate type that corresponds to the Boolean formula value problem. Combin-
ing [BIS90], [LMSV01], and [BL06] yields that FO[<]-uniformunTC0 is separated
from
FO[<]-uniformunTC0 with linear fan-in. While the former can simulate the bit
predicate and is hence equal to DLOGTIME-uniform TC0 the latter equals
FO + MAJ[<] and cannot simulate the bit predicate.

We can show that the inclusion chain under DLOGTIME uniformity remains
valid for FO[<] uniformity in unary shuffled encoding.

Theorem 4. FO[<]-uniformun AC0(D+) ⊇ FO[<]-uniformunTC0

FO[<]-uniformun AC0(D+)LIN ⊇ FO[<]-uniformunTC0
LIN .

Proof. We recall the definitions of the following languages: MAJORITY =
{w ∈ {0, 1}∗ | #1(w) > #0(w)}, EQUALITY = {w ∈ {a, b}∗ | #a(w) =
#b(w)}, and D1 = {w ∈ EQUALITY | ∀u, v with uv = w : #a(u) ≥ #b(u)}.
We need to show that we can simulate a MAJ gate by a D+ gate in the given
uniformity. To increase readability we use the alphabet {a, b} instead of {0, 1}
for the EQUALITY and Dyck languages. We reserve {0, 1} as the alphabet of
the MAJORITY language. In order to do so we show how to reduce the majority
language to the one sided Dyck language over a single pair of parentheses D1

and then reduce this to D+. Let us begin by reducing the language EQUALITY,
i.e. {w ∈ {0, 1}∗ | #1(w) = #0(w)}, to D1. We define two morphisms πa, πb :
{0, 1}∗ → {a, b}∗ by letting πa(1) = aa, πa(0) = ab, πb(1) = ab, πb(0) = bb. We
claim that the mapping w 7→ πa(w)πb(w) is a reduction from EQUALITY to D1.
Observe that for any w ∈ {0, 1}∗ πa(w) is always a valid prefix for a word in D1

and #a(πa(w)) −#b(πa(w)) = 2(#1(w) −#0(w)). Similarly, πb only produces
valid suffixes and we have #b(πa(w))−#a(πa(w)) = 2(#0(w)−#1(w)). It follows
that πa(w)πb(w) ∈ D1 ⇔ #1(w) = #0(w).

To obtain a reduction from MAJORITY to D1 observe that

#a(πa(w)πb(w)) ≥ 0⇔ #1(w) ≥ #0(w)

(and πa(w)πb(w) is a prefix of a Dyck word). Hence, if the number of 1’s in
w is less than half there is no suffix z such that πa(w)πb(w)z ∈ D1. We de-
fine two more morphisms that will build the Dyck inverse for πa(w)πb(w): Let
π̄a(1) = bb, π̄a(0) = ab, π̄b(1) = ab, π̄b(0) = aa. Now we have a reduction from
MAJORITY to D1 by the mapping w 7→ πa(w)πb(w)π̄b(w)π̄a(w).

We sum up the idea: we open #1(w) many parentheses, then close #0(w)
many parentheses, then open #0(w) many parentheses, and finally close #1(w)
many parentheses. This expression is valid if no more parentheses in the middle

are closed than are opened before, i.e. #1(w) ≥ #0(w). So actually this accepts
words with an equal number of 1’s and 0’s. This can be fixed in the logic by
excluding this case through testing on equality as shown above. We have that
w ∈ LMAJ ⇔ πa(w)πb(w)π̄b(w)π̄a(w) ∈ D1.

We reduce D1 to D+ by mapping w to aabbw. The reduction creates a tree,
with a node, where the left subtree defined by aabb evaluates to false and the
right subtree is defined by w. Therefore since all gates of the tree are NAND
gates, the whole tree always evaluates to true iff w is a correct word in D1. If w
is not in D1 the whole word will be outside of D1 and hence not in D+.

To have this reduction work in FO[<], we need a reduction that has very
limited computational power. We will generate a reduction that reduces a word
of length n to a word of length 10n. The position will be as tuples where (x, y)
stands for position x+ny with x ∈ {1, . . . , n} and y ∈ {1, . . . , 10}. The position
x + ny of the reduced word will depend only on x and also either the input at
position x, or will be a constant for all x > 4. We use the following observations:

First, the reduction from LMAJ to D1 remains valid if we split the morphism
πa into two morphisms π1

a(a) = a, π1
a(b) = a, π2

a(a) = a, π2
a(b) = b. We split the

other three morphisms in the same fashion and observe that still holds

w ∈ LMAJ ⇔ π1
a(w)π2

a(w)π1
b (w)π2

b (w)π̄1
b (w)π̄2

b (w)π̄1
a(w)π̄2

a(w) ∈ D1.

Second, given a word w of length n ≥ 4 we can reduce D1 to D+ by mapping w
to aabban−4aabbbn−4w. The word an−4aabbbn−4 is in D1 so behaves neutral in
the morphism.

Summarizing, we map a word of length n to a word of length 10n to obtain
a reduction from LMAJ to D+. Where

w 7→ aabban−4aabbbn−4π1
a(w)π2

a(w)π1
b (w)π2

b (w)π̄ : a1(w)π̄2
b (w)π̄1

a(w)π̄2
a(w)

This construction can be carried out in FO[<]-uniformity by using a variable
which is bound to the positions {1, . . . , 10}. ut

We mention that MODq gates can be simulated in FO[<]-uniformun TC0
LIN .

Together with the proof above it follows that

FO[<]-uniformunAC0(D+) ⊇ FO[<]-uniformunTC0 ⊇ FO[<]-uniformunACC0

These inclusions remain valid for the corresponding circuit classes with linear
fan-in. The following theorem shows that AC0(D+)LIN is strictly weaker than
NC1, but it is still not clear whether it is contained in (even non uniform) TC0.

Theorem 5. The predicate ∗ (and hence bit) cannot be expressed in
FO[<]-uniformunAC0(D+)LIN .

Proof. This follows from Theorem 4.16 in [LMSV01]. ut

Theorem 4 and Theorem 5 highlight the important difference between AC0(D+)
and AC0(D+)LIN ; indeed the former is able simulate bit and thus equals NC1.

Note that superlinear fan-in of gates corresponds to quantifiers over tuples of
variables in the logic world.3

Summarizing we are able to say: in contrast to A5 gates, using D+ gates
yields a class that is weaker than DLOGTIME uniform NC1 but contains uni-
form subclasses of TC0

LIN . Hence, FO[<]-uniformun AC0(D+)LIN is a candidate
subclass of NC1 worthy of attempts to separate it from TC0.

6 A guide to minimal Uniformity

In Section 4 we noticed that log depth circuits with very tight uniformity can
already simulate circuits which are much more non-uniform. This phenomenon
is much more general and we explore it in this section. We start by showing that
polynomial time admits very uniform circuits over the standard Boolean gates.

Theorem 6. The following circuit families define the same class of languages:
PTIME-uniform polynomial size circuits, FO[+1]-uniformbin polynomial size cir-
cuits, FO[+1]-uniformun polynomial size circuits.

Proof. It is known that the first circuit class equals P . The latter two classes
are also easily seen to be in P , it remains to show that P is contained in those
classes. To see how P can be translated into FO[+1]-uniform circuits recall how
a TM M of running time nk is simulated by circuits ([Lad75]). The basic layout
of the circuit is a grid of 2nk×nk subcircuits. A subcircuit at position (p, t), will
compute the state of the tape at position p at time t. Since such a subcircuit
has a constant size, we will enumerate the gates of the circuit by tuples of size
2k + k + c, where c depends on the size of the subcircuit.

Such a subcircuit encodes the state of a tape cell at position p and time t,
i.e. the symbol written on it and eventually the state of the TM, if the head
is over the tape cell, by a constant number of, say c, output gates. Its inputs
are connected to 3c input gates, namely the output gates of the subcircuits at
positions (p− 1, t− 1), (p, t− 1), and (p+ 1, t).

To see why the resulting circuit is FO[+1]-uniform, we observe what has to
be checked. To see if two gates, each encoded by a 3k + c tuple (p, t, g) are
connected, the formula has to check two cases: (Let the gates be (p1, t1, g1) and
(p2, t2, g2))

1. p1 = p2, t1 = t2, the wiring is within a subcircuit and hence a finite function
ranging over the possible constant values of (g1, g2). All such functions are
in FO[+1].

2. t1 = t2 − 1. In this case p1 is either equal to p2, p2 + 1, or p2 − 1. This is
checkable in FO[+1]. Furthermore, the formula has to check, if g1 and g2
have the correct number, but the same argument as above applies.

3 For the A5 quantifier we do not have to distinguish between quantifiers over one
variable and quantifiers over tuple of variables.

For the cases of t = 1 and t = nk we have to add special cases, one layer
translating the input into tape cells, the other checking with a big OR gate, if
one tape cell at the last time step has a head in an accepting state.

Each of these cases, as well as the cases at the border of the grid can be
handled similar to above by a FO[+1]-formula.

It is also easy to see that we can switch from unary to binary shuffled encod-
ing. The tests for the fixed cases are clearly in FO[+1], for the other tests the
formula must compute ±1 on binary numbers, but this can be done in FO[+1].

ut

The proof of Theorem 2 builds the circuit for an ALOGTIME machine from
its configuration tree. Both theorems exploit the locality of a computational step
of a Turing machine. We discuss possible extensions of these theorems and under
which conditions might lead to a more general framework.

An obvious extension to Theorem 6 is to consider more general complexity
classes of Turing machines. Consider a complexity class M defined by time and
space bounds. When simulating a TM in M as a circuit then time translates
to depth and space to width. If one equips FO[<] with unary predicates that
allow to check the depth and width bounds, it is possible to perform the con-
struction without much overhead. Therefore, a (deterministic) Turing machine
can be simulated by very uniform circuits. If now conversely such a circuit can
be evaluated by a TM in M then any M-uniform C circuit can be converted
to a FO[<, pB]-uniform C circuit. Here pB stands for a set of unary predicates
that allow to check the bounds on the circuit. This construction requires some
minimal closure properties for the function for the functions giving the time and
space bounds on the machine. The idea is to take the machine that evaluates a
circuit in M-uniform C and to construct the FO[<, pB]-uniform circuit for this
machine. An example is polynomial time where P -uniform polynomial size cir-
cuits equal FO[<]-uniform polynomial size circuits. (Here, pB can be directly
expressed within FO[<].)

Similar observations hold for alternating Turing machines as exhibited in
[Ruz81]: for k > 1 the different notions of uniformity define identical circuit
families including LOGSPACE-uniform families. Then, it is easy to see how to
extend the construction of Theorem 2 to circuits of depth logk.

We believe that the requirement for C to be contained in some Turing class
can be omitted. Let M be the machine that would decide the uniformity lan-
guage. The idea is the following: Let a be a gate and b be a possible candidate to
be a predecessor. Instead of letting the uniformity language to decide whether
there is a wire from b into a, we build a circuit, that will evaluate M and then
either feed in b or not. (Note this requires to be able to feed in a neutral input.)
This is done for all possible gates b for a. We call this construction a “switch
gate”. So we need to be able to simulate M in the circuit class C. This idea is
can be already found in [Ruz81].

This is an explanation why log-depth circuits seem to be always at least
DLOGTIME-uniform as exhibited in Section 4.

7 Discussion

In this paper we considered uniform versions of NC1 with stricter uniformity
notions than DLOGTIME. Our motivation was to search for classes between
TC0 and NC1 defined by uniformity that might be interesting candidates for
separation attempts.

Considering logarithmic depth circuits proved unsuccessful since we obtained
either the full power of ALOGTIME or NC0. The fact that we can find strictly
uniform circuit classes for ALOGTIME is based on the exploitation of uniformity
and locality of the steps of a Turing machine. This also allows FO[<]-uniformun

characterizations of polynomial time as observed in [BL06]. We think that this
could be extended to circuit classes that have characterizations in terms of Turing
machines, or to circuit classes whose uniformity languages are defined by Turing
machines as long as the circuit class is at least as powerful as the uniformity
language.

So we examined other characterizations of NC1, namely the AC0 closures of
A5 and of the formula value improved problem in the form of the D+ language.
While A5 did not yield a satisfying subclass, we could show that the FO[<]-
uniform AC0 closure of D+ contains TC0. While the FO[<]-uniform AC0 closure
of D+ equals NC1, the version with linear fan-in is strictly weaker than NC1 but
contains its TC0 counterpart, namely FO[<]-uniformunTC0

LIN . We leave open
the question of separating the two equally uniform classes
FO[<]-uniformunAC0(D+)LIN and FO[<]-uniformunTC0

LIN . Such a separation
would amount to distinguishing the power of MAJ from the power of D+.

Perhaps one other research avenue would be to consider direct connection
language encodings that are intermediate between the unary shuffled encoding
and the binary shuffled encodings studied here.

References

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. J. Comput. Syst. Sci.,
38(1):150–164, 1989.

[BCGR92] Samuel R. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal
parallel algorithm for formula evaluation. SIAM J. Comput., 21(4):755–780,
1992.

[BCST92] David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis
Thérien. Regular languages in NC1. J. Comput. Syst. Sci., 44(3):478–499,
1992.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
Uniformity within NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

[BKL] Christoph Behle, Andres Krebs, and Klaus-Jörn Lange. The Boolean For-
mula Value Problem as a Formal Language. In preperation.

[BL06] Christoph Behle and Klaus-Jörn Lange. FO[<]-Uniformity. In IEEE Con-
ference on Computational Complexity, pages 183–189, 2006.

[Bor77] Allan Borodin. On relating time and space to size and depth. SIAM J.
Comput., 6(4):733–744, 1977.

[Bus87] Samuel R. Buss. The boolean formula value problem is in alogtime. In
STOC, pages 123–131. ACM, 1987.

[Coo79] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in poly-
nomial time and log squared space. In STOC, pages 338–345. ACM, 1979.

[Gol78] Leslie M. Goldschlager. A unified approach to models of synchronous par-
allel machines. In STOC, pages 89–94, 1978.

[Imm87] Neil Immerman. Languages that capture complexity classes. SIAM J. Com-
put., 16(4):760–778, 1987.

[JKMT03] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Com-
pleteness results for graph isomorphism. J. Comput. Syst. Sci., 66(3):549–
566, 2003.

[Lad75] Richard E. Ladner. The circuit value problem is log space complete for p.
SIGACT News, 7:18–20, January 1975.

[LMSV01] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert
Vollmer. The descriptive complexity approach to LOGCFL. J. Comput.
Syst. Sci., 62(4):629–652, 2001.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. With an
appendix by William Henneman. Research Monograph No.65. Cambridge,
Massachusetts, and London, England: The M. I. T. Press. XIX, 163 p., 1971.

[MPT91] Pierre McKenzie, Pierre Péladeau, and Denis Thérien. NC1: The automata-
theoretic viewpoint. Computational Complexity, 1:330–359, 1991.

[Pél92] Pierre Péladeau. Formulas, regular languages and boolean circuits. Theor.
Comput. Sci., 101(1):133–141, 1992.

[RS07] Amitabha Roy and Howard Straubing. Definability of languages by gen-

eralized first-order formulas over N+. SIAM J. Comput., 37(2):502–521,
2007.

[Ruz81] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci.,
22(3):365–383, 1981.

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, 1994.

[STT95] Howard Straubing, Denis Thérien, and Wolfgang Thomas. Regular lan-
guages defined with generalized quanifiers. Inf. Comput., 118(2):289–301,
1995.

[Tho78] Wolfgang Thomas. The theory of successor with an extra predicate. Math.
Annalen, 237:121–132, 1978.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

