
The lower reaches of circuit uniformity

Christoph Behle1, Andreas Krebs1, Klaus-Jörn Lange1, and Pierre McKenzie2

1 Wilhelm-Schickard-Institut, Universität Tübingen
{behlec,krebs,lange}@informatik.uni-tuebingen.de

2 DIRO, Université de Montréal
mckenzie@iro.umontreal.ca

Abstract. The effect of severely tightening the uniformity of Boolean
circuit families is investigated. The impact on NC1 and its subclasses
is shown to depend on the characterization chosen for the class, while
classes such as P appear to be more robust. Tightly uniform subclasses of
NC1 whose separation may be within reach of current techniques emerge.

1 Introduction

Motivation. Uniformity is imposed on Boolean circuit families in order for
circuit families to define classes of languages that correspond to machine-based
classes. For example, logspace-uniform and polytime-uniform Boolean circuit
families of polynomial size [Bor77] capture the class P, while non-uniform circuit
families of constant size recognize undecidable languages.

Uniformity notions more permissive than the circuit resources under study
were considered in the literature (e.g. [All89]). But tighter and tighter notions
were needed to capture low complexity classes. Borodin [Bor77] and Cook [Coo79]
first showed the usefulness of enforcing uniformity by means of space-bounded
Turing machines computing circuit descriptions. This worked well for NC2 and
above. Inspired by Goldschlager [Gol78], Ruzzo [Ruz81] then tied uniformity to
circuit connectivity queries. Ruzzo defined an ALOGTIME notion of uniformity
under which NC1 meaningfully equals ALOGTIME. Yet tighter notions were
needed to investigate AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1. Barrington, Immerman and
Straubing [BIS90] thus developed DLOGTIME-uniformity. They proved that
the model-theoretic notion introduced by Immerman [Imm87] and the Turing
machine-based notion studied by Buss [Bus87] were equivalent to their own.

Roy and Straubing [RS07] later triggered the need for an even stronger no-
tion of uniformity than DLOGTIME. This requires some explaining, because
DLOGTIME is surely the lowest meaningful Turing machine-based complexity
class imaginable.

Motivation continued: enters descriptive complexity. Borrowing an
example from [MTV10], the language of words w ∈ {a, b}? having no b at an
even position is described by the intuitive formula ¬∃i

(
Even(i)∧Qb(i)

)
. In such

a formula, the variables range over positions in w, the predicate Qσ for σ ∈ {a, b}
holds at i iff wi = σ, and the numerical predicate Even holds at i iff i is even.
This example is a first-order formula, more precisely a FO[<,Even] formula,

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 95 (2011)

where the numerical predicates allowed are listed and they include “i < j” for
the formalism to be able to describe words, i.e., (ordered) sequences of letters.

Descriptive complexity based on ExtFO (our appellation here for FO ex-
tended with generalized quantifiers) is tied to circuit complexity in two important
ways. First, low circuit complexity classes have crisp ExtFO characterizations.
Second, FO provides the desired notions of uniformity finer than DLOGTIME.

Indeed a language is in non-uniform AC0 iff it can be described by a FO[arb]
formula [Imm87], where arb means that “any arbitrary set of numerical predi-
cates” is allowed. A language is in non-uniform TC0 iff it can be described by
a MAJ[arb] formula [BIS90], where MAJ refers to replacing “∃” and “∀” with
the “there exist more than half of the possible positions i at which the formula
holds” quantifier. And a language is in non-uniform NC1 iff it can be described
in S5 + FO[arb], where S5 + FO refers to allowing, in addition to “∃” and “∀”,
a (Lindström) quantifier testing whether a sequence of five-point permutations
associated with each position i composes to the identity permutation [Bar89].

Strikingly, replacing [arb] above with the pair of numerical predicates [+, x]
imposes DLOGTIME-uniformity [BIS90]. For example, FO[+, x] precisely equals
DLOGTIME-uniform AC0 and S5 + FO[+, x] equals DLOGTIME-uniform NC1.
The numerical predicates available to the ExtFO description of a circuit-based
class of languages thus regulate the uniformity of the circuit families.

Roy and Straubing proved [RS07] that any regular language expressed in
MODq+FO[<,+] can be re-expressed without the non-regular3 numerical pred-
icate “+”, where MODq refers to allowing the “there exist m modulo q positions
i at which the formula holds” quantifiers. Roy and Straubing asked whether
MODq + FO[<,+] also has a circuit characterization. This was answered by the
first and third authors who proved, using a new encoding for circuit connections,
that ExtFO[<,X] is meaningfully captured by FO[<,X]-uniform circuits, for any
reasonable set X of numerical predicates [BL06].

Motivation concluded. Meaningful uniformity notions even tighter than
DLOGTIME uniformity thus abound: examples are FO[<,+]-uniformity and
FO[<]-uniformity. In the FO[<,+]-uniform world, Roy and Straubing thus sep-
arated classes that are only conjectured to differ in the more usual FO[+, x]-
uniform, i.e., DLOGTIME-uniform, world.

Our main motivation is to examine the impact of imposing FO[<]-uniformity.
Do the separations conjectured in the DLOGTIME-uniform world hold here?
What happens to TC0 and to the following well-known characterizations of NC1,

Characterization Depth Fan-in Size Gates used

NC1 O(log n) constant poly AND,OR,NOT
AC0(M) O(1) poly poly AND,OR,M
AC0(D+) O(1) poly poly AND,OR, D+

AC0(D+)LIN O(1) linear poly AND,OR, D+

3 A numerical predicate is said to be regular if a finite automaton can compute it; much
of the internal structure of (uniform and non-uniform) NC1 hinges on a “regularity”
conjecture [Str94, Conjecture IX.3.4], stating that ExtFO expressibility of a regular
language never inherently requires a non-regular numerical predicate.

FO[<,+, x]-uniform

NC1=AC0(M)=AC0(D+)=

=AC0
LIN (M)=AC0

LIN (D+)

TC0=TC0
LIN

ACC0=ACC0
LIN

AC0=AC0
LIN

NC0

FO[<]-uniform

AC0(D+) AC0
LIN (D+)

TC0 TC0
LIN

ACC0=ACC0
LIN AC0(M)=AC0

LIN (M)

AC0=AC0
LIN

NC0 =Thm 1 NC1

Thm 4

Thm 3

Thm 1

Thm 4

Fig. 1. Except in the case of NC1 = ALOGTIME, FO[]-uniformity here refers to
direct connection language expressivity under unary shuffled encoding (see Section 2).
A solid arc, a bidirectional arc and a dashed arc from A to B denote A ⊆ B, A = B
and A ⊂ B respectively. Arrows with no labels were known prior to this paper.

where AC0(M) is the AC0-closure of a set of word problems over finite monoids
from a set M that contains at least one non-solvable monoid, e.g. A5 [Bar89],
where D+ is a variant of the Boolean formula value problem [Bus87,BCGR92]
(see Section 2) and where AC0(D+)LIN is AC0(D+) with linear fanin gates?

Our results. See Figure 1. Together with some further observations, we
deduce the following properties of the FO[<]-uniform world:

– the logarithmic depth characterization of NC1 collapses down to NC0; more
generally (Theorem 1), any class described by sublinear depth circuits, such
as AC1 or NC, collapses down to its constant-depth level;

– by contrast, adding to “i < j” the numerical predicate “i = 2j”, hence a
predicate weaker than + or x, restores ALOGTIME (Theorem 6);

– AC0(A5) ⊂ ACC0(A5) ⊂ REGULAR [BIS90,BL06], thus AC0(A5) 6⊇ TC0;
– ALOGTIME = AC0(D+) [Bus87], thus AC0(D+) ⊇ TC0;
– AC0(D+)LIN ⊇ TC0

LIN (Theorem 3);
– AC0(D+)LIN can neither express the x nor the bit numerical predicate; since

the presence of the bit predicate is a major hurdle in lower bound proofs,
this suggests attempting to separate AC0(D+)LIN from TC0

LIN as the next
target towards understanding the relationship between TC0 and NC1;

– polynomial size Boolean circuits capture P (Theorem 5).

FO[<]-uniformity is defined here as in [BL06] using unary shuffled encod-
ing. For purposes of comparison, we also define a FO[+1]-uniformbin world,

where “<” is replaced with the weaker “+1” and circuit parameters are ex-
pressed in binary notation (following [BCGR92]). In that world, NC1 does con-
tain ALOGTIME (Theorem 6) and polynomial size circuits still capture P.

2 Preliminaries and definitions

We assume familiarity with circuits and only recall some fundamental definitions.
For i ≥ 0, the class NCi is the set of languages recognized by circuit families of
depth O((log n)i) and polynomial size built from bounded fan-in AND, OR and
NOT gates. The class ACi is obtained instead when the AND and OR gates have
unbounded fan-in and ACCi is further obtained when unbounded fan-in MODq

gates are also permitted. The class TCi is the set of languages recognized by
circuit families of depth O((log n)i) and polynomial size built from unbounded
fan-in MAJORITY gates. We write AC0(G) for the class AC0 in which the
circuits are additionally equipped with unbounded fan-in gates of type G.

Definition 1 (Direct connection language of a circuit family). Let Cn be
a circuit with n inputs and size ≤ nc. We label the gates by c-tuples of numbers
from 1 to n. Then the direct connection language of Cn is

LCn = {〈t,a, b, n〉 |the gate g labeled by a has type t and, either,

t = input and g queries the input bit b1 ∈ {1, . . . , n}, or

t ∈ {true, false} and g is assigned the value t, or

t ∈ {¬,∧,∨, G} and the gate labeled b is a predecessor of g}.

The direct connection language of a sequence of circuits C = (C1, . . .) is LC =⋃
n LCn . The predecessors of a gate are fed into the gate in ascending order of

their numbers. The output gate is always labeled by (1, . . . , 1).

The language LCn
may describe gates having no path to the output, or

unreachable from the inputs, or both. Such gates do contribute to the size of
Cn. The depth of Cn is defined as the longest path in the graph of the circuit,
regardless of whether this path connects an input gate to the output gate. We
will use numbers to encode the type of a gate in t.

We have yet to fix an encoding that will turn the above direct connection
language into a set of words over a fixed alphabet. The unary n-encoding of a
number 1 ≤ i ≤ n is defined as the word aibn−i over Σ = {a, b}.

Given a sequence of words w1, . . . , wc of a common length n over a common
alphabet Σ, the shuffle of this sequence is the unique word u of length n over
Σc, defined by setting the i-th letter of u to (σ1, . . . , σc) iff σj is the i-th letter
of wj for 1 ≤ j ≤ c.

Definition 2 (Unary shuffled encoding [BL06]). The unary shuffled n-
encoding of a sequence α1, . . . , αk of numbers between 1 and n is the shuffle
of the sequence of unary n-encodings of α1, . . . , αk. When n is understood, this
shuffle is denoted 〈α1, . . . , αk〉 (and is a word of length n over {a, b}k).

Definition 3 (FO[X]-uniform circuit family). For X a set of numerical pred-
icates, i.e., a set of relations of various arities over N, we say that a circuit family
(Cn)n≥1 is FO[X]-uniform if the following language is expressible in FO[X]:⋃
n≥1

{w ∈ {a, b}∗ : w = unary shuffled n-encoding of some 〈t,a, b, n〉 ∈ LCn}.

Remark 1. By [BL06], FO[<,+, x]-uniform AC0(G), ACC0 and TC0 respectively
equal DLOGTIME-uniform AC0(G), ACC0 and TC0 as defined in [BIS90]. In
particular, FO[<,+, x]-uniform AC0(A5) equals what is commonly referred to
as DLOGTIME-uniform NC1 and thus ALOGTIME [BIS90]. To clear possible
confusion, recall that to obtain DLOGTIME-uniform NC1 from a DLOGTIME
criterion applied to logarithmic depth circuits, the extended connection language
is used [Ruz81]. It is known that UD-NC1 ⊇ ALOGTIME, where UD-NC1 is
defined by DLOGTIME recognition of LC for logarithmic depth circuit families
C, but equality is still open (see [Vol99, P. 162]).

When dealing with the Dyck language D1 over one pair of parentheses we
will use the letters {a, b} instead of {(,)} to improve readability.

We define now a formal language version of the formula value problem. We
encode complete binary trees, i.e.: trees where each inner node has exactly two
predecessors, by a traversal from left to right. A left edge is labeled by a and
a right edge is labeled by b. This gives a one-to-one correspondence between
complete binary trees and the Dyck language D1 ⊂ {a, b}∗.

We decided in favor of labelling the edges and against the more usual labelling
of the vertices, which would lead to the well known representation of complete
binary trees by the Lukasiewicz language.

A tree labelled by Boolean functions and constants evaluates either to true
or to false. In this way the Dyck set D is divided into the two disjoint subsets
D = D+ ∪ D− where D+ consists in those elements of D which represent a tree
(labelled with the NAND-function and the constant true) which evaluates to true
and D− contains those which evaluate to false. Thus D+ is a special formulation
of the Boolean formula value problem which makes D+ NC1-complete.

Definition 4 (D+ language). Any word in the Dyck language D1 corresponds
to a tree as defined above. If we let every leaf of the tree be a true node and every
inner node be a NAND, the tree is a formula evaluating either to true or false.
We let D+ ⊂ {a, b}∗ be the set of words that are in the Dyck language and whose
corresponding formula evaluates to true.

We now define two gate types based on languages that are complete for NC1,
even in the case of DLOGTIME-uniformity.

Definition 5 (A5 Gate). Let A5 be the alternating group over 5 elements and
g0, g1 ∈ A5 be two 5 cycles that span the whole group. An A5 gate with k Boolean
inputs x1, . . . , xk evaluates to 1 if gx1

. . . gxk
= 1, otherwise to 0.

Recall that we write the Dyck language over the alphabet {a, b}.

Definition 6 (D+ Gate). A D+ gate with k Boolean inputs x1, . . . , xk evaluates
to 1 if replacing every 0 by a and every 1 by b in the word x1 · · ·xk yields a word
in D+.

We assume some familiarity with first order descriptive complexity. We follow
Straubing and use his semantics based on V-structures [Str94, P. 14]. We write
FO to denote first order logic and write the set of allowed numerical predicates
in brackets. We will use the binary predicates bit, <, +1, and x2. Since the
value of a numerical predicate depends only on the position of the variables and
the word length, we will freely switch between variables and natural numbers
denoting their positions. To make this transition clearer we write “x = i” for
a variable x and a natural number i when x points to the i-th position. The
predicate bit(i, j) is true if the i-th bit of the binary representation of j is a 1.
The successor predicate +1(i, j) is true i = j + 1. The double predicate x2(i, j)
is true if i = 2j. Recall that FO[<] only describes regular languages (it in fact
captures the aperiodic regular languages [MP71]). The class FO[+1] is a proper
subclass of FO[<] that in fact captures the threshold testable languages [Tho78].

The class FO can also be extended by adding additional quantifiers. We write
FO+MAJ, FO+A5, and FO+M , resp., for the class FO which is also equipped
with the majority quantifier, with an A5-quantifier, and with arbitrary finite
monoid quantifiers, respcectively.

3 FO[<]-uniform logarithmic depth circuits

Our first theorem shows that FO[<]-uniform NC1 is restrictive as the class col-
lapses down to NC0. If we add a simple numerical predicate like x2 we obtain
full DLOGTIME-uniform NC1.

To prove our first theorem we show that FO[<] cannot express an edge rela-
tion such that the resulting graph has paths of length Θ(log n). We first explain
why we need only to consider the expressiveness of FO[<] in terms of numerical
predicates.

The expressive power of FO[<] is well understood. One important restriction
of FO[<] is that a fixed formula can only count up to a constant. Beyond this
constant it can only check the relative ordering. It is for example known that

for quantifier depth d a formula cannot distinguish between the words a2
d

and

a2
d+1.

We use the following observation from [Str94][p. 79].

Lemma 1. Let φ be a formula of quantifier depth d over the alphabet Σ, let

u,w ∈ Σ∗, and let v ∈ Σ. Then uv2
d−1w |= φ iff uv2

d

w |= φ.

Proof. We show that Duplicator has a winning strategy in a d-round Ehrenfeucht-

Fräıssé game on (uv2
d−1w, uv2

d

w).
The strategy for Duplicator is as follows. If Spoiler puts a pebble on u

or w then Duplicator answers at the matching position of the other word. If
Spoiler puts a pebble on v, we adapt the strategy used in the proof of Theorem

IV.2.1 in [Str94]. There it is shown that Duplicator has a winning strategy A for

(a2
d−1, a2

d

). So if Spoiler puts a pebble on the i-th copy of v within v2
d−1 or v2

d

,

then Duplicator interprets i as a position within a2
d−1 or a2

d

. In the strategy A

Duplicator would place a pebble at position j on a2
d

or a2
d−1, respectively, so

Duplicator places his pebble on the j-th copy of v2
d−1 or v2

d

, respectively. ut

This allows us to prove the following theorem:

Theorem 1. Let X be any circuit class that limits the depth d(n) to be sublinear,
i.e. d(n) ∈ o(n), and X ′ be the same circuit class with the restriction that the
depth is constant. FO[<]-uniform X=FO[<]-uniform X ′.

Proof. Let (Cn)n be a family of circuits in FO[<]-uniform X of depth l(n),
the labels of (Cn)n are k-tuples of numbers, and the connection language is
recognized by a FO[<] formula φ of quantifier depth d.

We prove the theorem by showing that one cannot define a circuit of depth
sublinear but not constant, i.e. l(n) is sublinear. There is a value N0 such that
for all n > N0 we have n ≥ (l(n) · k + 1) · (2d + 1). By induction we show for all
n ≥ N0 that l(n) ≤ l(N0). For the basis l(N0) ≤ l(N0) there is nothing to prove.

Choose any n > N0. Let (G1, . . . , Gl(n)) be a sequence of gates in Cn, such
that for 1 < i ≤ l(n) the gate Gi is an input gate of Gi−1. So the gates form a
“path” in the circuit Cn. We let Li be the gate label of Gi, which is a shuffled
unary encoding of k numbers. Let w be the shuffled encoding of all Li for i =
1, . . . , l(n), and let Σ be the corresponding alphabet. So w is a word which is the
unary shuffled encoding of l(n) · k numbers. We have a formula ψ for our family
of circuits that checks if a word over Σ∗ is the shuffled encoding of a path of
length l(n) in any one of the circuits Cn′ , by using a (l(n)− 1)-ary conjunction
of the connection formula φ. The depth of ψ is d.

Let α1, . . . , αl(n)·k be the ordered set of the l(n) · k numbers. The shuffled
encoding of these numbers will have the same letter in each of these intervals,
i.e. for i < i′ if there does not exist a j such that i ≤ αj ≤ i′, then the i-th letter
equals i′-th letter, i.e. wi = wi′ . Since n ≥ (l(n) · k + 1) · (2d + 1) there exists a

factor word in w of the form σ2d for σ ∈ Σ, i.e. w = uσ2dv for u, v ∈ Σ∗.
So we will apply Lemma 1 to w and ψ, and obtain a word w′ of length n− 1.

But this word can be interpreted as the shuffled encoding of the labels of a gates
sequence (G′1, . . . , G

′
l(n)) in C ′n−1. Also by Lemma 1 we know that no formula of

depth d can distinguish w and w′, hence G′i is an input gate of G′i−1 in Cn−1. It
follows that l(n) ≤ l(n− 1) and by the induction hypothesis l(n) ≤ l(N0). ut

In the previous theorem if we choose G1 to be the output gate, we would
have that G′1 is also the output gate, hence not just some irrelavent gates that do
not influence the output gate generate the problem, but an actually path form
the output gate to an input gate can only have constant length.

Corollary 1. In the world of FO[<]-uniformity, NCi = NC0, ACi = AC0 and
TCi = TC0 hold for every i ≥ 1.

In view of the inability for a FO[<]-uniform class to recognize polylogarithmic
depth properly, one might consider adding a unary predicate such as logn(x)
defined to be true if log(n) = x.

Using the same idea as above one can show that the output gate labeled by
(l1, . . . , lk) can only access input positions in a polylogarithmic range around
(l1, . . . , lk), since we have a path from the gate labeled (l1, . . . , lk) to the input
gate at position pi of polylogarithmic length. Hence the same proof shows that
one cannot obtain FO[<, log]-uniform NCi circuits that are able to recognize the
language 1∗.

While FO[<] cannot describe circuits of logarithmic length, adding a simple
binary predicate like x2, which is much weaker than for example +, already
allows to describe DLOGTIME uniform circuits (see Theorem 6).

We obtain a dichotomy for our uniformity definitions and circuits of logarith-
mic depth. The classes result either in subclasses of NC0 or contain DLOGTIME-
uniform NCi. The fact that even low uniform circuit classes capture DLOGTIME-
uniform NC1 stems from its equivalence to ALOGTIME. Turing machines are
uniform and operate only locally. As noted in [BL06] this also allows tightly
uniform circuit characterizations for polynomial time. In Section 5 we discuss
how this can be extended to a general framework.

4 FO[<]-uniform constant-depth NC1 characterizations

In this section we will not consider log depth circuits but constant depth circuits
equipped with gates that compute NC1 complete languages. We consider D+

and the word problem over A5 as complete problems.
Extending AC0 by A5 gates gives a proper subclass of the regular languages.

Theorem 2. Let M be any subset of monoids, then FO[<]-uniform AC0(M) ⊆
REGULAR, where equality only occurs if every finite monoid can be simulated
by (i.e., is a homomorphic image of a submonoid of) a monoid from M .

Proof. This follows by translating the circuit into a FO + M [<] formula and
applying Theorem 11.6 from [BIS90]. Here FO + M stands for first order logic
equipped with monoid quantifiers as defined in [BIS90]. ut

The same argument does not only show that FO[<]-uniform AC0(M) circuits are
contained in the regular languages but that even FO[<]-uniform ACC0(M) rec-
ognize only a subset of the regular languages. The only way to obtain something
containing an acceptably large subclass of TC0 seems to be the bit predicate,
but this immediately yields uniform NC1.

So instead of choosing gates based on finite non-solvable groups, we choose a
gate type that corresponds to the Boolean formula value problem. It is known [BL06]
that that FO[<]-uniform TC0 is separated from FO[<]-uniform TC0 with linear
fan-in. While the former can simulate the bit predicate and is hence equal to
DLOGTIME-uniform TC0 the latter equals FO + MAJ[<] and cannot simulate
the bit predicate.

Yet we can show that inclusion under DLOGTIME uniformity remains valid
under FO[<] uniformity:

Theorem 3. FO[<]-uniform AC0(D+)LIN ⊇ FO[<]-uniform TC0
LIN .

Proof. We recall the definitions of the following languages: MAJORITY =
{w ∈ {0, 1}∗ | #1(w) > #0(w)}, EQUALITY = {w ∈ {a, b}∗ | #a(w) =
#b(w)}, and D1 = {w ∈ EQUALITY | ∀u, v with uv = w : #a(u) ≥ #b(u)}.
We need to show that we can simulate a MAJ gate by a D+ gate in the given
uniformity. In order to do so we show how to reduce the majority language
to the one sided Dyck language over a single pair of parentheses D1 and then
reduce this to D+. Let us begin by reducing the language EQUALITY, i.e.
{w ∈ {0, 1}∗ | #1(w) = #0(w)}, to D1. We define two morphisms πa, πb :
{0, 1}∗ → {a, b}∗ by letting πa(1) = aa, πa(0) = ab, πb(1) = ab, πb(0) = bb. The
mapping w 7→ πa(w)πb(w) is a reduction from EQUALITY to D1.

To obtain a reduction from MAJORITY to D1 observe that

#a(πa(w)πb(w))−#b(πa(w)πb(w)) ≥ 0⇔ #1(w) ≥ #0(w)

(and πa(w)πb(w) is a prefix of a Dyck word). Hence, if the number of 1’s in
w is less than half there is no suffix z such that πa(w)πb(w)z ∈ D1. We de-
fine two more morphisms that will build the Dyck inverse for πa(w)πb(w): Let
π̄a(1) = bb, π̄a(0) = ab, π̄b(1) = ab, π̄b(0) = aa. Now we have a reduction from
MAJORITY to D1 by the mapping w 7→ πa(w)πb(w)π̄b(w)π̄a(w).

We sum up the idea: we open #1(w) many parentheses, then close #0(w)
many parentheses, then open #0(w) many parentheses, and finally close #1(w)
many parentheses. This expression is valid if no more parentheses in the middle
are closed than are opened before, i.e. #1(w) ≥ #0(w). So actually this accepts
words with an equal number of 1’s and 0’s. This can be fixed in the logic by
excluding this case through testing on equality as shown above. We have that
w ∈ LMAJ ⇔ πa(w)πb(w)π̄b(w)π̄a(w) ∈ D1.

We reduce D1 to D+ by mapping w to aabbw. The reduction creates a tree,
with a node, where the left subtree defined by aabb evaluates to false and the
right subtree is defined by w. Therefore, the whole tree always evaluates to true
iff w is a correct word in D1.

To simulate the whole reduction in FO[<], we need a reduction that has very
limited computational power. We will generate a reduction that reduces a word
of length n to a word of length 10n. The position will be as tuples where (x, y)
stands for position x+ny with x ∈ {1, . . . , n} and y ∈ {1, . . . , 10}. The position
x + ny of the reduced word will depend only on x and also either the input at
position x, or will be a constant for all x > 4. We use the following observations:

First, the reduction from LMAJ to D1 remains valid if we split the morphism
πa into two morphisms π1

a(a) = a, π1
a(b) = a, π2

a(a) = a, π2
a(b) = b. We split the

other three morphisms in the same fashion and observe that still holds

w ∈ LMAJ ⇔ π1
a(w)π2

a(w)π1
b (w)π2

b (w)π̄1
b (w)π̄2

b (w)π̄1
a(w)π̄2

a(w) ∈ D1.

Second, given a word w of length n ≥ 4 we can reduce D1 to D+ by mapping w
to aabban−4aabbbn−4w. The word an−4aabbbn−4 is in D1 so behaves neutral in
the morphism.

Summarizing, we map a word of length n to a word of length 10n to obtain
a reduction from LMAJ to D+. Where

w 7→ aabban−4aabbbn−4π1
a(w)π2

a(w)π1
b (w)π2

b (w)π̄1
a(w)π̄2

b (w)π̄1
a(w)π̄2

a(w)

This construction can be carried out in FO[<]-uniformity by using a variable
which is bound to the positions {1, . . . , 10}. ut

We mention that MODq gates can be simulated in FO[<]-uniform TC0
LIN .

Together with the previous theorem it follows that FO[<]-uniform AC0(D+) ⊇
FO[<]-uniform TC0 ⊇ FO[<]-uniform ACC0. These inclusions remain valid for
the corresponding circuit classes with linear fan-in. The following theorem shows
that AC0(D+)LIN is strictly weaker than NC1, but it is still not clear whether
it is contained in (even non uniform) TC0.

The following theorem is a consequence of Theorem 4.16 in [LMSV01], where
it is shown that only semilinear predicates can be computed by groupoidal
qunatifiers using only the order predicate.

Theorem 4. The predicate x (and hence bit) cannot be expressed in
FO[<]-uniform AC0(D+)LIN .

Theorem 3 and Theorem 4 highlight the important difference between AC0(D+)
and AC0(D+)LIN ; indeed the former is able to simulate bit and thus equals NC1.
Note that superlinear fan-in of gates corresponds to quantifiers over tuples of
variables in the logic world.4

Summarizing we are able to say: in contrast to A5 gates, using D+ gates
yields a class that is weaker than DLOGTIME uniform NC1 but contains uni-
form subclasses of TC0

LIN . Hence, FO[<]-uniform AC0(D+)LIN is a candidate
subclass of NC1 worthy of attempts to separate it from TC0.

5 A guide to minimal Uniformity

In Section 3 we noticed that log depth circuits with very tight uniformity can
already simulate circuits which are defined by a more powerful uniformity. Ruzzo
already showed that for larger classes in NC different uniformity notions coincide.
This phenomenon is much more general and we explore it in this section. We start
by showing that polynomial time admits very uniform circuits over the standard
Boolean gates. Recall that a polynomial size circuit family is P-uniform if LCn

can be listed by a Turing machine in time polynomial in n.

Theorem 5. P-uniform and FO[+1]-uniform polynomial size circuits each cap-
ture the class P.
4 For the A5 quantifier we do not have to distinguish between quantifiers over one

variable and quantifiers over a tuple of variables.

Proof. It is known that the first circuit class equals P . The latter class is also
easily seen to be in P , it remains to show that P is contained in this class. To
see how P can be translated into FO[+1]-uniform circuits recall how a TM M of
running time nk is simulated by circuits ([Lad75]). The basic layout of the circuit
is a grid of 2nk×nk subcircuits. A subcircuit at position (p, t), will compute the
state of the tape at position p at time t. Since such a subcircuit has a constant
size, we will enumerate the gates of the circuit by tuples of size 2k+k+ c, where
c depends on the size of the subcircuit.

Such a subcircuit encodes the state of a tape cell at position p and time t,
i.e. the symbol written on it and eventually the state of the TM, if the head
is over the tape cell, by a constant number of, say c, output gates. Its inputs
are connected to 3c input gates, namely the output gates of the subcircuits at
positions (p− 1, t− 1), (p, t− 1), and (p+ 1, t).

To see why the resulting circuit is FO[+1]-uniform, we observe what has to
be checked. To see if two gates, each encoded by a 3k + c tuple (p, t, g) are
connected, the formula has to check two cases: (Let the gates be (p1, t1, g1) and
(p2, t2, g2))

1. p1 = p2, t1 = t2, the wiring is within a subcircuit and hence a finite function
ranging over the possible constant values of (g1, g2). All such functions are
in FO[+1].

2. t1 = t2 − 1. In this case p1 is either equal to p2, p2 + 1, or p2 − 1. This is
checkable in FO[+1]. Furthermore, the formula has to check, if g1 and g2
have the correct number, but the same argument as above applies.

For the cases of t = 1 and t = nk we have to add special cases, one layer
translating the input into tape cells, the other checking with a big OR gate, if
one tape cell at the last time step has a head in an accepting state.

Each of these cases, as well as the cases at the border of the grid can be
handled similar to above by a FO[+1]-formula. ut

An obvious extension to Theorem 5 is to consider more general complexity
classes of Turing machines. Consider a complexity class M defined by time and
space bounds. When simulating a TM in M as a circuit then time translates
to depth and space to width. If one equips FO[<] with unary predicates that
allow to check the depth and width bounds, it is possible to perform the con-
struction without much overhead. Therefore, a (deterministic) Turing machine
can be simulated by very uniform circuits. If now conversely such a circuit can
be evaluated by a TM in M then any M-uniform C circuit can be converted
to a FO[<, pB]-uniform C circuit. Here pB stands for a set of unary predicates
that allow to check the bounds on the circuit. This construction requires some
minimal closure properties for the function for the functions giving the time and
space bounds on the machine. The idea is to take the machine that evaluates a
circuit in M-uniform C and to construct the FO[<, pB]-uniform circuit for this
machine. An example is polynomial time where P -uniform polynomial size cir-
cuits equal FO[<]-uniform polynomial size circuits. (Here, pB can be directly
expressed within FO[<].)

Similar observations hold for alternating Turing machines as exhibited in
[Ruz81]: for k > 1 the different notions of uniformity define identical circuit
families including LOGSPACE-uniform families. Then, it is easy to see how to
extend the construction of Theorem 6 to circuits of depth logk.

We believe that the requirement for C to be contained in some Turing class
can be omitted. Let M be the machine that would decide the uniformity lan-
guage. The idea is the following: Let a be a gate and b be a possible candidate to
be a predecessor. Instead of letting the uniformity language to decide whether
there is a wire from b into a, we build a circuit, that will evaluate M and then
either feed in b or not. (Note this requires to be able to feed in a neutral input.)
This is done for all possible gates b for a. We call this construction a “switch
gate”. So we need to be able to simulate M in the circuit class C. This idea is
can be already found in [Ruz81].

This is an explanation why log-depth circuits seem to be always at least
DLOGTIME-uniform as exhibited in Section 3.

6 Binary Encoding

In this section only, we replace unary by binary in our shuffled encodings and
consider the effect on the uniformity notions that arise. The binary n-encoding of
a number 0 ≤ i < 2n is defined as w1 · · ·wn ∈ {0, 1}n such that i =

∑
j 2j−1wj .

Note that the resulting encoding differs from the encoding in [BIS90] not only
in the shuffling, but in the fact that here y is also given in binary:

Definition 7 (Binary shuffled encoding). The binary shuffled n-encoding of
a sequence α1, . . . , αk of numbers between 1 and n is the shuffle of the sequence of
binary n-encodings of α1, . . . , αk. When n is understood, this shuffle is denoted
〈α1, . . . , αk〉b (and is a word of length dlog(n+ 1)e).

We say that a circuit family (Cn)n≥1 is FO[X]-uniformbin if the language
formed by the union, over all n, of the language of binary shuffled n-encodings
of the tuples in LCn

can be described by an FO[X] formula.
Note that Theorem 5 also holds for binary encoding. It is easy to see that

we can switch from unary to binary shuffled encoding. The tests for the fixed
cases are clearly in FO[+1], for the other tests the formula must compute ±1 on
binary numbers, but this can be done in FO[+1].

For binary encoding we get a similar result for NC1:

Theorem 6. The classes FO[<, x2]-uniform NC1 and FO[+1]-uniformbin NC1

each contain DLOGTIME-uniform NC1.

Proof. We let M be a ALOGTIME machine that recognizes the language of
the DLOGTIME-uniform NC1 circuit. Our model is similar to the one of Ruzzo
[Ruz81], with the exception that we do not use an extra index tape. The index
tape of the ALOGTIME machine are the first log n bits to the right of the head
of the working tape and the machine queries the input only in the last step

by switching into a state sσ. Further we choose c such that the ALOGTIME
machine uses at most c log n steps in every run.

We will build a FO[<, x2]-uniform NC1 circuit that recognizes the same lan-
guage. We label the gates of the circuits by a tuple:
(t1, . . . , tc, s, l, l1, . . . , lc, r, r1, . . . , rc). The idea is the following: (t1, . . . , tc) de-
notes the time step of the machine. We can count from 1 to x log n by starting
from (t1, . . . , te) and doubling t1 each time, until 2 · t1 would be greater than n,
then we continue by doubling t2 and so on. In the following, we write x to denote
the vector x1, . . . , xc. A tuple s, l, r will denote the configuration of the machine,
where s is the state of the machine and l, r are the parts of the working tape
left and right of the head. The auxiliary variables l and r will keep track of how
many bits of l1 and r1 are used. Hence, the type of the gate depends directly
on s, the only problem is to test if two gates are predecessors. Given two gates
(t, s, l, l, r, r), (t′, s′, l′, l′, r′, r′) we have to check the following conditions:

Time The formula has to ensure that t′ describes one timestep after t. We say
that an entry ti is maximal if there is no position z such that z = x2(ti). By
our encoding the formula has to check: There is an i such that tj = t′j for
j < i and the tj are maximal. For i we have x2(ti) = t′i and tk = t′k are at
the first position for k > j.

Tape We assume that the lowest bit of l is the bit under the working head. We
can check if that bit is 0 by checking if l1 is even, i.e. ∃xx = x2(l1). We can
write a 0 on that position by first shifting l to the right and then to the
left, i.e. the formula first determines the largest x such that x2(x) ≤ n and
takes then x2(x). To write 1 we take x2(x) + 1 of said x. The case of r1 is
handled analogously. Before writing a 1, the formula has to make sure that
x2(x) + 1 ≤ n. If that is not the case, we copy all li 6= 0 to li+1 and set
l1 = 0. This means, we just shift the vector (l1, . . . , lc) to the right.

State and head movement The transition from s to s′ can be checked by
reading the lowest bit of l1. The movement of the head to the right is sim-
ulated by reading the lowest bit of l1, shifting l1 to the right, and writing
that bit on r1. Note, if l1 was already zero, we have to shift (l1, . . . , lc) to
the left, i.e. set li to li+1. We keep track of the bits stored in l1 and r1 by
the variables l, r. This way we can distinguish between the vectors 1 and 10
for example. In both cases l1 would equal 1, but l is 1 in the first case and
2 in the second.

Input The input gates are labeled by (σ, i), where i is given in unary. If the
ATM makes a transition into state READ(σ), we connect to the input gate
(σ, lj), where j is the maximal used block.

Note that the so constructed circuit also connects a lot of configurations that
are not reachable by the ALOGTIME machine. Still any path in the circuit has
a length of at most c log n because of t in our labeling. Hence, the circuit fulfills
the required depth restrictions.

The same construction works for FO[+1]-uniformbin NC1 circuits. We do not
need a double predicate here since we only need to check if the binary numbers
are shifted by one. ut

The proof of Theorem 6 builds the circuit for an ALOGTIME machine from
its configuration tree. Both theorems exploit the locality of a computational step
of a Turing machine.

7 Discussion

Our focus in this paper was the following reasoning: if circuit classes such as
ACC0 ⊆ TC0 ⊆ NC1 resist separation attempts, then why not tighten their
uniformity and draw intuition from comparing the restricted classes?

Our results slightly extend [BL06]. They mostly concern FO[<]-uniformity,
a notion provably tighter than the robust DLOGTIME-uniformity commonly
accepted as the natural choice for defining fundamental circuit subclasses of P.

Our first conclusion is that no intuition comes out of applying to logarithmic
depth circuits the tight uniformities considered here, because these circuits either
retain their full power or they cannot exploit their depth beyond a constant.

Another observation is that a language (such as A5 here) complete for a
large class (such as ALOGTIME here) under the reduction relevant to a robust
uniformity (such as DLOGTIME-uniformity here) may no longer be complete
for the same class defined under a tighter uniformity. Indeed, here we noted that
in the FO[<]-uniform world, the AC0-closure of A5 no longer contains TC0.

By contrast with A5, we observed that the D+ variant of the NC1-complete
formula value problem behaves differently. We could show that in the FO[<]-
uniform world, the AC0 closure of D+ equals ALOGTIME and thus contains
TC0. This suggested considering AC0(D+)LIN ⊇ TC0

LIN because imposing a
linear bound on the fanin of unbounded fanin circuits nicely fits into the first-
order characterizations of the language classes captured. In the FO[<]-uniform
world (a world free of the “tyranny” of the bit predicate), can AC0(D+)LIN 6=
TC0

LIN be proved? Such a separation would further amount to distinguishing
the power of MAJ from the power of D+. We have been unable to answer that
question though it might be within reach.

In [MTV10], the regularity conjecture (see footnote in Section 1) was gen-
eralized and named the “uniform duality property”. Simplifying somewhat, the
property holds for a class C if any language in C expressed in ExtFO[arb] can be
reexpressed in ExtFO[<,CN], where CN is a set of numerical predicates defined
from C. A marginal link with the uniform duality property can be found in our
Theorem 5. Let ExtFO locally here mean allowing a Lindström quantifier for a
P-complete problem under AC0-reducibility. Then

ExtFO[PN] ∩ C = ExtFO[+1] ∩ C ⊆ ExtFO[<,+] ∩ C ⊆ ExtFO[CFLN] ∩ C

where C is the class of context-free languages, the “=” uses Theorem 5 and
the rightmost “⊆” follows by [MTV10]. This is a weaker instance of the duality
property in which we replace predicates from PN (rather than from arb) in order
to reexpress any context-free language. Can stronger instances of the duality be
proven, by extending the present work or by bringing in the extensions to [RS07]
recently announced in [KS12]?

The fact that we can find strictly uniform circuit classes for ALOGTIME
is based on the exploitation of uniformity and locality of the steps of a Turing
machine. This also allows FO[<]-uniform characterizations of polynomial time as
observed in [BL06]. We think that this could be extended to circuit classes that
have characterizations in terms of Turing machines, or to circuit classes whose
uniformity languages are defined by Turing machines as long as the circuit class
is at least as powerful as the uniformity language.

Perhaps one other research avenue would be to consider direct connection
language encodings that are intermediate between the unary shuffled encoding
and the binary shuffled encodings studied here. Or could a meaningful encoding-
free notion of uniformity be developed? Would there be a use for such a notion?
Acknowledgement. We thank anonymous referees for useful comments on ear-
lier versions of the present paper.

References

[All89] Eric Allender. P-uniform circuit complexity. J. ACM, 36(4):912–928, 1989.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. J. Comput. Syst. Sci.,
38(1):150–164, 1989.

[BCGR92] Samuel R. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal
parallel algorithm for formula evaluation. SIAM J. Comput., 21(4):755–780,
1992.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
Uniformity within NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

[BL06] Christoph Behle and Klaus-Jörn Lange. FO[<]-Uniformity. In IEEE Con-
ference on Computational Complexity, pages 183–189, 2006.

[Bor77] Allan Borodin. On relating time and space to size and depth. SIAM J.
Comput., 6(4):733–744, 1977.

[Bus87] Samuel R. Buss. The boolean formula value problem is in alogtime. In
STOC, pages 123–131. ACM, 1987.

[Coo79] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in poly-
nomial time and log squared space. In STOC, pages 338–345. ACM, 1979.

[Gol78] Leslie M. Goldschlager. A unified approach to models of synchronous par-
allel machines. In STOC, pages 89–94, 1978.

[Imm87] Neil Immerman. Languages that capture complexity classes. SIAM J. Com-
put., 16(4):760–778, 1987.

[KS12] Andreas Krebs and A V Sreejith. Non-definability of languages by general-
ized first-order formulas over (N,+). In LICS, page to appear, 2012.

[Lad75] Richard E. Ladner. The circuit value problem is log space complete for p.
SIGACT News, 7:18–20, January 1975.

[LMSV01] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert
Vollmer. The descriptive complexity approach to LOGCFL. J. Comput.
Syst. Sci., 62(4):629–652, 2001.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. With an
appendix by William Henneman. Research Monograph No.65. Cambridge,
Massachusetts, and London, England: The M. I. T. Press. XIX, 163 p., 1971.

[MTV10] Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uni-
formity for boolean circuits. SIAM J. Comput., 39(7):3186–3206, 2010.

[RS07] Amitabha Roy and Howard Straubing. Definability of languages by gen-

eralized first-order formulas over N+. SIAM J. Comput., 37(2):502–521,
2007.

[Ruz81] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci.,
22(3):365–383, 1981.

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, 1994.

[Tho78] Wolfgang Thomas. The theory of successor with an extra predicate. Math.
Annalen, 237:121–132, 1978.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity. Springer, 1999.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

