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Abstract

We study the lift-and-project procedures of Lovász-Schrijver and Sherali-Adams applied to
the standard linear programming relaxation of the traveling salesperson problem with triangle
inequality. For the asymmetric TSP tour problem, Charikar, Goemans, and Karloff (FOCS
2004) proved that the integrality gap of the standard relaxation is at least 2. We prove that
after one round of the Lovász-Schrijver or Sherali-Adams procedures, the integrality gap of the
asymmetric TSP tour problem is at least 3/2, with a small caveat on which version of the
standard relaxation is used. For the symmetric TSP tour problem, the integrality gap of the
standard relaxation is known to be at least 4/3, and Cheung (SIOPT 2005) proved that it
remains at least 4/3 after o(n) rounds of the Lovász-Schrijver procedure, where n is the number
of nodes. For the symmetric TSP path problem, the integrality gap of the standard relaxation
is known to be at least 3/2, and we prove that it remains at least 3/2 after o(n) rounds of the
Lovász-Schrijver procedure, by a simple reduction to Cheung’s result.

1 Introduction

The traveling salesperson problem (TSP) is the following: Given a complete directed graph with
nonnegative edge distances satisfying the triangle inequality, the goal is to find a shortest route
that visits all the nodes. The TSP is one of the most fundamental and well-studied problems in
combinatorial optimization (with whole books devoted to it [LLRKS85, ABCC07, GP07]), and
there are many variants. For example, in the tour version the goal is to find a shortest hamiltonian
cycle, while in the path version we are additionally given two nodes s and t and the goal is to find
a shortest hamiltonian path from s to t. Along a different dimension, in the symmetric version we
assume that for every pair of nodes u and v the distance from u to v equals the distance from v to
u, while in the asymmetric version we make no such assumption.

The approximability of the TSP is not well-understood, and there are large gaps in the approx-
imation ratios between the best NP-hardness results and the best approximation algorithms. For
all four of the above variants, the best NP-hardness results are due to [PV06]: For every constant
ǫ > 0, it is NP-hard to approximate the symmetric tour and path versions within 220/219 − ǫ,
and it is NP-hard to approximate the asymmetric tour and path versions within 117/116 − ǫ. The

∗Computer Science Division, University of California, Berkeley. This material is based upon work supported by

the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0946797 and by the National

Science Foundation under Grant No. CCF-1017403.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 97 (2011)



state-of-the-art polynomial-time approximation algorithms achieve approximation ratios 3/2 for the
symmetric tour version [Chr76], 5/3 for the symmetric path version [Hoo91], and O(log n/ log log n)
for the asymmetric tour and path versions [AGM+10, FS07] where n is the number of nodes. There
are better algorithms for several important restricted classes of distance functions. For example,
there have been breakthroughs for shortest path metrics on unweighted undirected graphs: For
the symmetric tour version, a (3/2 − ǫ0)-approximation (for some constant ǫ0 > 0) is obtained in
[OGSS10] and a 1.461-approximation is obtained in [MS11], and for the symmetric path version, a
(5/3 − ǫ0)-approximation (for some constant ǫ0 > 0) is obtained in [OGSS10, AS11] and a 1.586-
approximation is obtained in [MS11]. The symmetric tour version can be approximated within 1+ǫ
(for every constant ǫ > 0) for Euclidean distances in constant-dimensional real space [Aro98] and
for shortest path metrics on weighted undirected planar graphs [AGK+98, Kle08]. The asymmetric
tour version has a O(1)-approximation algorithm for shortest path metrics on weighted directed
planar graphs [OGS11].

For problems such as TSP where the known NP-hardness lower bounds on approximation ratios
are quite weak, a natural goal is to get stronger lower bounds for restricted classes of algorithms.
Such lower bounds can sometimes be construed as evidence that the problem is indeed hard to
approximate within the stronger bound, and they may have the additional advantage of being
unconditional (NP-hardness lower bounds are conditional on P 6= NP). For many combinatorial
optimization problems, one very general class of algorithms is those that solve some linear pro-
gramming relaxation of the problem, “round” the solution to an integral solution in some way, and
derive their approximation guarantee by comparing the value of the rounded solution to the optimal
value of the relaxation. The integrality gap of an instance is the ratio between the optimal values
of the original problem and the relaxation. The existence of a family of instances with integrality
gap at least α > 1 proves that no such rounding algorithm can achieve approximation ratio better
than α. Thus exhibiting instances with large integrality gaps constitutes an unconditional lower
bound against this class of algorithms. The integrality gap of a relaxation for a problem is defined
to be the maximum integrality gap over all instances (expressed as a function of instance size).

For the above variants of the traveling salesperson problem, there is a classic and well-studied
linear programming relaxation which has been called the Dantzig-Fulkerson-Johnson relaxation
(after [DFJ54]), the Held-Karp relaxation (after [HK70, HK71]), and the subtour elimination re-
laxation. Since there is no consensus on what to call it, we simply refer to it as the standard
relaxation. Many of the known approximation algorithms for TSP work by (implicitly or explic-
itly) rounding solutions to the standard relaxation. For the symmetric tour version, the integrality
gap is known to be at least 4/3. It is conjectured to be exactly 4/3, and proving this is a notorious
open problem in combinatorial optimization. The best upper bound on the integrality gap is 3/2
[Wol80, SW90], though in the case of shortest path metrics on unweighted undirected graphs the
upper bound has been improved to 3/2 − ǫ0 (for some constant ǫ0 > 0) [OGSS10] and further to
1.461 [MS11]. For the symmetric path version, the integrality gap is known to be at least 3/2 and
at most 5/3 [AS11], though in the case of shortest path metrics on unweighted undirected graphs
the upper bound has been improved to 5/3 − ǫ0 (for some constant ǫ0 > 0) [OGSS10, AS11] and
further to essentially 1.586 [MS11]. For the asymmetric tour version, the integrality gap is known
to be at least 2 [CGK06] and at most O(log n/ log log n) [AGM+10]. For the asymmetric path
version, the integrality gap is known to be at least 2 [CGK06] and at most O(log n) [FSS10].

Although integrality gap lower bounds rule out algorithms that derive their approximation
guarantees by comparing the output to the optimum of a particular relaxation of the problem,
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one can always construct tighter and tighter relaxations in hope of reducing the integrality gap
and getting improved approximation guarantees. Hence it is desirable to prove lower bounds
for large classes of relaxations, since this constitutes stronger evidence for the hardness of the
problem. Lovász and Schrijver [LS91] and Sherali and Adams [SA90] introduced powerful and
general techniques for constructing hierarchies of tighter and tighter relaxations for any problem
(see [Tul11] for a survey). These techniques are called “lift-and-project” procedures, and there has
been substantial interest in proving integrality gap lower bounds for various relaxations produced by
these procedures (a small sample of results includes [AAT05, STT07, GMPT10, CMM09, GMT09]).
A nice feature of such results is that lower bounds for sufficiently many rounds of the procedure
allow us to rule out slightly-subexponential time rounding algorithms, something that PCP-based
results often fail to do.

We consider the task of proving integrality gap lower bounds for lift-and-project procedures
applied to the standard relaxation of the TSP. There is only one previous paper on this topic:
Cheung [Che05] proved an essentially tight result for the Lovász-Schrijver procedure applied to the
symmetric TSP tour problem — he showed that the integrality gap remains at least 4/3 after o(n)
rounds of the procedure for n-node instances. A natural question is whether the integrality gap
lower bound of 2 for the asymmetric TSP tour problem [CGK06] survives these lift-and-project
procedures. Our main theorem is a positive result in this direction: We prove that the integrality
gap is at least 3/2 after one round of the Lovász-Schrijver procedure (which is equivalent to one
round of the Sherali-Adams procedure). There is a small caveat though: There are two versions
of the standard relaxation which are both widely used in the literature and which are equivalent
in a certain sense, but one seems to become somewhat weaker than the other after lift-and-project
procedures are applied. We can only prove our lower bound for the weaker version (see Section 1.2
for details).

One key challenge in proving Lovász-Schrijver integrality gap lower bounds is in designing so-
called protection matrices. None of the previous techniques for designing protection matrices (for
problems such as vertex cover, constraint satisfaction problems, and symmetric TSP) seem to help
with asymmetric TSP. We introduce a new technique for our setting, based on finding certain
combinatorial objects we call frames in directed graphs.

Another natural question is whether the folklore integrality gap lower bound of 3/2 for the
symmetric TSP path problem survives lift-and-project procedures. We show that it does, in fact,
survive o(n) rounds of the Lovász-Schrijver procedure, by giving a simple reduction to Cheung’s
result [Che05]. The reduction is not generic, but rather exploits specific properties of Cheung’s
family of instances. This result can be considered evidence that the symmetric TSP path problem
cannot be approximated better than 3/2 (even by slightly-subexponential time algorithms). The
fact that we get a lower bound of 3/2 in both this result and our result for the asymmetric TSP
tour problem is a coincidence; the techniques used are quite different.

1.1 Definitions

In Section 1.1.1 we give the definitions of integrality gaps and the Lovász-Schrijver lift-and-project
procedure. In Section 1.1.2 we give the definitions of the relevant variants of the traveling sales-
person problem and their standard linear programming relaxations.
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1.1.1 Lift-and-Project Integrality Gaps

For our purpose a (combinatorial optimization) problem is a set of instances, where each instance
has a set of points I ⊆ {0, 1}m and a nonnegative convex objective function f , and the goal is to
minimize f over points in I. In the notation, we suppress the dependence of I, m, and f on the
instance. The instances of a problem may have some size parameter n (not necessarily equal to m).
A relaxation of a problem associates to each instance a convex set R ⊆ [0, 1]m such that I ⊆ R.

Given a relaxation of a problem, the integrality gap of an instance is defined to be minx∈I f(x)
minx∈R f(x) , and

the integrality gap of the relaxation is defined to be the maximum integrality gap of an instance,
expressed as a function of the instance size n. If the objective function for a problem is always
linear, and the set R for a relaxation is always a polytope, then we call the relaxation a linear
programming relaxation.

Lovász and Schrijver [LS91] introduced a general technique for improving linear programming
relaxations. Given a convex set R ⊆ [0, 1]m, the Lovász-Schrijver procedure produces a new convex
set N(R) ⊆ [0, 1]m which is a polytope if R is. The procedure can be applied iteratively, and we use
N r(R) to denote the convex set after r rounds (for example N2(R) = N(N(R))). The N operator
has the following properties: R ⊇ N(R) ⊇ conv(R ∩ {0, 1}m) and Nm(R) = conv(R ∩ {0, 1}m)
where conv(·) denotes convex hull, and thus

R ⊇ N(R) ⊇ N2(R) ⊇ · · · ⊇ Nm−1(R) ⊇ Nm(R) = conv(R ∩ {0, 1}m).

Hence the procedure can be applied to a relaxation of a combinatorial optimization problem to
yield new relaxations, where the integrality gap is nonincreasing with the number of rounds and
drops to 1 after at most m rounds if R ∩ {0, 1}m = I. Furthermore, if R has a polynomial-time
separation oracle, then linear objectives can be optimized over N r(R) in time mO(r).

We now define the N operator. Given a convex set R ⊆ [0, 1]m we define

cone(R) =
{

(λ, λx1, . . . , λxm) : λ ≥ 0 and (x1, . . . , xm) ∈ R
}

and we index the λ coordinate by 0. For an (m + 1) × (m + 1) matrix X we index the top row
and left column by 0, and we use Xi to denote the ith row (i ∈ {0, 1, . . . ,m}). Given a convex set
R ⊆ [0, 1]m, a point x ∈ [0, 1]m is in N(R) if and only if there exists an (m + 1) × (m + 1) matrix
X, called a protection matrix, such that

(i) X is symmetric,

(ii) X0 = diag(X) = (1 x), and

(iii) Xi ∈ cone(R) and X0 − Xi ∈ cone(R) for each i ∈ {1, . . . ,m}.

The procedure is called a “lift-and-project” procedure because it first lifts R to a convex set in
[0, 1](m+1)2 (namely the set of matrices satisfying (i), (ii), and (iii) for some x) which is a polytope
if R is, and then projects on certain coordinates to get N(R). Lovász and Schrijver also introduced
a stronger operator N+ which is defined in the same way as N except the protection matrix is also
required to be positive semidefinite. For all convex sets R ⊆ [0, 1]m we have N+(R) ⊆ N(R) and

R ⊇ N+(R) ⊇ · · · ⊇ Nm
+ (R) = conv(R ∩ {0, 1}m).

Sherali and Adams [SA90] introduced a lift-and-project procedure for improving linear pro-
gramming relaxations which is more powerful than the Lovász-Schrijver procedure, but also more
difficult to prove integrality gap lower bounds for. One round of Sherali-Adams coincides with one
round of Lovász-Schrijver. We do not define the procedure for higher rounds here.
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1.1.2 The Traveling Salesperson Problem

We now formally define the traveling salesperson problem and its standard linear programming
relaxation [DFJ54, HK70, HK71]. For completeness, we define all four variants discussed above.
Given an undirected graph G = (V,E) and a set S ⊆ V we let δ(S) denote the set of edges crossing
the cut (S, S). For v ∈ V we define δ(v) to be δ({v}). Given a directed graph G = (V,E) and a set
S ⊆ V we let δ+(S) denote the set of edges leaving S and δ−(S) denote the set of edges entering
S. For v ∈ V we define δ+(v) to be δ+({v}) and δ−(v) to be δ−({v}). For every graph G = (V,E)
(undirected or directed), given a set F ⊆ E and a vector x = (xe)e∈E we define x(F ) =

∑

e∈F xe.
Also, given two vectors d = (de)e∈E and x = (xe)e∈E we define d ·x =

∑

e∈E dexe. We say a directed
graph is complete if every pair of nodes has both edges between them and there are no self loops.
We use Kn to denote both the complete undirected graph on n nodes and the complete directed
graph on n nodes; it will always be clear from context which is meant.

Symmetric tour version. Given an undirected graph G = (V,E), the symmetric tour polytope
ST (G) has variables x = (xe)e∈E and is defined by the following constraints.

x(δ(S)) ≥ 2 ∀ ∅ ( S ( V

x(δ(v)) = 2 ∀ v ∈ V

xe ∈ [0, 1] ∀ e ∈ E

We define ST int(G) similarly but require xe ∈ {0, 1} for all e ∈ E; note that ST int(G) consists of
exactly the hamiltonian cycles in G. The symmetric TSP tour problem is the following: Given a
complete undirected graph Kn = (V,E) with nonnegative edge distances d = (de)e∈E satisfying
the triangle inequality, minimize d · x subject to x ∈ ST int(Kn). The standard relaxation allows
x ∈ ST (Kn).

Symmetric path version. Given an undirected graph G = (V,E) and distinct nodes s, t ∈ V
(the case s = t is covered by the symmetric tour version), the symmetric path polytope SP (G, s, t)
has variables x = (xe)e∈E and is defined by the following constraints.

x(δ(S)) ≥ 2 ∀ ∅ ( S ( V with
∣

∣S ∩ {s, t}
∣

∣ 6= 1

x(δ(S)) ≥ 1 ∀ ∅ ( S ( V with
∣

∣S ∩ {s, t}
∣

∣ = 1

x(δ(v)) = 2 ∀ v ∈ V \{s, t}

x(δ(v)) = 1 ∀ v ∈ {s, t}

xe ∈ [0, 1] ∀ e ∈ E

We define SP int(G, s, t) similarly but require xe ∈ {0, 1} for all e ∈ E; note that SP int(G, s, t)
consists of exactly the hamiltonian paths in G with s and t as their endpoints. The symmetric TSP
path problem is the following: Given a complete undirected graph Kn = (V,E) with nonnegative
edge distances d = (de)e∈E satisfying the triangle inequality, and given distinct nodes s, t ∈ V ,
minimize d · x subject to x ∈ SP int(Kn, s, t). The standard relaxation allows x ∈ SP (Kn, s, t).
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Asymmetric tour version. Given a directed graph G = (V,E), the asymmetric tour polytope
AT (G) has variables x = (xe)e∈E and is defined by the following constraints.

x(δ+(S)) ≥ 1 ∀ ∅ ( S ( V

x(δ−(S)) ≥ 1 ∀ ∅ ( S ( V

x(δ+(v)) = 1 ∀ v ∈ V

x(δ−(v)) = 1 ∀ v ∈ V

xe ∈ [0, 1] ∀ e ∈ E

Of course, the second group of constraints is redundant given the first, but we prefer to include
it for aesthetic reasons. We define AT int(G) similarly but require xe ∈ {0, 1} for all e ∈ E; note
that AT int(G) consists of exactly the hamiltonian cycles in G. The asymmetric TSP tour problem
is the following: Given a complete directed graph Kn = (V,E) with nonnegative edge distances
d = (de)e∈E satisfying the triangle inequality, minimize d · x subject to x ∈ AT int(Kn). The
standard relaxation allows x ∈ AT (Kn).

Asymmetric path version. Given a directed graph G = (V,E) and distinct nodes s, t ∈ V (the
case s = t is covered by the asymmetric tour version), the asymmetric path polytope AP (G, s, t)
has variables x = (xe)e∈E and is defined by the following constraints.

x(δ+(S)) ≥ 1 ∀ ∅ ( S ⊆ V \{t}

x(δ−(S)) ≥ 1 ∀ ∅ ( S ⊆ V \{s}

x(δ+(v)) = 1 ∀ v ∈ V \{t}

x(δ−(v)) = 1 ∀ v ∈ V \{s}

x(δ+(t)) = 0

x(δ−(s)) = 0

xe ∈ [0, 1] ∀ e ∈ E

The importance of the constraints x(δ+(t)) = x(δ−(s)) = 0 was clarified in [Nag08]. We define
AP int(G, s, t) similarly but require xe ∈ {0, 1} for all e ∈ E; note that AP int(G, s, t) consists
of exactly the hamiltonian paths in G from s to t. The asymmetric TSP path problem is the
following: Given a complete directed graph Kn = (V,E) with nonnegative edge distances d =
(de)e∈E satisfying the triangle inequality, and given distinct nodes s, t ∈ V , minimize d · x subject
to x ∈ AP int(Kn, s, t). The standard relaxation allows x ∈ AP (Kn, s, t).

Although the cut constraints in the four polytopes ST , SP , AT , AP look rather different from
each other, they are actually very uniform: Every cut should have capacity at least 2 (symmetric
versions) or at least 1 in both directions (asymmetric versions), unless the cut separates s and t
in the path versions, in which case it should have capacity at least 1 (symmetric version) or at
least 1 from s to t (asymmetric version). Note that although all four polytopes have exponentially
many constraints, they each have a polynomial-time separation oracle using min-cut computations.
Hence linear objectives can be optimized over these polytopes in polynomial time using the ellipsoid
algorithm.
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1.2 Results

There is only one previous result on lift-and-project integrality gaps for the traveling salesperson
problem: Cheung [Che05] proved that the integrality gap of the standard relaxation of the symmet-
ric TSP tour problem remains at least 4/3−o(1) even after o(n) rounds of the Lovász-Schrijver N+

procedure. We consider whether a lower bound better than 4/3 can be obtained for the asymmetric
TSP tour problem. Although we cannot prove a better lower bound for the standard relaxation, we
can prove a new result for the following relaxation, which is equivalent to the standard relaxation
in a certain sense.

Given a directed graph G = (V,E), the balanced asymmetric tour polytope ATbal(G) has vari-
ables x = (xe)e∈E and is defined by the following constraints.

x(δ+(S)) ≥ 1 ∀ ∅ ( S ( V

x(δ−(S)) ≥ 1 ∀ ∅ ( S ( V

x(δ+(v)) = x(δ−(v)) ∀ v ∈ V

xe ∈ [0, 1] ∀ e ∈ E

As before, the second group of constraints is redundant given the first, but we prefer to include it
for aesthetic reasons. We define AT int

bal(G) similarly but require xe ∈ {0, 1} for all e ∈ E.
We have AT (G) ⊆ ATbal(G) and thus the balanced asymmetric tour polytope yields a relaxation

for the asymmetric TSP tour problem, which we call the balanced standard relaxation. It is well-
known that ATbal(Kn) is equivalent to AT (Kn), and AT int

bal(Kn) is equivalent to AT int(Kn), in
the sense that they have the same minimum values under any objective d · x where d satisfies
the triangle inequality (see for example [CGK06, Ngu08]). For this reason, both formulations are
very commonly used in the literature and are considered interchangeable. However, they are not
necessarily interchangeable after lift-and-project procedures are applied; N(AT (Kn)) might have a
smaller integrality gap than N(ATbal(Kn)). The integrality gap of ATbal(Kn) does drop to 1 after
at most m = n(n − 1) rounds of N , due to the equivalence of AT int

bal(Kn) and AT int(Kn).

Theorem 1. The integrality gap of one round of the Lovász-Schrijver / Sherali-Adams procedure
applied to the balanced standard relaxation of the asymmetric TSP tour problem is at least 3/2−o(1).

We prove Theorem 1 in Section 2. Note that the lower bound of 3/2 − o(1) beats the lower
bound of 4/3−o(1) that follows trivially from Cheung’s result for the symmetric TSP tour problem.
There are four deficiencies in Theorem 1 that it would be nice to overcome.

(1) We only handle a single round of lift-and-project; ideally we would like to handle at least a
superconstant number of rounds.

(2) We only handle the balanced standard relaxation; ideally we would like to handle the standard
relaxation as defined in Section 1.1.2.

(3) The integrality gap lower bound is only 3/2 − o(1); ideally we would like to match the lower
bound of 2 − o(1) due to [CGK06] which holds for zero rounds of lift-and-project.

(4) The lower bound only holds for the Lovász-Schrijver N procedure; ideally we would like to
handle the stronger N+ procedure.
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The instances we use to witness Theorem 1 are the same as the ones constructed in [CGK06],
but we need a new analysis showing that a certain fractional solution survives one round of lift-
and-project. The heart of the analysis involves finding certain sets of edges, which we call frames,
in the graphs constructed in [CGK06]. We need to find a frame associated with each edge, with
the property that for every pair of edges e1 and e2, e2 is in e1’s frame if and only if e1 is in e2’s
frame (this property is related to the symmetry requirement for protection matrices).

We now turn to the symmetric TSP path problem. By giving a simple reduction to Cheung’s
result [Che05], we show that the folklore 3/2 − o(1) lower bound on the integrality gap of the
standard relaxation survives o(n) rounds of the Lovász-Schrijver N+ procedure. The reduction is
not a generic reduction, but rather exploits special properties of Cheung’s family of instances.

Theorem 2. The integrality gap of o(n) rounds of the Lovász-Schrijver N+ procedure applied to
the standard relaxation of the symmetric TSP path problem is at least 3/2 − o(1). Moreover, this
lower bound holds even for instances that are shortest path metrics on unweighted undirected graphs.

We prove Theorem 2 in Section 3.

2 Asymmetric TSP Tour Problem

In this section we prove Theorem 1. For every ǫ > 0 we need to construct an instance d = (de)e∈E

on Kn = (V,E) such that
minx∈AT int(Kn) d · x

minx∈N(ATbal(Kn)) d · x
≥ 3/2 − ǫ. (1)

The instances we use are the same ones constructed by Charikar, Goemans, and Karloff [CGK06].
For integers k ≥ 1 and r ≥ 2 they construct a directed graph Gk,r with nonnegative edge weights
as follows (see the illustrations in Figures 1, 2, and 3). The graph G1,r consists of two paths of
r + 1 edges on the same r + 2 nodes, going in opposite directions, and all edges have weight 1. One
of the two endpoints is designated as the source s and the other as the sink t. For k > 1 the graph
Gk,r consists of r copies of Gk−1,r and an additional source node s and sink node t, with a path
from s to t of r + 1 edges visiting the sources of the copies in some order, and another path from
t to s of r + 1 edges visiting the sinks of the copies in the opposite order. All the new edges have
weight rk−1.

Next, as in [CGK06] we define a directed graph Lk,r = (Vk,r, Ek,r) with nonnegative edge weights
as follows. Suppose (s, v1), (v2, t), (t, v3), (v4, s) are the edges incident to s and t in Gk,r. Then Lk,r

is defined by taking Gk,r, removing s and t, and including edges (v2, v1) and (v4, v3), both of weight
rk−1.

Now fix some k ≥ 1 and r ≥ 2 and let n = |Vk,r| = Θ(rk). We define the edge distances
d = (de)e∈E on the complete directed graph Kn = (Vk,r, E) as the shortest path distances in the
weighted graph Lk,r. Note that d is nonnegative and satisfies the triangle inequality, so this is a
valid instance.

Lemma 1 ([CGK06]). For k ≥ 2 and r ≥ 3 we have minx∈AT int(Kn) d · x ≥ (2k − 1)(r − 1)rk−1.

Lemma 2. For k ≥ 1 and r ≥ 2 we have minx∈N(ATbal(Kn)) d · x ≤ 4
3k(r + 1)rk−1.
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Figure 1: The graph G1,3.

Figure 2: The graph G2,3.

Letting k ≥ 2 and r ≥ 3 and combining Lemma 1 and Lemma 2, we find that the ratio on the
left side of (1) is at least 3

2 ·
(k−1/2)(r−1)

k(r+1) , which is at least 3/2− ǫ provided k and r are large enough.
It remains to prove Lemma 2.

Proof of Lemma 2. Consider the vector x = (xe)e∈Ek,r
with xe = 2/3 for all e ∈ Ek,r. We claim

that x ∈ N(ATbal(Lk,r)). Then a simple argument shows that extending x with 0 values for all the
edges in E\Ek,r yields a point x̂ ∈ N(ATbal(Kn)) such that d · x̂ equals 2/3 times the sum of all
the edge weights in Lk,r (using the fact that every edge in the weighted graph Lk,r is a shortest
path from its tail to its head). An inductive argument shows that the sum of all the edge weights
in Lk,r is at most 2k(r + 1)rk−1 (see [CGK06]), so x̂ witnesses Lemma 2.

All that remains is to prove that x ∈ N(ATbal(Lk,r)), and this is the meat of the argument. In
order to exhibit a protection matrix for x, we first need the following definitions. We call a path
or cycle in a directed graph edge-simple if it does not repeat any edges, but may repeat nodes.

Definition 1. Given a directed graph G′ = (V ′, E′) and an edge (u, v) ∈ E′, a frame for (u, v) is
a set of edges F ⊆ E′\{(u, v)} that consists of an edge-simple path from u to v together with zero
or more edge-simple cycles. The path and cycles are required to be edge-disjoint from each other.

Claim 1. In the graph Lk,r there exists a frame Fe for each e ∈ Ek,r, with the property that for all
e1, e2 ∈ Ek,r we have e2 ∈ Fe1

if and only if e1 ∈ Fe2
.

We prove Claim 1 shortly, but let us now see how to use it to construct a protection matrix X
for x. The rows and columns of X are indexed by Ek,r, except there is an additional 0th row and
0th column. We must have X0,0 = 1 and X0,e = Xe,0 = Xe,e = 2/3 for all e ∈ Ek,r. For e1 6= e2 we
set

Xe1,e2
=

{

1/3 if e2 ∈ Fe1

1/2 otherwise
.

Note that X is symmetric by the property in Claim 1. Thus we just need to show that Xe ∈
cone(ATbal(Lk,r)) and X0 − Xe ∈ cone(ATbal(Lk,r)) for all e ∈ Ek,r.
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Figure 3: The graph G3,3.

We first consider Xe. Since (Xe)0 = 2/3, Xe ∈ cone(ATbal(Lk,r)) is equivalent to x(e) ∈
ATbal(Lk,r) where x(e) is the vector on Ek,r that gives value 1 to e, value 1/2 to the edges in Fe,
and value 3/4 to the remaining edges. To verify the balance condition x(e)(δ+(v)) = x(e)(δ−(v)) for
all v ∈ Vk,r, consider starting with the vector that assigns 3/4 to all edges. Since every node in Lk,r

has two incoming edges and two outgoing edges, this vector would satisfy the balance condition.
Reducing the values on the path and cycles to 1/2 maintains the balance condition except at the
endpoints of e, which are remedied by raising the value of e to 1. To verify the cut constraints,
suppose we interpret x(e) as capacities in a flow network. Then we need to show that every cut
has capacity at least 1 in both directions, which is equivalent to showing that a unit of flow can
be sent from any node to any other node. It is shown in [CGK06] that for every u, v ∈ Vk,r there
exist two edge-disjoint paths from u to v in Lk,r. Since every edge has capacity at least 1/2 in
x(e), we can send a half-unit of flow along each of these two paths. Thus we have shown that
Xe ∈ cone(ATbal(Lk,r)).

Now we consider X0 − Xe. Since (X0 − Xe)0 = 1/3, X0 − Xe ∈ cone(ATbal(Lk,r)) is equivalent
to y(e) ∈ ATbal(Lk,r) where y(e) is the vector on Ek,r that gives value 0 to e, value 1 to the edges
in Fe, and value 1/2 to the remaining edges. The balance condition is verified similarly as before:
The vector that assigns 1/2 to all edges would satisfy the balance condition, and raising the values
on the path and cycles to 1 maintains the balance condition except at the endpoints of e, which
are remedied by reducing the value of e to 0. To verify the cut constraints, we need to show that
a unit of flow can be sent from any node to any other node, respecting the capacities y(e). Every
edge has capacity at least 1/2 except for e itself, so if we try to send a half-unit of flow along each
of the two edge-disjoint paths from u to v, we only run into trouble if one of these paths uses e.
In that case, the half-unit of flow through e can be re-routed via the path in the frame Fe. This
path may overlap with the two paths from u to v, but since each edge in Fe has capacity 1, it can
accommodate two half-units of flow simultaneously. Thus we can always send a unit of flow from
u to v, and we have shown that X0 − Xe ∈ cone(ATbal(Lk,r)).

To finish the proof of Lemma 2, we just need to prove Claim 1. For each edge e ∈ Ek,r there is
a unique shortest path (in terms of number of edges) from e’s tail to e’s head that does not use e.
The natural first attempt at defining the frames is to take Fe to be this path for each e. However,
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e

Figure 4: Frame for a nonmediating inner edge at level 3 ≤ ℓ ≤ k − 2.
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e

Figure 5: Frame for a mediating outer edge at level ℓ = 2.

this does not work in general; it is crucial that we augment the path with some cycles.
Each edge e ∈ Ek,r can be assigned a level ℓ ∈ {1, . . . , k}, meaning that e is introduced as part

of a copy of Gℓ,r in the construction of Gk,r (and the two new edges in Lk,r are at level k). The
most important distinction is whether ℓ < k or ℓ = k. If ℓ < k then we include in Fe the shortest
path from e’s tail to e’s head that does not use e, and for every copy of Gℓ,r that is contained in
the ambient copy of Gℓ+1,r (or in Lk,r if ℓ = k−1) and that is not touched by this path, we include
in Fe a cycle containing all the edges at level ℓ in this copy of Gℓ,r. If ℓ = k then we only include
in Fe the shortest path from e’s tail to e’s head that does not use e, and we include no cycles. This
completes the description of the frames.

Let us be a bit more precise and give some illustrations. From now on, we use “terminal” to
mean either source or sink, since there is no need to distinguish between the latter. We say an
edge at level ℓ < k is “mediating” if it is incident to a terminal when it is introduced in Gℓ,r, and
“nonmediating” otherwise. Also, we say an edge at level ℓ < k−1 is “outer” if when we start at its
head and follow the direct route to a terminal of the ambient copy of Gℓ,r, the other edge entering
that terminal is a mediating edge. The edge is an “inner” edge otherwise, and all edges at level
k − 1 are considered inner.

Consider an edge e = (u, v) at level ℓ < k. There are four cases depending on whether e is
mediating/nonmediating and outer/inner. The “typical” case is when e is nonmediating and inner
and at level 3 ≤ ℓ ≤ k − 2. This is illustrated in Figure 4, with bold frame edges. Then u is a
terminal of a copy of Gℓ−1,r, and the path starts by taking the direct route to the other terminal of
this copy, then the direct route to a terminal of the ambient copy of Gℓ,r, then one step to the next
copy of Gℓ,r, then the direct route to the other terminal of that copy, then one step back to the
copy of Gℓ,r containing e, then the direct route to the other terminal of the copy of Gℓ−1,r of which
v is a terminal, and finally the direct route to v through this copy of Gℓ−1,r. This path involves two
copies of Gℓ,r. For each of the other r− 2 copies of Gℓ,r in the ambient copy of Gℓ+1,r, we include a
cycle containing all the edges at level ℓ in this copy of Gℓ,r. This completes the description of the
frame Fe. Nothing changes if ℓ = 2 or ℓ = k− 1. When ℓ = 1, there are no copies of “Gℓ−1,r” to go
through, so the path simply starts by going directly to a terminal of the copy of G1,r containing e,
and ends by going from the other terminal directly to v.

12



e

Figure 6: Frame for an edge at level ℓ = k.

When e is mediating, all that changes is that one of the two copies of Gℓ−1,r disappears; either
u or v is already a terminal of the ambient copy of Gℓ,r. When e is outer, there is no “next” copy
of Gℓ,r; the first step along an edge at level ℓ + 1 takes us to a terminal of the ambient copy of
Gℓ+1,r, then the next step takes us back to the copy of Gℓ,r containing e. Furthermore when e is
outer, r− 1 cycles need to be included in the frame (rather than r− 2) since the path only touches
one copy of Gℓ,r. Figure 5 illustrates the frame for a mediating outer edge at level ℓ = 2.

Figure 6 illustrates the frame for an edge e = (u, v) at level ℓ = k. The path takes the direct
route from u to the other terminal of the copy of Gk−1,r containing u, then follows the level-k cycle
containing this terminal until it gets to the copy of Gk−1,r containing v, then follows the direct
route to v through this copy. This completes the more precise description of all the frames.

It remains to be verified that for all e1, e2 ∈ Ek,r we have e2 ∈ Fe1
if and only if e1 ∈ Fe2

. Of
course, we just need to consider an arbitrary e1 and show that for each e2 ∈ Fe1

we have e1 ∈ Fe2
.

This is a slightly tedious case analysis. Rather than give full details (which would be pedantic) we
give a couple illustrative cases. Suppose e1 is the edge e in Figure 4. If e2 is the third edge on the
path in Fe1

, then the path in Fe2
first goes right to the other terminal in the copy of Gℓ−2,r, then

goes down to e1’s tail, then traverses e1, then goes up through the copy of Gℓ−1,r containing e1’s
head, and so on. If e2 is the edge that appears right below e1 on the path in Fe1

, then the path in
Fe2

only touches the bottom two copies of Gℓ,r in the figure, and e1 is contained in a cycle in Fe2

(the one for the copy of Gℓ,r containing e1). This demonstrates the importance of including cycles
in the frames. The other cases can be checked similarly.

This finishes the proof of Claim 1 and the proof of Lemma 2.

3 Symmetric TSP Path Problem

In this section we prove Theorem 2. For every ǫ > 0 we need to construct an instance d = (de)e∈E

on Kn = (V,E) with s, t ∈ V such that for some r = γn with γ > 0 depending on ǫ,
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minx∈SP int(Kn,s,t) d · x

minx∈Nr
+

(SP (Kn,s,t)) d · x
≥ 3/2 − ǫ. (2)

For integers ℓ ≥ 1 and q ≥ 0 we construct an undirected graph Gℓ,q = (Vℓ,q, Eℓ,q) as follows (see
the illustration in Figure 7). The graph Gℓ,q has two horizontal node-disjoint paths each with ℓ
edges. It also has two cliques each with 3q + 3 nodes, a left one and a right one. The cliques are
node-disjoint from each other and from the paths. The two left endpoints of the paths each have
edges to all the nodes in the left clique, and the two right endpoints of the paths each have edges to
all the nodes in the right clique. Finally, there is an additional node s with edges to all the nodes
in the left clique, and an additional node t with edges to all the nodes in the right clique.

Also consider the graph G′

ℓ,q = (V ′

ℓ,q, E
′

ℓ,q) (illustrated in Figure 8) which is the same as Gℓ,q

except that s and t are connected by a path with ℓ new edges (using ℓ − 1 new nodes). We have
Vℓ,q ⊆ V ′

ℓ,q and Eℓ,q ⊆ E′

ℓ,q.

Lemma 3. For all r ≥ 0, ℓ ≥ 1, and q ≥ 0 the following holds. For all x = (xe)e∈Eℓ,q
, if x′ =

(x′

e)e∈E′

ℓ,q
is the same as x but with all new edges e in E′

ℓ,q having x′

e = 1, then x′ ∈ N r
+(ST (G′

ℓ,q))

implies x ∈ N r
+(SP (Gℓ,q, s, t)).

Proof. We prove the lemma by induction on r. Suppose r = 0. Trivially, x′(δG′

ℓ,q
(v)) = 2 for

all v ∈ Vℓ,q implies x(δGℓ,q
(v)) = 2 for all v ∈ Vℓ,q\{s, t} and x(δGℓ,q

(v)) = 1 for all v ∈ {s, t}.
Now consider an arbitrary set ∅ ( S ( Vℓ,q with

∣

∣S ∩ {s, t}
∣

∣ 6= 1, and assume without loss of
generality that

∣

∣S ∩ {s, t}
∣

∣ = 0. Then x′(δG′

ℓ,q
(S)) ≥ 2 implies x(δGℓ,q

(S)) ≥ 2 since none of the

new edges is in δG′

ℓ,q
(S). Now consider an arbitrary set ∅ ( S ( Vℓ,q with

∣

∣S ∩ {s, t}
∣

∣ = 1. Then

x′(δG′

ℓ,q
(S)) ≥ 2 implies x(δGℓ,q

(S)) ≥ 1 since only one new edge is in δG′

ℓ,q
(S). Thus we have shown

that x′ ∈ ST (G′

ℓ,q) implies x ∈ SP (Gℓ,q, s, t).

Now suppose r > 0 and the lemma holds for r − 1. Assume x′ ∈ N+(N r−1
+ (ST (G′

ℓ,q))) and
thus it has a protection matrix X ′ (which has a 0th row and a 0th column, and the remaining
rows and columns are indexed by E′

ℓ,q). Obtain a matrix X by deleting the rows and columns
corresponding to the new edges in E′

ℓ,q. We claim that X is a protection matrix witnessing that

x ∈ N+(N r−1
+ (SP (Gℓ,q, s, t))). Note that X is symmetric and positive semidefinite since it is

a principal submatrix of the symmetric positive semidefinite matrix X ′. We also have X0 =
diag(X) = (1 x). We just need to verify that Xe∗ ∈ cone(N r−1

+ (SP (Gℓ,q, s, t))) and X0 − Xe∗ ∈
cone(N r−1

+ (SP (Gℓ,q, s, t))) for each e∗ ∈ Eℓ,q. We just consider Xe∗ ; the case of X0−Xe∗ is similar.
We know that X ′

e∗ ∈ cone(N r−1
+ (ST (G′

ℓ,q))). Thus if X ′

e∗,0 = 0 then X ′

e∗ is all 0’s, so Xe∗ is all

0’s and we have Xe∗ ∈ cone(N r−1
+ (SP (Gℓ,q, s, t))). Otherwise X ′

e∗,0 > 0 and we have x′(e∗) ∈

N r−1
+ (ST (G′

ℓ,q)) where x′(e∗) is X ′

e∗/X
′

e∗,0 with the 0th entry omitted. For each new edge e ∈ E′

ℓ,q,
since X ′

0,e = x′

e = 1 we must have X ′

e∗,e = X ′

e∗,0, by a basic property of protection matrices. Thus

x
′(e∗)
e = 1 for each new edge e, and the induction hypothesis tells us that x(e∗) ∈ N r−1

+ (SP (Gℓ,q, s, t))

where x(e∗) is x′(e∗) with the entries for the new edges omitted, or in other words, x(e∗) is Xe∗/Xe∗,0

with the 0th entry omitted. Thus we have Xe∗ ∈ cone(N r−1
+ (SP (Gℓ,q, s, t))) as desired.

Now fix some integers r ≥ 0 and ℓ ≥ 1 and let q = r and n = |Vℓ,r| = 2(ℓ + 1) + 2(3r + 3) + 2.
We define the edge distances d = (de)e∈E on the complete undirected graph Kn = (Vℓ,r, E) as the
shortest path distances in the unweighted graph Gℓ,r. Note that d is nonnegative and satisfies the
triangle inequality, so this is a valid instance (together with the distinguished nodes s, t).
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Figure 7: The graph G4,1.

Figure 8: The graph G′

4,1.

Lemma 4. We have minx∈SP int(Kn,s,t) d · x ≥ 3ℓ − 2.

Lemma 5. We have minx∈Nr
+

(SP (Kn,s,t)) d · x ≤ 2ℓ + 6r + 9.

Combining Lemma 4 and Lemma 5, we find that the ratio on the left side of (2) is at least
3ℓ−2

2ℓ+6r+9 , which is at least 3/2 − ǫ provided ℓ is large enough and r ≤ γ′ℓ for some small enough
γ′ > 0 depending on ǫ. The latter is implied by r = γn for some small enough γ > 0 depending on
γ′. It remains to prove Lemma 4 and Lemma 5.

Proof of Lemma 4. This is equivalent to lower-bounding the cost of a (non-simple) s-t path in Gℓ,r

that visits each node at least once. Given such a path, first note that at most one of the edges
on the top and bottom paths in Gℓ,r is not traversed (otherwise some node would not be visited).
We claim that for either the top path or the bottom path, all but at most one of the edges are
traversed at least twice. Suppose not; then there exist two top edges and two bottom edges, all
four of which are traversed at most once. By symmetry, assume the first of these four edges to be
traversed is on top; then the s-t path cannot return to the left clique without first going to the
right clique. Once in the right clique, the path must traverse at least one of the two special bottom
edges, but then there is no way to get back to the right clique to end at t. This proves the claim.
These observations imply that the contribution of the top and bottom paths to the cost of the s-t
path is at least 3ℓ − 2.

Proof of Lemma 5. Consider the vector x = (xe)e∈Eℓ,r
defined as follows. The edges e on the two

paths all have xe = 1. The edges e within the two cliques all have xe = 2−1/(r+1)
3r+2 . All remaining

edges e have xe = 1/(3r + 3) (that is, those edges that go between a clique and an endpoint of one
of the paths, or are incident to s or t). Let x′ = (x′

e)e∈E′

ℓ,r
be the same as x but with all new edges

e in E′

ℓ,r having x′

e = 1. Cheung [Che05] proves that x′ ∈ N r
+(ST (G′

ℓ,r)); by Lemma 3 this implies
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x ∈ N r
+(SP (Gℓ,r, s, t)). Then a simple argument shows that extending x with 0 values for all the

edges in E\Eℓ,r yields a point x̂ ∈ N r
+(SP (Kn, s, t)) such that d · x̂ =

∑

e∈Eℓ,r
xe (using the fact

that every edge in Gℓ,r is the shortest path between its endpoints). We have

∑

e∈Eℓ,r
xe = 2ℓ · 1 + 2

(

3r+3
2

)

· 2−1/(r+1)
3r+2 + 6(3r + 3) · 1

3r+3 = 2ℓ + 6r + 9

so x̂ witnesses Lemma 5.

4 Open Problems

There are many open problems on approximability and integrality gaps for variants of the traveling
salesperson problem; we give a small sample.

It is open to prove a nontrivial lower bound on the integrality gap of the standard relaxation for
the symmetric TSP tour problem after two rounds of the Sherali-Adams procedure. A key technique
used in most previous work on Sherali-Adams integrality gap lower bounds is the technique of
constructing “locally consistent distributions” (introduced in [FdlVKM07, CMM09]). However,
this technique only seems to apply to relaxations with local constraints, whereas the cut constraints
for TSP are very global.

Regarding Theorem 1, it would be interesting to overcome any of the four deficiencies described
in Section 1.2.

Finally, can the lift-and-project procedures of Lovász-Schrijver or Sherali-Adams be employed
to get improved algorithms for any variant of the traveling salesperson problem?
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