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Tight Approximation Bounds for Vertex
Cover on Dense k-Partite Hypergraphs

Marek Karpinski*  Richard Schmied!  Claus Viehmann*

Abstract

We establish almost tight upper and lower approximation bounds for the
Vertex Cover problem on dense k-partite hypergraphs.

1 Introduction

A hypergraph H = (V, E) consists of a vertex set V and a collection of hyperedges
E where a hyperedge is a subset of V. H is called k-uniform if every edge in FE
contains exactly k vertices. A subset C of V' is a vertex cover of H if every edge
e € F contains at least a vertex of C.

The Vertex Cover problem in a k-uniform hypergraph H is the problem of com-
puting a minimum cardinality vertex cover in H. It is well known that the problem
is N P-hard even for & = 2 (cf. [13]). On the other hand, the simple greedy heuris-
tic which chooses a maximal set of nonintersecting edges, and then outputs all
vertices in those edges, gives a k-approximation algorithm for the Vertex Cover
problem restricted to k-uniform hypergraphs. The best known approximation al-
gorithm achieves a slightly better approximation ratio of (1 — o(1))k and is due to
Halperin [11].

On the intractability side, Trevisan [22] provided one of the first inapproxima-
bility results for the k-uniform vertex cover problem and obtained a inapproxima-
bility factor of k19 assuming P # N P. In 2002, Holmerin [11] improved the factor
to k'~¢. Dinur et al. [7, 8] gave consecutively two lower bounds, first (k — 3 — ¢)
and later on (kK — 1 — €). Moreover, assuming Khot’s Unique Games Conjecture
(UGCQ) [17], Khot and Regev [18] proved an inapproximability factor of k£ — ¢ for
the Vertex Cover problem on k-uniform hypergraphs. Therefore, it implies that the
currently achieved ratios are the best possible.
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The Vertex Cover problem restricted to k-partite k-uniform hypergraphs, when
the underlying partition is given, was studied by Lovasz [20] who achieved a %-
approximation. This approximation upper bound is obtained by rounding the nat-
ural LP relaxation of the problem. The above bound on the integrality gap was
shown to be tight in [1]. As for the lower bounds, Guruswami and Saket [10]
proved that it is NP-hard to approximate the Vertex Cover problem on k-partite
k-uniform hypergraphs to within a factor of £ — e for k£ > 5. Assuming the Unique
Games Conjecture, they also provided an inapproximability factor of % — ¢ for
k > 3. More recently, Sachdeva and Saket [21] claimed a nearly optimal N P-
hardness factor.

To gain better insights on lower bounds, dense instances of many optimization
problems has been intensively studied [2, 15, 16, 14]. The Vertex Cover problem
has been investigated in the case of dense graphs, where the number of edges is
within a constant factor of n?, by Karpinski and Zelikovsky [16], Eremeev [9],
Clementi and Trevisan [6], later by Bar-Yehuda and Kehat [4] as well as Imamura
and Iwama [12].

The Vertex Cover problem restricted to dense balanced k-partite k-uniform hy-
pergraphs was introduced and studied in [5], where it was proved that this re-
stricted version of the problem admits an approximation ratio better than % if the
given hypergraph is dense enough.

In this paper, we give a new approximation algorithm for the Vertex Cover
problem restricted to dense k-partite k-uniform hypergraphs and prove that the
achieved approximation ratio is almost tight assuming the Unique Games Conjec-
ture.

2 Definitions and Notations

Given a natural number i € IN, we introduce for notational simplicity the set
[i] = {1,..,7} and set [0] = (). Let S be a finite set with cardinality s and k € [s]. We
will use the abbreviation (§) = {S" C S | |S'| = k}.

A k-uniform hypergraph H = (V(H), E(H)) consists of a set of vertices V' and a col-
lection £ C (Z) of edges. For a k-uniform hypergraph H and a vertex v € V(H),

we define the neighborhood Ny(v) of v by <Ue€{8€E‘U€e} e) \ {v} and the degree

dy(v)of vtobe|{e € E | v € e}|. We extend this notion to subsets of V(H ), where
S C V(H) obtains the degree dy(S) by [{e € E | S C e}|.

A k-partite k-uniform hypergraph H = (V4, .., Vi, E(H)) is a k-uniform hypergraph
such that V' is a disjoint union of V;, .., V, with |V; Ne| = 1 for every e € E and
i € [k]. In the remainder, we assume that |V;| > |V, for all ¢ € [k — 1] and
k= 0O(1).

A balanced k-partite k-uniform hypergraph H = (14, .., Vi, E(H)) is a k-partite k-
uniform hypergraph with |V;| = ‘—Z' forall i € [k]. We set n = |V| and m = |E| as
usual.

For a k-partite k-uniform hypergraph H = (Vi,..,V;, E(H)) and v € Vj, we in-
troduce the v-induced hypergraph H(v), where the edge set of H(v) is defined by
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{e\ {v} | v €eec E(H)} and the vertex set of H(v) is partitioned into V; N Ny (v)
with i € [k —1].

A vertex cover of a k-uniform hypergraph H = (V(H), E(H)) is a subset C' of
V(H) with the property that e N C' # ) holds for all e € E(H). The Vertex Cover
problem consists of finding a vertex cover of minimum size in a given k-uniform
hypergraph. The Vertex Cover problem in k-partite k-uniform hypergraphs is the
restricted problem, where a k-partite k-uniform hypergraph and its vertex partition
is given as a part of the input.

We define a k-partite k-uniform hypergraph H = (V4,.., Vi, E(H)) as e-dense
for an € € [0, 1] if the following condition holds:

[E(H) = e]] Vi
1€[k]
For ¢ € [k — 1], we introduce the notion of /-wise e-dense k-partite k-uniform

hypergraphs. Given a k-partite k-uniform hypergraph H, if there exists an [ € ([’;})

and an ¢ € [0, 1] such that for all S with the property |V; N S| =1 for all i € I the

condition
dy(S) > €[] Wi
i€[k]\I

holds, we define H to be /-wise e-dense.

3 Our Results

In this paper, we give an improved approximation upper bound for the Vertex
Cover problem restricted to e-dense k-partite k-uniform hypergraphs. The approx-
imation algorithm in [5] yields an approximation ratio of

k
k— (k—2)(1— )it
for /-wise e-dense balanced k-partite k-uniform hypergraphs. Here, we design an
algorithm with an approximation factor of

k-
2+ (k—2)e

for the e-dense case which also improves on the /-wise e-dense balanced case for
all ¢ € [k — 2] and matches their bound when ¢ = k£ — 1. A further advantage of this
algorithm is that it applies to a larger class of hypergraphs since the considered
hypergraph is not necessarily required to be balanced.
As a byproduct, we obtain a constructive proof that a vertex cover of an e-dense
k-partite k-uniform hypergraph H = (V3,.., Vi, E(H)) is bounded from below by
€|Vi|, which is shown to be sharp by constructing a family of tight examples.

On the other hand, we provide inapproximability results for the Vertex Cover
problem restricted to /-wise e-dense balanced k-partite k-uniform hypergraphs un-
der the Unique Games Conjecture. We also prove that this reduction yields a
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matching lower bound if we use a conjecture on the Unique Games hardness of
the Vertex Cover problem restricted to balanced k-partite k-uniform hypergraphs.
This means that further restrictions such as ¢-wise density cannot lead to improved
approximation ratios and our proposed approximation algorithm is best possible
assuming this conjecture. In addition, we are able to prove an inapproximability
factor under P # NP.

4 Approximation Algorithm

In this section, we give a polynomial time approximation algorithm with improved
approximation factor for the Vertex Cover problem restricted to e-dense k-partite
k-uniform hypergraphs.

We state now our main result.

Theorem 1. There exists a polynomial time approximation algorithm with approxi-

mation ratio "

2+ (k—2)e

for the Vertex Cover problem in e-dense k-partite k-uniform hypergraphs.

A crucial ingredient of the proof of Theorem 1 is Lemma 1, in which we show
that we can extract efficiently a large part of an optimal vertex cover of a given
e-dense k-partite k-uniform hypergraph H = (14, .., Vi, E(H)). More precisely, we
obtain in this way a constructive proof that the size of a vertex cover of H is
bounded from below by ¢|V)|. The procedure for the extraction of a part of an
optimal vertex cover is given in Figure 1.

We now formulate Lemma 1:

Lemma 1. Let H = (V4,.., Vi, E(H)) be an e-dense k-partite k-uniform hypergraph
with k > 1. Then, the procedure Extract(-) computes in polynomial time a collection
R of subsets of V/(H) such that the size of R is polynomial in |V (H)| and R contains
a set S, which is a subset of an optimal vertex cover of H and its cardinality is at least

As a consequence, we obtain directly:

Corollary 1. Given an e-dense k-partite k-uniform hypergraph H = (V4, .., Vi, E(H))
with k > 1, the cardinality of an optimal vertex cover of H is bounded from below by

Before we prove Lemma 1, we describe the main idea of the proof. Let OPT
denote an optimal vertex cover of H. The procedure Eztract(-) tests for the set
R = {vy,..,v,} of the p heaviest vertices of V}, if {vy,..,v,-1} € OPT and v, ¢
OPT for every u € [p|. Clearly, either R C OPT or there exists a v, such that
v, &€ OPT. If the procedure already possesses a part of O PT" denoted by R,, then,



Procedure Extract(-)

Input: e-dense k-partite k-uniform hypergraph H = (V4,.., Vi, F) with k > 1

1. IF k = 1 THEN
(a) RETURN {U,p ¢}
2. ELSE:

(a) Let (v1,..,vp) be the vector consisting of the first p = {ﬁw
elk—1

heaviest vertices of Vi, with dg(v;) > di(viy1)
(b) R={{v1,..,vp}}
(¢) FOR 4 = 1,..,p DO:
i. Ri=A{uvx|keli—1]}
ii. Invoke Extract(H (v;)) with output O
ili. R=RU{R;US|S €0}

3. RETURN R

Figure 1: Procedure Fxtract

Extract(-) tries to obtain a large part of an optimal vertex cover of the v,-induced
hypergraph H(v,). Hence, we have to show that H (v, ) must still be dense enough.
We now give the proof of Lemma 1.

Proof. The proof of Lemma 1 will be split in several parts. In particular, we show
that given an e-dense k-partite k-uniform hypergraph H = (V4,.., Vi, E(H)), the
procedure Extract(-) and its output R possess the following properties:

1. Extract(-) constructs R in polynomial time and the cardinality of R is O(n*).
2. Thereis a S € R such that S is a subset of an optimal vertex cover of H.
3. For every S € R, the cardinality of S is at least | S| > ¢|Vj|.

(1.) Clearly, R is upper bounded by |V;|¥ = O(n*) and therefore, the running time
of Extract(-) is O(n*).

(2.) and (3.) We prove the remaining properties by induction. If we have k = 1,
the set (J.c () € is by definition an optimal vertex cover of H = (V3, E(H)). Since
H is e-dense, the cardinality of |E(H)| is lower bounded by ¢|V}|.

We assume that £ > 1. Let H = (V4, .., Vi, E(H)) be an e-dense k-partite k-uniform

hypergraph and OPT C V(H) an optimal vertex cover of H. Let (vy,..,v,) be the

vector consisting of the first p = [%
lelk—1

dp(vig1). If {vq,..,v,} is contained in OPT, we have constructed a subset of an

-‘ heaviest vertices of V}, with dgy(v;) >




optimal vertex cover with cardinality

e I1 Vil
p= ABE)] | o e e[Vl
[T vy = I vl -
le[k—1] le[k—1]

Otherwise, there is an v € [p] such that R, C OPT and v, ¢ OPT. But this
means that an optimal vertex cover of H contains an optimal vertex cover of the
v,-induced (k — 1)-partite (k — 1)-uniform hypergraph H(v,) in order to cover the
edges e € {e € F | v, € e}. The situation is depicted in Figure 2.

v,-induced Hypergraph H (v, )
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Figure 2: The v,-induced (k — 1)-partite (k — 1)-uniform hypergraph H (v,)

By our induction hypothesis, Extract(H (v, )) contains a set S, which is a subset
of a minimum vertex cover of H(v,) and of OPT'. The only claim, which remains
to be proven, is that the cardinality of S, is large enough. More precisely, we show
that |S,| can be lower bounded by ¢|V| — | R,|. Therefore, we need to analyze the
density of the v,-induced hypergraph H(v,). The edge set of H(v,) is given by
{e\ {v.} | vu € e € E}. Thus, we have to obtain a lower bound on the degree of
v,. Since |{e € E'[ eN R, # 0}| is upper bounded by |R,[ [ ],y [Vi], the vertices
in V;, \ R, possess the average degree of at least

>, degu(v) e [I Vil =Hee Efen R, # 0}

v w lelk
Ay i — ey W
IV =1k T N
N Vi \ Rl
(€l =R T IV
- Vi\ Rl ®



Since the heaviest vertex in V, \ R, must have a degree of at least

(E‘Vk‘_lﬁél)\gfl““’” Y1l e deduce that the edge set of H(v,) denoted by E, can be

lower bounded by

(elVil = Ru)) IT (VI

le[k—1]
Vi \ Rul
Let H(v,) be defined by (V}*,..,V}* ,, E,) with |V*| < |V;| for all i € [k — 1]. By our
induction hypothesis, the size of every set contained in Extract(-) is at least

(elVil = Rul) IT [V

B >

| E| lelk—1]
2w > Vi 4
NG AW NIy S
lelk—1] lelk—1]
(il = 1R T 1V
e —_
> Vi (5)
AV R G
le[k—1]
([Vi] - |R])
> ———— V] (6)
AVIEG
e|Vi| — | Ry
> W= BD ) gy = 1Ry @
|Vl

In (4), we used the fact that |V*| < |V;| for all i € [k — 1]. Whereas in (5), we
used our assumption |Vj| < |Vj_4|. All in all, we obtain

[By US|l = [Ru] + (lelVa] = [Rul) = €]Vl (8)
Clearly, this argumentation on the size of R, U S, holds for every u € [p| and the
proof of Lemma 1 follows. O

Before we state our approximation algorithm and prove Theorem 1, we show
that the bound in Lemma 1 is tight. In particular, we define a family of ¢-dense
k-partite k-uniform hypergraphs H(k,l,¢) = (Vi,.., Vi, E(H,;)) with |V}| = % for
alli e [k], k > 1,e € {} | u € [l]} and [ > 1 such that Extract(-) returns a subset
of an optimal vertex cover with cardinality of exactly ¢|V}|.

Lemma 2. The bound of Lemma 1 is tight.

Proof. Let us define H(k,p,e) = (V4,..,Vi, E). For a fixed p > 1 and k& > 1,
every partition V; with ¢ € [k] consists of a set of [ vertices. Let us fixa e = 7
with u € [l]. Then, H(k,!,¢) contains the set V' C Vj of u vertices such that
E = {{v,ve,.,v} | v1 € Ve € Vo,..,v, € Vi}. An example of such a
hypergraph is depicted in Figure 3.

Notice that H(k,l,¢) = (V4, .., Vi, E) is e-dense, since

Bl v _u_
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Figure 3: An example of a hypergraph H (k, I, ¢)

The procedure Extract(-) returns a set R, in which V}* is contained, since V" is the

set of the p heaviest vertices of V},. Hence, we obtain |V}| = %\VM = ¢€|Vi|. On
the other hand, the remaining hypergraph H' = (Vi,..,V,, \ V}*, E(H')) with edge
set E(H') ={e € E | enV;* =0} is already covered, since E(H’) is by definition
of H(k,p, ¢) the empty set. Therefore, V}" is a vertex cover of H(k,p, ¢) and since,
according to Corollary 1, every vertex cover is bounded from below by €|V}, V}*

must be an optimal vertex cover. O

Next, we state our approximation algorithm for the Vertex Cover problem in
e-dense k-partite k-uniform hypergraphs defined in Figure 4. The approximation
algorithm combines the procedure Fztract(-) to generate a large enough subset
of an optimal vertex cover together with the g—approximation algorithm due to
Lovdsz [20] applied to the remaining instance.

Algorithm Approx(-)
Input: e-dense k-partite k-uniform hypergraph H = (V, .., Vi, E) with k > 3

1. T ={Vi}
2. invoke procedure Extract(H) with output R
3. forallSe Rdo:

(@) Hs = (V(H)\ S,{e € E(H) |enS=10})

(b) obtain a (%)—approximate solution S}, for Hg

(©) T=TU{S,US}

4. Return the smallest set in T°

Figure 4: Algorithm Approx(-)



We now prove Theorem 1.

Proof. Let H = (V4,..,V}, F) be an e-dense k-partite k-uniform hypergraph. From
Lemma 1, we know that the procedure Fztract(-) returns in polynomial time a
collection C of subsets of V(H) such that there is a set S in C, which is contained
in an optimal vertex cover of H. Moreover, we know that the size of S is lower
bounded by €|V}

Next, we analyze the approximation ratio of our approximation algorithm
Approx(-). Clearly, the size of an optimal vertex cover of H is upper bounded by
|Vk|. Let us denote by OPT" the size of an optimal vertex cover of the remaining
hypergraph H' defined by removing all edges e of H with e N S # (). Further-
more, let S’ be the solution of the £-approximation algorithm applied to H'. The
approximation ratio of Approz(-) is bounded by

S| +1S1 IS+ 30PT K ©
|S|+|OPT"| — |S|+|OPT"| — HSlzkloPT|
IS|+Ej0PT|
k
< 2|S|+(k—2)|S|+k|OPT’| (10)
|S|+&|0PT|
< k 5] 1D
2+ (k—=2) |S|+EjOPT|
k
< 3 (12)
2+ (k= 2)1
k
< k €[Vl (13)
2+ (k—2)758
k
< - 1
T 24 (k—2)e (14)

In (11), we used the fact that the size of the output of Approz(-) is upper bounded
by |Vi|. Therefore, we have |S| + £|OPT’| < V4. In (12), we know from Lemma 1
that |S| > €|V O

5 Inapproximability Results

In this section, we prove hardness results for the Vertex Cover problem restricted to
(-wise e-dense balanced k-uniform k-partite hypergraphs under the Unique Games
Conjecture [17] as well as under the assumption P # NP.

5.1 UGC-Hardness

The Unique Games-hardness result of [10] was obtained by applying the result of
Kumar et al. [19], with a modification to the LP integrality gap due to Ahorani et
al. [1]. More precisely, they proved the following inapproximability result:
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Theorem 2. [10] For every § > 0 and k > 3, there exist a ns such that given H =
(Vi,.., Vi, E(H)) as an instance of the Vertex Cover problem in balanced k-partite
k-uniform hypergraphs with |V (H)| > ns, the following is UGC-hard to decide:

e The size of a vertex cover of H is at least |V| (ﬁ — 5).

e The size of an optimal vertex cover of H is at most |V/| (ﬁ + 5).

As the starting point of our reduction, we use Theorem 2 and prove the follow-
ing:

Theorem 3. For every 6 > 0, ¢ € (0,1), { € [k — 1], and k > 3, there exists no
polynomial time approximation algorithm with an approximation ratio

k

2(hi—1)(k—2)e
2+ k+(k—2)e

-0

for the Vertex Cover problem in (-wise e-dense k-partite k-uniform hypergraphs as-
suming the Unique Games Conjecture.

Proof. First, we concentrate on the e¢-dense case and afterwards, we extend the
range of /. As a starting point of the reduction, we use the k-partite k-uniform
hypergraph H = (V4,..,Vi, E(H)) from Theorem 2 and construct an e-dense k-
partite k-uniform hypergraph H' = (V/,..,V/, E').

Let us start with the description of H’. First, we join the set C; of =7 vertices
to V; for every ¢ € [k] and add all possible edges e of H' to E’ with the restriction
CiNe# (. Thus, we obtain |V/| = % + ;<% for all i € [k].

Now, let us analyze how the size of the optimal solution of H’ transforms. We
denote by OPT’ an optimal vertex cover of H'. The UGC-hard decision question
from Theorem 2 transforms into the following:

€ n
1—e€k

1 € n
— — — < |OPT’ PT'| <
n<2(k_1) 6)+1—ek:_|0 | or |O |_n<

L s)
k(k—1)

Assuming the UGC, this implies the hardness of approximating the Vertex Cover
problem in e-dense hypergraphs for every ¢’ > 0 to within:

1 €En —€ €
n<2(k—l) _5) Tier sy —o(l—e+5 (15)
- 1—¢ €
n(wem +0) +isr men POI-9 g
(1—-e)k + 2e(k—1)
_ 2R T RED g (16)

1—e€ E(k—l)
G-k T B
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(1—e)k 2e(k—1) k—ek+2ek—2e
2(k—1)k +

2k(k—1) _ 2(k—1)k
1—¢ e(h—1) J = vk o' a7
"Dk T RG-D) (h—1)k
k+ (k—2)e
= — 0 18
21+ (k — 2)e) (18)
k !
= woreza 0 (19)
k+(k—2)e
k /
= 2t Ch—2) (=2 0 (20)
k+(k—2)e
k
= -0 (21)
(2k—2)(k—2)e
24 e
k
= — 0 (22)
20h—1)(k—2)e
24 e

Finally, we have to verify that the constructed hypergraph H’ is indeed e-dense.
Notice that /I can have at most (|V/|)* = (% + 7= %)* edges. Therefore, we obtain
the following:

(=D Green™ e am
(2 +=9)" P+ Lo

Notice that the constructed hypergraph is also /-wise e-dense balanced. Hence, we
obtain the same inapproximability factor in this case as well. O

Next, we combine the former construction with a conjecture about Unique
Games hardness of the Vertex Cover problem in balanced k-partite k-uniform hy-
pergraphs. In particular, we postulate the following:

Conjecture 1. Given a balanced k-partite k-uniform hypergraph H =
(Vi,., Vi, E(H)) with k > 3, let OPT denote an optimal vertex cover of H. For
every 0 > 0, the following is UGC-hard to decide:

1 2
\4 <E_5) < |OPT| or |OPT| < |V| <ﬁ+5)

Combining Conjecture 1 with the construction in Theorem 3, it yields the fol-
lowing inapproximability result which matches precisely the approximation upper
bound achieved by our approximation algorithm described in Section 4:

Theorem 4. For every 6 > 0, ¢ € (0,1), ¢{ € [k — 1], and k > 3, there exists no
polynomial time approximation algorithm with an approximation ratio
k

2+(k—2)€_5
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for the Vertex Cover problem in (-wise e-dense k-partite k-uniform hypergraphs as-
suming Conjecture 1.

Proof. The UGC-hard decision question from Conjecture 1 transforms into the fol-
lowing:
n

1 € 2 €N
Z < / "N < - _
n(k 5)+1—ek_|OPT| or |OPT|—n<k:2+6>+1—ek:

Assuming the UGC, this implies the hardness of approximating the Vertex Cover
problem in e-dense k-partite k-uniform hypergraphs for every ¢’ > 0 to within:

-9+t _ n(Go0)(-9+g -
n(%+0)+ =% n(Z+0)(1—e+<

= i — 24
n(%)(l—e)—l—'f—? (24)

k )
- 2(1—e)+ke_5 (25)

k )
= sr oo (26)
O

5.2 NP-Hardness

Recently, Sachdeva and Saket proved in [21] a nearly optimal NP-hardness of the
Vertex Cover problem on balanced k-uniform k-partite hypergraphs. More pre-
cisely, they obtained the following inapproximability result:

Theorem 5. [21] Given a balanced k-partite k-uniform hypergraph H = (V, E) with
k > 4, let OPT denote an optimal vertex cover of H. For every § > 0, the following is
NP-hard to decide:

k
14 (2(k+ DeGk+)+1) 5)

or

1
\4 (k(2(k:+1)+1) +5> > |OPT|

Combining our reduction from Theorem 2 with Theorem 5, we prove the fol-
lowing inapproximability result under the assumption P # N P:

< |OPT|

Theorem 6. For every 6 > 0, € € (0,1), ¢ € [k—1], and k > 4, there is no polynomial
time approximation algorithm with an approximation ratio
F(1l—e)+e2(k+1)2(k+1)+1)
2+ D[l —e+e2(k+1)+1)]
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for the Vertex Cover problem in (-wise e-dense k-partite k-uniform hypergraphs as-
suming P # NP.

Proof. The NP-hard decision question from Theorem 5 transforms into the follow-
ing:

k €E N
- " < |opPT
”(2(k:+1)(2(k:+1)+1) 6)+1—ek < |oPT]
or
1 €E N
- > /
”(k(z(k+1)+1)+5)+1—ek = |orT]

Assuming NP # P, this implies the hardness of approximating the Vertex Cover
problem in e-dense hypergraphs for every ¢’ > 0 to within:

k(1—e) k2(1—e)+e2(k+1)(2(k+1)+1)

20+ D) (2(h+ 1) +1) + 1 s = R2(kt1)(2(k+1)+1) _ 5 27)
__d-e 4 € o 1—ete(2(k+1)+1)
RERFUFD) Tk ENECITERIESY
BPl—e)+e2(k+1)2k+1)+1)
-0 (28)
2k + 1)1 —e+e2(k+1)+1)
L]

6 Further Research

An interesting question remains about even tighter lower approximation bounds
for our problem, perhaps connecting it more closely to the integrality gap issue of
the LP of Lovasz [20].
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