Tight Approximation Bounds for Vertex Cover on Dense k-Partite Hypergraphs

Marek Karpinski∗ Richard Schmied† Claus Viehmann‡

Abstract
We establish almost tight upper and lower approximation bounds for the Vertex Cover problem on dense k-partite hypergraphs.

1 Introduction
A hypergraph $H = (V, E)$ consists of a vertex set V and a collection of hyperedges E where a hyperedge is a subset of V. H is called k-uniform if every edge in E contains exactly k vertices. A subset C of V is a vertex cover of H if every edge $e \in E$ contains at least a vertex of C.

The Vertex Cover problem in a k-uniform hypergraph H is the problem of computing a minimum cardinality vertex cover in H. It is well known that the problem is NP-hard even for $k = 2$ (cf. [13]). On the other hand, the simple greedy heuristic which chooses a maximal set of nonintersecting edges, and then outputs all vertices in those edges, gives a k-approximation algorithm for the Vertex Cover problem restricted to k-uniform hypergraphs. The best known approximation algorithm achieves a slightly better approximation ratio of $(1 - o(1))k$ and is due to Halperin [11].

On the intractability side, Trevisan [22] provided one of the first inapproximability results for the k-uniform vertex cover problem and obtained an inapproximability factor of $k\pi$ assuming $P \neq NP$. In 2002, Holmerin [11] improved the factor to $k^{1-\epsilon}$. Dinur et al. [7, 8] gave consecutively two lower bounds, first $(k - 3 - \epsilon)$ and later on $(k - 1 - \epsilon)$. Moreover, assuming Khot’s Unique Games Conjecture (UGC) [17], Khot and Regev [18] proved an inapproximability factor of $k - \epsilon$ for the Vertex Cover problem on k-uniform hypergraphs. Therefore, it implies that the currently achieved ratios are the best possible.

∗Dept. of Computer Science and the Hausdorff Center for Mathematics, University of Bonn. Supported in part by DFG grants and the Hausdorff Center grant EXC59-1. Email: marek@cs.uni-bonn.de
†Dept. of Computer Science, University of Bonn. Work supported by Hausdorff Doctoral Fellowship. Email: schmied@cs.uni-bonn.de
‡Dept. of Computer Science, University of Bonn. Work partially supported by Hausdorff Center for Mathematics, Bonn. Email: viehmann@cs.uni-bonn.de
The Vertex Cover problem restricted to k-partite k-uniform hypergraphs, when the underlying partition is given, was studied by Lovász [20] who achieved a $\frac{k}{2}$-approximation. This approximation upper bound is obtained by rounding the natural LP relaxation of the problem. The above bound on the integrality gap was shown to be tight in [1]. As for the lower bounds, Guruswami and Saket [10] proved that it is NP-hard to approximate the Vertex Cover problem on k-partite k-uniform hypergraphs to within a factor of $\frac{k}{2} - \epsilon$ for $k \geq 5$. Assuming the Unique Games Conjecture, they also provided an inapproximability factor of $\frac{k}{2} - \epsilon$ for $k \geq 3$. More recently, Sachdeva and Saket [21] claimed a nearly optimal NP-hardness factor.

To gain better insights on lower bounds, dense instances of many optimization problems has been intensively studied [2, 15, 16, 14]. The Vertex Cover problem has been investigated in the case of dense graphs, where the number of edges is within a constant factor of n^2, by Karpinski and Zelikovsky [16], Eremeev [9], Clementi and Trevisan [6], later by Bar-Yehuda and Kehat [4] as well as Imamura and Iwama [12].

The Vertex Cover problem restricted to dense balanced k-partite k-uniform hypergraphs was introduced and studied in [5], where it was proved that this restricted version of the problem admits an approximation ratio better than $\frac{k}{2}$ if the given hypergraph is dense enough.

In this paper, we give a new approximation algorithm for the Vertex Cover problem restricted to dense k-partite k-uniform hypergraphs and prove that the achieved approximation ratio is almost tight assuming the Unique Games Conjecture.

2 Definitions and Notations

Given a natural number $i \in \mathbb{N}$, we introduce for notational simplicity the set $[i] = \{1, \ldots, i\}$ and set $[0] = \emptyset$. Let S be a finite set with cardinality s and $k \in [s]$. We will use the abbreviation $\binom{S}{k} = \{S' \subseteq S \mid |S'| = k\}$.

A k-uniform hypergraph $H = (V(H), E(H))$ consists of a set of vertices V and a collection $E \subseteq \binom{V}{k}$ of edges. For a k-uniform hypergraph H and a vertex $v \in V(H)$, we define the neighborhood $N_H(v)$ of v by $(\bigcup_{e \in E(v)} e) \setminus \{v\}$ and the degree $d_H(v)$ of v to be $|\{e \in E \mid v \in e\}|$. We extend this notion to subsets of $V(H)$, where $S \subseteq V(H)$ obtains the degree $d_H(S)$ by $|\{e \in E \mid S \subseteq e\}|$.

A k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$ is a k-uniform hypergraph such that V is a disjoint union of V_1, \ldots, V_k with $|V_i \cap e| = 1$ for every $e \in E$ and $i \in [k]$. In the remainder, we assume that $|V_i| \geq |V_{i+1}|$ for all $i \in [k-1]$ and $k = O(1)$.

A balanced k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$ is a k-partite k-uniform hypergraph with $|V_i| = \frac{|V|}{k}$ for all $i \in [k]$. We set $n = |V|$ and $m = |E|$ as usual.

For a k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$ and $v \in V_i$, we introduce the v-induced hypergraph $H(v)$, where the edge set of $H(v)$ is defined by
{e \setminus \{v\} | v \in e \in E(H)}$ and the vertex set of $H(v)$ is partitioned into $V_i \cap N_H(v)$ with $i \in [k-1]$.

A vertex cover of a k-uniform hypergraph $H = (V(H), E(H))$ is a subset C of $V(H)$ with the property that $e \cap C \neq \emptyset$ holds for all $e \in E(H)$. The Vertex Cover problem consists of finding a vertex cover of minimum size in a given k-uniform hypergraph. The Vertex Cover problem in k-partite k-uniform hypergraphs is the restricted problem, where a k-partite k-uniform hypergraph and its vertex partition is given as a part of the input.

We define a k-partite k-uniform hypergraph $H = (V_1, ..., V_k, E(H))$ as ϵ-dense for an $\epsilon \in [0, 1]$ if the following condition holds:

$$|E(H)| \geq \epsilon \prod_{i \in [k]} |V_i|$$

For $\ell \in [k-1]$, we introduce the notion of ℓ-wise ϵ-dense k-partite k-uniform hypergraphs. Given a k-partite k-uniform hypergraph H, if there exists an $I \in \binom{[k]}{\ell}$ and an $\epsilon \in [0, 1]$ such that for all S with the property $|V_i \cap S| = 1$ for all $i \in I$ the condition

$$d_H(S) \geq \epsilon \prod_{i \in [k] \setminus I} |V_i|$$

holds, we define H to be ℓ-wise ϵ-dense.

3 Our Results

In this paper, we give an improved approximation upper bound for the Vertex Cover problem restricted to ϵ-dense k-partite k-uniform hypergraphs. The approximation algorithm in [5] yields an approximation ratio of

$$\frac{k}{k - (k-2)(1-\epsilon)^{k-\ell}}$$

for ℓ-wise ϵ-dense balanced k-partite k-uniform hypergraphs. Here, we design an algorithm with an approximation factor of

$$\frac{k}{2 + (k-2)\epsilon}$$

for the ϵ-dense case which also improves on the ℓ-wise ϵ-dense balanced case for all $\ell \in [k-2]$ and matches their bound when $\ell = k-1$. A further advantage of this algorithm is that it applies to a larger class of hypergraphs since the considered hypergraph is not necessarily required to be balanced.

As a byproduct, we obtain a constructive proof that a vertex cover of an ϵ-dense k-partite k-uniform hypergraph $H = (V_1, ..., V_k, E(H))$ is bounded from below by $\epsilon|V_k|$, which is shown to be sharp by constructing a family of tight examples.

On the other hand, we provide inapproximability results for the Vertex Cover problem restricted to ℓ-wise ϵ-dense balanced k-partite k-uniform hypergraphs under the Unique Games Conjecture. We also prove that this reduction yields a
matching lower bound if we use a conjecture on the Unique Games hardness of the Vertex Cover problem restricted to balanced k-partite k-uniform hypergraphs. This means that further restrictions such as ℓ-wise density cannot lead to improved approximation ratios and our proposed approximation algorithm is best possible assuming this conjecture. In addition, we are able to prove an inapproximability factor under $P \neq NP$.

4 Approximation Algorithm

In this section, we give a polynomial time approximation algorithm with improved approximation factor for the Vertex Cover problem restricted to ϵ-dense k-partite k-uniform hypergraphs.

We state now our main result.

Theorem 1. There exists a polynomial time approximation algorithm with approximation ratio

$$\frac{k}{2 + (k - 2)\epsilon}$$

for the Vertex Cover problem in ϵ-dense k-partite k-uniform hypergraphs.

A crucial ingredient of the proof of Theorem 1 is Lemma 1, in which we show that we can extract efficiently a large part of an optimal vertex cover of a given ϵ-dense k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$. More precisely, we obtain in this way a constructive proof that the size of a vertex cover of H is bounded from below by $\epsilon|V_k|$. The procedure for the extraction of a part of an optimal vertex cover is given in Figure 1.

We now formulate Lemma 1:

Lemma 1. Let $H = (V_1, \ldots, V_k, E(H))$ be an ϵ-dense k-partite k-uniform hypergraph with $k \geq 1$. Then, the procedure $\text{Extract}(\cdot)$ computes in polynomial time a collection R of subsets of $V(H)$ such that the size of R is polynomial in $|V(H)|$ and R contains a set S, which is a subset of an optimal vertex cover of H and its cardinality is at least $\epsilon|V_k|$.

As a consequence, we obtain directly:

Corollary 1. Given an ϵ-dense k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$ with $k \geq 1$, the cardinality of an optimal vertex cover of H is bounded from below by $\epsilon|V_k|$.
Procedure $\text{Extract}(\cdot)$

Input: ϵ-dense k-partite k-uniform hypergraph $H = (V_1, ..., V_k, E)$ with $k \geq 1$

1. IF $k = 1$ THEN
 (a) RETURN $\bigcup_{e \in E} e$

2. ELSE:
 (a) Let $(v_1, ..., v_p)$ be the vector consisting of the first $p = \left\lceil \frac{|E|}{\prod_{l \in [k-1]} |V_l|} \right\rceil$ heaviest vertices of V_k with $d_H(v_i) \geq d_H(v_{i+1})$
 (b) $R = \{v_1, ..., v_p\}$
 (c) FOR $i = 1, ..., p$ DO:
 i. $R_i = \{v_k \mid k \in [i-1]\}$
 ii. Invoke $\text{Extract}(H(v_i))$ with output O
 iii. $R = R \cup \{R_i \cup S \mid S \in O\}$

3. RETURN R

Figure 1: Procedure Extract

$\text{Extract}(\cdot)$ tries to obtain a large part of an optimal vertex cover of the v_u-induced hypergraph $H(v_u)$. Hence, we have to show that $H(v_u)$ must still be dense enough. We now give the proof of Lemma 1.

Proof. The proof of Lemma 1 will be split in several parts. In particular, we show that given an ϵ-dense k-partite k-uniform hypergraph $H = (V_1, ..., V_k, E(H))$, the procedure $\text{Extract}(\cdot)$ and its output R possess the following properties:

1. $\text{Extract}(\cdot)$ constructs R in polynomial time and the cardinality of R is $O(n^k)$.
2. There is a $S \in R$ such that S is a subset of an optimal vertex cover of H.
3. For every $S \in R$, the cardinality of S is at least $|S| \geq \epsilon |V_k|$.

(1.) Clearly, R is upper bounded by $|V_1|^k = O(n^k)$ and therefore, the running time of $\text{Extract}(\cdot)$ is $O(n^k)$.
(2.) and (3.) We prove the remaining properties by induction. If we have $k = 1$, the set $\bigcup_{e \in E(H)} e$ is by definition an optimal vertex cover of $H = (V_1, E(H))$. Since H is ϵ-dense, the cardinality of $|E(H)|$ is lower bounded by $\epsilon |V_1|$. We assume that $k > 1$. Let $H = (V_1, ..., V_k, E(H))$ be an ϵ-dense k-partite k-uniform hypergraph and $OPT \subseteq V(H)$ an optimal vertex cover of H. Let $(v_1, ..., v_p)$ be the vector consisting of the first $p = \left\lceil \frac{|E(H)|}{\prod_{l \in [k-1]} |V_l|} \right\rceil$ heaviest vertices of V_k with $d_H(v_i) \geq d_H(v_{i+1})$. If $\{v_1, ..., v_p\}$ is contained in OPT, we have constructed a subset of an
optimal vertex cover with cardinality

\[p = \left\lceil \frac{|E(H)|}{\prod_{l \in [k-1]} |V_l|} \right\rceil \geq \frac{\epsilon \prod_{l \in [k]} |V_l|}{\prod_{l \in [k-1]} |V_l|} \geq \epsilon |V_k|. \]

Otherwise, there is an \(u \in [p] \) such that \(R_u \subseteq OPT \) and \(v_u \notin OPT \). But this means that an optimal vertex cover of \(H \) contains an optimal vertex cover of the \(v_u \)-induced \((k-1)\)-partite \((k-1)\)-uniform hypergraph \(H(v_u) \) in order to cover the edges \(e \in \{ e \in E \mid v_u \in e \} \). The situation is depicted in Figure 2.

\[v_u \text{-induced Hypergraph } H(v_u) \]

![Figure 2: The \(v_u \)-induced \((k-1)\)-partite \((k-1)\)-uniform hypergraph \(H(v_u) \)](image)

By our induction hypothesis, \(Extract(H(v_u)) \) contains a set \(S_u \) which is a subset of a minimum vertex cover of \(H(v_u) \) and of \(OPT \). The only claim, which remains to be proven, is that the cardinality of \(S_u \) is large enough. More precisely, we show that \(|S_u| \) can be lower bounded by \(\epsilon |V_k| - |R_u| \). Therefore, we need to analyze the density of the \(v_u \)-induced hypergraph \(H(v_u) \). The edge set of \(H(v_u) \) is given by \(\{ e \setminus \{ v_u \} \mid v_u \in e \in E \} \). Thus, we have to obtain a lower bound on the degree of \(v_u \). Since \(|\{ e \in E \mid e \cap R_u \neq \emptyset \}| \) is upper bounded by \(|R_u| \prod_{l \in [k-1]} |V_l| \), the vertices in \(V_k \setminus R_u \) possess the average degree of at least

\[
\sum_{v \in V_k \setminus R_u} \deg_H(v) \geq \frac{\epsilon \prod_{l \in [k]} |V_l| - |\{ e \in E \mid e \cap R_u \neq \emptyset \}|}{|V_k \setminus R_u|} \geq \frac{\epsilon \prod_{l \in [k]} |V_l| - |R_u| \prod_{l \in [k-1]} |V_l|}{|V_k \setminus R_u|} \geq \frac{(\epsilon |V_k| - |R_u|) \prod_{l \in [k-1]} |V_l|}{|V_k \setminus R_u|} \]

(1) (2) (3)
Notice that hypergraph is depicted in Figure 3. Let \(u \) with \(i \) all \(k \)-partite \(H \). Then, \(\left| V_{k-1} \right| \) lower bounded by

\[
\left| E_u \right| \geq \frac{(\epsilon|V_k| - |R_u|) \prod_{i \in [k-1]} |V_i|}{|V_k \setminus R_u|}
\]

Let \(H(v_u) \) be defined by \((V_1^u, \ldots, V_{k-1}^u, E_u) \) with \(|V_i^u| \leq |V_i| \) for all \(i \in [k-1] \). By our induction hypothesis, the size of every set contained in \(\text{Extract}(\cdot) \) is at least

\[
\frac{|E_u|}{\prod_{i \in [k-1]} |V_i^u|} |V_{k-1}| \geq \frac{(\epsilon|V_k| - |R_u|) \prod_{i \in [k-1]} |V_i|}{|V_k \setminus R_u| \prod_{i \in [k-1]} |V_i^u|} |V_{k-1}|
\]

\[
|E_u| \geq \frac{(\epsilon|V_k| - |R_u|) \prod_{i \in [k-1]} |V_i|}{|V_k \setminus R_u| \prod_{i \in [k-1]} |V_i^u|} |V_{k-1}|
\]

\[
|E_u| \geq \frac{(\epsilon|V_k| - |R_u|) |V_k|}{|V_k \setminus R_u|} |V_{k-1}|
\]

\[
|E_u| \geq \frac{(\epsilon|V_k| - |R_u|) |V_k|}{|V_k \setminus R_u|} |V_{k-1}|
\]

In (4), we used the fact that \(|V_i^u| \leq |V_i| \) for all \(i \in [k-1] \). Whereas in (5), we used our assumption \(|V_k| \leq |V_{k-1}| \). All in all, we obtain

\[
|R_u \cup S_u| \geq |R_u| + (\epsilon|V_k| - |R_u|) = \epsilon|V_k|.
\]

Clearly, this argumentation on the size of \(R_u \cup S_u \) holds for every \(u \in [p] \) and the proof of Lemma 1 follows.

Before we state our approximation algorithm and prove Theorem 1, we show that the bound in Lemma 1 is tight. In particular, we define a family of \(\epsilon \)-dense \(k \)-partite \(k \)-uniform hypergraphs \(H(k, l, \epsilon) = (V_1, \ldots, V_k, E(H)) \) with \(|V_i| = \frac{|V|}{l} \) for all \(i \in [k] \), \(k \geq 1 \), \(\epsilon \in \left\{ \frac{\epsilon}{l} | u \in [l] \right\} \) and \(l \geq 1 \) such that \(\text{Extract}(\cdot) \) returns a subset of an optimal vertex cover with cardinality of exactly \(\epsilon|V_k| \).

Lemma 2. The bound of Lemma 1 is tight.

Proof. Let us define \(H(k, p, \epsilon) = (V_1, \ldots, V_k, E) \). For a fixed \(p \geq 1 \) and \(k \geq 1 \), every partition \(V_i \) with \(i \in [k] \) consists of a set of \(l \) vertices. Let us fix a \(\epsilon = \frac{u}{l} \) with \(u \in [l] \). Then, \(H(k, l, \epsilon) \) contains the set \(V_k^u \subseteq V_k \) of \(u \) vertices such that \(E = \{ \{v_1, v_2, \ldots, v_k\} \mid v_1 \in V_{k-1}^u, v_2 \in V_2, \ldots, v_k \in V_k \} \). An example of such a hypergraph is depicted in Figure 3.

Notice that \(H(k, l, \epsilon) = (V_1, \ldots, V_k, E) \) is \(\epsilon \)-dense, since

\[
\frac{|E|}{\prod_{j \in [k]} |V_j|} = \frac{|V_k^u|}{|V_k|} = \frac{u}{l} = \epsilon.
\]
Figure 3: An example of a hypergraph $H(k, l, \epsilon)$

The procedure $Extract(\cdot)$ returns a set R, in which V_k^u is contained, since V_k^u is the set of the p heaviest vertices of V_k. Hence, we obtain $|V_k^u| = \frac{|V_k|}{V_k^u}|V_k| = \epsilon|V_k|$. On the other hand, the remaining hypergraph $H' = (V_1, ..., V_k \setminus V_k^u, E(H'))$ with edge set $E(H') = \{e \in E \mid e \cap V_k^u = \emptyset\}$ is already covered, since $E(H')$ is by definition of $H(k, p, \epsilon)$ the empty set. Therefore, V_k^u is a vertex cover of $H(k, p, \epsilon)$ and since, according to Corollary 1, every vertex cover is bounded from below by $\epsilon|V_k|$, V_k^u must be an optimal vertex cover.

Next, we state our approximation algorithm for the Vertex Cover problem in ϵ-dense k-partite k-uniform hypergraphs defined in Figure 4. The approximation algorithm combines the procedure $Extract(\cdot)$ to generate a large enough subset of an optimal vertex cover together with the $\frac{k}{2}$-approximation algorithm due to Lovász [20] applied to the remaining instance.

Algorithm $Approx(\cdot)$

Input: ϵ-dense k-partite k-uniform hypergraph $H = (V_1, ..., V_k, E)$ with $k \geq 3$

1. $T = \{V_k\}$
2. invoke procedure $Extract(H)$ with output R
3. for all $S \in R$ do :
 (a) $H_S = (V(H) \setminus S, \{e \in E(H) \mid e \cap S = \emptyset\})$
 (b) obtain a $\left(\frac{5}{2}\right)$-approximate solution S_k for H_S
 (c) $T = T \cup \{S_k \cup S\}$
4. Return the smallest set in T

Figure 4: Algorithm $Approx(\cdot)$
We now prove Theorem 1.

Proof. Let $H = (V_1, \ldots, V_k, E)$ be an ϵ-dense k-partite k-uniform hypergraph. From Lemma 1, we know that the procedure $\text{Extract}(\cdot)$ returns in polynomial time a collection C of subsets of $V(H)$ such that there is a set S in C, which is contained in an optimal vertex cover of H. Moreover, we know that the size of S is lower bounded by $\epsilon |V_k|$.

Next, we analyze the approximation ratio of our approximation algorithm $\text{Approx}(\cdot)$. Clearly, the size of an optimal vertex cover of H is upper bounded by $|V_k|$. Let us denote by OPT' the size of an optimal vertex cover of the remaining hypergraph H' defined by removing all edges e of H with $e \cap S \neq \emptyset$. Furthermore, let S' be the solution of the $\frac{k}{2}$-approximation algorithm applied to H'. The approximation ratio of $\text{Approx}(\cdot)$ is bounded by

$$\frac{|S| + |S'|}{|S| + |\text{OPT}'|} \leq \frac{k}{k |S| + \frac{k}{2} |\text{OPT}'|} \leq \frac{2 + (k-2) |S| + \frac{k}{2} |\text{OPT}'|}{|S| + \frac{k}{2} |\text{OPT}'|} \leq \frac{k}{2 + (k-2) |S| + \frac{k}{2} |\text{OPT}'|} \leq \frac{k}{2 + (k-2) |V_k|} \leq \frac{k}{2 + (k-2) \epsilon}$$

In (11), we used the fact that the size of the output of $\text{Approx}(\cdot)$ is upper bounded by $|V_k|$. Therefore, we have $|S| + \frac{k}{2} |\text{OPT}'| \leq |V_k|$. In (12), we know from Lemma 1 that $|S| \geq \epsilon |V_k|$.

5 Inapproximability Results

In this section, we prove hardness results for the Vertex Cover problem restricted to ℓ-wise ϵ-dense balanced k-uniform k-partite hypergraphs under the Unique Games Conjecture [17] as well as under the assumption $P \neq NP$.

5.1 UGC-Hardness

The Unique Games-hardness result of [10] was obtained by applying the result of Kumar et al. [19], with a modification to the LP integrality gap due to Ahorani et al. [1]. More precisely, they proved the following inapproximability result:
Theorem 2. [10] For every $\delta > 0$ and $k \geq 3$, there exist a n_δ such that given $H = (V_1, \ldots, V_k, E(H))$ as an instance of the Vertex Cover problem in balanced k-partite k-uniform hypergraphs with $|V(H)| \geq n_\delta$, the following is UGC-hard to decide:

- The size of a vertex cover of H is at least $|V| \left(\frac{1}{2(k-1)} - \delta \right)$.
- The size of an optimal vertex cover of H is at most $|V| \left(\frac{1}{k(k-1)} + \delta \right)$.

As the starting point of our reduction, we use Theorem 2 and prove the following:

Theorem 3. For every $\delta > 0$, $\epsilon \in (0, 1)$, $\ell \in [k-1]$, and $k \geq 3$, there exists no polynomial time approximation algorithm with an approximation ratio

$$\frac{k}{2 + \frac{2(1-k)(k-2)}{k(k-2)}\epsilon} - \delta$$

for the Vertex Cover problem in ℓ-wise ϵ-dense k-partite k-uniform hypergraphs assuming the Unique Games Conjecture.

Proof. First, we concentrate on the ϵ-dense case and afterwards, we extend the range of ℓ. As a starting point of the reduction, we use the k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$ from Theorem 2 and construct an ϵ-dense k-partite k-uniform hypergraph $H' = (V'_1, \ldots, V'_k, E')$.

Let us start with the description of H'. First, we join the set C_i of $\frac{\epsilon}{1-\epsilon} \frac{n}{k}$ vertices to V_i for every $i \in [k]$ and add all possible edges e of H' to E' with the restriction $C_i \cap e \neq \emptyset$. Thus, we obtain $|V'_i| = \frac{n}{k} + \frac{\epsilon}{1-\epsilon} \frac{n}{k}$ for all $i \in [k]$.

Now, let us analyze how the size of the optimal solution of H' transforms. We denote by OPT' an optimal vertex cover of H'. The UGC-hard decision question from Theorem 2 transforms into the following:

$$n \left(\frac{1}{2(k-1)} - \delta \right) + \frac{\epsilon}{1-\epsilon} \frac{n}{k} \leq |OPT'| \quad \text{or} \quad |OPT'| \leq n \left(\frac{1}{k(k-1)} + \delta \right) + \frac{\epsilon}{1-\epsilon} \frac{n}{k}$$

Assuming the UGC, this implies the hardness of approximating the Vertex Cover problem in ϵ-dense hypergraphs for every $\delta' > 0$ to within:

$$n \left(\frac{1}{2(k-1)} - \delta \right) + \frac{\epsilon}{1-\epsilon} \frac{n}{k} \leq |OPT'| \quad \text{or} \quad |OPT'| \leq n \left(\frac{1}{k(k-1)} + \delta \right) + \frac{\epsilon}{1-\epsilon} \frac{n}{k}$$

Assuming the UGC, this implies the hardness of approximating the Vertex Cover problem in ϵ-dense hypergraphs for every $\delta' > 0$ to within:

$$n \left(\frac{1}{2(k-1)} - \delta \right) + \frac{\epsilon}{1-\epsilon} \frac{n}{k} = \frac{1-\epsilon}{2(k-1)} - \delta(1 - \epsilon) + \frac{\epsilon}{k}$$

$$n \left(\frac{1}{k(k-1)} + \delta \right) + \frac{\epsilon}{1-\epsilon} \frac{n}{k} = \frac{1-\epsilon}{k(k-1)} + \delta(1 - \epsilon) + \frac{\epsilon}{k}$$

$$\frac{(1-\epsilon)k}{2(k-1)} + \frac{2\epsilon(k-1)}{k(k-1)} - \delta'$$

$$\frac{1-\epsilon}{(k-1)k} + \frac{\epsilon(k-1)}{k(k-1)} - \delta'$$

(15)
Finally, we have to verify that the constructed hypergraph H' is indeed ϵ-dense. Notice that H' can have at most $(|V_1|) = (\frac{n}{k} + \frac{\epsilon}{1-\epsilon})^k$ edges. Therefore, we obtain the following:

\[
\left(\frac{\epsilon}{1-\epsilon} \frac{n}{k}\right) \left(\frac{n}{k} + \frac{\epsilon}{1-\epsilon} \frac{n}{k}\right)^{k-1} = \frac{n}{k} \left(1 + \frac{\epsilon}{1-\epsilon}\right) = \frac{\epsilon}{1-\epsilon} = \epsilon
\]

Notice that the constructed hypergraph is also ℓ-wise ϵ-dense balanced. Hence, we obtain the same inapproximability factor in this case as well.

Next, we combine the former construction with a conjecture about Unique Games hardness of the Vertex Cover problem in balanced k-partite k-uniform hypergraphs. In particular, we postulate the following:

Conjecture 1. Given a balanced k-partite k-uniform hypergraph $H = (V_1, \ldots, V_k, E(H))$ with $k \geq 3$, let OPT denote an optimal vertex cover of H. For every $\delta > 0$, the following is UGC-hard to decide:

\[
|V| \left(\frac{1}{k} - \delta\right) \leq |OPT| \quad \text{or} \quad |OPT| \leq |V| \left(\frac{2}{k^2} + \delta\right)
\]

Combining Conjecture 1 with the construction in Theorem 3, it yields the following inapproximability result which matches precisely the approximation upper bound achieved by our approximation algorithm described in Section 4:

Theorem 4. For every $\delta > 0$, $\epsilon \in (0, 1)$, $\ell \in [k - 1]$, and $k \geq 3$, there exists no polynomial time approximation algorithm with an approximation ratio

\[
\frac{k}{2 + (k-2)\epsilon} - \delta
\]
for the Vertex Cover problem in ℓ-wise ϵ-dense k-partite k-uniform hypergraphs assuming Conjecture 1.

Proof. The UGC-hard decision question from Conjecture 1 transforms into the following:

\[n \left(\frac{1}{k} - \delta \right) + \frac{\epsilon}{1 - \epsilon} \frac{n}{k} \leq |OPT'| \quad \text{or} \quad |OPT'| \leq n \left(\frac{2}{k^2} + \delta \right) + \frac{\epsilon}{1 - \epsilon} \frac{n}{k} \]

Assuming the UGC, this implies the hardness of approximating the Vertex Cover problem in ϵ-dense k-partite k-uniform hypergraphs for every \(\delta' > 0 \) to within:

\[\frac{n \left(\frac{1}{k} - \delta \right) + \frac{\epsilon}{1 - \epsilon} \frac{n}{k}}{n \left(\frac{2}{k^2} + \delta \right) + \frac{\epsilon}{1 - \epsilon} \frac{n}{k}} = \frac{n \left(\frac{1}{k} - \delta \right) (1 - \epsilon) + \frac{\epsilon n}{k}}{n \left(\frac{2}{k^2} + \delta \right) (1 - \epsilon) + \frac{\epsilon n}{k}} \]

(23)

\[= \frac{n \frac{n}{k}}{n \frac{2}{k^2} (1 - \epsilon) + \frac{k \epsilon n}{k^2}} - \delta' \]

(24)

\[= \frac{k}{2(1 - \epsilon) + k \epsilon} - \delta' \]

(25)

\[= \frac{k}{2 + (k - 2) \epsilon} - \delta' \]

(26)

5.2 NP-Hardness

Recently, Sachdeva and Saket proved in [21] a nearly optimal NP-hardness of the Vertex Cover problem on balanced k-uniform k-partite hypergraphs. More precisely, they obtained the following inapproximability result:

Theorem 5. [21] Given a balanced k-partite k-uniform hypergraph \(H = (V, E) \) with \(k \geq 4 \), let \(OPT \) denote an optimal vertex cover of \(H \). For every \(\delta > 0 \), the following is NP-hard to decide:

\[|V| \left(\frac{k}{2(k + 1)(2(k + 1) + 1)} - \delta \right) \leq |OPT| \]

or

\[|V| \left(\frac{1}{k(2(k + 1) + 1)} + \delta \right) \geq |OPT| \]

Combining our reduction from Theorem 2 with Theorem 5, we prove the following inapproximability result under the assumption \(P \neq NP \):

Theorem 6. For every \(\delta > 0 \), \(\epsilon \in (0, 1) \), \(\ell \in [k - 1] \), and \(k \geq 4 \), there is no polynomial time approximation algorithm with an approximation ratio

\[\frac{k^2(1 - \epsilon) + \epsilon 2(k + 1)(2(k + 1) + 1)}{2(k + 1)[1 - \epsilon + \epsilon (2(k + 1) + 1)]} - \delta \]
for the Vertex Cover problem in ℓ-wise ϵ-dense k-partite k-uniform hypergraphs assuming P ≠ NP.

Proof. The NP-hard decision question from Theorem 5 transforms into the following:

\[n \left(\frac{k}{2(k+1)(2(k+1)+1)} - \delta \right) + \frac{\epsilon}{1-\epsilon k} \frac{n}{k} \leq |OPT'| \]

or

\[n \left(\frac{1}{k(2(k+1)+1)} + \delta \right) + \frac{\epsilon}{1-\epsilon k} \frac{n}{k} \geq |OPT'| \]

Assuming NP ≠ P, this implies the hardness of approximating the Vertex Cover problem in ϵ-dense hypergraphs for every \(\delta' > 0 \) to within:

\[\frac{k(1-\epsilon)}{2(k+1)(2(k+1)+1)} + \frac{\epsilon}{k} - \delta' = \frac{k^2(1-\epsilon) + \epsilon 2(k+1)(2(k+1)+1)}{k(2(k+1)+1)} - \delta' \]

\[= \frac{k^2(1-\epsilon) + \epsilon 2(k+1)(2(k+1)+1)}{2(k+1)[1 - \epsilon + \epsilon(2(k+1)+1)]} - \delta' \]

(27)

(28)

\[\Box \]

6 Further Research

An interesting question remains about even tighter lower approximation bounds for our problem, perhaps connecting it more closely to the integrality gap issue of the LP of Lovász [20].

Acknowledgment

We thank Jean Cardinal for many stimulating discussions.

References

[7] I. Dinur, V. Guruswami, and S. Khot *Vertex Cover on \(k \)-Uniform Hypergraphs is Hard to Approximate within Factor \((k - 3 - \epsilon) \)*, ECCC TR02-027, 2002.

