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Abstract

In this paper we study the classic problem of computing a maximum cardinality matching
in general graphs G = (V,E). This problem has been studied extensively more than four
decades. The best known algorithm for this problem till date runs in O(m

√
n) time due to

Micali and Vazirani [24]. Even for general bipartite graphs this is the best known running
time (the algorithm of Karp and Hopcroft [16] also achieves this bound). For regular bipartite
graphs one can achieve an O(m) time which, following a series of papers, has been recently
improved to O(n log n) by Goel, Kapralov and Khanna (STOC 2010) [15]. In this paper we
present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which
runs in O(m log2 n) time, thereby obtaining a significant improvement over [24].

We use a Markov chain similar to the hard-core model for Glauber Dynamics with fugacity
parameter λ, which is used to sample independent sets in a graph from the Gibbs Distribution
[31], to design a faster algorithm for finding maximum matchings in general graphs. Motivated
by results which show that in the hard-core model one can prove fast mixing times (for e.g.
it is known that for λ less than a critical threshold the mixing time of the hard-core model
is O(n log n) [27], we define an analogous Markov chain (depending upon a parameter λ) on
the space of all possible partial matchings of a given graph G, for which the probability of a
particular matching M in the stationary follows the Gibbs distribution which is:

π(M) =
λ|M |∑
x∈Ω λ

|x|

where Ω is the set of all possible matchings in G.

We prove upper and lower bounds on the mixing time of this Markov chain. Although our
Markov chain is essentially a simple modification of the one used for sampling independent sets
from the Gibbs distribution, their properties are quite different. Our result crucially relies on
the fact that the mixing time of our Markov Chain is independent of λ, a significant deviation
from the recent series of works [11, 26, 28, 29, 30] which achieve computational transition (for
estimating the partition function) on a threshold value of λ. As a result we are able to design a
randomized algorithm which runs in O(m log2 n) time that provides a major improvement over
the running time of the algorithm due to Micali and Vazirani. Using the conductance bound,
we also prove that mixing takes Ω(mk ) time where k is the size of the maximum matching.
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1 Introduction

Given an unweighted undirected graph G = (V,E) with |E| = m and |V | = n, a matching M
is a set of edges belonging to E such that no two edges in M are incident on a vertex. If there
is a matching of size n/2 (for n even), then it is called a perfect matching. The Maximum
Matching problem is to find the maximum sized matching in a given graph. The computational
complexity of this problem has been studied extensively for more than four decades starting
with an algorithm of Edmonds.

1.1 General Graphs

Edmonds’s celebrated paper ‘Paths, Trees and Flowers’ [9] was the first to give an efficient
algorithm (also called the blossom shrinking algorithm) for finding maximum matching in
general graphs. This algorithm can be implemented in O(n4) time. The running time was
subsequently improved in a number of papers [10, 20, 22]. All these papers were variants of
Edmonds algorithm. Even and Kariv [12] obtained an improvement to O(n2.5) which was
improved by Micali and Vazirani [24] who gave an O(m

√
n) time algorithm for the problem

by a careful handling of blossoms. This is the best known algorithm for finding maximum
matchings in general bipartite graphs.

1.2 Bipartite Graphs

For bipartite graphs, the problem can easily be solved using the max-flow algorithm by Ford
and Fulkerson, an algorithm usually taught in an undergraduate algorithms course [21], which
has a running time of O(mn). The first algorithm for this problem was given by Konig [19].
Hopcroft and Karp [16] gave an algorithm that runs in O(m

√
n) time. This algorithm is an

exact and deterministic algorithm. The problem becomes significantly simpler for regular bi-
partite graphs. In a d-regular bipartite graph every vertex has degree d. When d is a power
of 2, Gabor and Kariv were able to achieve an O(m) algorithm. After significant efforts, the
ideas used there were used by Cole, Ost and Schirra [4] to obtain a get an O(m) algorithm for
general d.

In a recent line of attack by Goel, Kapralov and Khanna [13, 14], the authors were able
to use sampling based methods to get improved running time. In the most recent paper they
were able to achieve a running time of O(n log n) for d-regular graphs [15]. Their algorithm
performs an appropriately truncated random-walk on a modified graph to successively find
augmenting path.

2 Our Results

In this paper we give a Markov Chain Monte Carlo algorithm for finding a maximum matching
in general bipartite graphs. Our algorithm is in the spirit similar to [15] which also is a
‘truncated random walk’ based algorithm, however the stationary distribution of the underlying
Markov Chains in their case is different from ours. Inspired from the hard-core model with
fugacity parameter λ of sampling independent sets from graphs we define a similar Markov
Chain over the space of all possible partial matching such that its stationary distribution π(·)
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is the Gibbs distribution, ie. given a matching M its probability π is

π(M) =
λ|M |∑
σ∈Ω λ

|σ|

where Ω is the set of all possible matchings in G. Notice that π(M) is maximum for maximum
matchings and if λ is a significantly large number, π(M) tends to 1 for maximum matchings.
Our algorithm is extremely simple (being a standard in the MCMC paradigm). Starting from
a fixed matching we start a random walk in Ω according to the underlying graph G̃ of the
Markov chain. After Tmix (mixing time) steps the distribution reached by the algorithm is
roughly the same as the Gibbs distribution. More formally, the variation distance of Dt (the
distribution after t steps) from the Gibbs distribution is less than 1

2e . This just leaves the task
of proving an upper-bound on the mixing time of the Markov Chain, for which we resort to
the Coupling Method introduced by Bubley and Dyer [2]. We define a metric Φ(·, ·) and apply
the bound from [2], to show that the Markov Chain mixes in O(m log n) time. We also use the
conductance method to show that the mixing time will be at least Ω(mk ) where k is the size of
the maximum matching. Thus upto logarithmic factors the bounds are same when k is small
(at most polylogarithmic). The main result of our paper can be concisely written as follows:

Theorem 1 (Main). There exists a randomized algorithm which given a graph G = (V,E)
with |V | = n and |E| = m finds a maximum matching in O(m log2 n) time with high probability.

2.1 Organization

The paper is organized as follows: in Section 3 we give a brief description of the basic idea and
technique that are underlying our algorithm. Subsequently in Section 4 we give an overview
of the MCMC paradigm which includes basic preliminaries and definitions regarding Markov
Chain and Mixing. Section 7 is devoted to the details of the chain being used by us and
proving that indeed it has the desired properties. We then prove upper and lower bounds on
its mixing time using the coupling method and conductance argument in Section 8 and Section
9 respectively. We end the paper with a conclusion and some open problems.

3 The Idea: Maximum Matchings via Glauber Dy-

namics

Our ideas are inspired mainly from the results in the Glauber dynamics of the hard-core model
of fugacity parameter λ, for sampling independent sets from the Gibbs distribution. According
to the Gibbs distribution the probability of an independent set I is given by

G(I) =
λ|I|∑
ρ∈Ω λ

|ρ|

where Ω is the set of all possible independent sets in G and Z =
∑

ρ∈Ω λ
|ρ| is also called the

partition function. Clearly for λ = 1 the partition function value is same as the number of
independent sets in the graph (computing which is a #P-Hard problem).
In the hard-core model given a particular configuration σ of an independent set (σ can be
thought of an n-dimensional 0/1 vector which is 1 for all the vertices which are in the inde-
pendent set and 0 otherwise), we choose a vertex randomly uniformly, if this vertex is already
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present in the independent set we keep it with probability λ
1+λ and discard it with probability

1
1+λ otherwise the vertex is not in the independent set and if this vertex can be added to the
independent set (i.e. none of its neighbors are already present in the independent set) then
again it is added with with probability λ

1+λ and rejected with probability 1
1+λ . The beauty of

this Markov Chain is that the stationary distribution is the Gibbs distribution. The details of
this chain can be found in [31].

The key difference between the mixing time of Glauber Dynamics for independent sets and
our case is that one can achieve fast mixing time in the former case only for small values of
λ. In fact intuitively one should not be able to obtain fast mixing times for large values of λ
because such a result would imply that we can design a randomized polynomial time algorithm
for finding maximum independent set in a graph, which is an NP-Hard problem. This intuition
has led to a series of papers [11, 26, 28, 29, 30] which ultimately has been successful in proving
that there exists a threshold value of λ = λc such that if λ > λc then estimating the partition
function is hard (the exact technical condition is that unless NP = RP no FPRAS exists for
estimating Z) and for λ < λc one can obtain an FPTAS for the same problem. Previous to
this result, the computational complexity of estimating the partition function (and counting
the number of independent sets) was only understood for special graphs [5, 32]. Apart from
these results substantial attention has been given to obtain good bounds on the mixing time
of this chain for trees [28].

We define a Markov Chain which is tuned to our need. In our case σ is a set of edges which
form a partial matching. We make a simple modification to the above chain, wherein instead
of picking a random vertex we pick a random edge er ∈ E and perform the same experiment
with the parameter λ as in the case of independent sets (notice that the chosen edge won’t
be added if in the present matching there is an edge sharing an end point with er). We then
show that this chain is aperiodic and irreducible with stationary as the Gibbs distribution over
the space of all possible partial matchings with parameter λ. We then use the techniques of
bounding the mixing time to achieve a λ independent upper bound. This remarkable property
allows us to exploit the nature of Gibbs distribution (which we obtain for very large values of
λ) without getting an overhead on the mixing time.

3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo algorithms have played a significant role in statistics, econometrics,
physics and computing science over the last two decades. For some high-dimensional problems
in geometry, such as computing the volume of a convex body in d dimensions, MCMC simula-
tion is the only known general approach for providing a solution within time polynomial in d
[6]. For a number of other hard problems like approximating the permanent [18], approximate
counting [17], the only known FPRASs (Fully Polynomial time Randomized Approximation
Schemes) rely on the MCMC paradigm. In this paper, we use this method to obtain a faster
algorithm for the classical problem of finding maximum matchings in general graphs, a prob-
lem which is known to be solvable in polynomial time.
The Markov Chain Monte Carlo (MCMC) method is a simple and frequently used approach
for sampling from the Gibbs distribution of a statistical mechanical system. The idea goes
like this, we design a Markov chain whose state space is Ω whose stationary distribution is the
desired Gibbs distribution. Starting at an arbitrary state, we simulate the Markov chain on Ω
until it is sufficiently close to its stationary distribution. We then output the final state which
is a sample from (close to) the desired distribution. The required length of the simulation, in
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order to get close to the stationary distribution, is traditionally referred to as the mixing time
τ or Tmix and the aim is to bound the mixing time to ensure that the simulation is efficient.
For a detailed understanding of the theory of Markov Chains we would recommend the recent
excellent book by Levin, Peres and Wilmer [23].

4 Preliminaries

4.1 Markov chains

Consider a stochastic process (Xt)∞t=0 on a finite state space Ω. Let P denote a non-negative
matrix of size |Ω| × |Ω| which satisfies∑

jεΩ

Pij = 1 ∀i ∈ Ω

The process is called a Markov chain if for all times t and i, j ∈ Ω probability of going from
ith state to jth state is independent of the path by which ith state is reached i.e. if Xt is the
state of the process at time t then

P[Xt+1|Xt = xt, Xt−1 = xt−1 . . . X0 = x0] = P[Xt+1|Xt = xt]

A distribution π is called a stationary distribution if it satisfies πP = π. A necessary and
sufficient condition for a chain to have a unique stationary distribution is that the chain is

1. Irreducible: for all i, j ∈ Ω there exists a time t such that P tij > 0; and

2. Aperiodic: for all i ∈ Ω, GCD {t : P tii > 0} = 1.

A Markov Chain which has both of the above properties is called ergodic. For an ergodic
Markov chain, if a distribution π satisfies the detailed balance equations

πiPij = πjPji

for all i, j ∈ Ω then π is the (unique) stationary distribution and such a chain is called reversible.

4.2 Mixing Time

The notion of mixing time is defined as a way to measure the closeness of the distribution after
t steps w.r.t. the stationary distribution. The total variation distance between two discrete
probability distributions over a finite space Ω is defined as the half of the l1 norm of the
corresponding probability vectors.

dTV (µ, ν) =
1
2

∑
ω∈Ω

|µ(ω)− ν(ω)|

If Pt is the probability distribution after t steps in the random walk then Tmix is the minimum
t for which,

dTV (Pt, π) ≤ 1
2e

where π is the stationary distribution. Therefore, if we intend to get close to a stationary
distribution we just have to truncate the random walk on the state space after τ steps.
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4.3 Conductance

The conductance of a Markov chain is defined as the following quantity,

φ(G) = min
S⊂V

∑
i∈S,j∈S̄ πipij

(
∑

i∈S πi)(
∑

i∈S̄ πi)

Another quantity of our interest here is Trelax, the relaxation time of the Markov chain. Trelax
is defined as the inverse of conductance i.e. Trelax = 1

φ(G) . It is known that Tmix and Trelax
obey the following inequality [1].

Trelax + 1 ≤ Tmix.

Also it is known [28] that

Trelax = Ω
(

1
φ

)
,

a bound usually used to prove lower bounds on the Mixing time of Markov Chains.

5 The Chain

In this section, we describe the chain considered by our algorithm which is essentially a modi-
fication of the hard-core model of Glauber Dynamics. Recall that our objective is to come up
with a chain whose stationary distribution ensures that the probability of being at a maximum
matching is the largest. Recall that first we need to ensure that our chain is aperiodic and
irreducible.

We use the following natural modification of the Markov chain for the hard-core model of
Glauber dynamics.

• Choose an edge er uniformly at random from E.

• Let

σ′ =

{
σ
⋃
{er}, with probability λ

1+λ

σ\{er}, with probability 1
1+λ

• If σ′ is a valid matching, move to state σ′ otherwise remain at state σ.

We are now prepared to prove that this is a valid Markov Chain with stationary as the
Gibbs distribution, where we define Gibbs distribution as the following distribution over the
set of all possible matchings Ω as

G(M) =
λ|M |∑
x∈Ω λ

|x|

In the rest, we will call Z =
∑

x∈Ω λ
|x|.

Lemma 1. Xt is ergodic with stationary distribution as G.

Proof. Since for every state there is some probability by which the walk can remain in the
same state, the chain is aperiodic. Also the underlying graph is connected because given any
matching there is a at least one path to reach any other matching (consider the path that first
drops all the edges of the initial matching and adds the edges of the new matching one by
one).
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To show that the stationary of this distribution is G, we would show that the chain is reversible
w.r.t. G. Consider two distinct states i and j in the Markov Chain. Assume w.l.o.g that there
is an edge from i to j (if there is no edge from i to j then the balance equations corresponding
to i and j are trivially satisfied). Let the configuration i has t edges in it then according to our
construction, j will have either t+1 or t−1 states (it won’t be t because we have assumed that
the two states are distinct). We will just look at the case when j has t+1 edges, the other case
is analogous. Since we are interested in showing reversibility w.r.t. G, πi = λt

Z and πj = λt+1

Z .
Therefore, πiPij = λt

Z ·
λ

m(1+λ) , and πjPji = λt+1

Z · 1
m(1+λ) . Thus πiPij = πjPji = λt+1

mZ(1+λ)

6 Upper Bound using Coupling

In this section we prove an upper bound on Tmix of the chain defined in the previous section.
Our bound is based on the coupling argument introduced by Bubley and Dyer [2]. We first
give a description of the coupling method.

6.1 Coupling Method

A coupling of a Markov chain on state space is a stochastic process (σt, ηt) on |Ω| × |Ω| such
that:

• σt and ηt are copies of the original Markov chain and

• if σt = ηt, then σt+1 = ηt+1

Thus the chains follow each other after the first instant when they hit each other. In order to
measure the distance between the two copies of the chain, one introduces a distance function
Φ on the product state space Ω × Ω so that Φ = Φ(σt, ηt) = 0 ⇐⇒ σt = ηt. For two states
σ and η let ρ(σ, η) be the set of all paths from σ to η in the Markov Chain. The following
theorem due to to Bubley and Dyer is used to prove mixing time on Markov chain.

Theorem 2. Let Φ be an integer-valued metric defined on Ω×Ω which takes values in {0,1...D}
such that, for all σ, η ∈ Ω there exists a path ξ ∈ ρ(σ, η) with

Φ(σ, η) =
∑
i

Φ(ξi, ξi+1)

Suppose there exists a constant β <1 and a coupling (σt, ηt) of the Markov chain such that,
for all σt, ηt,

E[Φ(σt+1, ηt+1)] ≤ βΦ(σt, ηt)

Then the mixing time is bounded by

τ ≤ log(2eD)
1− β

Proof. Can be found in [2, 31].
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In order to bound the mixing time, we will define a coupling so as to minimize the time
until both copies of the Markov chain reach the same state, and we will do that by defining the
coupling in such a way that on every step both markov chains reach towards same state. The
aim is to prove a good upper bound on E[Φ(σt+1, ηt+1)] in terms of Φ(σt, ηt). In the following
subsection we define the coupling:

6.1.1 Coupling

Consider the following process (σt, ηt) on |Ω|×|Ω| where Ω is the space of all possible matchings.

Definition 1. Choose an edge uniformly at random,

1. If insertion is possible in both σ and η then add it probability λ
1+λ and remove it with

probability 1
1+λ .

2. If insertion is possible in one and not possible in the other then remove that edge if it is
already present in one matching.

Notice that here we are relying on the fact that one can insert an edge if it is already
present in it. It is easy to verify that this indeed is a coupling for the Markov chain defined in
the previous section,

We use the following distance function for the aforementioned coupling. Let

σ ⊕ η =
{
e ∈ E|e ∈

(
(σ \ η)

⋃
(η \ σ)

)}
where σ and η ∈ Ω

define the distance function Φ(σt, ηt) = |σ⊕η| which is the number of edges present in one but
not in the other. Our objective is to upper-bound E[Φ(σt+1, ηt+1)] in terms of dt = Φ(σt, ηt).
Based on the definition of our coupling the following cases may arise once we pick an edge er
uniformly randomly:

1. er can be added to both σt and ηt: The subevents are (a) er was present in both
of them, in this case Φ(σt+1, ηt+1) = dt, (b) er is not present in both of them, in which
case again Φ(σt+1, ηt+1) = dt and (c) er is present in one but not in other, in which case
Φ(σt+1, ηt+1) = dt − 1.

2. er can be added in exactly one of σt and ηt: The sub events for this case are (a)
er is not present in both, which gives Φ(σt+1, ηt+1) = dt (b)er is present in one matching
and not in other, in which case Φ(σt+1, ηt+1) = dt − 1

3. er can’t be added to any one of σt and ηt: In this case Φ(σt+1, ηt+1) = dt.

Using the above events we can prove the following:

Lemma 2. E[Φ(σt+1, ηt+1)] = Φ(σt, ηt)
(

1− 1
m

)
.

Proof. Since Φ(σt+1, ηt+1) can only take two values either d or d− 1 we only need to calculate
the the probability of the happening of one of these cases. This happens when either the event
1(c) or the event 2(b) takes place (as mentioned above). Thus,

Pr[Φ(σt+1, ηt+1) = dt − 1] = Pr[1(c) ∪ 2(b)]

clearly the distance becomes dt− 1 when the chosen edge is one of the edges in σ⊕ η. We can
divide σ⊕ η in to two sets U and Ū . U is the set of edges which can be added to the matching
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in which it is not present, and Ū is the set of edge which can’t be added to the matching in
which it is not present. Using this notation we can write the desired probability as

Pr[1(c) ∪ 2(b)] =
∑
e∈U

1
m

(
λ

1 + λ
+

1
1 + λ

)
+
∑
e∈Ū

1
m

=
|σ ⊕ η|
m

=
Φ(σt, ηt)

m

Therefore,

E[Φ(σt+1, ηt+1)] = (dt − 1)
Φ(σt, ηt)

m
+ dt

(
1− Φ(σt, ηt)

m

)
= Φ(σt, ηt)

(
1− 1

m

)
( since dt = Φ(σt, ηt))

We can now prove the following:

Lemma 3. Tmix = O(m log n).

Proof. Given any σ and η we define a d = Φ(σ, η) length path as σ = ξ1, ξ2 . . . , ξd = η such that
ξi+1 is the state obtained by removing exactly one edge from ξi ∈ σ

⋂
(σ ⊕ η) for i = 1, 2 . . . j

where ξj consists only of edges which do not belong to σ⊕η and for all k ≥ j, ξk+1 is obtained
by adding one edge to ξk which belongs to η

⋂
(σ⊕η). Since ξi, ξi+1 = 1 for all i = 1, 2 . . . d−1,

we have

Φ(σ, η) =
∑
i

Φ(ξi, ξi+1)

Also we can write

E[Φ(σt+1, ηt+1)] = βΦ(σt, ηt)( with β =
(

1− 1
m

)
)

this allows us to apply the result from Theorem 2 which gives the following result

Tmix ≤
log 2eD

1−
(

1− 1
m

) ≤ m log(4en) = O(m log n)

where we have used β = (1− 1/m) and D = 2n.

Our algorithm is concisely presented as follows:
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Input: A Graph G = (V,E) with |V | = n and |E| = m
σ0 ← anymatching;
λ = 2m;
for t = 0 to 10m log n do

choose an edge er uniformly randomly ;

σ′ =

{
σt
⋃
{er}, with probability λ

1+λ

σt\{er}, with probability 1
1+λ

;

if σ′ is a valid matching;
σt+1 = σ′;
else;
σt+1 = σt;

end
return σt

Algorithm 1: RandMatching

Theorem 3. The probability that the random walk in Algorithm 1 ends on a maximum match-
ing is at least 20

189 .

Proof. Let Mi be the set all of matchings of size i (and Si be its cardinality) in the given
graph. Also, let k be the size of the maximum matching. We need to find the probability that
the random walk lands up on a maximum matching after T = 10m log n ≥ Tmix steps. Let
XT be the state after T steps, and πT be the probability distribution after T steps then by
definition of mixing time and triangle inequality,∣∣∣∣∣∣

∑
ω∈Mk

πT (ω)−
∑
ω∈Mk

G(ω)

∣∣∣∣∣∣ ≤
∑
ω∈Mk

|πT (ω)− G(ω)| ≤
∑
ω∈Ω

|πT (ω)− G(ω)| ≤ 1
e

where
∑

ω∈Mk
πT (ω) := Prk(πT ) is the probability of reaching a maximum matching after T

steps (the success probability of the algorithm) and
∑

ω∈Mk
G(ω) := Prk(G) is the probability

of finding a maximum matching according to the Gibbs distribution. We need to find the
probability that XT is a maximum matching. Thus we have,

Prk(πT ) ∈
[
Prk(G)− 1

e
,Prk(G) +

1
e

]
Also,

Prk(G) =
λkSk
k∑
i=0

λiSi

=
λkSk

λkSk + λk−1Sk−1 + λk−2Sk−2 + · · ·+ S0

dividing by λk both numerator and denominator

=
Sk

Sk + Sk−1
λ + Sk−2

λ2 + ...+ S0

λk
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We put λ = Sm where Sm=
k

max
i
Si

=
Sk

Sk +
Sk−1

Sm
+
Sk−2

S2
m

+ · · ·+ S0

Skm

=
1

1 +
Sk−1

SkSm
+
Sk−2

SkS2
m

+ · · ·+ S0

SkSkm

By definition of Sm, Si
Sm

is always ≤ 1, hence we have

1

1 +
Sk−1

SkSm
+
Sk−2

SkS2
m

+ · · ·+ S0

SkSkm

≥ 1

1 +
1
Sk

+
1

SkSm
+

1
SkS2

m

...+
1

SkS
k−1
m

≥ 1

1 +
1
Sk

(
1 +

1
Sm

+
1
S2
m

· · ·+ 1
Sk−1
m

)
≥ 1

1 +
1
Sk

1−
(

1
Sm

)k
1− 1

Sm


≥ 1

1 +
1
Sk

(
Skm − 1

Sk−1
m (Sm − 1)

)

Since (
Skm − 1

Sk−1
m (Sm − 1)

)
=

(
1 +

Sk−1
m − 1

Sk−1
m (Sm − 1)

)
= 1 + Θ

(
1
Sm

)
≤ 11

10

Prk(G) ≥ 1
1 + 1

11Sk
10

≥ 10
21

This gives us,

Prk(πT ) ≥ 10
21
− 1
e
≥ 20

189

Notice that our proof still goes through even if we choose a λ that is larger than Sm (we
can take λ = 2m). Therefore λ can be represented using m bits. We can now prove the main
theorem,

Theorem 4. Given a graph G = (V,E) with |V | = n and |E| = m, there exists a randomized
algorithm that runs in O(m log2 n) time and finds a maximum matching with high probability.

Proof. Each step of the algorithm runs in O(1) time (we just need to maintain an array which
indicates whether the ith vertex is occupied in the matching or not), thus one call of Algorithm
1 runs in O(m log n) time which by Theorem 3 lands on a maximum matching with probability
20
169 . Thus calling it 10 log n times independently, ensures that we land on a maximum matching
in one call is at least 1−

(
169
189

)10 logn = 1− 1
nΩ(1) .
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7 Lower Bound via Conductance

The conductance method as defined in the Section is used to obtain lower bounds on the
mixing time of the a Markov chain. To get a lower bound on Trelax we need an upper-bound
on φ, and by definition of φ, for any cut (S, S̄).

φ ≤
( ∑

i∈S,j∈S̄ πiPij

(
∑

i∈S πi)(
∑

i∈S̄ πi)

)
This allows us to observe:

Lemma 4. For any graph G, the conductance of our Markov Chain satisfies

φ ≤ O
(
k

m

)
where k is the size of maximum matching.

Proof. To give an upper bound on conductance we need to construct a cut (S, S̄) for which
we can estimate the above quantity. Let S be consisting of exactly one matching which is the
maximum matching mk where k is the size of the maximum matching. Thus the number of
edges going out of S is k.∑

i∈S,j∈S̄ πiPij

(
∑

i∈S πi)(
∑

i∈S̄ πi)
=

λk

Z · k ·
1

m(λ+1)

λk

Z

(
1− λk

Z

) =
k

(1 + λ)m
· 1(

1− λk

Z

)
Also using the terminology of Theorem 3

λk

Z
=

λk∑k
i=0 Siλ

i
=

1∑k
i=0 Sk−i

1
λi

≤ 1∑k
i=0

1
λi

=
λk(λ− 1)
λk+1 − 1

= 1−Θ
(

1
λ

)
Therefore, ∑

i∈S,j∈S̄ πiPij

(
∑

i∈S πi)(
∑

i∈S̄ πi)
=

k

(1 + λ)m
· 1

Θ
(

1
λ

) = Θ
(
k

m

)
Thus the result follows.

As a result of the previous lemma we have the following result.

Lemma 5. For any graph G, the mixing time of our Markov chain satisfies, Tmix ≥ Ω
(
m
k

)
Proof. Follows from results in Section 4.3.

Thus the lower bound is sharp (upto logarithmic factors) if the size of the matching in the
given graph is small (say at most O(poly log n)).

A Note on Other methods to prove Lower Bound: There are other methods, apart
from conductance, which can be used to prove lower bounds on mixing time. Although powerful
and useful in many contexts, it is not clear whether such methods could be applied to our chain.
For eg. the Wilson’s method [1] expects the knowledge of one eigenvector of the transition
vector that is different from the all 1’s vector and the corresponding eigenvalue lies in the
range

(
0, 1

2

)
. Since the matrix P for our case is an exponential sized matrix with apparently

no useful pattern in the entries, it is not clear how to come up with such an eigenvector. In
fact, we made several educated guesses for coming up with such a vector all of which failed to
serve our purpose.
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8 Conclusion

In this paper, we gave a new randomized algorithm for finding maximum matchings in general
bipartite graphs that runs in O(m log2 n) time that improves upon the running time of Micali
and Vazirani. Our algorithm was based on the MCMC paradigm which performs a truncated
random walk on the Markov Chain defined by the Glauber Dynamics with parameter λ. Apart
from the benefit of being very simple (both in analysis and implementation) our algorithm is
the first near linear time complexity algorithm for the maximum matching problem for general
graphs. Moreover, unlike [15] the running time of our algorithm is not a random variable.

To our knowledge this is for the first time Glauber dynamics and the nature of Gibbs
distribution has been exploited to design an faster algorithm for a problem for which efficient
solutions are already known, and we hope this idea can be of use in other problems as well.
The obvious open problem will be to improve both the upper-bounds and lower bounds on the
mixing time. Is it possible to improve upon the present bound to get an O(m) time algorithm
? Also one can explore the possibility of proving a tighter lower bound of Ω(m) by using more
refined techniques. More specifically, it would be interesting to see if one can obtain an explicit
eigenvector of the transition matrix P (that is different from all 1’s vector) and apply Wilson’s
to get an improved lower bound on the mixing time.
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