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Abstract
In this paper, we study the problem of testing the conductance of a given

graph in the general graph model. Given distance parameter ε and any con-

stant σ > 0, there exists a tester whose running time isO(m(1+σ)/2·log n·log 1
ε

ε·Φ2 ),
where n is the number of vertices and m is the number of edges of the input
graph. With probability at least 2/3, the tester accepts all graphs of con-
ductance at least Φ, and rejects any graph that is ε-far from any graph of
conductance at least α′ for α′ = Ω(Φ2). This result matches the best testing
algorithm for the bounded degree graph model in [5].

Our main technical contribution is the non-uniform Zig-Zag product, which
generalizes the standard Zig-Zag product given by Reingold et. al. [9] to the
unregular case. It converts any graph to a regular one and keeps (roughly) the
size and conductance, by choosing a proper Zig-Zag graph sequence. This
makes it easy to test the conductance of the given graph on the new one. The
analysis and applications of non-uniform Zig-Zag product may be indepen-
dently interesting.

1 Introduction

Given a graph G = (V,E) on vertex set V and edge set E, let S ⊆ V be a vertex
subset. The volume of S is defined to be the summation of the degrees of the
vertices in S, denoted by volG(S) =

∑
v∈S deg(v). Given a cut (S, S), where S

denotes the complement of S in V , the conductance of the cut is defined to be

condG(S) =
E(S, S)

min{vol(S), vol(S)}
,
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where E(S, S) is the number of edges crossing the cut. We also write vol(S) and
cond(S) for abbreviation if G is clear from context. The conductance of graph G
is the minimum conductance among all the cuts of G. That is,

cond(G) = min
S

E(S, S)
min{vol(S), vol(S)}

.

In general graphs, such as networks, the conductance is often used as a criterion
of small communities. A cut (S, S) which has a small conductance implies a vertex
subset S such that it is (relatively) dense inside S and (relatively) sparse on its
boundary. In the special case of bounded degree graphs, whose maximum degree
of vertices is upper bounded by a constant d, such criterion is always given by the
edge expansion. In this case, both the vertex and edge expansions are bounded by
a constant times (depending on d) the conductance. Testing expansion (essentially
testing conductance) in bounded degree model has been studied for a long time,
but people have no idea for the case of general graphs. In this paper, we investigate
the this problem.

Firstly, we briefly introduce the study for the bounded degree case.

1.1 Testing conductance in bounded degree model

Graph property testing is the task to test whether a graph has a given property or
far away from having it by a sublinear time randomized algorithm, called tester.
The tester is given an oracle access to a suitable representation of the graph. It
requires giving right answers with probability at least 2

3 . Different graph models
have different representation. For example, in dense graph model, an n-vertex
graph is usually represented by its adjacency matrix of size n × n. For bounded
degree d graph model, an n-vertex graph is stored in an [n] × d matrix, where [n]
denotes the integer set {1, . . . , n}. The j-th component in row i represents the
label of the j-th neighbor of vertex i. So it requires d · n log n bits. In these two
models, we say that a graph is ε-far from another one if there are at least ε fraction
of components in their matrices are different despite of labeling.

The problem of testing expansion in bounded degree model was first formu-
lated by Goldreich and Ron [3] in 2000. They gave a tester with analysis de-
pending on an unproven combinatorial conjecture. In 2007, using combinatorial
techniques, Czumaj and Sohler [2] proposed a tester for vertex expansion. They
showed that, given parameters α, ε > 0, the tester accepts all graphs with vertex
expansion larger than α, and rejects all graphs that are ε-far from having vertex
expansion less than α′ = Θ( α2

d2 logn
). Recently, using algebraic argument based on

the idea of Goldreich and Ron in [3], Kale and Seshadhri [5] as well as Nachmias
and Shapira [7] improved α′ to Θ(α2) for both vertex and edge expansions. The
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constant in Θ depends on d and the query complexity is 1
α2 · Õ(n

1
2
+µ · 1

ε )
1 for any

small constant µ > 0. Because of the Cheeger obstacle, the α′ is hard to improve.
However, the query complexity is almost touching the lower bound Ω(

√
n) [4] 2.

The subject they discuss for testing expansion is in fact to test conductance
since expansion is bounded by conductance in this model. The main idea is based
on random walks by the following intuition. If the graph has large conductance,
then random walks starting from any vertex mix very fast, and they collide with
each other with low probability. Otherwise, once starting from a node in a small
set with small conductance, the random walks cannot go out of it easily, and then
the random walks starting from this node will collide with high probability.

1.2 From bounded degree to general graphs – the non-uniform Zig-
Zag product

It seems that the idea for bounded degree model can be used directly in general
graphs. However, there is an essential difference: in the bounded degree model,
there is no vertex has high degree, so that all vertices have almost the same status.
For the lazy random walk defined in [5], we know that the stationary distribution
is uniform, and the collision probability is a good estimate of conductance. In
general graphs, such random walk requires too much time since the largest degree
of all vertices may be as large as Θ(n). For other kinds of random walks, we
cannot compute the probability distribution easily since we have no idea of the
degree distribution (we cannot query most of them). So it is hard to estimate the
conductance simply by collision probability. For example, suppose that we are
given a star, in which the central node has degree n− 1 and the surrounding n− 1
nodes have degree one for each. The random walks on it collide on the central
vertex with very high probability, but in fact, the star has large conductance.

How to decentralize the impact of such heavy vertices? We introduce a new
“coding” technique for graphs, called non-uniform Zig-Zag product. The standard
Zig-Zag product was formulated by Reingold, Vadhan and Wigderson [9] in 2000.
It yields simple constructions of constant-degree expanders of arbitrary size and
plays a central role in the proof of Undirected Connectivity in L [8]. It takes a
product of a large regular graph with a single small graph by blowing each vertex
in the large graph up to a “cloud” of a small number of vertices, and the resulting
graph inherits roughly its size from the large one, its degree from the small one,
and its expansion property from both. Here, the non-uniform Zig-Zag produnct
generalizes the large graph in the standard Zig-Zag product to unregular one. It

1Õ(n) denotes O(n log n).
2Ω( 1

ε
) is also a lower bound, since to query on the corrupted segment of the input with high

probability, Ω( 1
ε
) times of query is necessary.
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also generalizes the small graph to a sequence of small regular graphs, each of
which having size d corresponds to vertices in the large graph having degree d.
That is the reason why we call our product “non-uniform”. We show that the
resulting graph also inherits its size from the large graph, its degree from the small
graph sequence, and its conductance property from both. Our main interests focus
on the analysis of the second eigenvalue, which is closely related to conductance
by Cheeger Inequality.

Suppose that H is a d-regular graph sequence. The Zig-Zag product of G and
H, denoted by Ĝ = G z©H, satisfies that

(1) The size of Ĝ is a linear expansion of the size ofG (in proper representation).

(2) Ĝ is d2-regular.

(3) The second eigenvalue of Ĝ is lower bounded by some function of eigenval-
ues of G and graphs in H. (The Separation Lemma in the next subsection.)

The non-uniform Zig-Zag product converts any graph into a regular one, and keeps
the conductance largely by choosing proper H. This allows us to design a conduc-
tance tester for general graphs.

1.3 Outlines of our analysis

To test the conductance of G, we actually test the conductance of Ĝ. An important
notion is that, under the restriction of query complexity on G, Ĝ is just imaginary
rather than constructed. Since Ĝ is d2-regular, the tester for bounded degree model
works on it. Recall that the tester can distinguish the case of “having conductance
at least Φ” from the case of “ε-far from having conductance at least cΦ2” for some
constant c (See [5], Theorem 1.1). We show that based on this tester, we can
distinguish for G the case of “having conductance at least Φ” from the case of “ε-
far from having conductance at least Ω(Φ2)”. Concretely, we prove the Separation
Lemma as follows.

Lemma 1. (Separation Lemma) Let Φ and Φ′ be parameters in [0, 1].

(1) If cond(G) ≥ Φ, then cond(Ĝ) ≥ λ
Ĝ
/2 ≥ c′ · Φ2 for some constant c′ (by

choosing a proper H), where λ
Ĝ

is the second eigenvalue of the Laplacian
of Ĝ.

(2) If cond(G) ≤ Φ′, then an easy observation implies that cond(Ĝ) ≤ Φ′.

The proof of (2) is given in Section 3 and (1) in Section 4. In fact, for (1),
what we really want is λ

Ĝ
/2 ≥ c′ · Φ2. In the analysis of the tester for bounded

4



degree model in [5], the gap between Φ and Ω(Φ2) stems from the process that
the condition cond(G) ≥ Φ is first converted to λG ≥ Φ2/2 by the Cheeger
inequality. Here we show that λ

Ĝ
= Ω(Φ2) directly and thus do not need to apply

the Cheeger inequality once more. This allows us to keep the gap Φ versus Ω(Φ2)
as [5] concludes, rather than a gap like Φ versus Ω(Φ4).

However, it is not enough yet. What we really want to show is that “if G is
ε-far from having conductance at least Ω(Φ2), then the rejection probability is at
least 2/3”. We show the contrapositive: if the rejection probability is too small,
then there is a graph G′ that is ε-close to G and has conductance at least Ω(Φ2).
We show the existence of such G′ by a patch-up algorithm, which changes G to
G′ by not too many modifications. Concretely, we show that if the rejection prob-
ability is small, then there exist few “weak” nodes in Ĝ, from which the random
walks collide with each other with high probability. It implies that there are few
“bad” nodes in G. Otherwise, they determine a relatively balanced cut with small
conductance. Then the patch-up algorithm dealing with such bad nodes does not
need to modify G a lot. We conclude our main result as follows.

Theorem 1. (Main Theorem) Given any conductance parameter 0 ≤ Φ ≤ 1, dis-
tance parameter ε and any constant σ > 0, there exists a tester T whose running

time is O(m
(1+σ)/2·logn·log 1

ε
ε·Φ2 ), where n is the number of vertices and m is the num-

ber of edges of the input graph. With probability at least 2/3, T accepts all graphs
of conductance at least Φ, and rejects any graph that is ε-far from any graph of
conductance at least Ω(Φ2).

This result matches the best tester for conductance in the bounded degree model
given by Kale and Seshadhri [5]. It seems that testing conductance in general
graphs is no harder than testing it in bounded degree ones.

2 Preliminaries

In this section, we introduce some backgrounds of graph representation and spec-
tral graph facts that we need in our paper.

2.1 Graph representation in the general graph model

We have mentioned in the above section that the dense and bounded degree mod-
els have canonical representation, using adjacency and incidence matrices, respec-
tively. In this paper, we use the incidence representation for general graphs with
slight modifications. For a graph G = (V,E), let |V | = n and |E| = m. For each
vertex v, let dv be the degree of v. The incidence representation is a list without a

5



uniform yardstick as the bounded degree model does. Usually, the (u, i)-th com-
ponent represents the index (among nodes in G) of the i-th neighbor of vertex u.
Since each index needs log n bits, we need O(m log n) bits to represent G.

For our application, we give a slight modification. Firstly, at the beginning
of each row, we store the degree of the corresponding vertex. This allows us to
know how many random bits we need when we want to choose a random neighbor.
Secondly, in the (u, i)-th component for each u ∈ V and i ∈ [du], besides the index
of the i-th neighbor of u, denoted by v, we store the index (among the neighbors
of v) of u. That is, if u is the j-th neighbor of v, then we put j in the (u, i)-th
component with the index of v together. It is easy to verify that the number of bits
needed by this format is also O(m log n), and such modification is reasonable.

So we have two kinds of query. The first is degree query. For each vertex u,
we can query the list for du. The second is neighbor query. For each vertex u
and index i ∈ [du], we can query the (u, i)-th component for the i-th neighbor of
u, denoted by v, and the index of u among v’s neighbors. We define the relative
distance between the graphs G = (V,E) and G′ = (V,E′) to be |E4E′|

max{|E|,|E′|} ,
where 4 refers to the symmetric difference.

Such representation implies a useful map in terms of which, it is convenient for
us to define the non-uniform Zig-Zag product.

Definition 1. (Rotation Map) For an undirected graph G = (V,E), for u, v ∈ V ,
i ∈ [du] and j ∈ [dv], the rotation map RotG(u, i) = (v, j) if the i-th neighbor of
u is v and the j-th neighbor of v is u.

The difference of our rotation map from that defined in [9], Def. 2.1, is that
our graph G does not need to be regular. It keeps track of the edge traversed to get
from u to v, and RotG(u, i) = (v, j) if and only if RotG(v, j) = (u, i). So RotG is
an exchange permutation satisfying that RotG◦RotG is identity.

Our graph representation locally implies the rotation map. That is, we only
have to query the (u, i)-th component to get (v, j) =RotG(u, i), instead of query-
ing the v-th row to find j. In the construction of the non-uniform Zig-Zag product,
we always suppose that we know the rotation map of graphs.

2.2 Some facts of spectral graphs

Let A be the adjacency matrix of graph G and D be the diagonal matrix with the
(u, u)-th entry having value du. The Laplacian of G is defined to be

L = I −D− 1
2AD− 1

2 ,

where I is the identity matrix. L is symmetric. Its spectrum (or the spectrum of G)
is defined to be the set of n eigenvalues of L, denoted by {λ1, λ2, · · · , λn}. It is
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well known that all the eigenvalues are in the interval [0, 2] and the first eigenvalue
λ1 = 0. Suppose that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2, where λi is called the i-th
eigenvalue of L. We denote λ2 by λG. Let f be a function mapping from V to R.
We have

Proposition 1.

λG = inf
f⊥D~1

∑
u∼v

(f(u)− f(v))2∑
v
f(v)2dv

,

where ~1 denotes the all 1 vector and
∑
u∼v

denotes the sum over all unordered adja-

cent pairs {u, v}.

Let M = I − L = D− 1
2AD− 1

2 . The eigenvalues of M are 1 − λi, i =
1, . . . , n. To compute λG, sometimes it is convenient to compute the second largest
eigenvalue of M , which is

1− λG = sup
f⊥D~1

∑
u∼v

2f(u)f(v)∑
v
f(v)2dv

. (1)

For the relationship of cond(G) and λG, we have the Cheeger inequality.

Proposition 2. (Cheeger Inequality)

cond(G)2

2
< λG ≤ 2 · cond(G)

The conductance of G is bounded between λG/2 and
√

2λG and thus λG is a
measure of cond(G).

When G is d-regular, the matrix M is the normalized adjacency matrix D−1A.
The normalized eigenvector of λ1 is ~1/

√
n. Then we have

λG = min
α⊥~1

< α,Lα >
< α,α >

= 1−max
α⊥~1

< α,Mα >

< α,α >
, (2)

and the second largest eigenvalue (in absolute value) ofM , denoted by ηG, is given
by

ηG = max
α⊥~1

| < α,Mα > |
< α,α >

= max
α⊥~1

‖Mα ‖
‖ α ‖

. (3)

< ·, · > denotes the standard inner product of vectors in Rn and ‖ · ‖ is the 2-norm.
It is easily observed that ηG = max{|1− λG|, |1− λn|}.
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3 Non-uniform Zig-Zag product

In this section, we define the non-uniform Zig-Zag product formally and prove
some basic properties. The non-uniform Zig-Zag product transforms an arbitrary
graph G to a regular graph Ĝ with size linear to |E|, and cond(Ĝ) is properly
bounded by cond(G).

LetH = {H1,H2, . . .} be a d-regular graph family (multi-edges and self-loops
are permitted). For each i, Hi has i vertices. We call such H a Zig-Zag sequence.
For a vertex u ∈ V , let Hu denote the graph Hdu , which is the graph in H that
has size du. The non-uniform Zig-Zag product G z©H is a d2-regular graph, in
which every vertex u from G is blown up to be a “cloud” of du nodes, denoted by
(u, 1), . . . , (u, du). The rotation map of G z©H is formally defined as follows.

Definition 2. (Definition of RotG z©H) For u ∈ V , a ∈ [du] and i, j ∈ [d],

(1) Let (a′, i′) =RotHu(a, i).

(2) Let (v, b′) =RotG(u, a′).

(3) Let (b, j′) =RotHv(b′, j).

Define RotG z©H((u, a), (i, j)) = ((v, b), (j′, i′)).

The intuition of this product is similar with that for the standard one defined by
Reingold et. al. [9]. The three steps above correspond to three steps of walks in
Hu, G and Hv, respectively. For some (u, a) ∈ V × [du], if we randomly choose
(i, j) ∈ [d]× [d], which is one step of a random walk in G z©H, then it is observed
that the “Zig” step (1) represents a random step in Hu, to decide which cloud it
is going into. The “long” step (2) represents a step crossing the edge (u, v) in G
and the “Zag” step (3) is a random step in Hv. The important intuition for our
application is that, when we choose each Hu in H to be an expander such that the
“long” step decided by a′ is as uniform as possible, it makes the random walk in
G z©H look much like a random walk in G. The conductance of G will be hidden
in G z©H very well. The proof of Theorem 3 follows this intuition closely.

Let Ĝ = G z©H. For the relationship of cond(G) and cond(Ĝ), the easy
direction stated in Lemma 1 (2) is given as follows.

Lemma 2. (Upper Bound Lemma)

cond(Ĝ) ≤ cond(G).

Proof. By definition, it is easy to verify the following two facts:
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Fact 1. For a vertex u ∈ V in G, the volume of the corresponding cloud u in Ĝ is
exactly d2 · du.

Fact 2. For an edge e = {u, v} inG, the number of edges contributed by e between
the clouds u and v in Ĝ is exactly d2.

So for any set S ⊆ V , we define Ŝ to be the set of all nodes in Ĝ, each
of which is in the cloud associated with some vertex in S. Then we know that
vol(Ŝ) = d2 · vol(S), vol(¬Ŝ) = d2 · vol(S) and E(Ŝ,¬Ŝ) = d2 ·E(S, S), where
¬Ŝ denotes the complement of Ŝ. The conductance of the cut (Ŝ,¬Ŝ) equals the
conductance of (S, S). Since cond(Ĝ) is the minimum conductance among all cuts
in Ĝ, the proposition follows.

Then we show the hard direction, i.e., (1) of Lemma 1.

4 Lower bound for cond(G z©H)

In this section, we show the following key lemma.

Lemma 3. (Lower Bound Lemma) Let G = (V,E) be a graph with cond(G) ≥ Φ
for some Φ in [0, 1], andH be a d-regular Zig-Zag sequence. Let η = maxH∈H{ηH}
and Ĝ = G z©H. Then cond(Ĝ) ≥ λ

Ĝ
2 ≥ 1

8(1− η2)Φ2.

Proof. Let AG, A
Ĝ

be the adjacency matrices of G and Ĝ respectively. Note that
A
Ĝ

has size vol(G)×vol(G) and Ĝ is d2-regular. Its normalized adjacency matrix,
denoted by M , is 1

d2
A
Ĝ

. By the Cheeger inequality, since cond(G) ≥ Φ, we know

that λG > cond(G)2

2 ≥ Φ2

2 . Since cond(Ĝ) ≥ 1
2λĜ, our following task is to relate

λ
Ĝ

to λG.
From now on, we label the vertices in G by [n], and the u-th row of AG cor-

responds to the vertex labeled by u. Recall that the rotation map RotG is an ex-
changing permutation. Let P be the corresponding permutation matrix of size
vol(G)× vol(G). That is, for u, v ∈ [n], i ∈ [du] and j ∈ [dv], the ((u, i), (v, j))-
th component of P is 1 if and only if RotG(u, i) = (v, j). We know that P 2 = I .
For each u ∈ [n], let Zu denote the normalized adjacency matrix of graph Hu.
Define the following block diagonal matrix

Z =


Z1

Z2

. . .
Zn

 .
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Each block Zu has size [du] × [du]. M can be decomposed to three parts: M =
ZPZ. Since λ

Ĝ
= 1 −max

α⊥~1

<α,Mα>
<α,α> , then we only have to give an upper bound

for <α,Mα>
<α,α> assuming α ⊥ ~1.

Note that α has length vol(G). We divide α into n segments α1 ◦α2 ◦ · · · ◦αn,
called segment expression, where ◦ refers to vector concatenation and αu has length
du. For each αu, it can be uniquely decomposed to α‖u + α⊥u , where α‖u = au · ~1
for some real number au and α⊥u ⊥ ~1. 3 We decompose α = α‖ + α⊥ by letting
α‖ = α

‖
1 ◦ α

‖
2 ◦ · · · ◦ α

‖
n and α⊥ = α⊥1 ◦ α⊥2 ◦ · · · ◦ α⊥n . Since both α and α⊥ are

orthogonal to ~1, α‖ ⊥ ~1 either. It means that < α‖,~1 >=
∑

u∈[n] audu = 0. In
addition, Zα‖ = α‖, then we have

< α,Mα >

< α,α >
=

< (α‖ + α⊥), ZPZ(α‖ + α⊥) >
< α,α >

=
< α‖ + Zα⊥, P (α‖ + Zα⊥) >

< α,α >
.

Since P is symmetric and P 2 = I , P has eigenvalues 1 and −1. Suppose that
the multiplicity of 1 is k and that of −1 is N − k, where N = vol(G). Let
ξ1, . . . , ξN be all the orthogonal unit eigenvectors of P , where ξ1, . . . , ξk are in
the 1-eigenspace and ξk+1, . . . , ξN are in the (−1)-eigenspace. For any γ ∈ RN ,
suppose that η = (c1ξ1 + · · · + ckξk) + (ck+1ξk+1 + · · · + cNξN ). We have
Pγ = (c1ξ1+· · ·+ckξk)−(ck+1ξk+1+· · ·+cNξN ). Let S = SPAN{ξ1, . . . , ξk},
then P is a reflection through S. Denote by θ the angle between γ and S. We have
< γ, Pγ >= (cos 2θ)· < γ, γ >.

By this observation, let θ be the angle between α‖+Zα⊥ and S, φ be the angle
between α‖ and S. We also define ψ1 to be the angle between α‖ and α‖ + Zα⊥,
and ψ2 to be the angle between α‖ and α‖ + α⊥. Noting that α‖ is orthogonal to
α⊥ and Zα⊥, the angles ψ1, ψ2 ∈ [0, π2 ]. We choose proper direction of S such
that φ ∈ [0, π2 ] either. Clearly, θ ∈ [φ− ψ1, φ+ ψ1]. We have

< α,Mα >

< α,α >
= cos 2θ · < α‖ + Zα⊥, α‖ + Zα⊥ >

< α‖ + α⊥, α‖ + α⊥ >

= cos 2θ · ‖ α‖ ‖2

‖ α‖ + α⊥ ‖2
· ‖ α

‖ + Zα⊥ ‖2

‖ α‖ ‖2

= cos 2θ · cos2 ψ2

cos2 ψ1
.

3For the simplicity of symbols, we always use~1 to denote an all 1 vector without its length, which
is implicated by context.
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Then we show the following two sublemmas.

Sublemma 1.
tanψ1

tanψ2
≤ η,

where η = maxH∈H{ηH}.

Proof.

tanψ1

tanψ2
=

‖ Zα⊥ ‖
‖ α⊥ ‖

=
1

‖ α⊥ ‖
·
√
< α⊥, Z2α⊥ >

=
1

‖ α⊥ ‖
· (

∑
u∈[n]

< α⊥u , Z
2
uα

⊥
u >)

1
2

≤ 1
‖ α⊥ ‖

· (
∑
u∈[n]

η2
u < α⊥u , α

⊥
u >)

1
2

≤ max
H∈H

{ηH} ·
1

‖ α⊥ ‖
· (

∑
u∈[n]

< α⊥u , α
⊥
u >)

1
2

= η · 1
‖ α⊥ ‖

· ‖ α⊥ ‖

= η.

Sublemma 2.
cos 2φ ≤ 1− λG.

Proof. Firstly, we define a T -operation: RN → Rn as follows. For any β ∈ RN ,
let β = β1 ◦ β2 ◦ · · · ◦ βn be the segment expression. Then T (β) is defined as
(b1, . . . , bn) ∈ Rn, in which bu =

∑
j∈[du] βuj , where βuj is the j-th component

of βu. We also define the T−1-operation: Rn → RN as follows. For any ~b =
(b1, . . . , bn) ∈ Rn, T−1(~b) = β1 ◦ β2 ◦ · · · ◦ βn, in which each component of βu is
bu
du

.

Recall that α‖ = α
‖
1 ◦ α

‖
2 ◦ · · · ◦ α

‖
n and each α‖u = au ·~1. Let eu ∈ Rn be the
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unit vector whose u-th coordinate is 1, and 0 for others. Then we have

cos 2φ =
< α‖, Pα‖ >

< α‖, α‖ >

=
1

‖ α‖ ‖2
· <

∑
u∈[n]

audu · T−1(eu), P
∑
u∈[n]

audu · T−1(eu) >

=
1

‖ α‖ ‖2
· < (a1, . . . , an), T (P

∑
u∈[n]

audu · T−1(eu)) >

=
1

‖ α‖ ‖2
· < (a1, . . . , an), (a1d1, . . . , andn)D−1AG > .

The last equality follows from the probability transition among clouds in Ĝ. Since
‖ α‖ ‖2=

∑
u∈[n] a

2
udu, we have

cos 2φ =
1∑

u∈[n]

a2
udu

· < (a1, . . . , an), (a1, . . . , an)AG >

=

∑
u∼v

2auav∑
u∈[n]

a2
udu

.

Comparing this with the Equation (1) in Section 2.2, and noting that
∑

u∈[n] audu =
0, we know that cos 2φ ≤ 1− λG.

Then we turn to bound cos 2θ · cos2 ψ2

cos2 ψ1
. We consider the following two cases.

Case 1: ψ1 ≤ φ.

In this case, 0 ≤ 2(φ − ψ1) ≤ 2θ ≤ 2(φ + ψ1) ≤ 2π. So we have cos 2θ ≤
max{cos 2(φ−ψ1), cos 2(φ+ψ1)}. Since (2π−2(φ+ψ1))−2(φ−ψ1) = 2π−
4φ ≥ 0, we know that cos 2(φ−ψ1) ≥ cos 2(φ+ψ1) and cos 2θ ≤ cos 2(φ−ψ1).
The equality holds if and only if the projections of α‖, α⊥ and Zα⊥ on S are
colinear. But this does not always hold. Let t1 = cos 2φ and t2 = tanψ1

tanψ2
. Using

some trigonometric manipulations and noting that 1
cos2 ψ1

= cos2 ψ2+t22 sin2 ψ2

cos2 ψ2
and

12



sin 2ψ1 = 2 tanψ1

1+tan2 ψ1
, we have

cos 2θ · cos2 ψ2

cos2 ψ1
≤ cos 2(φ− ψ1) ·

cos2 ψ2

cos2 ψ1

=
1
2
t1(1− t22) +

1
2
(1 + t22) cos 2φ cos 2ψ2 + t2 sin 2φ sin 2ψ2

≤ 1
2
t1(1− t22) +

1
2

√
t21(1 + t22)2 + 4(1− t21)t

2
2

=
1
2
t1(1− t22) +

1
2

√
t21(1− t22)2 + 4t22.

Let f(t1, t2) denote the above function. It is easy to verify that both ∂f(t1,t2)
∂t1

and
∂f(t1,t2)
∂t2

are non-negative. f is an increasing function of t1 and t2.

Case 2: ψ1 > φ.

In this case, 0 ≤ 2φ < 2ψ1 ≤ π. Then cos 2ψ1 < cos 2φ = t1. Since
cos 2ψ1 = 2 cos2 ψ1 − 1 = 2 cos2 ψ2

t22+(1−t22) cos2 ψ2
− 1, we have

cos2 ψ2 <
(1 + t1)t22

(1 + t22)− t1(1− t22)
.

So

cos 2θ · cos2 ψ2

cos2 ψ1
≤ cos2 ψ2

cos2 ψ1

= t22 + (1− t22) cos2 ψ2

<
2t22

(1 + t22)− t1(1− t22)
.

Let g(t1, t2) denote the above function.

It can be verified that for any−1 ≤ t1 ≤ 1 and any t2, f(t1, t2)−g(t1, t2) ≥ 0.
Combining Case 1 and 2, we know that for any α ⊥ ~1, <α,Mα>

<α,α> ≤ f(t1, t2). Since

13



f is an increasing function of t1 and t2, by Sublemma 1 and 2,

< α,Mα >

< α,α >
≤ f(1− λG, η)

≤ f(1− Φ2

2
, η)

=
1
2
(1− η2)(1− Φ2

2
) +

1
2

√
(1− η2)2(1− Φ2

2
)2 + 4η2

=
1
2
(1− η2)− 1

2
(1− η2)

Φ2

2
+

1 + η2

2

√
1− (1− η2)2

(1 + η2)2
Φ2 +

(1− η2)2

4(1 + η2)2
Φ4

≤ 1
2
(1− η2)− 1

2
(1− η2)

Φ2

2
+

1 + η2

2

= 1− 1
4
(1− η2)Φ2.

By Equation (2) in Section 2.2, λ
Ĝ

= 1 −max
α⊥~1

<α,Mα>
<α,α> ≥ 1

4(1 − η2)Φ2. By the

Cheeger inequality, cond(Ĝ) ≥ λ
Ĝ
2 ≥ 1

8(1− η2)Φ2.

5 Testing conductance of G

In this section, we give a tester for cond(G) and prove our main theorem.

5.1 Description of our testing algorithm

As we stated in the introduction, we essentially test cond(Ĝ) instead. We invoke
the tester for the bounded degree model in [5]. Consider the following random
walk in the d2-regular graph Ĝ: starting from any vertex, in each step, choose an
outgoing edge with probability 1

2d2
, and with the remaining probability 1

2 , it stays
at the current vertex. Denote by G̃ the graph based on Ĝ in which each vertex
has d2 more self-loops. Then the random walk defined above is equivalent to the
standard random walk on G̃, and for any S ⊆ V̂ , cond

Ĝ
(S) = 2cond

G̃
(S). By the

definition of the non-uniform Zig-Zag product, a step of random walk from (u, a)
crossing edge (i, j) is decomposed to three steps. The “Zig” and “Zag” steps are
steps in Hu and Hv, respectively. They do not need to query graph G. The only
information we want to query from G is RotG(u, a′). So each step of random
walk in Ĝ requires querying the function RotG at most once. At the beginning,
the random walk requires choosing uniformly a random node in Ĝ. Since a node
in Ĝ corresponds to an endpoint of an edge in G, we randomly choose an edge of

14



G and randomly choose an endpoint of this edge. Equivalently, we only have to
randomly choose a component in the storage list defined in Section 2.1, denoted
by (v, b), b ∈ [dv], which means that the random walk in Ĝ starts from the vertex
(v, b). Since each edge {u, v} in G appears twice in the list (i.e., (u, a), (v, b) for
some a ∈ [du], b ∈ [dv]), such sample is uniform.

Let Φ, ε and σ be the parameters given in Theorem 1. Let n = |V |, m = |E|
and N = 2m. Let H be a d-regular Zig-Zag sequence. H is chosen to be an
expander family, where η = maxH∈H{ηH} is a constant in (0, 1). It is well known
that such sequence has been explicitly constructed [9, 10]. Firstly, we state a tester
defined on a single vertex.

Vertex Tester

Given u ∈ V̂ , let l = 8 lnN
(1−η2)Φ2 and k = 8N (1+σ)/2.

(1) Perform k random walks of length l from u.

(2) Let Q be the number of pairwise collisions of endpoints of the k
walks and K =

(
k
2

)
.

(3) If Q
K ≥ 1+2N−σ/4

N , then output REJECT. Otherwise, output AC-
CEPT.

Then we state a tester for conductance.

Conductance Tester

Given G = (V,E), let k1 = Ω(1
ε ), k2 = Ω(log 1

ε ) and Ĝ = G z©H =
(V̂ , Ê).

(1) Choose k1 vertices uniformly from V̂ .

(2) For each chosen vertex u, run the Vertex Tester for k2 trials. If at
least half of them output REJECT, then output REJECT and halt.

(3) If no vertex in step (2) causes REJECT, then output ACCEPT.
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5.2 Proof of our main theorem

Note that logm = O(log n). The query complexity of our tester is k1 · k2 · k · l =

O(m
(1+σ)/2 logn log 1

ε
εΦ2 ) and also the running time is.

Then we turn to prove the completeness and soundness for our tester. The
technique we use here is summarized as follows. We classify the vertices in Ĝ
as strong and weak vertices. The random walks starting from the weak vertices
mix very slowly, and collide with each other with high probability. If the rejection
probability is small, then the size of weak vertex set in Ĝ is small either (otherwise,
they can be tested by k1 = Ω(1

ε ) samples from Ĝ easily). On the other hand, a
vertex set with large volume in G which determines a cut with small conductance
implies a large amount of weak vertices in Ĝ. So the volume of this set must be
small. Then we give a patch-up algorithm dealing with these vertices by modifying
at most εm edges in G, such that the resulting graph G′ has large conductance.

Let ρ(u) denote the collision probability of two random walks of length l in
Ĝ starting both from u. Let ~pu be the probability distribution of the random walk
from u at the l-th step. Then ρ(u) =

∑
v(~pu(v))

2. Let ∆l(u) denote the distance
of ~pu from the stationary distribution defined as follows.

∆l(u)2
.=‖ ~pu −

~1
N
‖2=

∑
v∈V̂

(~pu(v)−
1
N

)2 = ρ(u)− 1
N
.

We have the following sufficient conditions for Conductance Tester in each round
of step (2).

Lemma 4. (Distinguishing Lemma, [5] Corollary 3.2) The following holds with
probability at least 5/6. For any u ∈ V̂ , if ρ(u) < (1 + N−σ/4)/N , then the
majority of the k2 trials of the Vertex Tester running on u return ACCEPT. If ρ(u) >
(1 + 6N−σ/4)/N , then the majority of the k2 trials of the Vertex Tester running on
u return REJECT.

The proof of the above lemma is based on the fact that the estimate of ρ(u),
which is Q/K, concentrates around ρ(u) with very high probability (independent
of the values of l and k, see Lemma 1 of [3]). By the Chernoff bound, when
k2 = Ω(log 1

ε ), a gap of size 5N−σ/4/N on ρ(u) is large enough to distinguish
between the two cases that, for every v ∈ V̂ , majority of the k2 trials on v return
ACCEPT or REJECT, respectively. Using these sufficient conditions, we show the
correctness of our tester.

For completeness, we have

Lemma 5. If cond(G) ≥ Φ, then the Conductance Tester accepts G with proba-
bility at least 2/3.
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Proof. Since cond(G) ≥ Φ, by Lemma 3, λ
Ĝ
≥ 1

4(1 − η2)Φ2. Let R be the
transition probability matrix of the random walk and λ

G̃
be the second eigenvalue

of I − R, the Laplacian of G̃. Then R = I+M
2 (recall that M is the normalized

adjacency matrix of Ĝ) and λ
G̃

= 1− 1+(1−λ
Ĝ

)

2 = λ
Ĝ
2 ≥ 1

8(1− η2)Φ2. Note that
all the eigenvalues of I −R are in [0, 1]. We have, for any u ∈ V̂ ,

∆l(u)2 = ‖ ~pu −
~1
N
‖2

= ‖ (eu −
~1
N

)>Rl ‖2

≤ ‖ eu −
~1
N
‖2 ·(1− λ

Ĝ
)2l

≤ (1− 1
8
(1− η2)Φ2)

16 ln N
(1−η2)Φ2

≤ 1
N2

.

Then ρ(u) = ∆l(u)2 + 1
N < 1+N−σ/4

N . By the distinguishing lemma, the tester
accepts G with probability at least 2/3.

For soundness, we show that, if the tester rejects with probability less than
2/3, then there exists a graph G′ that is ε-close to G and cond(G′) = Ω(Φ2). The
following two lemmas for bounded degree graphs are given in [5], and we prove
them as follows for self-containment.

Lemma 6. Let S ⊆ V̂ of size s ≤ N
2 and cond

G̃
(S) ≤ φ. Then for any l > 0,

there exists a node u ∈ S satisfying ∆l(u) ≥ (1−4φ)l

2
√
s

.

Proof. We only have to show that, for a randomly chosen u ∈ S, the expectation
of ∆l(u), which is 1

s

∑
u∈S ∆l(u), is at least (1−4φ)l

2
√
s

. Since

1
s

∑
u∈S

∆l(u) =
1
s

∑
u∈S

‖ ~pu −
~1
N
‖

=
1
s

∑
u∈S

‖ (eu −
~1
N

)>Rl ‖

≥ ‖ (
1
s

∑
u∈S

eu −
~1
N

)>Rl ‖

= ‖ α>Rl ‖,
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where α = 1
s

∑
u∈S eu −

~1
N , we only have to show that ‖ α>Rl ‖2≥ (1−4φ)2l

4s .
Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 1 be all the eigenvalues of I − R, and

f1, f2, . . . , fN be the corresponding eigenvectors. Consider

α>Rα = (
1
s

∑
u∈S

eu −
~1
N

)>R(
1
s

∑
u∈S

eu −
~1
N

).

Since

(
1
s

∑
u∈S

eu)>R(
1
s

∑
u∈S

eu) =
1
s2

∑
u∈S

∑
v∈S

e>uRev

=
1
s2
· 1
2d2

· (1− cond
G̃
(S))vol

G̃
(S)

=
1
s
(1− cond

G̃
(S))

≥ 1
s
(1− φ),

and both (1
s

∑
u∈S eu)

>R
~1
N and ( ~1N )>R ~1

N equals 1
N , we have

α>Rα ≥ 1
s
(1− φ)− 1

N
.

On the other hand, let α =
∑N

i=1 αifi. Then α>Rα =
∑N

i=1 α
2
iλi. Thus,

N∑
i=1

α2
iλi ≥

1
s
(1− φ)− 1

N
.

Let B1 = {i|λi ≥ 1− 4φ} and B2 = [N ] \B1. We have∑
i∈B1

α2
i +

∑
i∈B2

α2
i (1− 4φ) ≥ 1

s
(1− φ)− 1

N
.

Note that

N∑
i=1

α2
i =‖ α ‖2=‖ 1

s

∑
u∈S

eu −
~1
N
‖2=

1
2
− 2 · 1

N
+

1
N

=
1
s
− 1
N
.

We have ∑
i∈B1

α2
i + (

1
s
− 1
N
−

∑
i∈B1

α2
i )(1− 4φ) ≥ 1

s
(1− φ)− 1

N
.
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Solving this, we have ∑
i∈B1

α2
i ≥

3
4s
− 1
N
≥ 1

4s
.

So

‖ α>Rl ‖2= α>R2lα =
N∑
i=1

α2
iλ

2l
i ≥ (1− 4φ)2l

∑
i∈B1

α2
i ≥

(1− 4φ)2l

4s
.

The lemma follows.

Lemma 7. Let T ⊆ S ⊆ V̂ , s = |S| ≤ N
2 and cond

Ĝ
(S) ≤ φ. Let t =

|T | = (1 − δ)s for some δ ∈ [0, 1
5 ]. Then there exists a node v ∈ T satisfying

∆l(v) ≥ (1
2 −

√
δ

1−δ ) ·
(1−4φ)l
√
s

.

Proof. Let α = 1
s

∑
u∈S eu −

~1
N and β = 1

t

∑
v∈T ev −

~1
N . Let α =

∑N
i=1 αifi

and β =
∑N

i=1 βifi be the representation of α and β in the basis {fi}i∈[N ]. Then

‖ α− β ‖2= (
1
t
− 1
s
)2 · t+

1
s2
· (s− t) =

1
t
− 1
s

=
δ

1− δ
· 1
s
.

By the triangle inequality,∑
i∈B1

β2
i ≥ (

√∑
i∈B1

α2
i −

√∑
i∈B1

(αi − βi)2)2.

Note that
∑

i∈B1
α2
i ≥ 1

4s ,
∑

i∈B1
(αi − βi)2 ≤

∑N
i=1(αi − βi)2 = δ

1−δ ·
1
s and

δ
1−δ ·

1
s ≤

1
4s . We have

∑
i∈B1

β2
i ≥ (

1
2
√
s
−

√
δ

1− δ
· 1√

s
)2 = (

1
2
−

√
δ

1− δ
)2 · 1

s
.

By the proof of Lemma 6, we have

‖ β>Rl ‖≥ (
1
2
−

√
δ

1− δ
) · (1− 4φ)l√

s
,

and there exists a node v ∈ T satisfying ∆l(v) ≥ (1
2 −

√
δ

1−δ ) ·
(1−4φ)l
√
s

.

Then we turn to show that every cut with small conductance inG is unbalanced
in the volumes of the two parts.
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Lemma 8. (Unbalanced Cut Lemma) If the Conductance Tester rejects with prob-
ability at most 2/3, then there is a partition of V in G, denoted by V = S ∪ S,
such that the following two properties hold:

(1) vol(S) ≤ 1
5εN ;

(2) the conductance of the subgraph induced by S is Ω(Φ2).

Proof. We partition V recursively as follows. Initially, set S = ∅ and S = V .
In each step, if there is a subset A ⊆ S of volume at most vol(S)

2 such that the
following two hold:

(i) vol(A ∪ S) ≤ vol(G)
2 ,

(ii) E(A,S\A)
vol(A) is less than cΦ2 for c = (1−η2)σ

100 ,

then move A into S. We recursively do this, until no such A can be found.
The second property is guaranteed by our construction. Then we show that

vol(S) ≤ 1
5εN . We say that a vertex (u, a) in Ĝ is weak if ρ((u, a)) > (1 +

6N−σ/4)/N , otherwise is strong. Assume that vol(S) > 1
5εN . Define Ŝ =

{(u, a) ∈ V̂ |u ∈ S, a ∈ [du]}, which is the union of the clouds in Ĝ corre-
sponding to the vertices in S. Then we have 1

5εN < vol(S) = |Ŝ| ≤ N
2 , and

cond
G̃
(Ŝ) = 1

2cond
Ĝ
(Ŝ) = condG(S) < 1

2cΦ
2. By Lemma 7, choosing δ = 1

10 ,
there exist 1

10 fraction of nodes in Ĝ such that for each of them, denoted by (u, a),

∆l((u, a)) ≥
(1− 2cΦ2)l

3
√

2N
>

√
6N−σ/4

N
,

and

ρ((u, a)) = ∆l((u, a))2 +
1
N
>

1 + 6N−σ/4

N
.

So there are at least 1
10 |Ŝ| >

1
50εN weak vertices in Ĝ. By k1 = Ω(1

ε ) samples
from V̂ , at least one of such vertices will chosen with probability 4

5 . By Lemma 4,
the tester rejects with probability larger than 4

5 ·
5
6 = 2

3 , which is a contradiction.
Then the lemma follows.

Now we are ready to propose the patch-up algorithm.
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Patch-up Algorithm

(1) Partition G into S and S satisfying the two properties in Lemma 8.

(2) Remove all the edges incident to some vertex in S.

(3) For each vertex u ∈ S, repeatedly do the following until the degree
of u reaches du or du − 1: choose a vertex v ∈ S with probability

dv

volG(S)
. If the current degree of v is less than dv, then add an edge

{u, v}. Otherwise, if the degree is dv and there is an edge {v, w}
such that w ∈ S, then remove {v, w} and add two edges {u, v} and
{u,w}. Otherwise, if no such {v, w} exists, then re-sample v in S
and repeat the above process. Denote by G′ the resulting graph.

(4) Output G′.

Denote byG′′ the resulting graph after step (2). Since volG(S) ≤ 1
5εN , for the

volumes of G, G′′ and G′, we have the following relationships. vol(G) − 2
5εN ≤

vol(G′′) ≤ vol(G), vol(G) − 1
5εN ≤ vol(G′) ≤ vol(G) and vol(G) = N . To

guarantee the implementation of step (3), we show the following lemma.

Lemma 9. In each stage of each round in step (3), with probability at least 1
2−

3
5ε,

we can find a vertex v in S such that the degree of v is less than dv or there is an
edge {v, w} such that w ∈ S.

Proof. In step (3), at each stage of each round, we say that a node v is unsaturated
if the degree of v is less than dv. Otherwise, v is saturated. If the degree of v is
more than dv

2 , we say that v is half-saturated. Otherwise, v is half-unsaturated.
Let X1 = {v ∈ S|degG′′(v) ≤ dv

2 }, which is the ensemble of half-unsaturated
nodes in S before step (3). Let X2 = S \ X1. At each stage, we consider the
following two cases.

Case 1: volG′′(X1) ≥ 1
2vol(G′′).

Let Y = {v ∈ S|v is unsaturated in G′′, but saturated currently.}. Since
for every v ∈ X1, to saturate v, at least dv

2 edges are needed to be added. Then
volG(Y ) is at most 2volG(S) ≤ 2

5εN . So with probability at least

volG(X1)− volG(Y )
volG(S)

≥
1
2vol(G′′)− 2

5εN

N
≥ 1

2
− 3

5
ε,
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a vertex in X1 \ Y that is unsaturated can be chosen.

Case 2: volG′′(X1) < 1
2vol(G′′).

Note that vol(G′′) is in fact volG′′(S). Then volG′′(X2) > 1
2vol(G′′). Let

Y = {v ∈ S|v is half-saturated in G′′, but no (v, w) such that w ∈ S currently.}.
For every v ∈ X2, to remove all edges incident to v within S, at least dv

2 edges are
needed to be removed. Since at most 1

10εN edges are removed within S, volG(Y )
is at most 1

10εN · 2 = 1
5εN . So with probability at least

volG(X2)− volG(Y )
volG(S)

≥
1
2vol(G′′)− 1

5εN

N
≥ 1

2
− 2

5
ε,

a vertex in X2 \ Y can be chosen.

Combining these two cases, the lemma follows.

By the above lemma, we only have to choose a small ε, for example, ε ≤ 5/12,
to guarantee that step (3) can be implemented with probability at least 1/4. Let
G′ = (V ′, E′). By the algorithm, the number of modified edges, including added
and removed edges, is upper bounded by 2vol(S) + 1

2vol(S) ≤ εm. Note that
|E′| ≤ |E| = m. The distance between G and G′ is at most εm

max{|E|,|E′|} = ε.
Then we only have to show that cond(G′) is large.

Lemma 10. (Patch-up Lemma)

cond(G′) = Ω(Φ2).

Proof. Consider any vertex set A of volume at most vol(G′)/2 in G′. Denote by
r = vol(A) ≤ vol(G′)/2. From now on, whenever we mention the volume of a
vertex set without subscript, we mean the volume of this set in G′. Let A = V \A
denote the complement of A. Consider the following two cases.

Case 1: vol(S ∩A) > 2 · vol(S ∩A).
Since vol(S ∩A) + vol(S ∩A) = r, we have vol(S ∩A) > 2r/3. Since every

edge incident to S∩A inG′ are incident to S either, there are at least vol(S∩A)−
vol(S ∩A) > vol(S ∩A)/2 edges connecting from S ∩A to S ∩A. We have

condG′(A) >
1
2
· 2r

3
· 1
r

=
1
3

= Ω(Φ2).

Case 2: vol(S ∩A) ≤ 2 · vol(S ∩A).
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In this case, vol(S ∩ A) ≥ r/3. We consider the number of edges between
S ∩A and S ∩A in G as follows. By the construction of S in Lemma 8,

E(S ∩A,S ∩A) ≥ cΦ2 ·min{volG(S ∩A), volG(S ∩A)}.

Subcase 1: If volG(S ∩A) ≤ volG(S ∩A), then we have

E(S ∩A,S ∩A) ≥ cΦ2 · volG(S ∩A) ≥ cΦ2 · vol(S ∩A) ≥ 1
3
crΦ2.

Subcase 2: Otherwise, volG(S ∩ A) > volG(S ∩ A). Noting that vol(S ∩ A) ≤
vol(G′)/2 ≤ vol(G)/2, we have

vol(S ∩A) ≥ volG′′(S ∩A)
= vol(G′′)− volG′′(S ∩A)

≥ vol(G)− 2
5
εN − vol(S ∩A)

≥ 1
2
vol(G)− 2

5
εN

= (
1
2
− 2

5
ε)N.

So, when we choose ε ≤ 5/6, we have

E(S ∩A,S ∩A) ≥ cΦ2 · volG(S ∩A)

≥ (
1
2
− 2

5
ε)cΦ2N

≥ 1
3
crΦ2.

Thus, in any subcase,E(S∩A,S∩A) ≥ 1
3crΦ

2. Note that for any edge {u, v}
removed from (S∩A,S∩A), some edge {u,w} or {v, w} crossing the cut (A,A)
would be added. So we have

condG′(A) ≥ 1
3
crΦ2 · 1

r
=

1
3
cΦ2 = Ω(Φ2).

Combining Case 1 and 2, the lemma follows.

Now the proof of Theorem 1 is completed.
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