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Abstract. For each natural number d we consider a finite structure Md whose universe
is the set of all 0, 1-sequence of length n = 2d, each representing a natural number in the set
{0, 1, ..., 2n − 1} in binary form. The operations included in the structure are the constants
0, 1, 2n − 1, n, multiplication and addition modulo 2n, the unary function min{2x, 2n − 1}, the
binary functions bx/yc, max(x, y), min(x, y), and the boolean vector operations ∧,∨,¬ defined
on 0, 1 sequences of length n by performing the operations on all components simultaneously.
These are essentially the arithmetic operations that can be performed on a RAM by a single
instruction. We show that there exists a term (that is, an algebraic expression) F (x, y) built
up from the mentioned operations, with the only free variables x, y, such that for all terms
G(y), which is also built up from the mentioned operations, the following holds. For infinitely
many positive integers d, there exists an a ∈Md such that the following two statements are not
equivalent: (i) Md |= ∃x, F (x, a), (ii) Md |= G(a) = 0. In other words, the question whether an
existential statement, depending on the parameter a ∈Md is true or not, cannot be decided by
evaluating an algebraic expression at a.

We also show that this theorem remains true if we include the operation min{xy, 2n − 1}
into the structure Md. A general theorem is proved as well which describes sufficient conditions
for a set of operations on a sequence of structures Kd, d = 1, 2, ... which guarantees that the
analogue of the mentioned theorem holds for the structure Kd too.

1 Introduction

1.1 Motivation, historical background

One of the central questions of complexity theory is the comparison of the computational re-
sources needed for deterministic and nondeterministic computation. Namely, assume that we
want to find a 0, 1-sequence satisfying a test T . Is it true under some natural assumptions on the
test and on the algorithm searching for x, that to find x requires essentially more computation,
than checking that a given x really satisfies T . In the case when both the test and the searching
algorithm must be performed in polynomial time (in the length of x) by a Turing machine, this
leads to the P = NP? question.
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In this paper we consider the special case of this problem where both the test and the search
consist of the evaluation of an algebraic expression. Assume that S is an algebraic structure
with the operations s1, s2, . . . , sk. For example, S can be a field or a ring and s1, . . . , sk can
be the field/ring operations. We also assume that the structure S has a distinguished element
(defined as the value of a 0-ary operation si for some i = 1, . . . , k) that we will denote by 0. In
the case of a field/ring, 0 will be always the usual zero of the field/ring. Suppose further that
F (x, y) is an algebraic expression built up from the operations s1, . . . , sk. Our search problem
will depend on a parameter a ∈ S. If such an a ∈ S is fixed, then we want to find x ∈ S such that
F (x, a) = 0. That is, the test T consists of checking whether for a given x we have F (x, a) = 0.
We will say that the problem has an algebraic solution, if there exists an algebraic expression
G(y) built up from the operations s1, . . . , sk such that G depends only on F , and for all a ∈ S
the following two statements are equivalent: (i) there exists an x ∈ S with F (x, a) = 0, and (ii)
F (G(a), a) = 0. In other words if the equation F (x, a) has a solution in x then x = G(a) is such
a solution.

Alternately we will also consider the problem of deciding whether the equation F (x, a) has a
solution in S. In this case we will say that the problem can be decided by an algebraic expression
if there exists an algebraic expression G(y) such that for all a ∈ S, the equation F (x, a) has a
solution in x iff G(a) = 0.

Several classical problems of mathematics can be formulate in this framework. For example,
if S is the field of real numbers and F (x, a) = x2 − a then there is no G(y) built up from the
field operations so that for all a ≥ 0, x = G(a) is a solution of F (x, a) = 0. Indeed for a rational
a the value of G(a) is also rational while e.g., for a = 2 all of the solutions, namely ±

√
2, are

irrational. This was proved already by Pythagoras.
A more difficult problem if S is the field of complex numbers (or any other algebraically

closed field), and the operations are the field operations and taking kth roots for each positive
integer k. It is a consequence of Galois theory (see [6]) that there is an equation F (x, a) = 0
whose solution cannot be expressed by the given operation, so there is no algebraic expression
G(y) with the required properties. (Actually such an F can be constructed without using the
“taking k-th root” operations.) Another example of similar nature is the problem of finding the
antiderivative of an elementary function. We do not describe here the structure S, we just note
that the basic results, that is, the existence of an elementary function whose antiderivative is
not an elementary function (see e.g., [11]), can be also expressed in the present framework.

In this paper we consider the analogue questions in finite structures which, apart from the
ring operations also contain other operations on integers which are used as instructions in random
access machines. For each positive integer d we will consider a structure Md whose universe is
the set {0, 1, . . . , 2n− 1}, where n = 2d. An element b of Md is a natural number but sometimes
we will consider it as a 0, 1-sequence of length n, defined by the binary form of b. The operations
on Md will be, roughly speaking, the operations that a random access machine would be able to
perform on nonnegative integers represented by n bits, where n = 2d. Namely we assume that
the operations of Md are the following: (1) addition and multiplication modulo 2n, (2) integer
division, that is, the operation bxy c, (3) max(x, y),min(x, y), (4) an operation p(x) whose value
is min{2x, 2n− 1}, (5) pointwise boolean negation, AND, OR, on 0, 1-sequences of length n. M
will denote a firstorder language which contains for each of these operations a function symbol
with the corresponding arity. Referring to this language the described operations will be called
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M-operations. (The results of this paper remain valid if we include a binary operation p̄(x, y)
whose value is min{xy, 2n − 1}.)

The M-operations that we have in addition to the ring operations, make the extension of
the algebraic proofs on Galois theory to the structures Md impossible. In spite of that we
will show in Theorem 1, that there exists an algebraic expression F (x, y) (built up from M-
operations) such that for all algebraic expression G(y), (also built up fromM-operations), there

exist infinitely many positive integers d such that for a suitably chosen a ∈ {0, 1, . . . , 22d − 1},
we have that the following two conditions are not equivalent: (i) F (x, a) has a solution x ∈Md,
and (ii) G(a) = 0 in the structure Md.

The proof shows only that statements (i) and (ii) are not equivalent for infinitely many
positive integers d, but it seems likely, that there exists an F such that for all sufficiently large
integers d and a suitably chosen a ∈ {0, 1, . . . , 22d − 1} they are not equivalent.

The mentioned result is about deciding whether an equation F (x, a) = 0 has a solution.
However it is easy to see that the result remains valid for the search problem as well.

Of course the set ofM-operations is somewhat arbitrary. We may want to know which other
operations can be added toM such that the mentioned theorem remains true. We prove a general
theorem, Theorem 2 about a sequence of structures Kd, d = 1, 2, . . ., with universe(Kd) =
{0, 1, . . . , 2n − 1}, n = 2d which describes conditions that are sufficient for an analogue of
Theorem 1.

The proofs are based on a Gödel type diagonalization argument. Diagonalization has been
used for the proof of several theorems about problems which are algorithmically undecidable.
E.g., if S is the ring of integers and the operations are the ring operation, then the theorem
of Matijasevic, Davis, Putnam, and Robinson about the unsolvability of diophantine equations
(see [13], [9]), can be considered in some sense an infinite analogue of the present problem, and
has been proved by the method of diagonalization.

We compare now our results to other theorems, where nonlinear lower bounds were given,
or deterministic and nondeterministic computation were separated in general computational
models. Some of these proofs were based on diagonalization arguments. In fact the high level
structure of the present proof is very similar to the structures of the proofs given in [10], [14],
or [12]. The technical details however are completely different.

For multi-tape turing machines linear time nondeterministic and deterministic computations
were separated in [14] by Paul, Pippenger, Szemerédi, and Trotter in 1984. Their theorem and
the present result are not comparable in the sense, that none of them follows from the other, since
in the turing machine model longer bitwise computations can be done than in our RAM model
with the given time limit, but the RAM model allows arithmetic operations e.g., multiplication,
and division of n bit numbers, and it is not known whether these operations can be computed
on a multitape turing machine in linear time. For uniform computational models where the
working memory is smaller than the input, Fortnow gave nonlinear lower bounds in [12]. In a
similar sense as in the case of [14] our results and the results of [12] are not comparable. The
highlevel structures of the proofs in both [14] and [12] however are very close to the highlevel
structure of the present proof. The argument which forms the highlevel structure of all of these
proofs was used by Hopcroft, Paul, and Valiant (see [10]) in 1977. There are also nonlinear
lower bounds for nonuniform models of computations see [2], [7], [8], but the results are also
incomparable to the present ones and even the high level structures of the proofs are completely
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different.
We can say that the difference between these already existing lower bounds and the ones in

the present paper is that they are based on different properties of the computational models.
Both in the case of the turing machine model, and in the models with small working memory,
a lower bound proof is possible because of the organization of the memory, which in the second
case includes the input. In both cases there are restrictions on the structure/use of the memory
that is the crucial property used in the proof. In contrast, our present proofs, are not based
on properties of the memory structure or the memory access, but on properties of the set
of arithmetic instructions. Therefore our results say something about the set of arithmetic
operations multiplication, addition etc., which is used in the usual random access machines.

A counterexample. In the last section we show that our main result does not hold if we
replace the operations in Md with arbitrary other operations. We show the following. Assume
that a sequence of structures Mn, n = 1, 2, . . . are given with universe(Mn) = {0, 1, ..., 2n− 1},
where each Mn is an interpretation of a firstorder language L with equality and with a finite
number of constant and functions symbols. We show that there exists an extension L′ of L with
a finite number of function symbols, and for each n = 1, 2, . . . there exists an interpretation M ′n
of L′ which is an extension of Mn on the same universe, such that for all terms F (x, y) of L′,
there exists a term G(y) of L′ with the property that for all sufficiently large n ∈ ω, we have

M ′n |= ∀a,
(
G(a) = 0↔ ∃x, F (x, a) = 0

)
1.1.1 Further results

In this section we sketch some related results which are not proved in the present paper.
(i) The proof described in the present paper guarantees only the existence of an F , through

an indirect argument, it does not tell how to get an explicit expression F (x, y). In the case
of the structures Md (but not for the generalizations Kd described in Theorem 2), with some
modification of the proof, that we do not describe in this paper, it is possible to give an explicit
construction for F . This modified proof also extends the result for expressions G(y) which may
depend on d, provided that their lengths remain below `(d), where `(d) is an explicitly given
slowly growing elementary function.

(ii) The theorem about Md can be reformulated in a way that we replace the terms F (x, y),
G(y) by constant time computation on a RAM Rd, whose each register contains a 0, 1 sequence
of length n = 2d. It is easy to see that evaluating the terms F (x, y) and G(y) can be equivalently
formulated by constant time computation on the RAM Rd, whose arithmetic instructions are
the functions of the structures Md. (E.g., we may eliminate the conditional instruction of a
RAM as described in [4] and [3].) This way the result is that there exists a program P which
can run on Rd, for each sufficiently large d, such that the following conditions are satisfied: (a) If
the program P , working on machine Rd, gets the n bit words x and a as input, then, in constant
time, P gives a TRUE or FALSE answer, and (b) there exists no program Q such that for
all sufficiently large d, given an n-bit word a as an input Q is able to decide in constant time
whether there exists an x with P (x, a) ≡ TRUE.

In other words if both the test and the decision process is constant time computation on
RAMs, then we cannot get a correct decision each time. Using the results mentioned in (i),
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where the size of the term G may grow with d it is possible to prove the statement about the
tests on RAMs even if Q is allowed to use time `(d), where `(d) is slowly growing explicitly
given elementary function, even if P can use only constant time.

We will return to the questions described in (i) and (ii) in another paper, where we also
show that there exists a term F (x, y) over the structures Md such that the following problem of
size n = 2d is NP -complete: “for a given a ∈Md find an x ∈Md such that Md |= F (x, a) = 0”.

1.2 The formulation of the main result

Notation. 1. ω will denote the set of all natural numbers, that is ω = {0, 1, 2, , . . .}. The
natural number n will be considered as the set of all natural numbers less than n, that is,
n = {0, 1, . . . , n− 1}.

2. coeffi(a, b) denotes the ith b-ary “bit” of a. More precisely, assume that a, b ∈ ω, b ≥ 2,
and a =

∑∞
i=0 αib

i, where for all i = ω, αi ∈ ω. The integer αi will be denoted by coeffi(a, b).
3. The set of all functions defined on the set A with values in the set B will be denoted by

func(A,B). The set of all k-ary functions defined on the set A with values in the set B will be
denoted by funck(A,B). If we say that ϕ(x0, . . . , xk) is a firstorder formula of a language L
then we will always assume, unless we explicitly state otherwise, that all of the free variables of
the formula are among the variables x0, . . . , xk. A firstorder statement with this notation would
be ϕ(). If we say that ψ is a firstorder formula without indicating any of its variables then there
is no restriction on the number of variables in ψ. We will use the same convention for indicating
the free variables in terms as well.

Definition. If M is an interpretation of the firstorder language L and X is a relation, constant
or function symbol of L, then (X)M will denote the interpretation of X in the structure M . We
extend this notations for terms as well, that is, if t(x0, . . . , xk−1) is a term with the free variables
x0, . . . , xk−1, then (t)M will denote the k-ary function which is the interpretation of this term
in M .

Definition. 1. M will denote a firstorder language with equation, which does not contain any
other relation symbols, and contains the following function and constant symbols. (We consider
constant symbols as 0-ary function symbols as well.)

Constant symbols: 0,1,−1,n
Unary function symbol: N , p, (N stands for negation, p stands for “power”).
Binary function symbols: +, ×, p, ÷, max, min, ∩.
2. Assume that d ∈ ω = {0, 1, 2, . . .} and n = 2d. Md will denote the following interpretation

of the languageM: universe(Md) = {0, 1, . . . , 2n−1} = 2n and for all x, y, z ∈ universe(Md),
(Md |= +(x, y) = z) iff x+ y ≡ z (mod 2n),
(Md |= ×(x, y) = z) iff xy ≡ z (mod 2n),
(Md |= p(x) = z) iff z = min{2x, 2n − 1},
(Md |= z = ÷(x, y) iff z = bx/yc
(Md |= z = 0) iff z = 0,
(Md |= z = 1) iff z = 1,
(Md |= z = n) iff z = n,
(Md |= z = −1) iff z = 2n − 1,
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(Md |= z = max(x, y)) iff z = max{x, y},
(Md |= z = min(x, y)) iff z = min{x, y},
(Md |= z = x ∩ y)) iff “coeffi(z, 2) = min(coeffi(x, 2), coeffi(y, 2)) for i = 0, 1, . . . , n− 1,
(Md |= z = N (x) iff “coeffi(z, 2) = 1− coeffi(x, 2) for i = 0, 1, . . . , n− 1.

We will call the interpretations Md, d ∈ ω of M the standard interpretations of M.
3. Motivated by the definition of the standard interpretations we will use the following

notation as well when we use the functions symbols of M: +(x, y) = x + y, ×(x, y) = x × y,
p(x) = 2x, ÷(x, y) = x/y. Generally we will use this notation only if it is clear from the context
the we mean the function symbol interpreted in a structure Md, otherwise x + y, xy, 2x retain
their usual meaning as operations among real numbers. ut

Definition. When we use the function symbols of M we will write x− y for x+ (−1)y and
−y for (−1)y.ut

Definition. 1. Assume that ϕ(x), ψ(x) are firstorder formulas ofM with the only free variable
x. We will say that ϕ(x) and ψ(x) are asymptotically equivalent with respect to the sequence
〈Md | d ∈ ω〉, iff for all sufficiently large integers d, we have Md |= ∀x, ϕ(x)↔ ψ(x).

2. Assume that F (x, y) is a term of M with the only free variables x, y. We say that the
existence of a solution of the equation F (x, y) = 0 in x can be decided by a term of M with
respect to 〈Md | d ∈ ω〉, if there exists a term G(y) of M with the only free variable y, such
that the formulas ∃x, F (x, y) = 0 and G(y) = 0 are asymptotically equivalent with respect to
the sequence 〈Md | d ∈ ω〉. ut

Theorem 1 There exists a term F (x, y) of M with the only free variables x, y, such that the
existence of a solution of the equation F (x, y) = 0 in x cannot be decided by a term of M with
respect to 〈Md | d ∈ ω〉.

Definition. We define another language M̄ that we get from M by adding to it a new
binary function symbol p̄. M̄d will denote the interpretation of M̄ which is the extension
of the interpretation Md (with the same universe) defined by (M̄d |= p̄(x, y) = z) iff z =
min{xy, 2n − 1}, where n = 2d. ut

Corollary 1 Theorem 1 remains true if we substitute M̄ for M and M̄d for Md.

The proof of the Corollary is almost identical to the proof of Theorem 1. At a few places
however we need some additional arguments in the proof of the Corollary. We will describe
these these extra steps during the proof of Theorem 1.

2 A generalization of Theorem 1

Definition. We will say that K is a K-sequence if the following two conditions are satisfied:
(i) K is a firstorder language with equality, with a finite number of function symbols, and

without relation symbols other than equality. (We will call the 0-ary function symbols constant
symbols as well.)
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(ii) K = 〈Kd | d ∈ ω〉 is a sequence of interpretations of K with the property that for all
d ∈ ω, universe(Kd) = 2n, where n = 2d. ut

Notation. 1. For the sake of brevity we will frequently write a ∈ Kd instead of
a ∈ universe(Kd).

2. If t is a term and R is a relation symbol of K then we will use the notation t(d) = (t)Kd

and R(d) = (R)Kd

In the following we will define several properties of a K-sequence K = 〈Kd | d ∈ ω〉 which
together will imply that an analogue of Theorem 1 holds for K. The first two properties regularity
and projectivity, ensures that each Kd contains enough function so that certain elementary
arguments or constructions which are available in Md can be carried out in Kd as well.

We will say that a K-sequence Kd, d ∈ ω is regular if certain “basic” functions can be easily
defined in Kd. The expression “easily defined” means in certain cases that the functions are
interpretations of suitably chosen terms of K while in other cases it means that the functions
can be defined by firstorder formulas in the structure Kd. The mentioned functions are, roughly
speaking, (i) constant functions with values 0 and 1, (ii) boolean functions of two variables, (iii)
characteristic function of the equality relation, (iv) all of the functions defined on {0, 1, . . . , i−1}
with values in the same set, provided that d is sufficiently large with respect to i, (v) a function
for forming pairs, provided that d is sufficiently large compared to the elements of the pairs.

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence. We say that K is regular if K
contains the constant symbols 0, 1 and the following conditions are satisfied:

(1) For each sufficiently large d ∈ ω, (0)Kd
= 0, (1)Kd

= 1

(2) For each binary function f(x, y) defined on the set {0,1} and with values in {0,1}, there
exists a term t(x, y) of K, such that for all a, b ∈ {0,1} and for all sufficiently large d ∈ ω, we
have Kd |= f(a, b) = t(a, b).

(3) There exists a term t̄(x, y) of K, so that for all sufficiently large d ∈ ω we have Kd |=
∀x, y, (x = y → t̄(x, y) = 0) ∧ (x 6= y → t̄(x, y) = 1).

(4) for each k ∈ ω, there exists a firstorder formula ϕ(x0, . . . , xk−1, y, z) of K such that for all
i ∈ ω and for each k-ary function f(x0, . . . , xk−1) ∈ funck({0, 1, . . . , i − 1}, {0, 1, . . . , i − 1}),
there exists a j ∈ ω, such that for all sufficiently large d ∈ ω and for all a0, . . . , ak−1, b ∈ i we
have that f(a0, . . . , ak−1) = b iff Kd |= ϕ(a0, . . . , ak−1, b, j).

(5) There exists a firstorder formula κ(x, y, z) of K with the following property. For each
i, j ∈ ω there exists k ∈ ω such that for all sufficiently large d ∈ ω, Kd |= ∀x, y, κ(x, y, k) ↔
(x = i ∧ y = j). ut

We define now another property of K-sequence a K = 〈Kd | d ∈ ω〉. If K has this property
then the elements of the direct product of 2c copies, of Kd, can be encoded by single elements of
Kd+c so that the encoding is done by a term of K, and the projections of the direct product to
its kth component can be defined by a firstorder formula Γ which contains k and c as parameters
but otherwise the choice of Γ does not depend on k and c.
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In the following definition we assume that the free variables of a firstorder formula or a term
are among those which are explicitly shown.

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence. We say that K is projective if for
all c ∈ ω and k ∈ 2c, there exists a term πc,k of K so that the following conditions are satisfied.

(6) for all c ∈ ω there exists a term τc of K such that if d ∈ ω is sufficiently large, and
a0, . . . , a2c−1 ∈ Kd, then for all k = 0, 1, . . . , 2c−1, we have Kd+c |= πc,k(τc(a0, . . . , a2c−1)) = ak.

(7) There exists a firstorder formula Γ(x, y, z, w) of K such that for all c ∈ ω if d ∈ ω is
sufficiently large and k ∈ 2c then

Kd+c |= ∀x, y,Γ(x, y, c, k)↔ πc,k(x) = y

ut

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence. If K is both regular and
projective then we will say that K is complete. ut

Proposition 1 Assume that K(i) = 〈K(i)
d | d ∈ ω〉 is a K(i) sequence for i = 0, 1, and K(0) ⊆

K(1), that is, every symbol of K0 is also a symbol of K1. Suppose further that for all d ∈ ω, the

restriction of the model K
(1)
d of the language K(1) to the language K(0) is the model K

(0)
d . Then

we have that if the K(0) sequence K(0) is complete then the K(1)-sequence K(1) is also complete.

Proof. By the definition of a K-sequence we have that universe(K
(0)
d ) = universe(K

(1)
d ).

The assumptions of the proposition imply that every function which is defined by a term in K
(0)
d is

also defined in K
(1)
d by the same term, and every function which is defined by a firstorder formula

in K
(0)
d is also defined in K

(1)
d by the same firstorder formula. The definitions of regularity and

projectivity require only the existence of certain functions defined in the various structures

Kd, d ∈ ω, by terms or firstorder formulas. Since the restriction of K
(1)
d to K(0) is K

(0)
d , the

functions guaranteeing the regularity or projectivity of K(0) will play the same role for K(1).
Q.E.D.Proposition 1

In the generalization of Theorem 1 we will speak about a K sequence K = 〈Kd | d ∈ ω〉 which
is complete and in addition to that it must be “retrospective” and “predictive” in the sense to
be defined below. These properties establish connections between Kd and Kd+c, where c is an
arbitrary constant. Namely if we think that we construct the sequence K0,K1, . . . ,Kd, . . . in
this order then retrospectivity means that when we have Kd we are able using the functions
defined in Kd to “look back” at Kd−c and decide the values of the functions defined in Kd−c.
Predictivity, in a similar way means, that using only functions defined in Kd, we will be able to
“predict”, in some sense, what will be the values of the functions defined in Kd+c.

The next definition describes the following property of a K sequence Kd, d ∈ ω. Assume
that a g is function in Kd−1 which is an interpretation of a function symbol of K. Then, in the
structure Kd, g can be expressed by a term. If g is in Kd−c, then in the structure Kd, g can be
expressed by a firstorder formula containing c as a parameter.

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence. We say that K is retrospective
if it satisfies the following two conditions:
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(8) Let k ∈ ω and let g be a k-ary function symbol of K. Then there exists a term
t(x0, . . . , xk−1) of K such that if d ∈ ω is sufficiently large and a0, . . . , ak−1, b ∈ Kd−1 then
Kd−1 |= g(a0, . . . , ak−1) = b iff Kd |= t(a0, . . . , ak−1) = b.

(9) Let k ∈ ω and let g, be a k-ary function symbol of K. Then there exists a firstorder
formula ϕ(x0, . . . , xk−1, y, z) of K such that for all c ∈ ω, if d ∈ ω is sufficiently large and
a0, . . . , ak−1, b ∈ Kd−c then(

Kd−c |= g(a0, . . . , ak−1) = b
)
↔ Kd |= ϕ(a0, . . . , ak−1, b, c)

ut

In the next definition we will consider K sequnces Kd, d ∈ ω, where in the structure Kd we
are able to decide in a first-order way whether a function f which is defined on universe(Kd+c),
and which is an interpretation of a function symbol of K, takes a certain value or not. More
precisely, we will consider only the case when the elements of Kd+c can be encoded by binary
relations on Kd and the question whether the function f takes a value or not can be decided by
a firstorder formula over Kd, using these relations. (E.g., it is well-known that the addition and
multiplication of the structure Md have this property.) As we said earlier, if we consider the
sequence of structures Kd as if they were constructed in time d = 0, 1, . . ., then this property
implies that at time d we will be able to predict the behavior of the functions that will be
constructed at time d+ c.

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence. We say that K is predictive if
the following condition is satisfied

(10) There exists a function assigning to each function symbol f(x0, . . . , xk−1) of K, (including
the constant symbols for k = 0), a firstorder formula Φf (x, y, z, Y0, . . . , Yk−1) of K, where x, y, z
are free individual variables and Y0, . . . , Yk−1 are free binary relation variables, such that the
following holds. For all c ∈ ω if d ∈ ω is sufficiently large then there exists a map ηd,c of
universe(Kd+c) into the set of binary relations on universe(Kd) with the following properties:

(i) For each a, u, v ∈ Kd, we have (ηd,c(a))(u, v) iff “u = 0 and v = a”.
(ii) Suppose that f(x0, . . . , xk−1) is a k-ary function symbol of K, for some k = 0, 1, . . .

(including the constant symbols for k = 0) and a0, . . . , ak−1 ∈ Kd+c. Then for all u, v ∈
Kd, (ηd,c(f

(d+c)(a0, . . . , ak−1))(u, v) iff Kd |= Φf (u, v, c, ηd,c(a0), . . . , ηd,c(ak−1)), where f (d+c) =
(f)Kd+c

. ut

Definition. 1. Assume that ϕ(x), ψ(x) are firstorder formulas ofM with the only free variable
x. We will say that ϕ(x) and ψ(x) are asymptotically equivalent with respect to the K-sequence
〈Kd | d ∈ ω〉, iff for all sufficiently large integers d, we have Kd |= ∀x, ϕ(x)↔ ψ(x).

2. Suppose that K = 〈Kd, d ∈ ω〉 is a K-sequence. Assume further that F (x, y) is a term
of K with the only free variables x, y. We say that the existence of a solution of the equation
F (x, y) = 0, in the unknown x, can be decided by a term of K, if there exists a term G(y)
of K with the only free variable y, such that the formulas ∃x, F (x, y) = 0 and G(y) = 0 are
asymptotically equivalent with respect to K. ut
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Theorem 2 Assume that K is a K-sequence, such that K is complete, retrospective, and pre-
dictive. Then there exists a term F (x, y) of K with the only free variables x, y, such that the
existence of a solution of the equation F (x, y) = 0 in the unknown x, cannot be decided by a
term of K.

Sketch of the proof. Assume that the statement of the theorem is not true, namely it does
not hold for the K sequence K = 〈Kd | d ∈ ω〉, that is, K satisfies the assumptions of Theorem 2
and yet its conclusion does not hold. We will reach a contradiction by using Gödel’s method of
constructing a firstorder formula ϕ which expresses the statement that ϕ is false. Let Form(K, k)
be the set of all firstorder formulas of K with at most k free variables. We will show that there
exists a function ρ ∈ func(Form(K, 1), ω) and a firstorder formula ψ(x, y) of K with the following
property.

(11) For all ϕ ∈ Form(K, 1) if d is sufficiently large, then Kd |= ∀x, ϕ(x)↔ ψ(x, ρ(ϕ))

This leads to a contradiction in the following way. Let ϕ0(x) = ¬ψ(x, x). Then condition (11)
with ϕ:= ϕ0 implies that for all sufficiently large d we have Kd |= ∀x,¬ψ(x, x)↔ ψ(x, ρ(ϕ0)),
and therefore Kd |= ψ(ρ(ϕ0), ρ(ϕ0)) ↔ ¬ψ(ρ(ϕ0), ρ(ϕ0)) which is a contradiction. Note that
in this argument we did not assume anything about the computability or definability of ρ.
(Otherwise ρ(ϕ) plays the role of the Gödel number of the formula ϕ.)

To get the formula ψ and the function ρ we start with an arbitrary ϕ(x) ∈ Form(K, 1). First
we note that we may assume that if the formula ϕ(x) is in prenex form then its propositional
part is of the form t(x) = 0 where t is a term. Since K is regular, conditions (2) and (3) of the
definition of regularity implies that ϕ can be easily transformed into this form.

Our plan is the following. First, instead of expressing the truth value of ϕ in the structure
Kd, we express it in a larger structure Kd+c where c is a constant. More precisely we will show
(in Lemma 4) that:

(12) If Theorem 2 does not hold for K, then there exists a term G(x, y) of K, and there exist
functions s ∈ func(Form(K, 1), ω), h ∈ func(ω, ω) with the following property. For all natural
numbers ` and for all firstorder formulas ϕ(x) of K with length at most ` we have that for all
sufficiently large d ∈ ω and for all a ∈ Kd, Kd |= ϕ(a) iff Kd+h(`) |= G(a, s(ϕ, `)) = 0

In other words the truth value of ϕ(a), a ∈ Kd can be decided in the larger structure Kd+h(`)

by evaluating a term. Although we have to use the structure Kd+h(`) instead of the structure
Kd, but if ϕ is fixed then h(`) is a constant (while we change d). For a fixed ϕ, the parameter
s(ϕ, `) in the expression G(a, s(ϕ, `)) is also a constant. These facts will imply that using the
predictivity of the K-sequence K we will be able to express the truth value of Kd |= ϕ(a) by a
formula ψ(a, ρ(ϕ)), where ψ does not depend on ϕ and this leads to a contradiction as described
earlier.

In the step when we get the formula ψ from the term G, the predictivity of K is used in
the following way. The term G describes operations in the structure Kd+h(`). The definition of
predictivity implies that these operation can be performed in Kd by firstorder formulas acting
on the binary relations which represent the elements of Kd+h(`) in Kd.

10



Now we sketch the proof of statement (12). We reach the required equivalent form of Kd |=
ϕ(a), for a ∈ Kd in three steps.

Step 1. We show (Lemma 2) that if Theorem 2 does not hold for the K-sequence K, then
there exists a term G and a c ∈ ω, both depending on ϕ, such that for all sufficiently large d ∈ ω
we have that for all a ∈ Kd, Kd |= ϕ(a) is equivalent to Kd+c |= G1(a) = 0.

This statement is similar to (12) but it is not the same since the term G may depend on ϕ.
In fact the length of G will grow with the length of ϕ in the construction described in the proof
of Step 1.

The proof of Step 1 is using the assumption that Theorem 2 is not true and therefore an
existential statement of the type ∃x, F (x, a) = 0 is equivalent to a quantifier free statement of
the form G1(a) = 0. This suggests a process of quantifier elimination applied to the formula ϕ.
To carry out the quantifier elimination we would need to eliminate quantifiers form statements
of the type ∃x, F (x, b1, ..., bk, a) = 0 where b1, ..., bk are fixed elements of Kd. In other words
we would need our indirect assumption for equations with more then one parameters. We do
not have such an assumption, but we can reduce the many parameters to a single parameter
by considering the same statement not in Kd but in Kd+c, where c is sufficiently large with
respect to k. In this structure the k + 1 parameters can be encoded by a single parameter, so
the indirect assumption can be used. (We need the completeness and retrospectivity of K to
prove the correctness of this step.)

Step 2. After Step 1 we have a statement of the type Kd |= G(a) = 0 (with d:= d + c)
where the the term G depends on ϕ, in particular it G can be arbitrarily large since we used
the indirect assumption in its construction, which does not provide any limit on its size. In this
step we show that (see Lemma 3)

(13) There exists a firstorder formula ξ(y, z) of K so that if K = 〈Kd | d ∈ ω〉 is a K-sequence,
then for each term G(y) of K, and for each sufficiently large c ∈ ω, there exists an uc,G ∈ ω,
with the property that for all sufficiently large d ∈ ω, and for all a ∈ Kd, Kd |= G(a) = 0 is
equivalent to Kd+c |= ξ(y, uc,G).

(We do not need the indirect assumption about K in this statement.) The important point
in this statement is that the formula ξ(x, y) does not depend on the term G. The dependence
on G is only through a parameter of ξ. Applying Step 1 and then Step 2 we get that for all
sufficiently large d ∈ ω and for all a ∈ Kd, Kd |= ϕ(a) is equivalent to Kd+c1 |= ξ(a, c2), where
c1 and c2 depends only on ϕ (but not on d or a).

The proof of statement (13) is based on the observation that the evaluation of a term can be
described by existentially quantifying the values of its subterms. If the integer c of statement (13)
is sufficiently large with respect to G (which is allowed) then such an existential quantification
is possible in Kd+c.

Step 3. If we combine the first two steps we get, that for all sufficiently large d ∈ ω, and for
all a ∈ Kd, Kd |= ϕ(a) is equivalent to Kd+c1 |= ξ(a, c2), where the firstorder formula ξ does not
depend on anything, and c1, c2 ∈ ω depend only on ϕ. Now we use the quantifier elimination,
described in Step 1, again, and we get the term G whose existence is claimed in statement (12).
Since ξ does not depend on ϕ the term G, that we gain at the end of the elimination process,
will not depend on it either, the dependence on ϕ will be only through the parameters of G.
End of Sketch
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2.1 Proof of Theorem 2

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence with respect to the language K and
k ∈ ω. We will say that a family of k-ary functions f (d) ∈ funck(universe(Kd), universe(Kd)),
d ∈ ω, is an external K family. The external K family of k-ary functions will be called a firstorder
K family of k-ary functions, if there exists a firstorder formula ϕ(x0, . . . , xk−1, y) of K, whose
free variables are among x0, . . . , xk−1, y, such that for all sufficiently large d ∈ ω, and for all
a0, . . . , ak−1, b ∈ Kd, we have b = f(a0, . . . , ak−1) iff Kd |= ϕ(a0, . . . , ak−1, b).

The external K family of k-ary functions will be called an internal K family of k-ary functions,
if there exists a term t(x0, . . . , xk−1) of K with k free variables, such that for all sufficiently
large d ∈ ω, and for all a0, . . . , ak−1 ∈ Kd we have t(d)(a0, . . . , ak−1) = f(a0, . . . , ak−1), where
t(d) = (t)Kd

. In this case the family of functions f (d) is called the family of functions induced
by the term t. Sometimes we will say “K firstorder-family” instead of “firstorder K family of
functions” “K internal-family” instead of “internal K family of functions”, and ”K external-
family” instead of “external K family of functions”. ut

Remark. It is important in the definition of a firstorder K family of function that in the
formula ϕ(x0, . . . , xk−1, y) we do not allow any parameters. This makes the definition somewhat
different from the usual definition of a firstorder definable function. ut

Definition. 1. The set A is a co-finite subset of the set B, or A ⊆ B is co-finite, if A ⊆ B and
B\A is finite.

2. Assume K = 〈Kd | d ∈ ω〉 is a K-sequence, with respect to the language K, A ⊆ ω is co-

finite and for all d ∈ A, R
(d)
1 , R

(d)
2 are k-ary relations on the set universe(Kd). We will say that

the family of relations R1 = 〈R(d)
1 | d ∈ A〉 and R2 = 〈R(d)

2 | d ∈ A〉 are asymptotically equiv-

alent iff for all sufficiently large d ∈ ω, we have that ∀a0, . . . , ak−1 ∈ Kd, R
(d)
1 (a0, . . . , ak−1) ↔

R
(d)
2 (a0, . . . , ak−1). We will write R1 ∼ R2 for “R1 and R2, are asymptotically equivalent”.

3. Assume that ϕ(x0, . . . , xk−1) is a firstorder formula of K, j ∈ ω. For all d ∈ ω,

R(d)
k [ϕ, j] will be the k-ary relation on universe(Kd) defined by: “for all a0, . . . , ak−1 ∈ Kd,

(R(d)
k [ϕ, j])(a0, . . . , ak−1) iff Kd+j |= ϕ(a0, . . . , ak−1)”. The family of relations 〈R(d)

k [ϕ, j] | d ∈ ω〉
will be denoted by Rk[ϕ, j]. The relation R(d)

k [ϕ, 0] will be also denoted by R(d)
k [ϕ]. The corre-

sponding family of relations will be denoted by Rk[ϕ].
4. If F (x0, . . . , xk−1) is a term of K and j ∈ ω, n = 1, 2, . . . then the relation

R(d)
k [F (x0, . . . , xk−1) = 0, j] will be denoted by R(d)

k [F, j], and for j = 0 by R(d)
k [F ] as well.

The corresponding families of relations will be denoted by Rk[F, j] and Rk[F ]. ut

Remark. According to these definitions the firstorder formulas ϕ(x), ψ(x) are asymptotically

equivalent iff the family of relations R(d)
1 [ϕ], d ∈ ω and R(d)

1 [ψ], d ∈ ω are asymptotically
equivalent. ut

Lemma 1 Assume that K = 〈Kd | d ∈ ω〉 is a regular K-sequence. For each proposi-
tional formula P (x1, . . . , xk) of K, there exists a term T (x1, . . . , xk) of K so that for all suf-
ficiently large d ∈ ω, we have Kd |= ∀x1, . . . , xk, P (x1, . . . , xk) ↔ T (x1, . . . , xk) = 0 and
Kd |= ∀x1, . . . , xk,¬P (x1, . . . , xk) ↔ T (x1, . . . , xn) = 1. Consequently for each propositional
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formula P (x1 . . . , xk) of K there exists a term T (x1, . . . , xk) of K so that the family of relations

R(d)
k [P ], d ∈ ω and R(d)

k [F ], d ∈ ω are asymptotically equivalent.

Proof. Since the only relation symbol of the language K is the equality, we have that each
atomic formula is of the form t1 = t2 where t1 and t2 are terms. By condition (3) of the definition
of regularity t1 = t2 is equivalent to t̄(t1, t2) = 0 and ¬(t1 = t2) is equivalent to t̄(t1, t2) = 1.
Therefore using condition (2) for the various logical operations ∧,∨,¬ etc. we can transform
each propositional formula of K into a propositional formula into an equivalent propositional
formula of the form t = 0, where t is a term. Q.E.D.(Lemma 1)

Notation. For an expression x0, . . . , xk−1 we will sometimes write x if the choice of k is clear
from the context.

Proposition 2 Assume that for each i = 0, 1, 2, Φi is a firstorder formula with k variables,
u, v ∈ ω, and we have Rk[Φ0] ∼ Rk[Φ1, u] and Rk[Φ1] ∼ Rk[Φ2, v]. Then Rk[Φ0] ∼ Rk[Φ2, u+v].

Proof. Assume x ∈ (Kd)
k, where d is sufficiently large. Then Kd |= Φ0(x) iff Kd+u |= Φ1(x)

and Kd+u |= Φ1(x) iff Kd+u+v |= Φ2(x) which implies our statement. Q.E.D.(Proposition 2)

Remark. If Fi(x) is a term, then we may apply Proposition 2 with Φi(x):= “Fi(x) = 0”.
Therefore the proposition remains true if some of the Φis are not formulas but terms. ut

Proposition 3 Assume that K = 〈Kd | d ∈ ω〉 is a retrospective and projective K-sequence.
Then the following condition is satisfied.

(14) Let k ∈ ω and let g(d), d ∈ ω be a k-ary K internal-family of functions. Then there exists
a k+1-ary K firstorder-family of functions f (d), d ∈ ω such that for all c ∈ ω, for all sufficiently
large d ∈ ω, and for all a0, . . . , ak−1 ∈ Kd we have g(d)(a0, . . . , ak−1) = f (d+c)(a0, . . . , ak−1, c).

Proof of Proposition 3. The statement of the proposition requires a proof since the terms
involved in g(d) are defined in Kd, while the firstorder formula defining f (d+c) must be interpreted
in Kd+c.

The firstorder formula ϕ(x0, . . . , xk−1, y) defining the function f (d+c) will say that y ∈ Kd

and g(d)(x0, . . . , xk−1) = y. By condition (6) of the definition of projectivity, universe(Kd)

is the image of the map π
(d)
c,0 . Therefore b ∈ Kd iff Kd+c |= ∃a,Γ(a, b, d, c, 0), where Γ is the

firstorder formula from condition (7) from the definition of projectivity. Consequently y ∈ Kd

can be stated in Kd+c in a firstorder way and by condition (9) by the definition of a retrospective
K-sequence, g(d)(x0, . . . , xk−1) = y can be also defined in a firstorder way in Kd+c. (We need
the firstorder formula expressing y ∈ Kd, since the formula guaranteed by condition (9) speaks
only about the elements of Kd and not of Kd+c.) Q.E.D.(Proposition 3)

Proposition 4 Assume that K = 〈Kd | d ∈ ω〉 is a retrospective and projective K-sequence.
Then the following condition is satisfied.

(15) Let k ∈ ω and let g(x0, . . . , xk−1) be a term of K with the only free variables x0, . . . , xk−1.
Then for all c ∈ ω there exists a term hg,c(x0, . . . , xk−1) of K with the only free variables
x0, . . . , xk−1 such that for all sufficiently large d ∈ ω, and for all a0, . . . , ak−1 ∈ Kd we have

g(d)(a0, . . . , ak−1) = h
(d+c)
g,c (a0, . . . , ak−1).
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Proof. We prove the proposition by induction on c. For c = 1 the statement of the propo-
sition follows from condition (8) from the definition of retrospectivity. Assume that c > 1
and the proposition holds for all smaller values of c. We define hg,c by hg,c(x0, . . . , xk−1) =
hhg,c−1,1(x0, . . . , xk−1). Assume that a0, . . . , ak−1 ∈ Kd ⊆ universe(Kd+c−1). We have

h
(d+c)
g,c (a0, . . . , ak−1) = h

(d+c)
hg,c−1,1

(a0, . . . , ak−1) = h
(d+c−1)
g,c−1 (a0, . . . , ak−1) = g(d)(a0, . . . , ak−1) as

claimed in the conclusion of proposition. Q.E.D.(Proposition 4)

Proposition 5 Assume that K is a projective K-sequence and for all c ∈ ω, k ∈ 2c let πc,k be the
term whose existence is stated in the definition of projectivity. Then for all c ∈ ω and for all suf-

ficiently large d ∈ ω, π
(d+c)
c,k is a map of universe(Kd+c) onto universe(Kd). As a consequence,

for each firstorder formula Q0x0, . . . , Qk−1xk−1, P (x0, . . . , xk−1) of K, where Q0, . . . , Qk−1 are
quantifiers, the following two statements are equivalent

(i) Kd+c |= Q0x0, . . . , Qk−1xk−1, P (πc,0(x0), . . . , πc,0(xk−1))
(ii) Q0a0 ∈ Kd, . . . , Qk−1ak−1 ∈ Kd,Kd+c |= P (a0, . . . , ak−1)

Proof. Condition (6) of the definition of projectivity implies that the image of π
(d)
c,k is Kd.

(For the conclusions given in (i) and (ii) it is enough to use, for example, the map π
(d+c)
c,0 .)

Q.E.D.(Proposition 5)

Proposition 6 Assume that K = 〈Kd | d ∈ ω〉 is a K-sequence, 〈f (d) | d ∈ ω〉 is a k-ary K

internal-family of functions and for each j = 0, 1, . . . , k−1, 〈g(d)j | d ∈ ω〉 is an l-ary K intrernal-

family of functions. For each d ∈ ω, we define an l-ary function h(d) on universe(Kd) by

h(d)(a0, . . . , al−1) = f (d)(g
(d)
0 (a0, . . . , al−1), . . . , g

(d)
k−1(a0, . . . , al−1))

for all a0, . . . , ak−1 ∈ universe(Kd). Then h(d) is an l-ary K internal-family of functions.

Proof. We get the term inducing the family h(d), by substituting the terms inducing the

families g
(d)
j into the corresponding term for f (d). Q.E.D.(Proposition 6)

Proposition 7 Assume that K is a retrospective and projective K-sequence, and for all c ∈ ω,
τc is the term of K whose existence was stated in condition (6) of the definition of projectivity.
Suppose further that F (x, y0, . . . , yk−1) is a term of K. Then for all c ∈ ω with 2c ≥ k, there
exists a term G(x, z) of K so that for all sufficiently large d ∈ ω and for all a, b0, . . . , bk−1 ∈ Kd

the following two statements are equivalent:
(i) Kd |= F (a, b0, . . . , bk−1) = 0,
(ii) Kd+c |= G(a, τc(b0, . . . , bk−1,0, . . . ,0)) = 0.

Proof. The term G is defined by G(x, y) = hF,c(x, πc,0(y), πc,1(y), . . . , πc,k−1(y)), where the
term hF,c is defined in Proposition 4 and the term πc,i is from condition (7) of the definition of
projectivity. Proposition 4 and the definition of projectivity imply that statements (i) and (ii)
are equivalent. Q.E.D.(Proposition 7)

As we said earlier if Theorem 2 is not true then there is a possibility for quantifier elimination.
In the next lemma we show that this really can be done with a firstorder formula ϕ interpreted
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in Kd, at the price of getting the equivalent quantifier free formula not in Kd but in Kd+c, where
the equivalence is valid for all sufficiently large d, and c depends only on ϕ.

Definition. Assume that K = 〈Kd | d ∈ ω〉 is a complete, retrospective, and predictive K-
sequence such that the conclusion of Theorem 2 does not hold for K. Then we will say that K
is a counterexample for Theorem 2. ut

Lemma 2 Assume that Theorem 2 does not hold and K = 〈Kd | d ∈ ω〉 is a counterexam-
ple for Theorem 2. Then for each firstorder formula ϕ(x0, . . . , xk−1) of K, there exist a
c = cϕ ∈ ω and a term G(x0, . . . , xk−1) = Gϕ(x0, . . . , xk−1) of K such that, the family of
relations Rk[ϕ(x0, . . . , xk−1)] and Rk[G(x0, . . . , xk−1), c] are asymptotically equivalent.

Proof. Assume that ϕ(x) has the following prenex from ϕ(x) ≡ Q0z0, . . . , Ql−1zl−1P (z, x),
where Q0, . . . , Ql−1 are quantifiers and P is a propositional formula. By Lemma 1 we may
assume that P is of the form F (z, x) = 0 for a term F of K. We prove the lemma in this form
by induction on l, and by always assuming that the inductive assumption holds for all values
of k. For l = 0 the statement of the lemma trivially holds with c = 0, G = F . Assume now
that the lemma is true for l:= l− 1. Lemma 1 and condition (2) from the definition of a regular
K-sequence implies that the statement of the lemma is equivalent to the same statement with
ϕ:= ¬ϕ, therefore we may assume that Ql−1 is the quantifier ∃.

As we have noted earlier, Lemma 1 implies that there exists a term F1 of K
so that for each sufficiently large d and for each a0, . . . , al−2, b0, . . . , bk−1 ∈ Kd, we
have that Kd |= ∃zl−1P (a0, . . . , al−2, zl−1, b0, . . . , bk−1) is equivalent to Kd |= Φ1 ≡
∃zl−1F1(a0, . . . , al−2, zl−1, b0, . . . , bk−1) = 0. By Proposition 7, there exists a c1 ∈
ω, and a term G1(x, z) of K so that for all sufficiently large d ∈ ω and for all
a0 . . . , al−2, b0, . . . , bk−1 ∈ Kd, we have that Kd |= Φ1 is equivalent to Kd+c1 |=
∃zl−1G1(zl−1, τc1(a0, . . . , al−2, b0, . . . , bk−1,0, . . . ,0)) = 0. We will denote the term
τc1(x0, . . . , xk+l−2,0, . . . ,0) by τ ′c1(x0, . . . , xk+l−2). Using our assumption that Theorem
2 is not true with F := G1, we get that there exists a term G2, such that for
all sufficiently large d ∈ ω and for all a0 . . . , al−2, b0, . . . , bk−1 ∈ Kd we have that
Kd+c1 |= ∃zl−1, G1(zl−1, τ

′
c1(a0, . . . , al−2, b0, . . . , bk−1)) = 0 is equivalent to Kd+c1 |=

G2(τ
′
c1(a0, . . . , al−2, b0, . . . , bk−1)) = 0.

We got that there exists a term G2 of K such that for all sufficiently large d, and
for all a0, . . . , al−2, b0, . . . , bk−1 ∈ Kd, Kd |= ∃zl−1P (a0, . . . , al−2, zl−1, b0, . . . , bk−1) is equiva-
lent to Kd+c1 |= G2(τ

′
c1(a0, . . . , al−2, b0, . . . , bk−1)) = 0. Consequently, by using Proposition

5, we get that the statement Kd |= Q0z0, . . . , Ql−1zl−2,∃zl−1P (z0, . . . , zl−1, b0, . . . , bk−1) is
equivalent to Kd+c1 |= Q0z0, . . . , Ql−1zl−2, G2(τ

′
c1(πc1,0(z0), . . . , πc1,0(zl−2), b0, . . . , bk−1)) = 0),

which can be written in the form of Kd+c1 |= ϕ1(b0, . . . , bk−1), where ϕ1 is a firstorder
formula of K containing l − 1 quantifiers in its prenex form. Therefore we may ap-
ply the inductive assumption with ϕ:= ϕ1. We get that there exists a term G of K
so that for all sufficiently large d ∈ ω and for all b0, . . . , bk−1 ∈ Kd we have that
Kd+c1 |= Q0z0, . . . , Ql−1zl−2, G2(τ

′
c1(πc1,0(z0), . . . , πc1,0(zl−2), b0, . . . , bk−1)) = 0) is equivalent

to Kd+c1+c2 |= G(b0, . . . , bk−1), that is, Kd |= ϕ(b0, . . . , bk−1) iff Kd+c1+c2 |= G(b0, . . . , bk−1).
Since this is true for all choices of b0, . . . , bk−1 ∈ Kd we have that the family of re-
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lations Rk[ϕ(x0, . . . , xk−1)] and Rk[G(x0, . . . , xk−1), c1 + c2] are asymptotically equivalent.
Q.E.D.(Lemma 2)

Our next goal is to express the relation G(y) = 0 in Kd, where G is a term of K, with
a firstorder formula ξ(y, z) such that the dependence of G will be attained by substituting a
parameter for z which depends on G. The formula ξ(x, z) in itself will not depend on G. We will
be able to do this if the formula ξ is interpreted in Kd+c where c is sufficiently large with respect
to G (but it does not depend on d). We will get that for a suitably chosen uc,G ∈ ω, and for all
sufficiently large d ∈ ω, ∀y ∈ Kd, Kd |= G(y) = 0 iff Kd+c |= ξ(y, uc,G), where the parameter
uc,G depends only on c and G. The importance of this is that we replaced an arbitrarily large
term G with a firstorder formula ξ of fixed size. This is important since during the quantifier
elimination described in Lemma 2 we have no control on the size of the term G. This is a
consequence of the fact that in the proof of Lemma 2 we use the assumption that Theorem 2 is
not true and this assumption implies the existence of a term but without any bound on its size.

In the following lemma the assumption “Theorem 2 does not hold” is not needed.

Lemma 3 There exists a firstorder formula ξ(y, z) of K so that if K = 〈Kd | d ∈ ω〉 is a K-
sequence then for each term G(y) of K and for each sufficiently large c ∈ ω there exists an uc,G ∈
ω with the property that the family of relations R1[G(y)] and R1[ξ(y, uc,G), c] are asymptotically
equivalent.

Proof. We may assume that all of the function symbols of the language K has the same arity
k, since for each l < k, an l-ary function f(x0, . . . , xl−1) can be considered as a k-ary function
which does not depend on its last k − l variables xk, . . . , xk−l−1. We will consider the constant
symbols also as k-ary function symbols. Assume that all of the function symbols of K, including
the constant symbols, are f0, . . . , fν−1.

λ will denote the number of subterms of the term G. We claim that there exist functions
r ∈ func(λ, ν), g ∈ func(λ× k, λ) so that for all sufficiently large d ∈ ω and for all a ∈ Kd, the
following two conditions are equivalent

(i) Kd |= G(a) = 0
(ii) There exists b0, . . . , bλ−1 ∈ Kd so that b0 = a, bλ−1 = 0, and for all i = 1, . . . , j,

bi = f
(d)
r(i)(bg(i,0), . . . , bg(i,k−1)).

We define the functions r, g in the following way. Let t0, . . . , tλ−1 be all of the subterms
of G(y), so that t0 is the variable y, and tλ−1 is the term G, and each subterm t′ comes later
in the sequence than any of its proper subterms. We choose the functions r and g such that
ti = fr(i)(tg(i,0), . . . , tg(i,k−1)) for i = 1, . . . , λ − 1. This completes the definition of r and g.
Suppose now that condition (i) holds. Then we choose bi ∈ Kd so that Kd |= bi = ti(a). The
definitions of the functions r and g imply that condition (ii) is satisfied. Conversely assume that
statement (ii) holds. Again by the definitions of the functions r and g, the sequence bi gives the
values of the terms of ti(a). Since bλ−1 = 0 we have Kd |= G(a) = 0.

Assume that c ∈ ω is sufficiently large. Our next task is to express condition (ii) by a
firstorder formula in Kd+c. First we note that the regularity of the K-sequence K implies that
there exist firstorder formulas η0, η1, η2, η3, η4 such that for each term G(y) of K there exists a
natural number uc,G so that for all sufficiently large d ∈ ω the following requirements are met:

(a) for all i ∈ ν + 1, i = ν iff Kd |= η0(i, uc,G)
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(b) for all i ∈ λ+ 1, i = λ iff Kd |= η1(i, uc,G)
(c) for all i ∈ λ, j ∈ ν, r(i) = j iff Kd |= η2(i, j, uc,G)
(d) for all i ∈ λ, j ∈ k, l ∈ λ, g(i, j) = l iff Kd |= η3(i, j, l, uc,G)
(e) for all i ∈ c+ 1, i = c iff Kd |= η4(i, uc,G)
These requirements say that the numbers ν, λ and the functions r, g must be definable in a

firstorder way from the number uc,G, which depends only on c,G but not on d, by formulas,
which do not depend on either G or d. This means that we may speak about ν, λ, r and g in
the structure Kd+c by a firstorder formula which does not depend on G or d if this firstorder
formula contains uc,G as a parameter.

Condition (ii), that we want to express in Kd+1, states the existence of a sequence
b0, . . . , bλ−1 ∈ Kd with certain properties. We will encode such a sequence with a single el-
ement of Kd+c, so that, these properties will be expressible in a firstorder way. This will make it
possible to state the existence of the sequence b0, . . . , bλ−1 by a single existential quantification
in Kd+c.

Since c is sufficiently large with respect to G we may assume that 2c ≥ λ. Each sequence

b0, . . . , bλ−1 ∈ Kd will be represented by the element w = τ
(d+c)
c (b0, . . . , bλ−1, 0, . . . , 0) ∈ Kd+c

where τc is the term whose existence is stated in the definition of projectivity.
The definition projectivity imply that there exists a firstorder formula η5 of K so that for all

i ∈ λ, b ∈ Kd+c we have b = bi iff Kd+c |= η5(w, b, i).
Finally we have to describe the equations bi = f̄r(i)(bg(i,0), . . . , bg(i,k−1)) by a firstorder for-

mula in Kd+c. K is retrospective, therefore condition (9) of the definition of a retrospective
K-sequence implies that this is possible using c as a parameter in the formula. Condition (e) of
the definition of uc,G implies that c is definable from uc,G by a firstorder formula. We got that
there exists a firstorder formula ξ(y, z) of K such that for all a ∈ Kd condition (ii) is satisfied iff
Kd+c |= ξ(a, uv,G). Since conditions (i) and (ii) are equivalent for each sufficiently large d this
implies the statement of the lemma. Q.E.D.(Lemma 3)

Definition. The firstorder formula ξ whose existence is stated in Lemma 3 is not unique, but
we assume that a choice for ξ has been fixed. The integer uc,G defined in the lemma will have
the properties described there with this choice of ξ. The smallest integer c ∈ ω which satisfies
the requirements of the Lemma 3 with ξ will be denoted by c(G). ut

Definition. Suppose that L is a firstorder language and k ∈ ω. Form(L, k) will denote the set
of all firstorder formulas of L with at most k free variables. ut

Lemma 4 Assume that Theorem 2 does not hold and K = 〈Kd | d ∈ ω〉 is a counter example
for Theorem 2. Then there exists a term G(y, z) of K and functions h ∈ func(ω, ω), s ∈
func(Form(K, 1)× ω, ω) such that for all ` ∈ ω, and for all firstorder formulas ϕ(y) of K with
length(ϕ) ≤ `, the families of relations R1[G(y, s(ϕ, `)), h(`)] and R1[ϕ(y)] are asymptotically
equivalent.

Remark. This lemma states that the truth value of a firstorder formula ϕ(y) as a function
of y, for all formulas ϕ(y) of length at most `, can be determined by evaluating a term G(y, u)
in Kd+v, where G does not depend on anything, v depends only on ` and u depends only on `
and ϕ. Therefore, in some sense, we reduced the question of determining the truth value of a
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firstorder formula to the evaluation of a term. On the other hand we have to do the evaluation of
this term in a larger structure, than the one where the truth value of the formula is considered.
ut

Proof of Lemma 4. Let ξ(y, z) be the firstorder formula whose existence was stated in Lemma
3. The binary term G(y, z) = Gξ(y, z) with the properties guaranteed by Lemma 2 will be also
the term G(y, z) whose existence is stated in the present lemma. Lemma 2, with ϕ:= ξ, states
the existence of an integer cξ ∈ ω that we will use later.

We have to define the functions h and s. Recall that if G is a term then c(G) denotes the
smallest c ∈ ω with the properties in Lemma 3. Let c′′ = max{cψ + c(Gψ) | ψ ∈ Form(K, 2) ∧
length(ψ) ≤ `}, c′ = c′′ − cϕ, h(`) = c′′ + cξ , and s(ϕ, `) = uc′,Gϕ , where the uc,G is the integer
whose existence is guaranteed by Lemma 3.

We prove now that for all ` ∈ ω, for all firstorder formulas ϕ(y) of K with length(ϕ) ≤ `,
for all sufficiently large d ∈ ω, and for all a ∈ Kd we have

(16) Kd |= ϕ(a) iff Kd+h(`) |= G(a, s(ϕ, `)) = 0.

According to Lemma 2, for all a ∈ Kd, Kd |= ϕ(a) iff Kd+cϕ |= Gϕ(a). The definitions of c′′

and c′ implies that c′ ≥ c(Gϕ). Therefore by Lemma 3 we have that for all a ∈ Kd, Kd+cϕ |=
Gϕ(a) iff Kd+cϕ+c′ |= ξ(a, uc′,Gϕ). Finally using Lemma 2 again with k:= 2, ϕ:= ξ(x0, x1) we get
that for all a ∈ Kd, Kd+cϕ+c′ |= ξ(a, uc′,Gϕ) iff Kd+cϕ+c′+cξ |= G(a, uc′,Gϕ). These equivalences
together imply that for all a ∈ Kd, Kd |= ϕ(a) iff Kd+cϕ+c′+cξ |= G(a, uc′,Gϕ), which by the
definitions of h and s implies condition (16). Q.E.D.(Lemma 4)

Definition. A term G(y, z) of K with the properties described in Lemma 4, will be called a
universal term. We assume that for each universal term G of K a pair of functions, h, s is fixed
with the properties given in Lemma 4. To indicate their dependency on G, we will denote these
functions by hG, sG. ut

Lemma 5 Assume that K is a predictive K-sequence and H(x0, x1) is a term of K. Then there
exists a firstorder formula ΨH(x0, x1, w) of K such that for all c ∈ ω the family of relations
R2[H(x0, x1), c] and R2[ΨH(x0, x1, c)] are asymptotically equivalent.

Proof. We will associate with each binary term t(x0, x1) of K a firstorder formula
Λt(u, v, w, y0, y1). We want to define Λt such that for each fixed c ∈ ω, if d ∈ ω is suffi-
ciently large, then

(17) for each fixed a0, a1, p, q ∈ Kd, (ηd,c(t(a0, a1)))(p, q) iff Kd |= Λt(p, q, c, a0, a1),

where ηd,c is the map described in the definition of predictivity.
We define Λt by recursion of the depth (maximal number of nested function symbols) of the

term t(x0, x1).
Assume first that t(x0, x1) is the variable xi for some i ∈ {0, 1}. In this case Λt(u, v, w, y0, y1)

is the formula u = 0 ∧ v = yi. Property (10)/(i) of the definition of a predictive K-sequence
implies that condition (17) is satisfied.
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Suppose now that t is an individual constant symbol. Then Λt(u, v, w, y0, y1) ≡ Φt(u, v, w),
where the firstorder formula Φt is defined in the definition of predictivity. Property (10)/(ii) of
the definition of predictivity implies that Λt satisfies condition (17).

Let t(x0, x1) be a term of the form f(t0, . . . , tk−1), so that Λti , i = 0, 1, . . . , k − 1 has
been already defined and it satisfies condition (17). Λt is defined by Λ(u, v, w, y0, y1) ≡
Φ(u, v, w,Λt0(u, v, w, y0, y1), . . . ,Λtk−1

(u, v, w, y0, y1)). Our inductive assumption implies that
for all i = 0, 1, . . . , i− 1 condition (17) is satisfied by t:= ti. Therefore property (10)/(ii) of the
definition of predictivity implies that Λt satisfies condition (17) as well.

Finally we define the firstorder formula ΨH(x0, x1, w) by
ΨH(x0, x1, w) ≡ ∀u, v,ΛH(u, v, w, x0, x1)↔ (u = 0 ∧ v = 0).

Let H̄ = (H)Kd+c
. Condition (17) implies that for all a0, a1 ∈ Kd, Kd |= ΨH(a0, a1, c) is

equivalent to the statement that “for all u, v ∈ Kd, (ηd,c(H̄(a0, a1)))(u, v) iff (ηd,c(0))(u, v)”
and since the map ηd,c is one-to-one, this is equivalent to the statement H̄(a0, a1) = 0. We got
that if c ∈ ω is fixed then for all sufficiently large d ∈ ω and for all for all a0, a1 ∈ Kd, the
following two statements are equivalent: Kd |= ΨH(a0, a1, c) and Kd+c |= H(a0, a1) = 0 which
is the statement of the lemma. Q.E.D.(Lemma 5)

Proof of Theorem 2. Let κ(x, y, z) be the firstorder formula of K whose existence is stated
in condition (5) of the definition of a regular K-sequence. Assume that G is a universal term.
Let ϕ be the formula ∀u, v, κ(u, v, y)→ ¬ΨG(u, v, y), where ΨG is the formula whose existence
is stated in Lemma 5. Let ` = length(ϕ), w = sG(ϕ, `), and c = hG(`). By condition (5) of
the definition of a regular K-sequence there exists an r ∈ ω such that for all sufficiently large
d ∈ ω we have Kd |= ∀x, y, κ(x, y, r) ↔ (x = w ∧ y = c). Let d ∈ ω be sufficiently large.
Then by Lemma 4, Kd |= ϕ(r) iff Kd+c |= G(r, w) = 0, where w = s(ϕ, `). On the other hand
using ` = length(ϕ) ≥ length(ΨG) and Lemma 5 with c:= h(`) and z:= s(ϕ, `), we get the
following sequence of equivalent statements: Kd |= ϕ(r) iff Kd |= ∀u, v, κ(u, v, r)→ ¬ΨG(u, v, r)
iff Kd |= ¬ΨG(w, c, r) iff Kd+c |= ¬G(r, w) = 0. Consequently Kd |= ϕ(r) is equivalent to
both Kd+c |= G(r, w) = 0 and Kd+c |= ¬G(r, w) = 0, that is, we reached a contradiction.
Q.E.D.(Theorem 2).

3 Proof of Theorem 1

Proof of Theorem 1. Theorem 2 implies that it is sufficient to prove that M = 〈Md | d ∈ ω〉 is
a complete, retrospective, and predictive M-sequence.

The definition of the languageM and universe(Md) = 2d, d ∈ ω, implies that M = 〈Md |
d ∈ ω〉 is an M-sequence. We show that it is complete, retrospective, and predictive. For the
completeness of M it is sufficient to prove that it is regular and projective.

M is regular. Condition (1) describes the interpretation of the symbols 0 and 1 as described
in the definition of Md.

Condition (2). It is sufficient to show that the condition holds for f(x, y) = ¬x and f(x, y) =
x ∧ y if we consider 0 and 1 as boolean values. For f(x, y) = ¬x we have t(x, y) = 1 − x, and
for f(x, y) = x ∧ y we have t(x, y) = xy.

Condition (3). t̄(x, y) = min(1, x− y) meets our requirements.
Condition (4). Such a formula can be easily constructed by using the techniques of Gödel
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numbering, using only the function symbols 0,1,−1,+,×,max,min. (Not all of them are
needed.)

Condition (5) We use the fact that the functions F0(x) = x− bx
1
2 c2, F1(x) = bx

1
2 c − F0(x)

has the property that for each y, z ∈ ω there is an x ∈ ω with F0(x) = y and F1(x) = z. Indeed,
if x = (y + z)2 + y, then F0(x) = y and F1(x) = z. Based on this observation it is easy to see
that the formula
κ(x, y, z) ≡ (max(y, x) = x) ∧ (max(z, x) = x) ∧
∧ ∃u, (max(u, x) = x) ∧ (max(u2, x) = x) ∧ (max((u+ 1)2, x) 6= x) ∧ (y = x− u2) ∧ (z = u− y)
satisfies the requirements of this condition.

M is retrospective. Conditions (8) and (9). We prove condition (9) in the strong form where
the formula ϕ(x0, . . . , xk−1, y, z) is of the form t(x0, . . . , xk−1, z) = y, where t is a term of K.
Clearly this gives condition (8) with the term t(x0, . . . , xk−1,1).

We consider separately the various possible choices for the function symbol g and in each
case we describe the required term t. The term p(÷(n,p(2, c))) will be denoted by 22

−cn.
g = 1, t = 1; g = 0, t = 0; g = n, t = ÷(n,p(2, c)); g = −1, t = 22

−cn − 1; g = xy,
t = xy − ÷(xy, 22

−cn))22
−cn, g = x + y, t = x + y − ÷(x + y, 22

−cn)22
−cn; g = p(y), t =

min(p(y), 22
−cn − 1); g = ÷(x, y), t = ÷(x, y); g = min(x, y), t = min(x, y); g = max(x, y),

t = max(x, y); g = x ∩ y, t = x ∩ y; g = N (x), t = N (x).
In the proof of the Corollary we will have the following: g = p̄(x, y), t = min(p̄(x, y), 22

−cn−
1)

Definition. Assume that a,m ∈ ω, m > 0. The least nonnegative residue of a modulo m will
be denoted by res(a,m). ut

Proposition 8 Assume that u, v, a, b,m, i ∈ ω, b ≥ 2, a < bm, i < m. Then res(u, v) =
u− vbuv c and

coeffi(a, b) = b−(m−1)res
(
bm−1

⌊ a
bi

⌋
, bm

)
Proof. a = am−1b

m−1 + . . .+ aib
i + . . .+ a0, where aj = coeffj(a, b) for j = 0, 1, . . . ,m− 1.

Therefore a/bi = am−1b
m−1−i + . . . ai+1b+ ai + ai−1b

−1 + . . .+ a0b
−i and consequently ba/bic =

am−1b
m−1−i + . . . + ai+1b + ai. Multiplying both sides of the last equation by bm−1 we get

bm−1ba/bic = am−1b
m−1−i+(m−1) + . . . + ai+1b

1+(m−1) + aib
m−1 = Mbm + aib

m−1, where M
is an integer. The statement of the proposition is an immediate consequence of this equation.
Q.E.D.(Proposition 8)

M is projective. We will use in this proof that n(d+c) = 2cn(d) and so 2d = n(d+c) ÷ 2c. We
want to define the terms τc and πc,k such that if c ∈ ω, 2c = ν, k ∈ {0, 1, . . . , ν − 1}, and d ∈ ω,

2d = n is sufficiently large then for all a0, a1, . . . , aν−1 ∈ Md we have τ
(d)
c (a0, a1, . . . , aν−1) =∑ν−1

k=0 ak(2
2d)k, and for each a ∈ Md+c, π

(d+c)
c,k (a) = coeffk(a, 2

2d). Clearly if this holds then
the terms τc, πc,k satisfy condition (6) of the definition of projectivity.

The definition of τc is simply the arithmetic expression
∑ν−1
k=0 ak(2

2d)k written with the
function symbols ofM. Since τc may depend on c we may express c in the form c = 1 + . . .+ 1.
All of the partial results in the expression

∑ν−1
k=0 ak(2

2d)k does not exceed the bound 22
d+c − 1

so the arithmetic operations occurring in it work the same way in Md+c as among the integers.
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To define the term πc,k it is sufficient to show that coeffk(a, 2
2d) can be computed by a

term in Md+c. This is however an immediate consequence of Proposition 8 with a:= a, b:= 22
d
,

m:= 2c. Here we used the fact that the operation x×y in Md+c is the least nonnegative residue
of xy (computed by the multiplication among integers) modulo 2d+c.

The firstorder formula Γ of condition (7) describes the computation of πc,k by the term
defined above, but it uses c and k directly as parameters.

M is predictive. Assume that c ∈ ω and d is sufficiently large. First we define the map ηd,c
whose existence is required by the definition of predictivity. To make our notation more concise

we will write η
(a)
d,c instead of ηd,c(a).

Assume that a ∈ Md+c, 2d = n, ν = 2c. Let ai = coeffi(a, 2
n) for i = 0, 1, . . . , ν − 1. We

define ηd,c by: “for all u, v ∈Md, η
(a)
d,c (u, v) iff u ∈ ν and v = au”. This definition implies that

if a ∈Md then for all u, v ∈Md, η
(a)
d,c (u, v) iff u = 0 and v = a, that is, our definition satisfies

condition (10)/(i) from the definition of predictivity.
We define now the firstorder formula Φf (x, y, z, Y0, . . . , Yk−1) for each function symbol f of

M.
If f = c is a constant symbol of M then Φc ≡ x = 0 ∧ y = c. By the definition of ηd,c,

the formula Φc satisfies condition (10)/(ii) from the definition of predictivity, for all constant
symbols c of M.

We will not use the relation η
(a)
d,c directly in the definition of Φf , for the remaining function

symbols f of M, but we first define another binary relation ξ
(a)
d,c on Md and use this relation.

Definition. 1. For each positive integer k and u = 〈u0, . . . , uk−1〉 ∈ (Md)
k, uon will denote

the integer uk−1n
k−1 + uk−2n

k−2 + . . .+ u1n+ u0.
2. Assume that R is a k-ary relation on the set n = {0, 1, . . . , n − 1}, where n = 2d.

integerk(R) will denote the integer
∑
{2uon | u ∈ Mk

d ∧ R(u)}. Clearly R → integerk(R) is
a one-to-one map from the set of all k-ary relation on n to the set of all natural numbers less
then 2n

k
. If a ∈ [0, 2n

k − 1] is a natural number then the unique k-ary relation R on n with
integerk(R) = a will be denoted by integer−1k (R). ut

Definition. 1. Suppose that R is a k-ary relation on Md. We will say that the relation R is n-
restricted if for all u = 〈u0, . . . , uk−1〉 ∈Mk

d, R(u0, . . . , uk−1) implies that for all i = 0, 1, . . . , k−1
with ui ∈ n.

2. Assume that d, c are positive integers and a < 2n
2
. Then ξ

(a)
d,c is the unique binary relation

on Md which satisfies the following two conditions: (a) The relation ξ
(a)
d,c is n-restricted, and (b)

integer2(ξ
(a)
d,c ) = a. ut

Proposition 9 There exists a firstorder formula ϕ(x, y, z) of M such that for all d ∈ ω and

for all a, b ∈ 22
d

and i ∈ 2d we have that b = coeffi(a, 2) iff Md |= ϕ(a, b, i).

Proof. The statement of the proposition follows from Proposition 8. Q.E.D.(Proposition 9)

The following Proposition states that the relations ξ
(a)
d,c and η

(a)
d,c can be defined from each

other in a firstorder way. It is important that for the definition of the value ξ
(a)
d,c (u, v) for a fixed

pair u, v we may need the values η
(a)
d,c (x, y) for all x, y ∈Md and vice versa.
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Proposition 10 There exist firstorder formulas Ψi(x, y, z, Z), i = 0, 1, where x, y, z are indi-
vidual variables and Z is a variable for a binary relation such that for all c ∈ ω, for all sufficiently

large d ∈ ω, and for all a ∈Md+c the following holds: Md |= ∀u, v, [ξ
(a)
d,c (u, v)↔ Ψ0(u, v, c, η

(a)
d,c )]

and Md |= ∀u, v, [η
(a)
d,c (u, v)↔ Ψ1(u, v, c, ξ

(a)
d,c )]

Proof. Assume a ∈ 22
d+c

and a =
∑(ν−1)
i=0 ai(2

2d)ν . The formula Ψ1 have to express
the statement u ≤ ν ∧ v ≤ n ∧ coeffun+v(a, 2) = 1. coeffun+v(a, 2) = 1 is equivalent

to coeffv(au, 2) = 1. Using the relation η
(a)
d,c we can define au in a firstorder way in Md,

namely x = au iff Md |= η
(a)
d,c (u, x). If au is given then, by Proposition 9, coeffv(au, 2) has a

firstorder definition in Md. This completes the definition of Ψ0. In the firstorder formula Ψ1

we have to define au form its binary coefficients which can be done by using again Proposition
9. Q.E.D.(Proposition 10)

Proposition 10 implies that it is sufficient to prove that condition (10) of the definition of
predictivity holds in the following modified form. (For the sake of notational simplicity we
consider here p and N as a binary function symbols whose interpretation in each Md is a binary
function which depends only in its first variable.)

(18) Suppose that f is one of the function symbols +,×,p,÷,max,min,∩,N of M then there
exists a firstorder formula Φ′f (x, y, z, Y0, Y1) where x, y, z are individual variables and Y0, Y1 are
variables for binary relations such that for all c ∈ ω, for all sufficiently large d ∈ ω, and for

all a, b ∈Md+c, and for all u, v ∈Md, ξ
(f (d+c)(a,b))
d,c (u, v) is true iff Md |= Φ′f (u, v, c, ξ

(a)
d,c , ξ

(b)
d,c),

where f (d+c) = (f)Md+c
.

In other words given the binary bits of a, b ∈ 22
d+c

, each by a binary relation on
universe(Md), we have to define in Md in a firstorder way the binary bits of a+ b, ab, a÷ b =
ba/bc, 2a, min(a, b), max(a, b), a∩ b, and N (a) where the operations are defined in the structure
Md+c. Since a ∩ b and N (a) are defined by bitwise operations this obviously can be easily
accomplished for these two operations so from now on we consider only the remaining ones.

Using the function integer−1k we can represent natural numbers from the interval [0, 2n
k−1]

by k-ary relations on n. Our next goal is to represent sequences of natural numbers by relation
on n, (where we have a bound both on the length of the sequence and the sizes of its elements).

Definition. 1. The set of all sequences of length i, whose elements are from the set A will
be denoted by, seq(i, A). For example the set of all sequences of length nl whose elements are

integers in the interval [0, 2n
k − 1] is seq(nl, 2n

k
).

2. Assume that a = 〈a0, . . . , aj−1〉 ∈ seq(nl, 2n
k
). We will represent this sequence by

a k + l-ary relation R(a) on n defined in the following way. For all i ≤ j − 1, and for all

u0, . . . , uk−1, v0, . . . , vl−1 ∈ n, R(a)(u0, . . . , uk−1, v0, . . . , vl−1) iff (integer
(−1)
k (at))(u0, . . . , uk−1),

where t =
∑l−1
i=0 vin

i. Since in this representation the length of the sequence cannot be arbitrarily
chosen it must be nl, for some l ∈ ω, we will call this representation a representation of the
sequence without its length.

3. The definition above provides representation only for sequences with exactly nl elements
for some natural number l. A sequence a = 〈a0, . . . , aj−1〉 where j < nl, ai ∈ [0, 2n

k − 1]
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will be represented in the following way. We attach the number j as the first element to the
sequence a and attach a sequence of 0s to its end, so that the total length of the sequence
a′ = 〈j, a0, . . . , aj−1, 0, . . . , 0〉 obtained this way is nl. The representation of the sequence a
together with its length will be the same as the representation of the sequence a′ without its
length, as defined earlier. In the following the representation of a sequence will always mean a
representation of the sequence together with its length unless we explicitly state otherwise.

4. Assume that d is a positive integer and n = 2d. We will say that the set X is Md-
representable if there exists natural numbers k, l such that either X = {0, 1, . . . , 2nk − 1} or

X = seqn(nl, 2n
k
). If X is an Md representable set and X = {0, 1, . . . , 2nk−1} then we define its

weight by weight(X) = k, if X = seqn(nl, 2n
k
) then we define its weight by weight(X) = k+ l.

If a ∈ X, where X is an Md representable set, then relationa,n will denote the k-ary or k+l-ary
relation on n representing the element a. ut

We will consider now families of functions f (d), d ∈ ω so that for each d ∈ ω, f (d) ∈
func(X(d), Y (d)) where both X(d) and Y (d) are Md-representable sets with weight less then w
for a constant w. We are interested in the case when such a family of functions can be defined
by a firstorder formula in Md without using any parameters. The world “strongly” that we will
use in the definition below refers to mentioned the lack of parameters.

Definition. 1. Assume that wi ∈ ω for i = 0, 1 and for all d ∈ ω, A
(d)
i are Md representable sets

of weight wi for i = 0, 1, and f (d) ∈ func(A
(d)
0 , A

(d)
1 ). We will say that the family of functions

f (d) is a strongly firstorder definable family function or a s.f.d.-family in M if there exists a
firstorder formula Γ(x0, . . . , xw1−1, Z), where xi, i = 0, 1, . . . , w1−1 are individual variables and

Z is a variable for k0-ary relations such that for all sufficiently large d ∈ ω and for all a ∈ A(d)
0 ,

and b ∈ A(d)
1 with f(a) = b, we have that for all u0, . . . , uw1−1 ∈ n, relationb,n(u0, . . . , uw1−1)

iff Md |= Γ(u0, . . . , uw1−1, relationa,n). ut
We prove now that condition (18) is satisfied by each function symbol ofM. As we mentioned

already this statement trivially holds for the function symbols ∩ and N since the corresponding
pointwise boolean operation can be executed on the relations representing the elements of Md+c.
For the remaining operations we show now that the corresponding families of functions are
strongly firstorder definable in M.

For f = min and f = max the statement is trivial since a ≤ b iff integer−12 (a) ≤
integer−12 (b) according to the lexicographic ordering which clearly can be defined in Md in
a firstorder way.

The function symbol f = “ + ”. If two integers are given in binary form each with m bits
then the bits of their sum can be defined by a simple well-known constant depth circuit whose
size is linear in m. This circuit is defined in a uniform way which makes it possible to translate
it into a firstorder formula interpreted in Md. For later use we also consider now the case where
we have to add a sequence of integers. This question has been also studied for circuits, and it
is known that if we have at most (logm)c0 integers with mc1 binary bits then their sum can
be computed by an unlimited fan-in boolean circuit with size mc2 and depth c3, where c2, c3
depend only on c0 and c1, see [1]. The construction of the circuit is uniform, in this case too,
and can be translated into a firstorder formulas, that we need for our present purposes, over
a structure containing the arithmetic operations. Firstorder formulas describing addition and
multiplication in this sense were used in [5]. To make the paper more self-contained we prove
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all the relevant facts about the firstorder definability of sums of sequences of integers.

Definition. If b is a finite sequence of integers then Sb will denote the sum of its elements. ut

Lemma 6 Assume that c0, c1 ∈ ω. Then there exists a strongly firstorder definable family of
functions f (d), d ∈ ω, such that for all sufficiently large d if n = 2d, j ≤ nc0 and a is sequence
of length j, from elements of the set 2n

k
, that is, a ∈ seq(j, 2n

k
), then Sa = f (d)(a).

Proof or Lemma 6. During the proof we will use the notation n = 2d, m = 2n, and we will
always assume that d is sufficiently large with respect to c0, c1. We assume that 〈a0, . . . , aj−1〉 ∈
seq(j, 2n

c1 ) and we will define the binary bits of Sa using the bits of the integers ai, a =
0, 1, . . . , j−1. While describing this definition which goes through several steps, we will indicate
the reasons why the definition can be told in Md in a firstorder way. We prove the lemma
through a sequence of special cases. Throughout the proof when we say that something can be
defined by a firstorder formula in Md we will always mean a firstorder formula of the type which
was used in the definition of a strongly firstorder definable family of functions.

Proposition 11 Lemma 6 holds with the additional assumption j = 2.

Proof of Proposition 11. We have a = a0 + a1 and we have to determine the binary bits

of a0 + a1. Assume that a0 =
∑nk−1
i=0 αi2

i, a1 =
∑nk−1
i=0 βi2

i, and u + v =
∑nk

i=0 γi2
i, where

αi, βi, γi ∈ {0, 1}. Then for all i = 0, 1, . . . , nk we define γi in the following way. If there exists
a t ∈ {0, 1, . . . , i − 1} such that αt = βt = 1 and for all k, with t < k < i, αk + βk ≥ 1, then
γi = αi + βi + 1. If such a t does not exists then γi = αi + βi.

This definition of γi can be stated in Md in a firstorder way, since it requires quantification
only on the set of integers {0, 1, . . . , nc0}, while universe(Md) = 0, 1, . . . , 2n − 1. We have
used the ordering of the set {0, 1, . . . , nc0} which is also available since the operations max(x, y),
min(x, y) define the natural ordering of universe(Md). Q.E.D.(Proposition AR1.1)

Proposition 12 Lemma 6 holds in the special case when j ≤
√
n and maxj−1i=0 ai ≤ 2

√
n, where

a = 〈a0, . . . , aj−1〉.

Let s0 = 0, sν =
∑ν−1
i=0 ai, for ν = 1, . . . , j. Each sν has at most log2(

∑ν−1
i=0 ai) ≤

log2(jmaxj−1i=0 ai) ≤ n
1
2 +log2 j ≤ 2n

1
2 bits, so the total number of bits in the sequence s1, . . . , sj

is at most 2jn
1
2 ≤ 2n. In Md with a single existential quantifier we may talk about the existence

of n-bits, so in Md we can define the rth bit γr of Sa by saying that: γr = 1 if there exists a
sequence s0, . . . , sj , and a b ∈ 2n, such that s0 = 0, sj = b, for all i = 1, . . . , j, sj = aj−1 + sj
and the rth bit of b is 1. Q.E.D.(Proposition 12)

Proposition 13 Lemma 6 holds in the special case j ≤ n1/2

Proof of Proposition 13. Assume that a = 〈a0, . . . , aj−1〉 and for each i = 0, . . . , j − 1,
ai =

∑l−1
s=0 αs,i2

s, where l = 2nk. We partition the interval [0, l − 1] into subintervals I1, ..., Ir

each of lengths n
1
2 . For δ = 0, 1, let

Jδ =
⋃
{Iν | ν ∈ [1, r] ∧ ν ≡ δ (mod 2)}
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For each i = 0, 1, . . . , j−1 we define two integers u0,i, v1,i ∈ [0, 2l−1] by uδ,i =
∑
{αs,i2s | s ∈

Jδ}. Proposition 12 implies that for ν ∈ [0, l − 1] and δ ∈ {0, 1}, the integer v
(ν)
δ =

∑
{αs,i2s |

i ∈ [0, l − 1], ν ∈ Jδ ∩ Iν} is firstorder definable in Md. For fixed ν, coeffs(v
(ν)
δ , 2) 6= 0 implies

that s ∈ Iν ∪ Iν+1, therefore for a fixed δ if we add the numbers v
(ν)
δ , for example, for all even

integers ν, there will be no “carry over” and so the binary bits of vδ are firstorder definable
in Md. Finally by Proposition 6 the binary bits of their sum Sa = v0 + v1 are also firstorder
definable in Md. Q.E.D.(Proposition 13)

We may complete the proof of Lemma 6 in the following way. We may use Proposition 13
iteratively first adding blocks of size n

1
2 in the sum

∑j−1
i=0 ai, and then repeating this for the

resulting shorter sum etc. Q.E.D.(Lemma 6)
We prove condition (18) for f = × in a more general form then needed, namely we will

consider products with more than two factors. This will be useful in the proof of (18) for the
function symbol ÷ and (in the proof of the Corollary) for function symbol p̄.

Definition. Assume that a = 〈a0, a1, . . . , aj−1〉 is a sequence of integers. Then Pa will denote

the number
∏j−1
i=0 ai. ut

Definition. Assume that α(x), β(x) are functions defined on ω with real values. We will say
that the pair 〈α(x), β(x)〉 is acceptable if there exists a strongly firstorder definable family of
functions f (d), d ∈ ω, such that for all sufficiently large integers d ∈ ω, for all nonnegative
integers j ≤ α(d), and for all a ∈ seq(j, 2β(d)), we have Pa = f (d)(a). ut

Lemma 7 For each fixed c > 0, ε > 0 the pair α(x) = xc, β(x) = 2x+x
1−ε

is acceptable.

We prove the lemma by showing how can we create acceptable pairs of functions, possibly by
using other acceptable pairs. These constructions are described in the following propositions.
In the remaining of the paper if we say that a family of functions is firstorder definable we will
mean that it is strongly firstorder definable.

Proposition 14 Assume that 〈α(x), β(x)〉 is an acceptable pair and ᾱ(x), β̄(x) are functions
defined on ω with real values so that for all sufficiently large d ∈ ω, ᾱ(d) ≤ α(d) and β̄(d) ≤ β(d).
Then the pair 〈ᾱ(x), β̄(x)〉 is also acceptable

Proof. The statement of the proposition is an immediate consequence of the definition of
acceptability.

Proposition 15 For all c > 0 the following pair of function is acceptable: α(x) = 2, β(x) =
22
cx

.

Proof. This is a consequence of Lemma 6, since the multiplication of two l bit integers can
be performed as the addition of l integers each with 2l bits if we follow the standard method
of computing a product. Q.E.D.(Proposition 15)

Proposition 16 Assume that α, β are real valued functions defined on ω, c > 0, and for all
sufficiently large d ∈ ω we have (α(d))2β(d) ≤ cn, where n = 2d. Then the pair α(x), β(x) is
acceptable.
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Proof of Proposition 15. Assume that a = 〈a0, . . . , aj−1〉, and for all i = 0, 1 . . . , j let
pi =

∏i−1
r=1 ai. Clearly p0 = 1 and pj = Pa. The integer pi has at most iβ(d) ≤ jβ(d) ≤ α(d)β(d)

binary bits. Therefore the total number of bits in the sequence 〈p1, . . . , pj〉 is at most jα(d)β(d)
≤ (α(d))2β(d) ≤ cn. This implies that we are able to speak about the existence of such a
sequence 〈p0, . . . , pj〉 in a firstorder way. As a consequence, Pa = x will be equivalent to the
following firstorder formula in Md: “there exists a sequence p0, . . . , pj−1, such that p0 = 0, and
for all i = 1, . . . , j, pi = ai−1pi−1 and pj = x”. Q.E.D.Proposition 16

Proposition 17 Assume that 〈α(x), β(x)〉 is a pair of acceptable functions, c > 0 and t(x) ∈
func(ω, ω), such that for all sufficiently large d ∈ ω we have (t(d))α(d) ≤ 2cd. Then the pair
〈α(x), t(x)β(x)〉 is also acceptable.

Proof. Assume that d ∈ ω is sufficiently large and a = 〈a0, a1, . . . , aj−1〉 ∈
seq(α(d), t(d)β(d)). Let h = bβ(d)c. For all i = 0, 1, . . . , j − 1, k = 0, 1, . . . , t(d) let

bi,k = coeffk(ai, 2
h), that is, ai =

∑t(d)−1
k=0 bi,k2

kh. Proposition 8 implies that the coefficients bi,k
are firstorder definable in Md.

If we compute the product
∏j−1
i=0 ai using ai =

∑t(d)−1
k=0 bi,k2

kh and distributivity then
we get (t(d))j ≤ (t(d))α(d) ≤ nc terms. Each of these terms is uniquely determined
by a function λ ∈ func(t(d), j), namely the term determined by such a function is∏j−1
i=0 coeffλ(i)(ai, 2

h)2λ(i)h. If we separate the powers of 2 in this product we can write it

in the form of 2h
∑j−1

i=0
λ(i)∏j−1

i=0 coeffλ(i)(a, 2
h). We have coeffλ(i)(a, 2

h) ≤ 2h ≤ 2β(d), and

j ≤ α(d), therefore the acceptability of the pair 〈α(x), β(x)〉 implies that
∏j−1
i=0 coeffλ(i)(a, 2

h)

is firstorder definable in Md. By Lemma 6,
∑j−1
i=0 λ(i) is also firstorder definable in Md. Since

the total number of choices for the function λ(i) is at most nc, Lemma 6 implies that the sum
that is Pa is also firstorder definable in Md. Q.E.D.(Proposition 17)

Proposition 18 Assume that α(x), β(x), γ(x) are functions defined on ω with real values in
the interval [1,∞) and the pairs 〈α(x), β(x)γ(x)〉, 〈γ(x), β(x)〉 are both acceptable. Then
〈α(x)γ(x), β(x)〉 is also acceptable.

Proof. Assume that d ∈ ω is sufficiently large and a = 〈a0, . . . , aj−1〉 ∈ seq(α(d)γ(d), 2β(d)).
We partition the interval [0, j − 1] into at most α(d) intervals I0, . . . , Ir−1 each of size at
most γ(d). The pair 〈γ(x), β(x)〉 is acceptable γ(x) ≥ 1 therefore we can define the products
Pk =

∏
i∈Ik ai, k = 0, 1, . . . , r− 1 in a firstorder way in Md. Moreover the value of each of these

products will be at most (2β(d))γ(d) = 2β(d)γ(d). Since the pair 〈α(x), β(x)γ(x)〉 is acceptable we
are also able to define

∏r−1
k=0 Pk = Pa in a firstorder way in Md. Q.E.D.(Proposition AR6)

Proof of Lemma 7. Assume that a τ ∈ (0, 1) is given. We claim that

(19) the pair 〈xτ , 2x−x1−τ 〉 is acceptable.

This is a consequence of Proposition 16 and of the fact that for all sufficiently large d ∈ ω, we
have d2τ2d−d

(1−τ) ≤ 2d. Suppose that for some integer s the pair (xτ , 2x+sx
(1−τ)

) is acceptable.
We can apply Proposition 17 with α(x):= xτ , β(x):= 2x+sx

1−τ
, t(x):= 2x

1−τ
. Using the fact that

(t(d))α(d) = 2d
1−τdτ = 2d, we get that the pair 〈xτ , 2x+(s+1)x1−τ 〉 is also acceptable. With the

help of this fact and condition (19), we can show by induction on s, starting with s = −1, that
the following holds:
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(20) for all τ ∈ (0, 1), and for all integers s, the pair (xτ , 2x+sx
1−τ

) is acceptable.

We want to show that

(21) for all τ ∈ (0, 1) and for all k, s ∈ ω the pair (xτ+
k
2 , 2x+sx

1−τ
) is acceptable.

We prove this statement by induction on k, where the inductive assumption is that the
statement holds for a fixed k, with every possible choices of τ and s. For k = 0 this is condition
(20). Assume now that the statement holds for a fixed k ∈ ω.

We apply Proposition 18 with α(x):= xτ+
k
2 , γ(x):= x

1
2 and β(x):= 2x+sx

1−τ
. The first

assumption of Proposition 18 is that the pair A1 = (α(x), β(x)γ(x)) = (xτ+
k
2 , x

1
2 2x+sx

1−τ
) is

acceptable. Since x
1
2 2x+sx

1−τ
= 2x+sx

1−τ+ 1
2
log2 x ≤ 2x+(s+1)x1−τ the inductive assumption with

s:= s+ 1 and Proposition 14 implies that the pair A1 is acceptable.
The second assumption is that the pair A2 = (γ(x), β(x)) = (x

1
2 , 2x+sx

1−τ
) is accept-

able. This follows directly from condition (20). Therefore by Proposition 18 the pair

(α(x)γ(x), β(x)) = (xτ+
k+1
2 , 2x+sx

1−τ
) is acceptable which completes the proof of (21). This

and Proposition 14 together imply the statement of the lemma. Q.E.D.(Lemma 7)

Proposition 19 For all ε > 0 there exists a family of functions f (d), d ∈ ω, such that, for all

sufficiently large d ∈ ω if a = 〈a0, a1〉 ∈ seq(2, 22
d+d1−ε

), then a0a1 = f (d)(a).

Proof. The proposition is a special case of Lemma 7.
Using Proposition 19 we can show that condition (18) is satisfied by f = ×. Since for each

fixed c > 0 if d is sufficiently large then d+ d
1
2 > d+ c, we get that multiplication in Md+c can

be defined in Md in the sense of (18). This completes the proof of (18) for f = ×.

Proposition 20 For all c > 1, c′ > 1, there exists a strongly firstorder definable family of
functions f (d), d ∈ ω, such that for all sufficiently large d ∈ ω, if a = 〈a0, . . . , aj−1〉 is a

sequence of natural numbers such that ai ≤ 2c
i

for all i = 0, 1, . . . , j − 1 and cj ≤ 2c
′d, then

Pa = f (d)(a).

Proof. Let pi =
∏i−1
s=0 as. Clearly p0 = 1 and pj = Pa. The number of binary bits in ai is at

most ci, therefore the total number of bits in pi is at most ci−1
c−1 and the total number of bits in

the sequence p1, . . . , pj is at most (c− 1)2cj+2 ≤ (c− 1)2c22c
′d ≤ 2(c

′+1)d. Consequently in Md

we may speak about the existence of a sequence p1, . . . , pj in a firstorder way. Therefore, Pa = x
will be equivalent to the following firstorder formula in Md: “there exists a sequence p0, . . . , pj−1,
such that p0 = 0, and for all i = 1, . . . , j, pi = ai−1pi−1 and pj = x”. Q.E.D.Proposition 20

Now we show that condition (18) is satisfied by f = p and, for the proof of the Corollary,
we show that it is satisfied by f = p̄. Since the proof for f = p̄ can be easily converted into a
proof for f = p we describe here only the f = p̄ case.

Proposition 21 There exist strongly firstorder definable families f
(d)
q , d ∈ ω, q = 0, 1, 2 such

that for all sufficiently large d the following holds, where n = 2d:

(i) if a < 2n, then f
(d)
0 (a) is the sequence u = 〈u0, . . . , uj(a)−1〉, where ui = a2

i
, and j(a) is

the smallest natural number with a2
j(a) ≥ 2n, and f

(d)
1 (a) = j(a).

(ii) if a < 2n and b < j(a), then f2(〈a, b〉) = ab.
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Proof. Statement (i) is an immediate consequence of Proposition 20. To prove statement

(ii) assume that d ∈ ω is sufficiently large a < 2n, b < j(a). We have b =
∑j(a)
i=0 coeffi(b, 2)2i.

Proposition 8 implies that αi = coeffi(b2) is firstorder definable in Md. We may write ab as

the product
∏j(a)

i=0 a
αi2

i
. Statement (i) and Proposition 20 together imply that ab is firstorder

definable in Md. Q.E.D.(Proposition 21)
The integer ab can be written in the form of ab = (aj(a))kat, where t < j(a). Assume

that ab ≤ 22
cd

. Then aj(a) > 2d = n implies that k ≤ c therefore according to Lemma 7 and
Proposition 21 aj(a) and at both can be defined in Md, and then again by Proposition (20) their
product is also firstorder definable in Md. This completes the proof of condition (18) for f = p̄
and f = p.

Now we prove condition (18) for f = ÷. Assume that a, b ∈ Mc+d is given and we want
to define ba/bc in Md in a firstorder way. First we describe a way, using general mathematical
language, to compute ba/bc and then we show that it can be translated into a firstorder formula
of M over Md.

(i) First we note that it is sufficient to find integers t, l such that 1
b − t2

l < 2−2
cn−1. The

reason for this is that, a < 22
d+c

= 22
cn therefore in the possession of the integers t, l we can

compute α = at2l and |α− ba/bc| < 1
2 so we get ba/bc by rounding.

(ii) Let k be an integer so that 1 > 2−kb > 1/2. If there exists no integer with this property
then the problem is trivial, since we can get the binary bits of ba/bc form the bits of a simply
by shift and the erasure of a block of consecutive bits. Let u = 2−kb. Since 1 > u > 1

2 , we have

1 < 1
u < 2. We may write 1

u in the form of v2−(n+2) + R, where v ∈ [0, 2n+2] is an integer and
0 ≤ R < 2−n−1. (v will be determined by the first n+ 1 bits of 1

u , and R is what remains from
1
u after erasing these bits.) Let z = v2−(n+2). The definition of v implies that 0 ≤ z ≤ 2.

(iii) We have zb = 1+Rz = 1+r, where |r| < 2−n+1. We consider the series 1
zb = 1

1−(1−zb) =
1

1−(−r) = 1− r + r2 − r3 + . . .. Let w be the sum of the first 42c terms of this geometric series.

Clearly w = 1
zb + R1, where |R1| < 2−3·2

cn. Consequently 1
b = z 1

zb = z(w − R1) = zw + R2,

where |R2| < 2−2
c+1n.

Now we show that all of the quantities in this computation can be defined in a firstorder
way in Md.

Stage (i). The definition of t and l will be described later. However if we have t and l then
Proposition 19 implies that we may define the product at2l in a firstorder way in Md. The
rounding also can be done in a firstorder way.

Stage (ii). The integer v has only n + 2 bits. In Md we can quantify n bits with a single
existential quantifier, therefore v with the given property is firstorder definable in Md.

Stage (iii). Proposition 19 implies that the product zb can be defined in Md. Using Lemma
6 we get that r can be defined as well. Each needed terms of the geometric series can be defined
in Md, we define the ith term as a product with i factors. Lemma 7 implies that such a product
can be defined in Md and by Lemma 6 the sum of the first 4c terms can be defined as well.
Therefore we defined w and by Proposition 19 we can define zw as well. This completes the
proof of the fact that condition (18) is satisfied by f = ÷, and also the proof of predictivity of
M. Q.E.D.(Theorem 1)
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4 A counterexample related to Theorem 2

In this section we give an example for a K-sequence K where the conclusion of Theorem 2 does
not hold. (Naturally some of the assumptions of the theorem do not hold either.)

Lemma 8 Assume that L is a firstorder language with equality, with no relation symbols other
than equality, and with a finite number of constant and function symbols, among them the
constant symbol 0. Then there exists an extension L′ of L with a finite number of function
symbols, and there exists a function which assigns to each term F (x, y) of L′ a term GF (x) of
L′ so that the following holds.

Assume that for all n ∈ ω, Mn is an interpretation of L with universe(Mn) = 2n and with
(0)Mn = 0. Then for all n ∈ ω, there exists an interpretation M ′n of L′ so that universe(M ′n) =
universe(Mn), M ′n is an extension of Mn and the sequence M ′n, n ∈ ω has the following
property. For all terms F (x, y) of L′ and for all sufficiently large n ∈ ω, we have

M ′n |= ∀a,
(
GF (a) = 0↔ ∃x, F (x, a) = 0

)
Proof. First we describe the language L′ and the interpretations of some of its function

symbols. Then we will sketch the the main ideas of proof. Assume that f0, . . . , fk−1 are
function symbols of a firstorder language L1 each with arity r. We will say that the sequence
f = 〈f0, . . . , fk−1〉 is a k-dimensional function symbol vector of L1 with arity r. If it does not
cause any misunderstanding we will write Mn instead of universe(Mn).

The definition of L′. We get L′ by extending L with
(i) a unary function symbol a,
(ii) a function symbol h with arity four, and
(iii) with a four dimensional function symbol vector g = 〈g0, g1, g2, g3〉 with arity six.
We will interpret a in the following way, for each n, if, u, v ∈ 2n and u + 1 ≡ v (mod 2n),

then Mn |= a(u) = v. That is (a)Mn is the function adding 1 mod 2n. For each b ∈ ω, b̃ will
denote the term a(. . .a(0)) containing exactly b copies of a. Clearly if 2n > b then Mn |= b̃ = b.

Let T0(x, y), T1(x, y), . . . be an enumeration of all binary terms of L′, each may contain only
the free variables x, y. We assume that if i ≤ j then length(Ti) ≤ length(Tj).

We fix a function ϑ(n), n ∈ ω so that ϑ(n) tends to infinity very slowly, in the sense that in
the proof we will require several times that n is sufficiently large with respect to ϑ(n). These
requirements will define the needed growth rate of ϑ.

Assume that F (x, y) = Tb(x, y) is a term of L′. We define the term GF (z) in the following
way. First we define a sequence of four dimensional vector terms which may contain only
the free variables x, y (a vector term of dimension d is a sequence consisting of d terms). The
sequence s0(x, y), s1(a, b), . . . , si(a, b), . . . of four dimensional vector terms is defined by recursion
on i. s0(x, y) = 〈x, x, y, y〉. Assume that si(x, y) has been already defined. Then si+1(x, y) =
g(si(x, y), x, y). (This is well-defined since g has arity six and si(x, y) is a four dimensional
vector.) We define the term GF (z) by GF (z) = h(sϑ(n)(z, b̃)).

Now we define M ′n. We have already defined (a)M ′n . We define now g(n) = (g)M ′n the

interpretation of g on the structure M ′n. We define g(n) in the following way. For each fixed
a, b ∈ Mn we the define the function ga,b(x) = g(n)(x, a, b), x ∈ M4

n. The function ga,b mapping
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M4
n into itself is chosen with uniform distribution from the set of all permutations of M4

n, which
has exactly one cycle. Moreover these random selections of ga,b are mutually independent for
all of the possible values of n and a, b.

For the definition of h(n) = (h)M ′n we define another interpretation M ′′n of L′. Let χ(n) be
the identically 0 function on M4

n. M ′′n will be an interpretation of L′ on 2n such that it is an
extension of Mn, and (g)M ′′n = g(n) and (h)M ′′n = χ(n). (We reserve the notation h(n) for the
interpretation of the function symbol h in the structure M ′n.)

h(n)(x), x ∈ M4
n is defined in the following way. If there exists exactly one pair a, b ∈ Mn

so that b ≤ ϑ(ϑ(n)), M ′n |= x = sϑ(n)(a, b), and for this pair a, b we have M ′′n |= ∃y, Tb(y, a) = 0,

then h(n)(x) =1. Otherwise h(n)(x) = χ(n)(x) = 0. This completes the definition of the
interpretation M ′n. (Note that the term si does not contain the function symbol h therefore
M ′n |= x = sϑ(n)(a, b) is equivalent to M ′′n |= x = sϑ(n)(a, b).)

We show that with a probability 1 for the randomizations in the definition of the sequence
M ′n, n ∈ ω, the structures M ′n, n ∈ ω satisfy the requirements of the lemma. For the proof of
this fact we need the following.

Let Vi(x, y) be the set of all four dimensional term vectors S(x, y) = 〈Sj(x, y) | j = 0, 1, 2, 3〉
of the language L′, which may contain only the free variables x, y, such that length(Sj(x, y)) ≤ i
for all j = 0, 1, 2, 3. For each a, u ∈ Mn, we define a subset Vi(a, u) of M4

n by Vi(a, u) =
{(S(a, u))Mn′ | S(x, y) ∈ Vi(x, y)}. Clearly |Vi(a, u)| ≤ ci1, where c1 > 1 depends only on the
language L.

Proposition 22 For each fixed i ∈ ω if n is sufficiently large, a, b, u ∈ Mn, b ≤ ϑ(ϑ(n)) then
the probability of sϑ(n)(a, b) ∈ Vi(a, u) is at most ci2ϑ(n)|Mn|−4, where c2 > 1 depends only on
L.

This proposition will guarantee that changing the value of h on α = sϑ(n)(a, b) does not
change the fact whether x = u is a solution of the equation F (x, a) = 0 or not, since α is not
among the elements which are of the form T (a, u) where T is a term of length at most i =
length(F ). According to the proposition with high probability this will be true simultaneously
for all u ∈Mn.

Proof. For the determination of the set Vi(a, u) we do not need to know the function (h)Mn

since it may take only the values 0 and 1 which are also the values of the terms 0 and a(0).
Therefore we may exclude from the definition of the set Vi the function symbol h. On the
other hand we have to know some values of g(n). We start constructing the set Vi by recursion
on i. If we have Vi already, then to get Vi+1 we have to apply all of the M ′n interpretations
of the function symbols in L′ (with the exception of h) to the r-tuples of Vi, where r always
takes the value of the arity of the corresponding function. Each of these functions, with the
exception of g(n), is fixed. The function g(n) however had a probabilistic definition. When we
need a value of g(n) in this process then we will randomize it. Since there are only a finite
number of functions symbols in L′, we have that |Vi+1| ≤ c1|Vi| for all i = 0, 1, . . ., where c1 is
a suitably chosen constant. Assume now an i ∈ ω is fixed and n is sufficiently large. After we
have constructed Vi in the described way, while choosing some values of g(n) as well, we continue
the randomization of the values of g(n)(x, a, b), which are needed for for getting the values of
x = sj(a, b), j = 0, 1, . . . , ϑ(n).
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Since n is sufficiently large with respect to i, ϑ(n) is also sufficiently large with respect to
i. g(x, a, b) is a permutation of M4

n with one cycle, therefore there exists an j = 1, . . . , ϑ(n)
such that sj(a, b) /∈ Vj(a, u). Since the permutation is chosen with uniform distribution with the
mentioned property, the probability that there exists a j′ ∈ [j + 1, ϑ(n)], such that sj′(a, b) ∈
Vi(a, u)) is at most |Vi(a, u)|2ϑ(n)|Mn|−4, and so |Vi(a, u)| ≤ ci1 implies the conclusion of the
proposition. Q.E.D.(Proposition 22)

Proposition 23 with a probability of at least 1− 2−n with respect to the randomization of the
function g(n) the following conditions are satisfied:

(22) for each fixed x ∈ M4
n, there exists at most one pair a, b ∈ Mn such that b ≤ ϑ(n) and

M ′n |= x = sϑn(a, b)

(23) for all x ∈M4
n, h(n)(x) 6= 0 implies that x /∈

⋃
{Vi(a, u)}a, u ∈Mn, i ∈ [0, ϑ(ϑ(n))].

Proof. First we show that condition (22) is satisfied. Assume that we randomize all of
the values of g(n) involved in the computation of all of the values si(a, b) with 0 ≤ i ≤ ϑ(n),
0 ≤ b ≤ ϑn, a ∈ Mn. This is altogether no more then (ϑ(n))2|Mn| = (ϑ(n))22n values out
of the total |M4

n| = 24n. Assume that we randomize these values of g(n) sequentially, fixing
first a, b and then we randomize the values of g(n) which is needed to determine si(a, b) for
i = 0, 1, . . . , ϑ(b). At the time when we have to choose sϑb(a, b) and the corresponding value of
g(n) we have already chosen at most (ϑ(n))22n values of the cyclic permutation ga,b. Therefore
the probability that we will choose a value which already occurred in the process as a value of
g(n) is at most (ϑ(n))22−3n. Therefore the probability that this will happen for some a, b and i
with the given restrictions is at most (ϑ(n))42−2n ≤ 2−2n.

Condition (23) Assume that an x ∈ M4
n is fixed with h(n)(x) 6= 0. For each fixed

a, u ∈ Mn, i ∈ [0, ϑ(ϑ(n))] we give an upper bound on pa,u,i, the probability of the event
x ∈

⋃
{Vi(a, u)}a, u ∈Mn, i ∈ [0, ϑ(ϑ(n))]

By the definition of h(n), h(n)(x) 6= 0 implies that x = sϑ(n)(a, b) for suitably chosen a
and b. Therefore Proposition 22 implies that pa,u,i ≤ c2ϑ(n)|Mn|−4. Adding the pa,u,i for
all possible values for a, u, i we get that the probability that (23) does not hold is at most
ϑ(n)|Mn|−2 ≤ |Mn|−1 = 2−n. Q.E.D.(Proposition 23).

Proposition 24 For all terms F (x, y) of L′, for all sufficiently large n ∈ ω, with a probability
of at least 1− 2n the following holds:

(24) for all a ∈Mn, M ′n |= ∃x,Φ(x, a) iff M ′′n |= ∃x,Φ(x, a)

Proof. Clearly it is sufficient to show that conditions (22) and (23) of Proposition 23 imply
condition (24) of this proposition. Assume that u ∈ Mn. Let W be the set of all elements w
of Mn such that there is a subterm t of F with t(u, a) = w. Since n is sufficiently large we
may assume that ϑ(ϑ(n)) > length(F ). Therefore condition (23) implies that h(n)(w) = 0 for
all w ∈ W , and we have by definition (h)M ′′n (w)=0, for all w ∈ W . Since for all other function
symbols f of L′, (f)M ′n = (f)Mn′′ , we can prove by induction of the depth of a subterm t of F
that (t(u, a))M ′n = (t(u, a))M ′′n , and therefore (F (u, a))M ′n = (F (u, a))M ′′n . Since this is true for all
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u ∈Mn we get the equivalence of M ′n |= ∃x,Φ(x, a) and M ′′n |= ∃x,Φ(x, a). Q.E.D.(Proposition
24)

We return now to the proof of Lemma 8. Let F (x, y) be a term of L′, and suppose that
n is sufficiently large with respect to length(F ). We show that with a probability of at least
pn = 2−n+1 we have that for all a ∈Mn,

(25) M ′n |= GF (a) = 0↔ ∃x, F (x, a) = 0

Since
∑∞
n=0 pn < ∞ this will imply that with a probability 1 condition (25) holds for each

sufficiently large n, that is the conclusion of Lemma 8 holds.
Proposition 23 and Proposition 24 imply that it is sufficient to prove that if all the three

conditions (22), (23), and are satisfied by the structure M ′n then condition (25) is also satisfied
by Mn. Assume now that the requirements of conditions (22), (23), and are met. Condition
(22) and the definition of h(n) implies that By definition by the definition of GF we have M ′n |=
GF (a) = 1 − h(sϑ(n)(a, b)), where F (x, y) = Tb(x, y). Condition (22) and the definition of h(n)

implies that h(sϑ(n)(a, b)) = 1 iff M ′′n |= ∃x, F (x, a). By condition (24) this is equivalent to
M ′n |= ∃x, F (x, a) which completes the proof of condition (25).
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