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Abstract

We initiate the study of the relationship between two complexity classes, BQP (Bounded-
Error Quantum Polynomial-Time) and PPAD (Polynomial Parity Argument, Directed). We
first give a conjecture that PPAD is contained in BQP, and show a necessary and sufficient
condition for the conjecture to hold. Then we prove that the conjecture is not true under the
oracle model. In the end, we raise some interesting open problems/future directions.
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1 Introduction

Quantum computing and algorithmic game theory are two exciting and active areas in the
last two decades. Quantum computing lies in the intersection of computer science and quantum
physics, and studies the power and limitation of a quantum computer. Algorithmic game theory
touches upon the foundations of both computer science and economics, and aims to design
efficient algorithms in strategic circumstances. If we want to come up with some examples
that are able to demonstrate the interaction between computer science and other disciplines,
then quantum computing and algorithmic game theory are two perfect candidates. Quantum
mechanics may provide additional computational power, and quantum computers can test the
foundations of quantum mechanics. Economics lends some strategic views, and computer science
rewards with computational points of view. We refer readers to [NC00] and [NRTV07] for more
information.

The central topics of quantum computing and algorithmic game theory are the hardness
of two complexity classes, BQP (Bounded-Error Quantum Polynomial-Time) and PPAD
(Polynomial Parity Argument, Directed). BQP, as introduced by Bernstein and Vazarani
[BV97], characterizes efficient computation of a quantum computer and is the quantum analog of
BPP. Very little is known aboutBQP, and a wide belief is thatBQP andNP are incomparable
complexity classes [BBBV97, BV97, Aar10]. Papadimitriou introduced the complexity class
PPAD [Pap94], which is a special class between P and NP. Since then, the hardness of PPAD
has also become a longstanding open problem. Although lots of important problems, say the
problem of computing a Nash equilibrium (NASH for short) [DGP09, CDT09], were shown
to be PPAD-complete, there have been very few relations from PPAD to other complexity
classes.

In this paper, we initiate the study of the relationship between BQP and PPAD. The
representative problem of PPAD is NASH [Pap94], and the most well-known problem in BQP
is factoring [Sho97]. Both NASH and factoring are in the complexity class TFNP (the set
of total search problems, see [MP91]) in the sense that every instance of NASH and factoring
always has a solution. Therefore, it seems that there may be some relationship between PPAD
and BQP.

In fact, this possible relation was (implicitly) mentioned in a talk given by Papadimitriou
ten years ago [Pap01]. Papadimitrious said that “together with factoring, the complexity of
finding a Nash equilibrium is in my opinion the most important concrete open question on the
boundary of P today”. In other words, Papadimitriou asked: do there exist (classically and
deterministically) efficient algorithms for factoring and NASH ? As it have been shown that
there exist efficient quantum algorithms for factoring [Sho97], it is natural for us to ask: do
there exist efficient quantum algorithms for NASH ? More generally, is PPAD contained in
BQP?

Our conjecture is that PPAD is contained in BQP. Formally,

Conjecture 1 PPAD ⊆ BQP.

The conceived relationship can be illustrated by Figure 1, where the green+red is BQP and
the red denotes PPAD.

We will formally define quantum Nash equilibrium, the quantum analog of Nash equilibrium,
and prove the fact that PPAD is contained in BQP if and only if there exists a polynomial-
time quantum algorithm for computing a quantum Nash equilibrium. Therefore, to prove the
conjecture, we need to find an efficient (polynomial-time) quantum algorithm, and to disprove
the conjecture, we have to show a super-polynomial lower bound for the time complexity of
computing a quantum Nash equilibrium.

Another way to express the conjecture is that quantum computers can compute a Nash
equilibrium in polynomial time, or that quantum computers can exponentially speed-up the
computation of a Nash equilibrium. And we will rule out this possibility under the oracle
model.
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Figure 1: The conceived picture

The organization of this paper is as follows. Section 2 presents the definition of BQP and
PPAD, and in Section 3, we introduce the notion of quantum Nash equilibrium and analyze
it. Section 4 provides the necessary and sufficient condition for our conjecture to hold. Section
5 proves a lower bound of computing a Nash equilibrium using quantum computers under the
oracle model. And we concludes the paper with some open problems/future directions in Section
6.

2 Preliminaries

2.1 Notation

Some notations used throughout the paper are listed here.

• N: the set of natural numbers, {1, 2, 3, . . .}.
• [n]: the integer set {1, 2, . . . , n}.
• R: the set of real numbers.

• ||ϕ||: the 2-norm of a vector ϕ. If ϕ is a quantum state
∑

x αx|x⟩, then ||ϕ|| =
√∑

x |αx|2.

2.2 BQP

[BV97] introduced the notion of BQP, and a simplified version is as follows.
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Definition 1 A language L is in BQP if and only if there exists a polynomial-time uniform
family of quantum circuits {Qn : n ∈ N}, such that

• For all n ∈ N, Qn takes n qubits as input and outputs 1 bit.

• For all x in L, Pr(Q|x|(x) = 1) ≥ 2/3.

• For all x not in L, Pr(Q|x|(x) = 0) ≥ 2/3.

2.3 PPAD and PPAD-completeness

Total search problems are problems for which solutions are guaranteed to exist, and the challenge
is to find a specific solution. In [Pap94], Papadimitriou defined the following total search
problem.

Definition 2 (END-OF-THE-LINE) Let S (standing for Successor) and P (standing for Predecessor)
be two polynomial size circuits that given input strings {0, 1}n output strings {0, 1}n. We fur-
ther require that P (0n) = 0n ̸= S(0n). The aim is to find an input x such that P (S(x)) ̸= x or
S(P (x)) ̸= x ̸= 0.

A more intuitive description of END-OF-THE-LINE is as follows. G is a (possibly exponentially
large) directed graph with no isolated vertices, and with every vertex having at most one
predecessor and one successor. G is specified by giving a polynomial-time computable function
f(v) (polynomial in the size of v) that returns the predecessor and successor (if they exist) of
the vertex v. Given a vertex s in G with no predecessor, find a vertex t ̸= s with no predecessor
or no successor. (The input to the problem is the source vertex s and the function f(v)). In
other words, we want any source or sink of the directed graph other than s.

PPAD was defined based on this problem.

Definition 3 (PPAD) The complexity class PPAD contains all total search problems re-
ducible to END-OF-THE-LINE in polynomial time.

PPAD-completeness was also defined.

Definition 4 (PPAD-completeness) A problem is called PPAD-complete if it is in PPAD
and all problems in PPAD can reduce to it in polynomial time.

3 Quantum Nash Equilibrium

3.1 Classical Equilibria

First, we review classical Nash equilibria and correlated equilibria, all of which can be found in
[NRTV07].

In a classical game there are n players, labeled {1, 2, . . . , n}. Each player i has a set Si of
strategies. We use s = (s1, . . . , sn) to denote the vector of strategies selected by the players and
S = ×iSi to denote the set of all possible joint strategies. Each player i has a utility function
ui : S → R, giving the payoff or utility ui(s) to player i on the joint strategy s. There is a
solution concept called Nash equilibrium, in which the equilibrium strategies are known by all
players, and no player can gain more by unilaterally modifying his or her choice. Formally,

Definition 5 A mixed Nash equilibrium is a probability vector p = p1 × . . . × pn for some
probability distributions pi’s over Si’s satisfying that∑
s−i

p−i(s−i)ui(si, s−i) ≥
∑
s−i

p−i(s−i)ui(s
′
i, s−i), ∀i ∈ [n], ∀s′i ∈ Si, ∀si ∈ Si s.t. pi(si) > 0,

where s−i is the strategies chosen by players but player i, and p−i denotes the probability
distribution over s−i. Informally speaking, for a mixed Nash equilibrium, the expected payoff
over probability distribution of s−i is maximized, i.e. Es−i [ui(si, s−i)] ≥ Es−i [ui(s

′
i, s−i)].
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We can further relax the Nash condition and define an ϵ-approximate Nash equilibrium to be a
profile of mixed strategies such that no player can gain more than ϵ amount by changing his/her
own strategy unilaterally. Formally,

Definition 6 An ϵ-approximate Nash equilibrium is a probability vector p = p1 × . . .× pn for
some probability distributions pi’s over Si’s satisfying that∑
s−i

p−i(s−i)ui(si, s−i) ≥
∑
s−i

p−i(s−i)ui(s
′
i, s−i)− ϵ, ∀i ∈ [n], ∀s′i ∈ Si, ∀si ∈ Si s.t. pi(si) > 0,

where ϵ > 0. In addition, the probability distribution of each player may not be independent,
but correlated, forming the notion of correlated equilibria.

Definition 7 A correlated equilibrium is a probability distribution p over S satisfying that∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s
′
i, s−i), ∀i ∈ [n], ∀si, s′i ∈ Si.

Notice that a correlated equilibrium p is a Nash equilibrium if and only if p is a product
distribution.

3.2 Quantum Equilibria

This part generalizes classical equilibria to quantum equilibria, where players are allowed to
use “quantum” strategies. To be more precise, each player i now has a Hilbert space Hi =
span{si : si ∈ Si}, and the joint strategy can be any quantum state ρ in H = ⊗iHi. The
payoff/utility for player i on joint strategy ρ is µi(ρ) = E[ui(s(ρ))] =

∑
s⟨s|ρ|s⟩ui(s), where

s(ρ) is the outcome pure strategy when ρ is measured according to the computational basis
{s : s ∈ S}. Note that what each player i can do is to apply an admissible super-operator Φi

on her own space Hi. We sometimes write Φi for Φi⊗ I−i. We use CPTP (X) to denote the set
of all admissible (completely positive and trace preserving) super-operators on a space X. The
notions of quantum Nash equilibria and quantum correlated equilibria are defined as follows.

Definition 8 A quantum Nash equilibrium is a quantum strategy ρ = ρ1 ⊗ . . .⊗ ρn for ρi’s in
Hi’s satisfying∑

s

⟨s|ρ|s⟩ui(s) ≥
∑
s

⟨s|Φi(ρ)|s⟩ui(s), ∀i ∈ [n], ∀Φi ∈ CPTP (Hi)

Definition 9 A quantum correlated equilibrium is a quantum strategy ρ in H satisfying∑
s

⟨s|ρ|s⟩ui(s) ≥
∑
s

⟨s|Φi(ρ)|s⟩ui(s), ∀i ∈ [n], ∀Φi ∈ CPTP (Hi)

3.3 Relations between Classical and Quantum Equilibria

This section studies the relation between classical and quantum equilibria. A quantum mixed
state ρ naturally induces a classical distribution p over S defined by

p(s) = ρss (1)

While taking diagonal entries seems to be the most natural mapping from quantum states to
classical distributions, there are more options for the mapping in other direction. Given a
classical distribution p over S, we can consider

1. ρ(p) =
∑

s p(s)|s⟩⟨s|,

2. |ψ(p)⟩ =
∑

s

√
p(s)|s⟩, or

3. any density matrix ρ with p(s) = ρss satisfied.
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We want to study whether equilibria in one world, classical or quantum, implies equilibria in
the other world. The following theorem says that quantum always implies classical.

Theorem 3.1 If ρ is a quantum correlated equilibrium, then p defined by p(s) = ρss is a
classical correlated equilibrium. In particular, if ρ is a quantum Nash equilibrium, then p is a
classical Nash equilibrium.

Proof: See the appendix.
The implication from classical to quantum is much more complicated. The following theorem

says that the first mapping always gives a quantum equilibrium. That is, the utility of i cannot
be increased for a classical equilibrium even when player i is allowed to have quantum operations.

Theorem 3.2 If p is a classical correlated equilibrium, then ρ = Σs∈S |s⟩⟨s| is a quantum
correlated equilibrium. In particular, if p is a classical Nash equilibrium, then ρ as defined is a
quantum Nash equilibrium.

Proof: See the appendix.
Following this result, we are able to give an affirmative answer to an important problem,

whether quantum Nash equilibria always exist.

Corollary 3.3 For all standard game G with finite number of players and strategies, quantum
Nash equilibria always exist.

Proof: See the appendix.
The second way of inducing a quantum state is interesting: It preserves (uncorrelated) Nash

equilibria, but does not preserve correlated Nash equilibria in general.

Theorem 3.4 There exists a classical correlated equilibrium p with |ψ⟩ =
∑

s

√
p(s)|s⟩ not

being a quantum correlated equilibrium. However, if p is a classical Nash equilibrium, then
|ψ⟩ =

∑
s

√
p(s)|s⟩ is a quantum Nash equilibrium.

Proof: See the appendix.
Finally, for the third mapping, i.e. a general ρ with p(s) = ρss satisfied, the equilibrium

property can be heavily destroyed, even if p is uncorrelated. (Actually, we will show such
counterexamples even for two-player symmetric games.)

Theorem 3.5 There exist ρ and p satisfying that p(s) = ρss, p is a classical Nash equilibrium,
but ρ is not even a quantum correlated equilibrium.

Proof: See the appendix.
Despite of the above fact, one should not think that the large range of the third type of

mappings always enables some mapping to destroy the equilibria.

Theorem 3.6 There exist classical correlated equilibria p, such that all quantum states ρ with
ρss = p(s) are quantum correlated equilibria.

Proof: See the appendix.

4 A Necessary and Sufficient Condition

In this section, we prove the following theorem.

Theorem 4.1 PPAD ⊆ BQP if and only if there exists a polynomial-time quantum algorithm
for finding a quantum Nash equilibrium.

Proof:
If PPAD ⊆ BQP, then for a game G, there exists a polynomial-time quantum algorithm for

finding a Nash equilibrium p, since finding a Nash equilibrium is a PPAD-complete problem.
As shown in the proof of Corollary 3.3, we can always convert p to a quantum equilibrium ρ
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in polynomial time. Hence, there exists a polynomial-time quantum algorithm for finding a
quantum Nash equilibrium.

Next we will prove the inverse direction for the statement.
We define a new problem as follows.

Definition 10 SAMPLE-NASH is a search problem that, on input a game G, outputs a pure
strategy s sampled from a fixed Nash equilibrium p of the game G.

Suppose that we are given a gameG and we find a quantum Nash equilibrium ρ in polynomial-
time using the quantum algorithm. Here we assume that the induced classical probability
distribution induced from ρ is p, defined by p(s) = ρss. By measuring ρ according to the com-
putational basis {s : s ∈ S}, we can obtain a pure strategy s, which is sampled according to p.
According to Theorem 3.1, p is a classical Nash equilibrium, and therefore s is an output for
SAMPLE-NASH. So we are able to obtain the output for SAMPLE-NASH in polynomial time.
Now we have a polynomial-time quantum algorithm for SAMPLE-NASH.

We have the following result, which is to be proved later.

Lemma 4.2 A PPAD-complete problem can be reduced to SAMPLE-NASH in randomized
polynomial time.

Therefore, we have a polynomial-time quantum algorithm for a PPAD-complete problem,
implying PPAD ⊆ BQP.

4.1 Proof of Lemma 4.2

To prove Lemma 4.2, we use the following result.

Lemma 4.3 [CDT09]
For any constant c > 0, the problem of computing a 1/mc-approximate Nash equilibrium of a
positively normalized 1 m×m bimatrix game is PPAD-complete.

We just need to reduce the problem in Lemma 4.3, to SAMPLE-NASH in randomized
polynomial time.

For an instance of the problem in Lemma 4.3, namely a positively normalizedm×m bimatrix
game G, we use G as the input for SAMPLE-NASH. We assume that we have an algorithm
A for SAMPLE-NASH, and we want to use A to construct an algorithm for the problem in
Lemma 4.3 in randomized polynomial time. Suppose the output of A is sampled from a Nash
equilibrium p = p1 × p2.

Lemma 4.4 Suppose that p = p1 × p2 is a Nash equilibrium of a positively normalized m×m
bimatrix game G, and that the output of A, an algorithm for SAMPLE-NASH, is sampled from
p. For any ϵ = O(1/mc), with high probability, we will get a probability distribution q = q1 × q2
with ||q1 − p1||1 ≤ ϵ and ||q2 − p2||1 ≤ ϵ, after running A for O(m2ϵ−2) times.

Lemma 4.5 Suppose that p = p1 × p2 is a Nash equilibrium of a positively normalized m×m
bimatrix game G. Any probability distribution q = q1×q2 with ||q1−p1||1 ≤ ϵ and ||q2−p2||1 ≤ ϵ,
is a 2ϵ-approximate Nash equilibrium of game G.

By Lemma 4.4, we can run algorithm A for O(m2ϵ−2) times to construct a desired probability
distribution q with high probability. By Lemma 4.5, q is an 2ϵ-approximate Nash equilibrium.
To find an 1/mc-approximate Nash equilibrium, we need to use A for O(m2c+2) times, which
is polynomial in input size 2m2.

1In [CDT09], the game matrices are normalized in the sense that all the entries are between 0 and 1 (positively
normalized), or between −1 and 1.
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4.1.1 Proof of Lemma 4.4

We assume that player 1’sm strategies are s1, s2, . . . , sm. Define k = ⌈4000m2/ϵ2⌉ = O(m2ϵ−2).
For each i ∈ [k], j ∈ [m], define random variable Xij taking values in {0, 1}, where Xij = 1
with probability p1(sj).

Suppose that ϵj = ϵ
2m for each j ∈ [m]. Define random variables Xj to be Xj =

∑
i∈[k] Xij

k
for each j ∈ [m]. By Chernoff bound,

Pr(Xj ≥ p1(sj) + ϵj) ≤ e−2ϵ2jk (2)

and
Pr(Xj ≤ p1(sj)− ϵj) ≤ e−2ϵ2jk. (3)

Define a probability vector q1 to be (X1, . . . , Xm), which is a distribution over strategies
(s1, s2, . . . , sm). It is easily checkable that

∑
j Xj = 1 and that

Pr(||q1 − p1||1 ≤
∑
j∈[m]

|Xj − p1(sj)| ≤
∑
j∈[m]

ϵj ≤ ϵ) ≥ 1−
∑
j∈[m]

2e−2ϵ2jk (4)

≥ 0.995. (5)

Similarly, we can get q2 satisfying ||q2 − p2||1 ≤ ϵ with probability at least 0.995. By union
bound, we can get the desired q with probability at least 0.99.

4.1.2 Proof of Lemma 4.5

For all i in {1, 2}, for all s′i in the set of strategies of player i, and for all si in the support of
the set of strategies of player i, we have the following:

∑
s−i

q−i(s−i)u(s
′
is−i)−

∑
s−i

q−i(s−i)u(sis−i)

=
∑
s−i

p−i(s−i)u(s
′
is−i) +

∑
s−i

(q−i(s−i)− p−i(s−i))u(s
′
is−i)−

∑
s−i

q−i(s−i)u(sis−i)

≤
∑
s−i

p−i(s−i)u(sis−i) + ||q−i − p−i||1 max
s
u(s)−

∑
s−i

q−i(s−i)u(sis−i)

≤
∑
s−i

p−i(s−i)u(sis−i) + ϵ× 1−
∑
s−i

q−i(s−i)u(sis−i)

≤
∑
s−i

(p−i(s−i)− q−i(s−i))u(sis−i) + ϵ

≤||q−i − p−i||1 max
s
u(s) + ϵ

≤ϵ× 1 + ϵ

≤2ϵ

Following the definition of approximate Nash equilibrium, q is a 2ϵ-approximate Nash equi-
librium of G.

5 A Lower Bound under the Oracle Model

5.1 The Oracle Model

The oracle model is also called black-box model, or relativized model, and is one of simplest
models in computer science. Suppose that there is a boolean function f : [N ] → {0, 1}, and
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that f can be computed in polynomial time. We want to find an x ∈ [N ], such that f(x) = 1.
In the context of PPAD-complete problems, N , which could be exponential in the size of the
input, is the number of points in the search space, and f(x) = 1 for x ∈ [N ] means that x is the
answer we desire. For a PPAD-complete problem, there always exists an x ∈ [N ], such that
f(x) = 1, and the question is that we do not know where it is. Such an f is called an oracle,
and we want to compute an x ∈ [N ], such that f(x) = 1.

In an oracle model, algorithms are allowed to make queries to the oracle but are prohibited
to take advantage of what underlies the oracle. Since we use quantum algorithms here, we can
also make use of quantum superposition. For instance, for a quantum state

∑
x αx|x⟩, we first

add some ancilla qubits, obtaining
∑

x αx|x⟩|0⟩, and then make a single query to the oracle,
getting

∑
x αx|x⟩|f(x)⟩.

In summary, in the oracle model, the function f can be seen as the input, and we need to
design a quantum algorithm to find a solution x ∈ [N ] with f(x) = 1, which is guaranteed to
exist. The time complexity is what we care and is defined to the number of queries made to the
oracle.

5.2 The Lower Bound

We use a hybrid argument of [BBBV97, Vaz04] to show a result when there is only one x ∈ [N ]
such that f(x) = 1, namely for the problems with a single solution. Hybrid argument is
from a classic paper by Yao [Yao82], and later has numerous applications in cryptography and
complexity theory [BM84, GL89, HILL99, INW94, Nis91, Nis92, NW94]. Thus, our proof is not
new, and existing techniques are enough to prove the result. This is partly due to the fact that
the oracle model is very well-studied.

Theorem 5.1 Under the oracle model, to solve a PPAD-complete problem with a single solu-
tion, any quantum algorithm has to make at least Ω(

√
N) queries to the oracle.

Proof:
Suppose A is an (arbitrary) algorithm under the oracle model, and it makes k queries to the

input oracle. If k = Ω(N), then everything is done and we need to do nothing. So a reasonable
assumption is that k = o(N).

We define an auxiliary oracle function h : [N ] → {0, 1} with h(y) = 0 for all y ∈ [N ]. Such
an oracle cannot characterize any PPAD-complete problem, as there are always solutions for
PPAD-complete problems while here h means no solution at all. So we use h just purely for
analysis.

Run A on h and we call such a run Ah. Let
∑

y:y∈[N ] αy,t|y⟩ be the query at time t ∈ [k],

and let the query magnitude of y to be
∑

t∈[k] |αy,t|2. It is not hard to see that the expected

query magnitude over all possible y is Ey(
∑

t |αy,t|2) = k/N . We have the following claim.

Claim 1 There exist z1, z2 ∈ [N ] with z1 ̸= z2, such that
∑

t |αz1,t|2 ≤ (k + 1)/N and∑
t |αz2,t|2 ≤ (k + 1)/N .

By Cauchy-Schwartz inequality, we know that
∑

t |αz1,t| ≤ (k + 1)/
√
N and that

∑
t |αz2,t| ≤

(k + 1)/
√
N .

Let ϕh,t, t ∈ [k] be the states of Ah after the t-th step. We define two oracles g1 : [N ] → {0, 1}
and g2 : [N ] → {0, 1}:

• g1(z1) = 1 and for all y ̸= z1, g1(y) = 0;

• g2(z2) = 1 and for all y ̸= z2, g2(y) = 0.

g1 and g2 are the legal inputs of A and correspond to PPAD-complete problems. Now run the
algorithm A on g1 (the run is denoted as Ag1) and suppose the final state of Ag1 is ϕg1,k. By
hybrid argument, we have the following claim.

Claim 2 [Vaz04]

ϕh,k − ϕg1,k =
∑k

t=1Et, where ||Et|| ≤
√
2|αz1,t|.
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Along with the triangle inequality, we have

||ϕh,k − ϕg1,k|| ≤
∑
t

||Et||

≤
√
2
∑
t

|αz,t|

≤ (k + 1)
√
2/N. (6)

Similarly, if we run the algorithm A on g2 (the run is denoted as Ag2) and the final state of Ag2

is ϕg2,k, then a hybrid argument and the triangle inequality could show that

||ϕh,k − ϕg2,k|| ≤ (k + 1)
√

2/N. (7)

If we apply the triangle inequality for another time, we get

||ϕg1,k − ϕg2,k|| ≤ 2(k + 1)
√
2/N, (8)

implying that ϕg1,k and ϕg2,k can be distinguished with probability at most O(k/
√
N). Since

z1 ̸= z2, if A can solve problems corresponding to g1 and g2, namely if A can find z1 and z2, it
should at least distinguish g1 and g2, and also ϕg1,k and ϕg2,k with some constant probability.

As a result, A should at least make Ω(
√
N) queries.

When there are multiple solutions, say p solutions, then k = Ω(
√
N/p), which is a straight-

forward generalization from the theorem above. More formally,

Corollary 5.2 Under the oracle model, to solve a PPAD-complete problem with p solutions,
any quantum algorithm has to make at least Ω(

√
N/p) queries to the oracle.

5.2.1 Proof of Claim 1

Let us suppose that there does not exist z1, z2 ∈ [N ] with z1 ̸= z2, such that
∑

t |αz1,t|2 ≤
(k + 1)/N and

∑
t |αz2,t|2 ≤ (k + 1)/N . This means there is at most one z ∈ [N ] such that∑

t |αz,t|2 ≤ (k + 1)/N , and for all y ̸= z, y ∈ [N ],
∑

t |αy,t|2 > (k + 1)/N . Thus,∑
y:y∈[N ]

∑
t

|αy,t|2 =
∑
y:y ̸=z

∑
t

|αy,t|2 +
∑
t

|αz,t|2

≥
∑
y:y ̸=z

∑
t

|αy,t|2

> (N − 1)× (k + 1)/N

= k + 1− (k + 1)/N

> k. (9)

But we have already known that

Ey:y∈[N ](
∑
t

|αy,t|2) = k/N, (10)

and that ∑
y:y∈[N ]

(
∑
t

|αy,t|2) = k. (11)

The inequality (9) and the equation (11) exhibit clear contradiction. Consequently, our assump-
tion that there does not exist z1, z2 ∈ [N ] with z1 ̸= z2, such that

∑
t |αz1,t|2 ≤ (k + 1)/N and∑

t |αz2,t|2 ≤ (k + 1)/N is incorrect. This completes the proof of Claim 1.
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6 Concluding Remarks

On the one hand, it seems that the well-studied oracle model presents us an insurmountable
obstacle towards an exponentially speed-up using quantum computers for computing PPAD-
complete problems. If we want to make a step closer to prove our conjecture that PPAD is
contained in BQP, we have to get rid of oracles and design new structures that can provide
more information. We believe that this may need fundamental revolution in the field of quantum
computing. The theory community has spent lots of effort in designing quantum algorithms for
factoring as well as graph isomorphism, two special problems between P and NP. And now it
is the time that we turn our attention to the third special problem, NASH, or more generally
PPAD-complete problems.

On the other hand, it seems that purely exploiting the potential of quantum superposition
is not enough, and quantum entanglement may play a more important role as a resource for
quantum computation. It is well-known that quantum information theory relies on entangle-
ment in two quite different contexts: as a resource for quantum computation and as a source
for nonlocal correlations among different parties. It is strange and not understood that entan-
glement is crucially linked with nonlocality but not with computation. Quantum computation
and nonlocality are two faces of entanglement, and more connections should be established in
the future.
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A Proof of Theorem 3.1

Recall that we are given that µi(ρ) ≥ µi(Φi(ρ)) for all players i and all admissible super-
operators Φi on Hi, and we want to prove that for all players i and all strategies si, s

′
i ∈ Si,∑

s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s
′
i, s−i) (12)

for p(s) = ρss.
Fix i and si, s

′
i. Consider the admissible super-operator Φi defined by

Φi =
∑
ti ̸=si

PtiρPti + (si ↔ s′i)PsiρPsi(si ↔ s′i) (13)

where Pti is the projection onto the subspace span(ti) ⊗ H−i, and (si ↔ s′i) is the operator
swapping si and s

′
i. It is not hard to verify that Φi is an admissible super-operator. Next we

will show that the difference of µi(ρ) and µi(Φi(ρ)) is the same as that of the two sides of Eq.
(12).

µi(ρ) = E[ui(s(ρ))]

=
∑
s̄∈S

⟨s̄|ρ|s̄⟩ui(s̄) =
∑
s̄∈S

p(s̄)ui(s̄)

=
∑
s̄i ̸=si

∑
s̄−i

p(s̄)ui(s̄) +
∑
s̄−i

p(sis̄−i)ui(sis̄−i) (14)

µi(Φi(ρ)) =
∑
s̄∈S

⟨s̄|Φi(ρ)|s̄⟩ui(s̄)

=
∑
s̄∈S

⟨s̄|
∑
ti ̸=si

PtiρPti + (si ↔ s′i)PsiρPsi(si ↔ s′i)|s̄⟩ui(s̄)

=
∑
s̄∈S

⟨s̄|
∑
ti ̸=si

PtiρPti |s̄⟩ui(s̄) +
∑
s̄∈S

⟨s̄|(si ↔ s′i)PsiρPsi(si ↔ s′i)|s̄⟩ui(s̄)

=
∑
ti ̸=si

∑
s̄−i

p(tis̄−i)ui(tis̄−i) +
∑
s̄−i

p(sis̄−i)ui(s
′
is̄−i) (15)

Since ρ is a quantum correlated equilibrium, we have µi(ρ) ≥ µi(Φi(ρ)). Comparing the
above two expressions for µi(ρ) and µi(Φi(ρ)) gives Eq. (12) as desired.

B Proof of Theorem 3.2

Let α(si) =
∑

s−i
p(si, s−i)ui(si, s−i) and β(si, s

′
i) =

∑
s−i

p(si, s−i)ui(s
′
i, s−i). Now for any i,

we have

µi(ρ) =
∑
s

⟨s|ρ|s⟩ui(s) =
∑
s

p(s)ui(s) =
∑
si

∑
s−i

p(sis−i)ui(sis−i) =
∑
si

α(si) (16)

where the first two steps are by the definition of µi and p. Now for an arbitrary TPCP super-
operator Φi, we use its Kraus representation to obtain

Φi(ρ) =
k∑

j=1

(Aij ⊗ I−i)ρ(A
∗
ij ⊗ I−i) (17)



with constraint
∑k

j=1A
∗
ijAij = Ii, where Ii is the identity super-operator from L(Hi) to L(Hi).

Now we have

µi(Φi(ρ)) =
∑
s′

⟨s′|Φi(ρ)|s′⟩ui(s′) // by the def of µi

=
∑
s′

⟨s′|
k∑

j=1

(Aij ⊗ I−i)ρ(A
∗
ij ⊗ I−i)|s′⟩ui(s′)

=
∑
s′

k∑
j=1

⟨s′|(Aij ⊗ I−i)(
∑
s

p(s)|s⟩⟨s|)(A∗
ij ⊗ I−i)|s′⟩ui(s′) // by the def of ρ

=
∑
s′

∑
s

k∑
j=1

⟨s′|Aij ⊗ I−i|s⟩⟨s|A∗
ij ⊗ I−i|s′⟩p(s)ui(s′)

=
∑
s′i

∑
s

k∑
j=1

⟨s′i|Aij |si⟩⟨si|A∗
ij |s′i⟩p(sis−i)ui(s

′
is−i)

=
∑
s′i

∑
si

k∑
j=1

⟨s′i|Aij |si⟩⟨si|A∗
ij |s′i⟩β(si, s′i) // by the def of β(si, s

′
i)

Note that ⟨s′i|Aij |si⟩⟨si|A∗
ij |s′i⟩ = ∥⟨s′i|Aij |si⟩∥2 ≥ 0, thus by the assumption that β(si, s

′
i) ≤

α(s′i) (i.e. p is a classical correlated equilibrium), we have

µi(Φi(ρ)) ≤
∑
si

k∑
j=1

∑
s′i

⟨s′i|Aij |si⟩⟨si|A∗
ij |s′i⟩α(si)

=
∑
si

k∑
j=1

⟨si|A∗
ij(

∑
s′i

|s′i⟩⟨s′i|)Aij |si⟩α(si)

=
∑
si

⟨si|
k∑

j=1

A∗
ijAij |si⟩α(s′i)

=
∑
si

⟨si|si⟩α(si)

= µi(ρ)

where the last equality is by Eq. (16). This completes the proof of Theorem 3.2.

B.1 Proof of Corollary 3.3

We will reduce the existence of a quantum Nash equilibrium to the existence of a Nash equilib-
rium.

For a given game G with finite players and finite strategies, there always exists a Nash equi-
librium, say p. We transform p into a quantum state ρ using the the mapping ρ =

∑
s p(s)|s⟩⟨s|.

By Theorem 3.2, ρ is guaranteed to be quantum Nash equilibrium of G.
Thus, quantum Nash equilibria always exist.

C Proof of Theorem 3.4

C.1 Examples of the First Statement

Define utility functions of Player 1 and 2 to be:



A =

[
270 126
0 270

]
.

Suppose the initial state is

|ψ⟩ =
√
1/3|00⟩+

√
1/6|01⟩+

√
1/6|10⟩+

√
1/3|11⟩,

whose corresponding density matrix is

ρ =


1/3

√
1/18

√
1/18 1/3√

1/18 1/6 1/6
√
1/18√

1/18 1/6 1/6
√
1/18

1/3
√
1/18

√
1/18 1/3

 ,
and whose corresponding classical correlated distribution is

p =

[
1/3 1/6
1/6 1/3

]
,

which is easily verified to be a classical correlated equilibrium.
However, ρ is not a quantum Nash equilibrium. Define a unitary matrix

G =

[√
2/3

√
1/3√

1/3 −
√
2/3

]
.

Consider

ρ′ = (G⊗ I)ρ(G⊗ I) =


1/2

√
2/3 0 −1/6√

2/3 4/9 0 −
√
2/9

0 0 0 0

−1/6 −
√
2/9 0 1/18

 .
It is easily seen that ρ′ has higher expected utility value for player 1, actually

µ1(ρ
′) = 206, µ1(ρ) = 201.

C.2 Proof of the Second Statement

Let ρ = |ψ⟩⟨ψ| =
∑

a,b

√
p(a)p(b)|a⟩⟨b|. Then

µi(ρ) =
∑
s

⟨s|ρ|s⟩ui(s)

=
∑
s

⟨s|
∑
a,b

√
p(a)p(b)|a⟩⟨b||s⟩ui(s)

=
∑
s

p(s)ui(s)

=
∑
si

pi(si)
∑
s−i

p−i(s−i)ui(si, s−i)

=
∑

si:pi(si)>0

pi(si)
∑
s−i

p−i(s−i)ui(si, s−i)

Now assume that Player i applies an admissible super-operator Φi on ρ:

Φi(ρ) =
k∑

j=1

(Aij ⊗ I−i)ρ(A
∗
ij ⊗ I−i)



where
∑k

j=1A
∗
ijAij = Ii.

Let s̄i be a strategy s.t. pi(s̄i) > 0. Then by the definition of Nash equilibrium, we have∑
si

p−i(s−i)ui(sis−i) ≤
∑
si

p−i(s−i)ui(s̄is−i), (18)

for any si.

µi(Φi(ρ)) =
∑
s

⟨s|Φi(ρ)|s⟩ui(s)

=
∑
s

⟨s|
k∑

j=1

(Aij ⊗ I−i)ρ(A
∗
ij ⊗ I−i)|s⟩ui(s)

=
∑
s

⟨s|
k∑

j=1

(Aij ⊗ I−i)
∑
a,b

√
p(a)p(b)|a⟩⟨b|(A∗

ij ⊗ I−i)|s⟩ui(s)

=
∑

s,a,b,j

√
p(a)p(b)⟨s|(Aij ⊗ I−i)|a⟩⟨b|(A∗

ij ⊗ I−i)|s⟩ui(s)

=
∑

s,a,b,j

√
pi(ai)pi(bi)

√
p−i(a−i)p−i(b−i)⟨si|Aij |ai⟩⟨s−i|a−i⟩⟨bi|A∗

ij |si⟩⟨b−i|s−i⟩ui(s)

=
∑

si,s−i,ai,bi,j

√
pi(ai)pi(bi)⟨si|Aij |ai⟩⟨bi|A∗

ij |si⟩p−i(s−i)ui(si, s−i)

=
∑

si,s−i,ai,bi,j:pi(ai)>0,pi(bi)>0

√
pi(ai)pi(bi)⟨si|Aij |ai⟩⟨bi|A∗

ij |si⟩p−i(s−i)ui(si, s−i)

=
∑

si,ai,bi,j:pi(ai)>0,pi(bi)>0

√
pi(ai)pi(bi)⟨si|Aij |ai⟩⟨bi|A∗

ij |si⟩
∑
s−i

p−i(s−i)ui(si, s−i)

≤
∑

si,ai,bi,j:pi(ai)>0,pi(bi)>0

√
pi(ai)pi(bi)⟨si|Aij |ai⟩⟨bi|A∗

ij |si⟩
∑
s−i

p−i(s−i)ui(ai, s−i)

=
∑

si,ai,bi,j:pi(ai)>0,pi(bi)>0

√
pi(ai)pi(bi)⟨bi|A∗

ij |si⟩⟨si|Aij |ai⟩
∑
s−i

p−i(s−i)ui(ai, s−i)

=
∑

ai,bi,j:pi(ai)>0,pi(bi)>0

√
pi(ai)pi(bi)⟨bi|A∗

ijAij |ai⟩
∑
s−i

p−i(s−i)ui(ai, s−i)

=
∑

ai,bi:pi(ai)>0,pi(bi)>0

√
pi(ai)pi(bi)⟨bi|ai⟩

∑
s−i

p−i(s−i)ui(ai, s−i)

=
∑

s̄i:pi(s̄i)>0

pi(s̄i)
∑
s−i

p−i(s−i)ui(s̄i, s−i)

= µi(ρ)

This completes the proof of Theorem 3.4.
From the above proof, one can see that if supp(pi) = Si, then the only inequality becomes

the equality. We thus obtain the following fact.

Corollary C.1 If p is a classical Nash equilibrium and supp(pi) = Si, then |ψ⟩ =
∑

s

√
p(s)|s⟩

is a quantum Nash equilibrium, and any quantum operation by Player i does not change his/her
utility value.



D Examples in Theorem 3.5

Define the utility matrices of both Player 1 and Player 2 to be:

u1 = u2 = u =

[
2 1
1 2

]
Note that since u is symmetric, so is the game. Below we will show a couple of examples
where pρ is a classical (sometimes correlated) Nash equilibrium but ρ itself is not a quantum
(correlated) Nash equilibrium.

Example 1: a mixed product state

Suppose the initial state is

ρ =
1

2

[
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

]
⊗ |0⟩⟨0|+ 1

2

[
sin2(θ) − cos(θ) sin(θ)

− cos(θ) sin(θ) cos2(θ)

]
⊗ |1⟩⟨1|

(19)

=


cos2(θ)/2 cos(θ) sin(θ)/2

sin2(θ)/2 − cos(θ) sin(θ)/2
cos(θ) sin(θ)/2 sin2(θ)/2

− cos(θ) sin(θ)/2 cos2(θ)/2

 (20)

Take the diagonal elements to form a classical correlated distribution

p =

[
cos2(θ)/2 sin2(θ)/2
sin2(θ)/2 cos2(θ)/2

]
,

which is easily verified to be a classical correlated equilibrium if cos2(θ) ≥ 1/2.

However, ρ is not a quantum Nash equilibrium. Define a unitary matrix

G =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
.

Consider

ρ′ = (G⊗ I)ρ(G⊗ I) =


1/2

0
0

1/2


It is easily seen that ρ′ has higher expected utility value for player 1, actually

µ1(ρ
′) = 2, µ1(ρ) = 1 + cos2(θ).

Example 2: an entangled pure state

Consider

ρ =
1

2


cos2(θ) cos(θ) sin(θ) cos(θ) sin(θ) − cos2(θ)

cos(θ) sin(θ) sin2(θ) sin2(θ) − cos(θ) sin(θ)
cos(θ) sin(θ) sin2(θ) sin2(θ) − cos(θ) sin(θ)
− cos2(θ) − cos(θ) sin(θ) − cos(θ) sin(θ) cos2(θ)





Since the diagonal entries are the same as those in Eq. (19), the induced classical distribution is
also the same as before, which is a classical correlated equilibrium. Again, ρ is not a quantum
Nash equilibrium since

ρ′ = (G⊗ I)ρ(G⊗ I) =


1/2 1/2

0
0

1/2 1/2


and it is easy to see that µ1(ρ

′) = 2.

Example 3: (uncorrelated) Nash equilibrium

Suppose

ρ =


1/4 1/4 1/4 −1/4
1/4 1/4 1/4 −1/4
1/4 1/4 1/4 −1/4
−1/4 −1/4 −1/4 1/4


The induced classical distribution is now

p =

[
1/4 1/4
1/4 1/4

]
.

It is easy to check that this is a classical correlated equilibrium. Consider

ρ′ = (H ⊗ I)ρ(H ⊗ I) =


1/2 1/2

0
0

1/2 1/2


where H is the Hadamard matrix. Here µ1(ρ

′) = 2 > µ1(ρ). Therefore ρ is not a quantum Nash
equilibrium.

E Examples for Theorem 3.6

Define the utility matrices of both Player 1 and Player 2 to be:

u1 = u2 = u =

[
2 1
1 2

]
(21)

Consider the classical correlated distribution

p =

[
1/2 0
0 1/2

]
, (22)

It is easy to check that this is a classical correlated equilibrium.
For any quantum state ρ with ρss = p(s), the expected utility value for player 1 is given by

µ1(ρ
′) = 2. It is impossible to have any density operator ρ′ with µ1(ρ

′) > 2. It is easy to see
that the expected utility value is maximized so ρ is a quantum Nash equilibrium.
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