
Combinatorial PCPs with efficient verifiers∗

Or Meir†

Abstract

The PCP theorem asserts the existence of proofs that can be verified by a verifier that reads
only a very small part of the proof. The theorem was originally proved by Arora and Safra (J.
ACM 45(1)) and Arora et al. (J. ACM 45(3)) using sophisticated algebraic tools. More than
a decade later, Dinur (J. ACM 54(3)) gave a simpler and arguably more intuitive proof using
alternative combinatorial techniques.

One disadvantage of Dinur’s proof compared to the previous algebraic proof is that it yields
less efficient verifiers. In this work, we provide a combinatorial construction of PCPs with
verifiers that are as efficient as the ones obtained by the algebraic methods. The result is the
first combinatorial proof of the PCP theorem for NEXP (originally proved by Babai et al.,
FOCS 1990), and a combinatorial construction of super-fast PCPs of Proximity for NP (first
constructed by Ben-Sasson et al., CCC 2005).

1 Introduction

1.1 Background and Our Results

The PCP theorem [AS98, ALM+98] is one of the major achievements of complexity theory. A PCP
(Probabilistically Checkable Proof) is a proof system that allows checking the validity of a claim
by reading only a constant number of bits of the proof. The PCP theorem asserts the existence of
PCPs of polynomial length for any claim that can be stated as membership in an NP language. The
theorem has found many applications, most notably in establishing lower bounds for approximation
algorithms.

The original proof of the PCP theorem by Arora et al. [AS98, ALM+98] was based on algebraic
techniques: Given a claim to be verified, they construct a PCP for the claim by first “arithmetizing”
the claim, i.e., reducing the claim to a related “algebraic” claim about polynomials over finite
fields, and then constructing a PCP for this algebraic claim. The PCP for the algebraic claim,
in turn, requires an arsenal of tools that employ the algebraic structure of polynomials. While
those algebraic techniques are very important and useful, it seems somewhat odd that one has to
go through algebra in order to prove the PCP theorem, since the theorem itself does not refer to
algebra. Furthermore, those techniques seem to give little intuition as to why the theorem holds.

Given this state of affairs, it is an important goal to gain a better understanding of the PCP
theorem and the reasons for which it holds. In her seminal paper, Dinur [Din07] has made a big step
toward achieving this goal by giving an alternative proof of the PCP theorem using a combinatorial

∗A preliminary version of this paper have appeared in FOCS 09 and as ECCC TR11-104. This research was
partially supported by the Israel Science Foundation (grants No. 460/05 and 1041/08) and by the Adams Fellowship
Program of the Israel Academy of Sciences and Humanities.
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel. Email: or.meir@weizmann.ac.il

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 104 (2011)

approach. Her proof is not only considerably simpler than the original proof, but also seems to
shed more light on the the theorem.

However, Dinur’s PCP construction is still inferior to the algebraic constructions in few aspects.
We believe that it is important to try to come up with combinatorial constructions of PCPs that
match the algebraic constructions in those aspects, as this will hopefully advance our understanding
of the PCP theorem. Two of those aspects, namely the length of the PCPs and their soundness
error, have been dealt with in previous works on the subject [?, DM10]. In this work, we deal with
a third aspect which concerns the running time of the verification procedure, to be discussed next.

Let L be a language in NP, and consider a PCP verifier for verifying claims of the form “x ∈ L”.
Note that, while in order to verify that x ∈ L, the verifier must run in time which is at least linear
in the length of x (since the verifier has to read x), the effect of the proof length on the verifier’s
running time may be much smaller. Using the algebraic techniques, one can construct PCP verifiers
whose running time depends only poly-logarithmically on the proof length. On the other hand, the
verifiers obtained from Dinur’s proof of the PCP theorem are not as efficient, and their running
time depends polynomially on the proof length. While this difference does not matter much in the
context of standard PCPs for NP, it is very significant in two related settings that we describe
below.

PCPs for NEXP. While the PCP theorem is most famous for giving PCP systems for languages
in NP, it can be scaled to higher complexity classes, up to NEXP. Informally, the PCP theorem
for NEXP states that for every language L ∈ NEXP, the claim that x ∈ L can be verified by
reading a constant number of bits from an exponentially long proof, where the verifier runs in
polynomial time. Note that in order to meet the requirement that the verifier runs in polynomial
time, one needs to make sure the verifier’s running time depends only poly-logarithmically on the
proof length.

The PCP theorem for NEXP can be proved by combining the algebraic proof of the PCP
theorem for NP (of [AS98, ALM+98]) with the ideas of Babai et al. [BFL91]. Dinur’s proof, on the
other hand, is capable of proving the PCP theorem for NP, but falls short of proving the theorem
for NEXP due to the running time of its verifiers. Our first main result is the first combinatorial
proof of the PCP theorem for NEXP:

Theorem 1.1 (PCP theorem for NEXP, informal). For every L ∈ NEXP, there exists a prob-
abilistic polynomial time verifier that verifies claims of the form x ∈ L by reading only a constant
number of bits from a proof of length exp (poly (|x|))

Indeed, Theorem 1.1 is known to follow from combining the works of [AS98, ALM+98] and
[BFL91], but we provide a combinatorial proof of this theorem.

PCPs of Proximity. PCPs of Proximity ([BGH+06, DR06]) are a variant of PCPs that allows
a super-fast verification of claims while compromising on their accuracy. Let L ∈ NP and suppose
we wish to verify the claim that x ∈ L. Furthermore, suppose that we are willing to compromise on
the accuracy of the claim, in the sense that we are willing to settle with verifying that x is close to
some string in L. PCPs of Proximity (abbreviated PCPPs) are proofs that allow verifying that x is
close to L by reading only a constant number of bits from both x and the proof. Using the algebraic
methods, one can construct PCPPs with verifiers that run in time which is poly-logarithmic in |x|
(see, e.g., [BGH+05]). Note that this is highly non-trivial even for languages L that are in P.

One can also construct PCPPs using Dinur’s techniques, but the resulting verifiers are not as
efficient, and run in time poly (|x|). While those verifiers still have the property that they only read

2

a constant number of bits from x, they seem to lose much of their intuitive appeal. Our second
main result is a combinatorial construction of PCPPs that allow super-fast verification:

Theorem 1.2 (PCPPs with super-fast verifiers, informal). For every L ∈ NP, there exists a
probabilistic verifier that verifies claims of the form “x is close to L” by reading only a constant
number of bits from x and from a proof of length poly (|x|), and that runs in time poly (log |x|).

Again, a stronger version of Theorem 1.2 was already proved in [BGH+05], but we provide a
combinatorial proof of this theorem.

1.2 Our Techniques

Our techniques employ ideas from both the works of Dinur [Din07] and Dinur and Reingold [DR06].
In this section we review these works and describe the new aspects of our work. For convenience,
we focus on the construction of super-fast PCPPs (Theorem 1.2).

1.2.1 On Dinur’s proof of the PCP theorem

We begin by taking a more detailed look at Dinur’s proof of the PCP theorem, and specifically at her
construction of PCPP verifiers. The crux of Dinur’s construction is a combinatorial amplification
technique for increasing the probability of PCPP verifiers to reject false claims. Specifically, given
a PCPP verifier that uses a proof of length `, and rejects false claims with probability ρ, the
amplification transforms the verifier into a new verifier that rejects false claims with probability
2 · ρ, but uses a proof of length β · ` for some constant β > 1.

Using the amplification technique, we can construct PCPP verifiers that use proofs of polynomial
length as follows. Let L ∈ NP. We first observe that L has a trivial PCPP verifier that uses proofs
of length poly (n) and has rejection probability 1

poly(n) - for example, consider the verifier that
reduces L to the problem of 3Sat, then verifies that a given assignment satisfies a random clause.
Next, we apply the amplification to the trivial verifier iteratively, until we obtain a PCPP verifier
that rejects false claims with constant probability (which does not depend on n). Clearly, the
number of iterations required is O (log n), and therefore the final PCPP verifier uses proofs of
length βO(logn) · poly (n) = poly (n), as required.

As we mentioned before, this proof yields PCPP verifiers that run in time poly (n), while we
would have wanted our verifiers to be super-fast, i.e., run in time poly (log n). The reason for the
inefficiency of Dinur’s PCPP verifiers is that the amplification technique increases the running time
of the verifier to which it is applied by at least a constant factor. Since the amplification is applied
for O (log n) iterations, the resulting blow-up in the running time is at least poly (n).

1.2.2 On Dinur and Reingold’s construction of PCPPs

In order to give a construction of PCPPs with super-fast verifiers, we consider another combina-
torial construction of PCPPs, which was proposed by Dinur and Reingold [DR06] prior to Dinur’s
proof of the PCP theorem. We refer to this construction as the “DR construction”. Like Dinur’s
construction, the DR construction is an iterative construction. However, unlike Dinur’s construc-
tion, the DR construction uses only O(log log n) iterations. This means that if their construction
can be implemented in a way such that each iteration incurs a linear blow-up to the running time
of the verifiers, then the final verifiers will run in time poly log n as we desire. Our first main
technical contribution is showing that such an implementation is indeed possible. Providing such an
implementation requires developing new ideas, as well as revisiting several known techniques from
the PCP literature and showing that they have super-fast implementations.

3

Still, the DR construction has a significant shortcoming: its verifiers use proofs that are too
long; specifically, this construction uses proofs of length npoly logn. Our second main technical
contribution is showing how to modify the DR construction so as to have proofs of length poly (n)
while maintaining the high efficiency of the verifiers.

1.2.3 Our construction vs. the DR construction

Following Dinur and Reingold, it is more convenient to describe our construction in terms of
“assignment testers” (ATs). Assignment testers are PCPPs that verify that an assignment is close
to a satisfying assignment of a given circuit. Any construction of ATs yields a construction of PCPs
and PCPPs, and therefore our goal is to construct ATs whose running time is poly-logarithmic in
the size of the given circuit.

The crux of the DR construction is a reduction that transforms an AT that acts on circuits of
size k to an AT that acts on circuits of size kc (for some constant c > 0). Using such a reduction,
it is possible to construct an AT that works on circuits of size n by starting from an AT that works
on circuits of constant size and applying the reduction for O(log log n) times. However, the DR
reduction also increases the proof length from ` to `c

′
(for some constant c′ > c), which causes the

final ATs to have proof length npoly logn. Moreover, the reduction runs in time that is polynomial
in the given circuit, rather than poly-logarithmic. We turn to discuss the issues of improving the
proof length and improving the running time separately.

The proof length A close examination of the DR reduction shows that its superfluous blow-up
stems from two sources. The first source is the use of a “parallel repetition”-like error reduction
technique, which yields a polynomial blow-up to the proof length. This blow-up can be easily
reduced by using the more efficient amplification technique from Dinur’s work.

The second source of the blow-up is the use of a particular circuit decomposition technique.
The DR reduction uses a procedure that decomposes a circuit into an “equivalent” set of smaller
circuits. This part of the reduction yields a blow-up that is determined by the parameters of the
decomposition. The DR reduction uses a straightforward method of decomposition that incurs a
polynomial blow-up. In our work, we present an alternative decomposition method that is based
on packet-routing ideas [BFLS91, PS94] and incurs a blow-up of only a poly-logarithmic factor, as
required.

The running time For the rest of the discussion, it would be convenient to view the DR reduction
as constructing a “big” AT that acts on “big” circuits from a “small” AT that acts on “small”
circuits. The big AT works roughly by decomposing the given circuit to an equivalent set of
smaller circuits, invoking the small AT on each of the smaller circuits, and combining the resulting
residual tests in a sophisticated way. However, if we wish the big AT to run in time which is linear
in the running time of the small AT, we can not afford invoking the small AT on each of the smaller
circuits since the the number of those circuits is super-constant. We therefore modify the reduction
so that it does not invoke the small AT on each of the smaller circuits, but rather invoke it once
on the “universal circuit”, and use this single invocation for testing the smaller circuits. When
designed carefully, the modified reduction behaves like the original reduction, but has the desired
poly-logarithmic running time.

In addition to the foregoing issue, we must also show that our decomposition method and
Dinur’s amplification technique have sufficiently efficient implementations. This is easily done
for the decomposition. However, implementing Dinur’s error reduction is non-trivial, and can be
done only for PCPs that possess a certain property. The efficient implementation of Dinur’s error

4

reduction method, and of several other known PCP techniques, is an additional contribution of our
work.

Organization of the paper In Section 2 we cover the relevant background for our work and
give a formal statement of our main results. In Section 3 we give a high-level overview of our work.
In Sections 4 and 5 we define super-fast assignment testers, which are central for our work, and
develop tools for working with those testers. Finally, in Sections 6, 7, and 8, we prove our main
technical results. A more detailed description of the organization of the paper is given at the end
of the overview in Section 3.5.

2 Preliminaries and Our Main Results

2.1 Notational Conventions

For any n ∈ N, we denote [n]
def
= {1, . . . , n}. For any S ⊆ [n] and x ∈ {0, 1}n, we denote by x|S the

projection of x to S. That is, if S = {i1, . . . , is} for i1 < . . . < is, then x|S = xi1 . . . xis
For every functions g, f1, . . . , fm : N→ N, we denote by g = poly (f1, . . . , fm) the fact that g is

asymptotically bounded by some polynomial in f1, . . . , fm. We use the notation g = poly log (f1, . . . , fm)
as an abbreviation for g = poly (log f1, . . . , log fm).

For any two strings x, y ∈ {0, 1}n, we denote by dist (x, y) the relative Hamming distance between

x and y, i.e., dist(x, y)
def
= Pri∈[n] [xi 6= yi]. For any string x ∈ {0, 1}∗ and a set S ⊆ {0, 1}∗, we

denote by dist (x, S) the relative Hamming distance between x and the nearest string of length
|x| in S, and we use the convention that dist (x, S) = 1 if no string of length |x| exists in S. In
particular, we define dist(x, ∅) = 1.

For any circuit ϕ, we denote by SAT(ϕ) the set of satisfying assignments of ϕ. We define the
size of ϕ to be the number of wires in ϕ.

2.2 PCPs

As discussed in the introduction, the focus of this work is on proofs that can be verified by reading
a small number of bits of the proof while running in a short time. It is usually also important to
keep track of the randomness complexity of the verifier. This leads to the following definition of
PCPs.

Definition 2.1. Let r, q, t : N→ N. A (r, q, t)-PCP verifier V is a probabilistic oracle machine that
when given input x ∈ {0, 1}∗, runs for at most t(|x|) steps, tosses at most r(|x|) coins, makes at
most q(|x|) non-adaptive queries to its oracle, and outputs either “accept” or “reject”. We refer
to r, q, and t, as the randomness complexity, query complexity and time complexity of the verifier
respectively.

Remark 2.2. There is a tight connection between the length of the proof that a PCP verifier uses
to its randomness complexity and query complexity. To see it, note that for an (r, q, t)-PCP verifier
V and an input x, the verifier V can make at most 2r(|x|) · q(|x|) different queries, and hence the
“effective proof length” of V is upper bounded by 2r(|x|) · q(|x|).

Now that we have defined the verifiers, we can define the languages for which membership can
be verified.

Definition 2.3. Let r, q, t : N→ N, let L ⊆ {0, 1}∗ and let ρ ∈ (0, 1]. We say that L ∈ PCPρ [r, q, t]
if there exists an (r, q, t)-PCP verifier V that satisfies the following requirements:

5

• Completeness: For every x ∈ L, there exists π ∈ {0, 1}∗ such that Pr [V π(x) accepts] = 1.

• Soundness: For every x /∈ L and for every π ∈ {0, 1}∗ it holds that Pr [V π(x) rejects] ≥ ρ.

The probability above is taken over the randomness of the verifier V .

Remark 2.4. Note that Definition 2.3 specifies the rejection probability, i.e., the probability of
false claims to be rejected. We warn that it is more common in PCP literature to specify the error
probability, i.e., the probability that false claims are accepted.

Remark 2.5. Note that for any two constants 0 < ρ1 < ρ2 < 1, it holds that PCPρ1 [r, q, t] =
PCPρ2 [O (r) , O (q) , O (t)] by a standard amplification argument. Thus, as long as we do not view
constant factors as significant, we can ignore the exact constant ρ and refer to the class PCP [r, q, t].

Remark 2.6. The standard notation usually omits the running time t, and refers to the class
PCP [r, q], which equals PCP [r, q,poly(n)].

The PCP theorem is usually stated as NP ⊆ PCP [O (log n) , O(1)], but in fact, the original
proof of [AS98, ALM+98], when combined with earlier ideas of [BFL91], actually establishes some-
thing stronger. In order to state the full theorem, let us say that a function f : N→ N is admissible
if it can be computed in time poly log f(n) (this definition can be extended for functions f of many
variables).

Theorem 2.7 (implicit in the PCP theorem of [BFL91, AS98, ALM+98]). For any admissible
function T (n) = Ω(n), it holds that

NTIME (T (n)) ⊆ PCP [O (log T (n)) , O(1),poly (n, log T (n))]

In her paper [Din07], Dinur presented a combinatorial proof of the PCP theorem. However,
while her proof matches the randomness and query complexity of Theorem 2.7, it only yields a
weaker guarantee on the time complexity of the verifier:

Theorem 2.8 (Implicit in Dinur’s PCP theorem [Din07]). For any admissible function T (n) = Ω(n),
it holds that

NTIME (T (n)) ⊆ PCP [O (log T (n)) , O(1),poly (T (n))]

Note that due to the difference in the time complexity, Theorem 2.7 implies Theorem 1.1 (PCP
theorem for NEXP) as a special case for T (n) = exp (poly (n)), while Theorem 2.8 does not.
One contribution of this work is a combinatorial proof for Theorem 2.7. This proof is actually an
immediate corollary of our proof of Theorem 2.16 to be discussed in the next section.

2.3 PCPs of Proximity

2.3.1 The definition of PCPPs

We turn to formally define the notion of PCPs of Proximity (PCPPs). We use a definition that
is more general than the one discussed in Section 1. In Section 1, we have described PCPPs as
verifiers that a string x is close to being in a language L ∈ NP by reading a constant number of
bits from x and from an additional proof. For example, if L is the language of graphs with a clique
of size at least n

4 (where n is the number of vertices in the graph), then one can use a PCPP verifier
to verify that x is close to representing such a graph. We can consider a more general example, in
which we wish to verify that x is close to a graph of n vertices that contains a clique of size m,

6

where m is a parameter given as an input to the verifier. In such a case, we would still want the
PCPP verifier to read only a constant number of bits of x, but we would want to allow the verifier
to read all of m, which is represented using log n bits. It therefore makes sense to think of PCPP
verifiers that are given two inputs:

1. An explicit input that is given on their input tape, and which they are allowed to read entirely.

2. An implicit input to which they are given oracle access, and of which they are only allowed
to read a constant number of bits.

In order to define the languages that such verifiers accept, we need to consider languages of pairs
(w, x), where w is the explicit input and x is the implicit input. This motivates the following
definition:

Definition 2.9. A pair-language is a relation L ⊆ {0, 1}∗ × {0, 1}∗. For every w ∈ {0, 1}∗, we

denote L(w)
def
= {x : (w, x) ∈ L}.

Using Definition 2.9, we can describe the task of PCPP verifiers as follows: Given w, x ∈ {0, 1}∗,
verify that x is close to L(w) by reading all of w and a constant number of bits from x and from an
additional proof. For super-fast verifiers, we would also require a running time of poly (|w| , log |x|).
In the foregoing example of cliques of size k, the explicit input w will be of the form (n,m) and
L(w) will be the set of all graphs of n vertices that contain a clique of size m. Note that in this
example w can be represented using O (log n) bits, so super-fast verifiers will indeed run in time
poly-logarithmic in the size of the graph.

PCPs of Proximity were defined independently by Ben-Sasson et al. [BGH+06] and by Dinur
and Reingold [DR06]1, where the latter used the term “Assignment Testers”. The question of
the efficiency of the verifiers is more appealing when viewed using the definition of [BGH+06], and
therefore we chose to present the foregoing intuitive description of PCPPs in the spirit of [BGH+06].
Below, we present the definition of PCPPs of [BGH+05], which is in the spirit of [BGH+06] but
better suits our purposes. We then state our results according to this definition.

Definition 2.10 (PCPP verifier, following [BGH+05]). Let r, q : N → N and let t : N × N → N.
An (r, q, t)-PCPP verifier is a probabilistic oracle machine that has access to two oracles, and acts
as follows:

1. The machine expects to be given as an explicit input a pair (w,m), where w ∈ {0, 1}∗ and
m ∈ N. The machine also expects to be given access to a string x ∈ {0, 1}m in the first oracle
as well as to a string π ∈ {0, 1}∗ in the second oracle.

2. The machine runs for at most t (|w| ,m) steps, tosses at most r (|w|+m) coins and makes at
most q (|w|+m) queries to both its oracles non-adaptively.

3. Finally, the machine outputs either “accept” or “reject”.

We refer to r, q and t as the randomness complexity, query complexity and time complexity of the
verifier respectively. Note that t(n,m) depends both on |w| and on |x|, while r(n) and q(n) depend
only on their sum. The reason is that we want the time complexity to depend differently on |w|
and on |x| (e.g., to depend polynomially on |w| and poly-logarithmically on |x|).

For a PCPP verifier V and strings w, x, π ∈ {0, 1}∗, we denote by V x,π (w) the output of V
when given (w, |x|) as explicit input, x as the first oracle and π as the second oracle. That is,
V x,π (w) is a short hand for V x,π (w, |x|).

1We mention that PCPs of Proximity are related to the previous notion holographic proofs of [BFLS91] and to
the work of [Sze99], see [BGH+06] for further discussion.

7

Definition 2.11 (PCPP). Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair-language and let ρ > 0. We say
that L ∈ PCPPρ [r(n), q(n), t(n,m)] if there exists an (r(n), q(n), t(n,m))-PCPP verifier V that
satisfies the following requirements:

• Completeness: For every (w, x) ∈ L, there exists π ∈ {0, 1}∗ such that Pr [V x,π(w) accepts] = 1.

• Soundness: For every w, x ∈ {0, 1}∗ and for every π ∈ {0, 1}∗ it holds that Pr [V x,π(w) rejects] ≥ ρ·
dist (x, L(w)).

The probability above is taken over the randomness of the verifier V . We refer to ρ as the rejection
ratio of V .

Notation 2.12. Similarly to the PCP case, when we do not view constant factors as signifi-
cant, we will drop ρ from the notation PCPPρ [r, q, t], since for every 0 < ρ1 < ρ2 it holds that
PCPPρ1 [r, q, t] = PCPPρ2 [O(r), O(q), O(t)].

We turn to discuss two important features of Definition 2.11.

The soundness requirement. Note that in general, the probability that V rejects a pair (w, x)
must depends on the distance of x to L(w). The reason is that if V is given access to some x that
is very close to x′ ∈ L(w), then the probability that it queries a bit on which x and x′ differ may
very small.
We mention that the requirement that the rejection probability would be proportional to dist (x, L(w))
is a fairly strong requirement, and that PCPPs that satisfy this requirement are sometimes referred
to in the literature as “Strong PCPPs”. One may also consider weaker soundness requirements.
However, we use the stronger requirement since we can meet it, and since it is very convenient to
work with.

PCPPs versus PCPs The following corollary shows that PCPPs are in a sense a generalization
of PCPs:

Corollary 2.13 ([BGH+06, Proposition 2.4]). Let PL ∈ PCPPρ [r(n), q(n), t(n,m)] be a pair-
language, let p : N → N be such that for every (w, x) ∈ L it holds that |x| ≤ p (n), and define a

language L′
def
= {w : ∃x s.t. (w, x) ∈ PL}. Then it holds that L′ ∈ PCPρ [r(n), q(n), t (n, p(n))].

Proof. Let V be the PCPP verifier for PL. We construct a verifier V ′ for L′ as follows. For any
w ∈ L′, a proof π′ that convinces V ′ to accept w will consist of a string x such that (w, x) ∈ L′
and a proof π that convinces V to accept (w, x). When invoked, the verifier V ′ simply invokes V
on explicit input w, implicit input x, and proof π. The analysis of V ′ is trivial. �

Remark 2.14. The proof of Corollary 2.13 is based on a different perspective on PCPPs than the
one we used throughout this section. So far we have treated the implicit input x as a claim to be
verified, and the explicit input w as auxiliary parameters. However, one can also view w as the
claim to be verified and x as the witness for the claim w. In this perspective, the role of the PCPP
verifier is to verify that x is close to being a valid witness for the claim w. While this perspective
is often more useful for working with PCPPs, we feel that it is less appealing as a motivation for
the study of PCPPs, and therefore did not use it in our presentation.

8

2.3.2 Constructions of PCPPs and our results

The following notation is useful for stating the constructions of PCPPs.

Notation 2.15. Let T : N×N→ N let PL ⊆ {0, 1}∗×{0, 1}∗ be a pair-language. We say that L is
decidable in time T if there exists a Turing machine M such that when M us given as input a pair
(w, x), the machine M runs in time at most T (|x| , |w|), and accepts if and only if (w, x) ∈ PL,

Super-fast PCPPs were defined and explicitly constructed for the first time by [BGH+05].
However, one can obtain a simpler and weaker construction of super-fast PCPPs by combining
the techniques of the earlier works of [BFL91, AS98, ALM+98], their algebraic techniques can be
modified and combined with earlier ideas from [BFL91] to yield the following PCPPs2:

Theorem 2.16 (PCPPs that can be obtained from [BFL91, AS98, ALM+98]). For any admissible
function T (n,m) and a pair-language PL that is decidable in time T it holds that

PL ∈ PCPP [O (log T (n,m)) , O(1),poly (n, log T (n,m))]

In her work [Din07], Dinur has also given a construction of PCPPs. Her focus in this part of
the work was giving PCPPs with short proofs, and in order to construct them she combined her
combinatorial techniques with the previous algebraic techniques (i.e., [BMS08]). However, one can
also obtain the following PCPPs using only Dinur’s combinatorial techniques:

Theorem 2.17 (PCPPs that can be obtained from [Din07]). For any admissible function T (n,m)
and a pair-language PL that is decidable in time T it holds that

PL ∈ PCPP [O (log T (n,m)) , O(1),poly (T (n,m))]

Again, it can be shown that Theorem 2.16 implies Theorem 1.2 as a special case for T (n) =
poly (n), while Theorem 2.17 does not, due to the difference in the time complexity. Our main
result is a combinatorial proof of Theorem 2.16. Observe that Theorem 2.16 implies Theorem 2.7
using Corollary 2.13. We thus focus on proving Theorem 2.16.

We conclude the discussion in PCPPs by showing that Theorem 2.16 indeed implies a formal
version of Theorem 1.2.

Corollary 2.18 (Special case of [BGH+06, Proposition 2.5]). Let L ∈ NP, and let PL be the pair-
language {(λ, x) : x ∈ L} (where λ is the empty string). Then PL ∈ PCPP [O(logm), O(1),poly logm]
(note that here m denotes the length of x).

Proof sketch. The main difficulty in proving Corollary 2.18 is that PL may not be decidable in
polynomial time (unless P = NP), and therefore we can not use Theorem 2.16 directly. The naive
solution would be to use Theorem 2.16 to construct a PCPP verifier V1 for the efficiently decidable
pair-language

PL1 = {(λ, x ◦ y) : y is a valid witness for the claim that x ∈ L}

and then construct a verifier V for PL by asking the prover to provide a witness y in the proof
oracle and emulating the action of V1 on x and y. The problem is that if x is significantly shorter

2See discussion in [BGH+06, Sections 1.3 and 2.2] and in [BGH+05]. The main improvement of [BGH+05] over
those PCPPs is in the proof length, which is not the focus of the current work.

9

than y, it might be the case that x is far from L and yet x ◦ y is close to PL1(λ). Instead, we use
Theorem 2.16 to construct a PCPP verifier V2 for the efficiently decidable pair-language

PL2 =


λ, x ◦ x ◦ . . . ◦ x︸ ︷︷ ︸

|y|/|x|

◦y

 : y is a valid witness for the claim that x ∈ L


and then construct a verifier V for PL by emulating V2 as before. For more details, see [BGH+06,
Proposition 2.5]. �

Remark 2.19. We have stated Theorems 2.16 and 2.17 only for pair-languages that are decidable
in deterministic time, but in fact, one can use them to construct PCPPs for pair-languages that
are decidable in non-deterministic time, using the same proof idea of Corollary 2.18. For details,
see [BGH+06, Proposition 2.5].

2.4 Error Correcting Codes

We review the basics of error correcting codes [MS88]. A code C is a one-to-one function from
{0, 1}k to {0, 1}l, where k and l are called the code’s message length and block length, respectively.

The rate of the code C is defined to be RC
def
= k

l . We say that c ∈ {0, 1}l is a codeword of C if c

is an image of C, i.e., if there exists x ∈ {0, 1}k such that c = C(x). We denote the fact that c
is a codeword of C by c ∈ C. The relative distance of a code C is the minimal relative Hamming

distance between two different codewords of C, and is denoted by δC
def
= minc1 6=c2∈C {dist(c1, c2)}.

2.5 Routing networks

In our circuit decomposition method (see Sections 3.2 and 7) we use a special kind of graphs called
permutation routing networks (see, e.g., [Lei92]). In order to motivate this notion, let us think of
the vertices of the graph as computers in a network, such that two computers can communicate if
and only if they are connected by an edge. There are two special sets of computers in the network:
the set of sources (denoted S), and the set of targets (denoted T). Each computer in S needs to
send a message to some computer in T , and furthermore, each computer in T needs to receive a
message from exactly one computer in S (in other words, the mapping from sources to targets is a
bijection). Then, the property of the routing network says that we can route the messages in the
network such that each computer in the network forwards exactly one message. Formally, we use
the following definition of routing networks.

Definition 2.20. A routing network of order n is a graph G = (V,E) with two specialized sets S
and T of size n, such that the following requirement holds: For every bijection σ : S → T , there
exists a set P of vertex-disjoint paths in G that connect each v ∈ S to σ(v) ∈ T .

Routing networks were studied extensively in the literature of distributed computing, and several
constructions of efficient routing networks are known. In particular, we use the following fact on
routing networks, whose requirements are satisfied by several constructions.

Fact 2.21 (see, e.g, [Lei92]). There exists an infinite family of routing networks {Gn}∞n=1, where
the network Gn being of order n, and such that:

1. Gn has Õ(n) vertices.

10

2. The in-degree and out-degree of every vertex in the network are upper bounded by a constant,
say 2.

3. The family is strongly explicit: For each n ∈ N, there exists a circuit νn of size poly log n
that when given as input the index of a vertex v of Gn, outputs the indices of the neighbors of
v via incoming edges and outgoing edges. Moreover, there exists a polynomial time algorithm
that on input n outputs νn.

4. The vertices of the first layer S are indexed from 1 to n, and the vertices of the last layer T
are indexed from n+ 1 to 2n.

Routing multiple messages. We now discuss a small extension of the property of routing
networks which we use in Section 7. Suppose now that each source computer in the network needs
to send at most d messages to target computers, and that each target computer needs to receive at
most d messages from source computers. In such case, we can route the messages such that every
computer in the network forwards at most d messages, as can be seen in the following result.

Proposition 2.22 (Routing of multiple messages). Let G = (V,E) be a routing network of order
n, let S, T ⊆ V be the sets of sources and targets of G respectively, and let d ∈ N. Let σ ⊆ S × T
be a relation such that each s ∈ S is the first element of at most d pairs in σ, and such that each
t ∈ T is the second element of at most d pairs in σ. We allow σ to be a multi-set, i.e., to contain
the same element multiple times. Then, there exists a set P of paths in G such that the following
holds:

1. For each (s, t) ∈ σ, there exists a path p ∈ P that corresponds to (s, t), whose first vertex is s
and whose second vertex in t.

2. Every vertex of G participates in at most d paths in P.

Proof sketch. Without loss of generality, assume that each s ∈ S is the first element of exactly d
pairs in σ, and same for T . Then, we can decompose the relation σ into d disjoint permutations
(see, e.g.,[Cam98, Prop. 8.1.2]). We now find vertex-disjoint paths for each of the permutations
separately as in Definition 2.20, and take the union of all the resulting sets of paths. �

3 Overview

In this section we give a high-level overview of our construction of PCPPs (which, in turn, implies
the construction of PCPs). For most of this overview we focus on describing the construction itself
while ignoring the issues of efficient implementation. Then, in Section 3.4, we describe how this
construction can be implemented efficiently.

3.1 The structure of the construction

Our construction and the DR construction share a similar structure. In this section we describe
this structure and discuss the differences between the constructions.

3.1.1 Assignment testers

Assignment Testers are an equivalent formulation of PCPPs that was introduced by [DR06]. Both
our construction and the DR construction are more convenient to describe as constructions of

11

assignment testers than as constructions of PCPP. We therefore start by describing the notion of
assignment testers.

An assignment tester is an algorithm that is defined as follows. The assignment tester takes as
an input a circuit ϕ of size n over a set X of Boolean variables. The output of the assignment tester
is a collection of circuits ψ1, . . . , ψR of size s� n whose inputs come from the set X ∪ Y , where Y
is a set of auxiliary variables. The circuits ψ1, . . . , ψR should satisfy the following requirements:

1. For any assignment x to X that satisfies ϕ, there exists an assignment y to Y such that the
assignment x ◦ y satisfies all the circuits ψ1, . . . , ψR.

2. For any assignment x to X that is far (in Hamming distance) from any satisfying assignment
to ϕ, and every assignment y to Y , the assignment x ◦ y violates at least ρ fraction of the
circuits ψ1, . . . , ψR.

There is a direct correspondence between assignment testers and PCPPs: An assignment tester can
be thought of as a PCPP that checks the claim that x is a satisfying assignment to ϕ. The auxiliary
variables Y correspond to the proof string of the PCPP, and the circuits ψ1, . . . , ψR correspond
to the various tests that the verifier performs on the R possible outcomes of its random coins. In
particular, the query complexity of the PCPP can be upper bounded by s. Furthermore, note that
the fraction ρ corresponds to the rejection ratio of the PCPP, and we therefore refer to ρ as the
rejection ratio of the assignment tester. With a slight abuse of notation, we will also say that the
circuits ψ1, . . . , ψR have rejection ratio ρ.

Our main technical result is a combinatorial construction of an assignment tester that has
R(n) = poly (n), s(n) = O(1) and that runs in time poly log n, which implies the desired PCPs.
Note that it is impossible for an assignment tester to run in time poly log n when using the foregoing
definition of assignment testers, since the assignment tester needs time of at least max {n,R · s}
only to read the input and to write the output. However, for now we ignore this problem, and
in the actual proof we work with an alternative definition of assignment testers that uses implicit
representations of the input and the output (see discussion in Section 3.4).

3.1.2 The iterative structure

Our construction and the DR construction are iterative constructions: The starting point of those
constructions is an assignment tester for circuits of constant size3, which is trivial to construct.
Then, in each iteration, those constructions start from an assignment tester for circuits of size3 k,
and use it to construct an assignment tester for circuits of size ≈ kc0 (for some constant c0 > 1).
Thus, if we wish to construct an assignment tester for circuits of size n, we use O (log log n)
iterations.

The key difference between our construction and the DR construction is in the effect of a single
iteration on the number of output circuits R. In the DR construction, each iteration increases
the number of output circuits from R to Rc

′
for some constant c′ > c0 (where c0 is the foregoing

constant). Thus, after O(log log n) iterations the final assignment testers have npoly logn output
circuits, which in turn imply a PCPPs that use proofs of length npoly logn and have randomness
complexity poly log n. In contrast, in our construction a single iteration increases the number of
output circuits from R to Õ (Rc0), and thus the final assignment testers have poly(n) output circuits.
Such assignment testers imply a PCPPs that use proofs of length poly(n) and have randomness
complexity O(log n), which is our goal.

3By “assignment tester for circuits of size k” we refer to an assignment tester that can only take as an input a
circuit of size at most k.

12

3.1.3 The structure of a single iteration

We proceed to describe the structure of a single iteration. For the purpose of this description, it is
convenient to assume that we wish to construct an assignment tester for circuits of size n using an
assignment tester for circuits of size nγ for some constant γ < 1 (we take γ = 1/c0, where c0 is the
constant from Section 3.1.2).

The general structure of an iteration. We begin with a general description of an iteration
that fits both our construction and the DR construction. Suppose that we wish to construct an
assignment tester A for circuits of size n, and assume that we already have a “small” assignment
tester AS that can take as input any circuit of size n′ ≤ nγ , and outputs R(n′) output circuits of
constant size. Let ρ denote the rejection ratio of AS . When given as input a circuit ϕ of size n
over a set of Boolean variables X, the assignment tester A proceeds in three main steps:

1. The assignment tester A decomposes ϕ, in a way to be explained in Section 3.2, into set of
circuits ψ1, . . . , ψm(n) of size s(n) for some m(n), s(n) < nγ (to be specified later).

2. The assignment tester A combines the circuits ψ1, . . . , ψm(n) with the assignment tester AS
in some sophisticated way that resembles the tensor product of error-correcting codes (see
Section 3.3 for details). The result of this operation is approximately

R′ = R (O (m(n))) ·R (O (s(n)))

circuits ξ1, . . . ξR′ of constant size over variables X ∪ Y ∪ Z, that have rejection ratio Ω
(
ρ2
)
.

3. The assignment tester A applies an error-reduction transformation (to be specified later) to
the circuits ξ1, . . . , ξR′ obtained in Step 2 in order to increase their rejection ratio back to ρ,
and outputs the resulting circuits.

Our construction versus the DR construction. Our construction differs from the DR itera-
tion in the circuit decomposition method used in Step 1 and in the error-reduction transformation
used in Step 3. We begin by discussing the latter. The DR construction uses a variant of the
parallel repetition technique in order to do the error reduction. This technique incurs a polynomial
blow-up in the number of output circuits of A, while in order to have the desired number of output
circuits we can only afford a blow-up by a poly-logarithmic factor.

In our construction, we replace the parallel repetition technique with Dinur’s amplification
technique (outlined in Section 1.2.1), which only incurs a constant factor blow-up. This is indeed a
fairly simple modification, and the reason that Dinur’s technique was not used in the original DR
construction is that it did not exist at that time. However, we note that in order to use Dinur’s
amplification in our context, we need to show that it can be implemented in a super-fast way, which
was not proved in the original work of Dinur [Din07] (see further discussion in Section 3.4).

We turn to discuss the circuit decomposition method used in Step 1. Recall that Step 2 generates
a set of R (O (m(n))) · R (O (s(n))) circuits. Thus, the choice of the functions m(n) and s(n) is
crucial to the number of output circuits of A. In particular, it can be verified that the recurrence
relation R (n) = R (O (m(n)))·R (O (s(n))) is solved to a polynomial only if the product m (n)·s (n)
is upper bounded by approximately n. However, since the decomposition method used in Step 1
must have certain properties that are needed for Step 2, it is not trivial to find a decomposition
method for a good choice of m(n) and s(n).

The original DR construction uses a straightforward decomposition method that decomposes
a circuit of size n into m (n) = O(n3α) circuits of size s (n) = O(n1−α), where α is a constant

13

arbitrarily close to 0. Thus, m(n) · s(n) = O(n1+2α), which causes the final assignment testers of
the DR construction to have npoly logn output circuits. Our technical contribution in this regard
is devising an alternative decomposition method that decomposes a circuit of size n into m(n) =
Õ (
√
n) circuits of size s(n) = Õ (

√
n). Thus, m(n) · s(n) = Õ (n), which is good enough to make

the whole construction have a polynomial number of output circuits.

3.2 Our circuit decomposition method

In this section we describe the circuit decomposition we use in Step 1 (of Section 3.1.3). A cir-
cuit decomposition is an algorithm that takes as input a circuit ϕ over Boolean variables X and
“decomposes” it to set of smaller circuits ψ1, . . . , ψm over Boolean variables X ∪ Y , such that an
assignment x to X satisfies ϕ if and only if there exists an assignment y to Y such that x◦y satisfies
all the circuits ψi. Note that a circuit decomposition can be viewed as an assignment tester with the
trivial rejection ratio 1

m . Alternatively, a circuit decomposition can be viewed as a generalization
of the Cook-Levin reduction that transforms a circuit into a 3-CNF formula, by taking the smaller
circuits ψ1, . . . , ψm to be the clauses of the formula.

In order to be useful for the foregoing construction, a circuit decomposition must have an
additional property, namely, it needs to have “matrix access”: We say that a decomposition has
matrix access if it is possible to arrange the variables in X and the variables of Y in two matrices
such that each circuit ψi reads a constant number of rows of the matrix. The property of matrix
access is reminiscent of the parallelization technique used in the PCP literature, and we refer the
reader to Section 3.3.2 for more details regarding how it is used.

3.2.1 The DR decomposition

Before describing our decomposition, we briefly sketch the DR decomposition. Given a circuit ϕ
of size n over a variables set X, they transform ϕ into a 3-CNF formula by adding O(n) auxiliary
variables Y . Next, they choose some arbitrarily small constant α > 0 , and arrange the variables in
X ∪ Y arbitrarily in an O(nα)× O(n1−α) matrix. Finally, they construct, for each triplet of rows
of the matrix, a circuit ψi that verifies all the clauses that depend on variables that reside only in
those three rows (relying on the fact that each clause depends on three variables). This results in
m = O(n3α) circuits of size O(n1−α), as described in Section 3.1.3.

3.2.2 Our decomposition

The inefficiency of the DR decomposition results from the fact that we construct a circuit ψi for
every possible triplet of rows, since we do not know in advance which variables will be used by
each clause. Prior works in the PCP literature have encountered a similar problem in the context
of efficient arithmetization of circuits, and solved the problem by embedding the circuit into a
deBrujin graph using packet-routing techniques (see, e.g., [BFLS91, PS94]). While we could also
use an embedding into a deBrujin graph in our context, we actually use a simpler solution, taking
advantage of the fact that the requirements that we wish to satisfy are weaker. We do mention,
however, that our solution is still in the spirit of “packet-routing” ideas.

We turn to sketch the way our decomposition method works. Fix a circuit ϕ of size n, and for
simplicity assume that every gate in ϕ has exactly two incoming wires and two outgoing wires. The
decomposition acts on ϕ roughly as follows:

1. For each gate g in ϕ, the decomposition adds an auxiliary variable kg. Similarly, for each wire
(g1, g2) in ϕ, the decomposition adds an auxiliary variable k(g1g2). For a specific assignment

14

x to ϕ and each wire (g1, g2) in ϕ, the variables kg1 and k(g1,g2) are supposed to be assigned
the bit that g1 outputs when ϕ is invoked on x.

2. The decomposition arranges the variables in an O (
√
n) × O (

√
n) matrix M such that for

each gate g1 that has outgoing wires to gates g2 and g3, the variables kg1 , k(g1,g2), and k(g1,g3)
are in the same row of M . Then, for each row of M , the decomposition outputs a circuit that
checks for each such triplet of variables in the row that kg1 = k(g1,g2) = k(g1,g3).

3. The decomposition outputs additional circuits that “rearrange” the variables in a new order,
by routing the variables through a routing network, while using additional auxiliary variables
to represent the order of the variables at each intermediate layer of the routing network.
After the routing, the variables are arranged in an O (

√
n) × O (

√
n) matrix N that has the

following property: For each gate g1 of ϕ that has incoming wires from gates g2 and g3, the
variables kg1 , k(g2,g1), and k(g3,g1) are in the same row of N .

4. Next, for each row of N , the decomposition outputs a circuit that checks, for each gate g1
in the row that has incoming wires from gates g2 and g3, that the variable kg1 contains the
output of g1 when given inputs k(g2,g1) and k(g3,g1) .

5. Finally, D outputs an output circuit that checks that the variable kg that corresponds to the
output gate of ϕ is assigned 1.

The straightforward way for implementing the routing network in Step 3 above is the following: We
first take a routing network GO(n) of order of O(n) (see Fact 2.21). We then identify each vertex
in the sources set S of GO(n) with an entry of the matrix M , and each vertex of the targets set T
of GO(n) with an entry of N . Next, we construct a bijection σ that maps each entry of M to its
corresponding entry in N , and construct a set of vertex disjoint paths P that route that connect
each vertex v of the sources set S to the vertex σ(v) in the targets set T (see the definition of
routing networks, Definition 2.20). Finally, we add an auxiliary variable for each vertex of GO(n),
and for each edge (u,w) that belongs to one of the paths in P, we output a circuit ψi that checks
that the auxiliary variables that correspond to u and w are equal.

While the foregoing implementation of Step 3 is sound, note that it yields Õ(n) output cir-
cuits of size O(1) - for each vertex of GO(n), we have one output circuit checking equality of two

variables. However, we need a decomposition that outputs Õ(
√
n) circuits of size Õ(

√
n). To this

end, we modify the foregoing implementation by using the possibility to route multiple messages
(Proposition 2.22). More specifically, we use a routing network GO(

√
n) of order O(

√
n), and route

O(
√
n) messages from each source and to each target. Here, the sources and targets of GO(

√
n) are

the rows of M and N respectively, the “messages” are again the entries of M and N , and each
vertex of GO(

√
n) participates in the routing of O(

√
n) entries. This method of routing indeed yields

a decomposition with Õ(
√
n) circuits of size Õ(

√
n).

It remains to check that the resulting decomposition indeed has matrix access. To this end, we
arrange the variables X ∪Y in a Õ(

√
n)×O(

√
n) matrix whose rows consist of: the rows of M ; the

rows of N ; and a row for each vertex of GO(
√
n), where each such row contains one variable. One

can show that each output circuit of the decomposition queries a constant number of rows of this
matrix, by using the fact that the degrees of the vertices of GO(

√
n) are bounded by a constant.

3.3 The tensor product lemma

In this section we outline the proof of the following lemma, which is used in Step 2 (of Section 3.1.3).

15

Lemma 3.1 (Tensor Product Lemma, simplified). Let D be a circuit decomposition that when
given a circuit of size n outputs m(n) circuits of size s(n) and that has matrix access. Let AS be an
assignment tester that takes as input circuits of size n′ for any n′ ≤ O (max {m(n), s(n)}), outputs
R(n′) circuits of size O(1) and has rejection ratio ρ. Then, we can use D and AS to construct an
assignment tester A that when given as input a circuit of size n, outputs R (O (m(n))) ·R (O (s(n)))
circuits of size O(1) and has rejection ratio Ω(ρ2).

The construction of the assignment tester A from AS and D is somewhat similar to the tensor
product of error correcting codes, hence the name of the lemma. We note that the proof of this
lemma is implicit in [DR06], although they only proved it for their specific choice of D and AS . We
stress that the proof of [DR06] does not maintain the super-fast running time of the assignment
tester, and that one of our main contributions is proving the lemma for super-fast assignment
testers (see discussion in Section 3.4).

3.3.1 Warm-up: Ignoring issues of robustness

As a warm-up, we consider the following thought-experiment: Let A′ be an assignment tester that
has rejection ratio ρ. We say that A′ is idealized if when given an input circuit ϕ, the tester A′

rejects every unsatisfying assignment x of ϕ, and not only unsatisfying assignments that are far
from any satisfying assignment to ϕ. Little more formally, we say that A′ is idealized if for every
unsatisfying assignment x of ϕ and every assignment y to Y , at least an ρ fraction of the output
circuits of A′ reject x ◦ y. Of course, it is impossible to construct an idealized assignment tester
with the parameters we desire, but for the purpose of this warm-up discussion we ignore this fact.

We now show how to prove the tensor product lemma when both A and AS are idealized (we
note that in this case, the assumption that D has matrix access is not needed). When given as
input a circuit ϕ of size n, the assignment tester A acts as follows:

1. The assignment tester A applies the circuit decomposition D to ϕ, resulting in a variable
set Y and in m(n) circuits ψ1, . . . , ψm(n) of size s(n) over X ∪ Y .

2. The assignment tester A applies the assignment tester AS to each of the circuits ψi, each
time resulting in a variables set Zi and in R (s(n)) circuits ξi,1, . . . , ξi,R(s(n)) of size O(1) over
X ∪ Y ∪ Zi.

3. The assignment tester A constructs circuits η1, . . . , ηR(s(n)) of size O (m(n)) over X∪Y ∪
⋃
i Zi

by defining ηj
def
=
∧m(n)
i=1 ξi,j . Note that those circuits correspond to the columns of the matrix

whose elements are the circuits ξi,j .

4. The assignment tester A applies the assignment tester AS to each of the circuits ηj , each time
resulting in a variables set Wj and in R (O (m(n))) circuits τ1,j , . . . , τR(O(m(n))),j of size O(1)
over X ∪ Y ∪

⋃
i Zi ∪Wj .

5. Finally, A outputs the R (O (m(n))) ·R (s(n)) circuits τ1,1, . . . , τR(O(m(n))),R(s(n)) of size O(1)
over X ∪ Y ∪

⋃
i Zi ∪

⋃
jWj .

Clearly, the assignment tester A has the correct number and size of output circuits. It remains
to show that it has rejection ratio Ω(ρ2). Let Y ′ = Y ∪

⋃
i Zi ∪

⋃
jWj be the variables set of A.

Fix an assignment x to X that does not satisfy ϕ and fix some assignment y′ to Y ′. Since x does
not satisfy ϕ, there must exist some circuit ψi that rejects x ◦ y′. This implies that at least an
ρ fraction of the circuits ξi,1, . . . , ξi,R(s(n)) reject x ◦ y′, let us denote those circuits by ξi,j1 , . . . , ξi,jk .
Now, observe that since ξi,j1 , . . . , ξi,jk reject x ◦ y′, the circuits ηj1 , . . . , ηjk must reject x ◦ y′ as well,
and that ηj1 , . . . , ηjk form ρ fraction of the circuits η1, . . . , ηR(s(n)). Finally, for each circuit ηjh that
rejects x ◦ y′, it holds that at least ρ fraction of the circuits τ1,jh , . . . , τR(O(m(n))),jh reject x ◦ y′, and
it therefore follows that at least ρ2 fraction of the circuits τ1,1, . . . , τR(O(m(n))),R(s(n)) reject x ◦ y′.

16

3.3.2 The actual proof

We turn to discuss the proof of the tensor product lemma for the actual definition of assignment
testers, i.e., non-idealized assignment testers. In this case, the analysis of Section 3.3.1 breaks
down. To see it, fix an assignment x to X that is far from satisfying ϕ and an assignment y′ to Y ′.
As argued in Section 3.3.1, we are guaranteed that there exists a circuit ψi that is not satisfied by
x ◦ y′. However, we can no longer conclude that ρ fraction of the circuits ξi,1, . . . , ξi,R(s(n)) reject
x ◦ y′: This is only guaranteed when x ◦ y′ is far from any satisfying assignment to ψi, which may
not be the case.

The analysis of Section 3.3.1 does go through, however, provided that the circuits ψ1, . . . , ψm(n)

and η1, . . . , ηR(O(s(n))) have a property called “robustness” (see Section 5.4). The PCP literature
contains few techniques for “robustizing” the output of an assignment tester, provided that the
assignment tester has specific properties. In this work, we define and analyze a generalization of
the robustization technique of [DR06], which requires the assignment tester to have the following
property:

Definition 3.2. We say that an assignment tester A that outputs circuits of size s is has block
access if the variables in X ∪ Y can be partitioned to blocks such that each output circuit of A
reads a constant number of whole blocks.

For example, every assignment tester that has matrix access also has block access, with the
blocks being the rows of the corresponding matrix. We now have the following lemma:

Lemma 3.3 (Robustization, simplified). Any assignment tester that has block access can be trans-
formed into a robust one, with a linear blow-up in the number and size of output circuits and a
decrease of a constant factor in the rejection ratio. Furthermore, a similar claim holds circuit
decomposition that has block access.

Therefore, in order to prove the tensor product lemma, it suffices to show that the circuits ψ1, . . . , ψm(n)

and η1, . . . , ηR(s(n)) are have block access. This is easy to do for ψ1, . . . , ψm(n), since the decompo-
sition D has matrix access by assumption, and thus in particular D has block access.

In order to show that the circuits η1, . . . , ηR(s(n)) have block access, we also need the assignment
tester AS to be oblivious. An assignment tester is said to be oblivious if for every i, the variables
in X ∪ Y that are queried by the i-th output circuit ψi depend only on i, and in particular do not
depend on the input circuit ϕ. The work of [DR06] has showed that every assignment tester can
be transformed into an oblivious one with an almost-linear loss in the parameters.

We now observe that if AS is oblivious, then the variables in X ∪ Y ∪
⋃
i Zi can be arranged

in two matrices, such that each circuit ηj queries a constant number of columns of those matrices.
This implies that the circuits η1, . . . , ηR(s(n)) have block access, by taking the blocks to be the
columns of the latter matrices.

More specifically, we arrange the variables in X ∪ Y in the matrix M which is guaranteed by
the fact that D has matrix access, and arrange the variables

⋃
i Zi in the matrix N whose rows are

the sets Zi. Next, observe that due to the obliviousness of AS , if we consider a single query of an
output circuit ξi,j , then the column of M or N to which the query belongs depends only on j and
not on i. Hence, corresponding queries of ξ1,j . . . , ξO(m(n)),j belong to the same columns, and this
implies that ηj queries only a constant number of columns of M and N , as required.

3.4 Efficiency issues

Finally, we explain the modifications that we make to the foregoing construction in order to imple-
ment it efficiently.

17

3.4.1 Modifying the formalism

In Section 3.1.1, we defined an assignment tester as an algorithm that takes as input a circuit ϕ
of size n and outputs R circuits ψ1, . . . , ψR of size s. Clearly, such an algorithm must run in time
at least max {n,R · s}. However, we want our assignment testers to run in time poly log n, which
is much smaller than both n and R · s. We therefore have to use a different notion of assignment
tester in order to obtain the desired running time.

To this end, we use succinct representations of both the input circuit and the output circuits.
The key point is that in order to construct a PCPP for NP, we only need to run our assignment
tester on circuits that are obtained from the standard reduction from NP to Circuit-Sat, and
that those circuits can be succinctly represented using poly log n bits. An assignment tester can
therefore be defined4 as an algorithm that takes as input a succinct representation of a circuit ϕ
and an index i, and outputs a succinct representation of a circuit ψi. Indeed, such an algorithm
can run in time poly (log n, log (R · s)).

Using this new definition of assignment testers adds an additional level of complexity to our
construction, since we have to implement all the ingredients of our construction (and in particular,
the decomposition method, the tensor product lemma, and Dinur’s amplification theorem) so as to
work with succinct representations.

3.4.2 Efficient implementation of the tensor product lemma

Working with succinct representation of circuits instead of with the circuits themselves is especially
difficult in the implementation of tensor product lemma. The main difficulty comes from the need
to generate succinct representations of the circuits η1, . . . , ηR(s(n)) (as defined in Section 3.3.1).

Recall that those circuits are defined by ηj
def
=
∧m(n)
i=1 ξi,j . While each of the circuits ξi,j has a

succinct representation, this does not imply that their conjunction has a succinct representation.
In particular, a naive implementation of a representation for ηj would yield a representation of size
Ω (m(n)), which we can not afford.

In order to solve this problem, we observe that the output circuits ψ1, . . . , ψm(n) of D must
be “similar”, since they are all generated by the same super-fast decomposition. We then show
that for each j, the similarity of the circuits ψ1, . . . , ψm(n) can be translated into a similarity of
the circuits ξ1,j , . . . , ξm(n),j , and that this similarity of ξ1,j , . . . , ξm(n),j can be used to construct a
succinct representation of ηj .

To be more concrete, we sketch a simplified version of our solution5. Consider the “universal
circuit” U that is given as input a circuit ζ and a string x, and outputs ζ(x). Now, for each i,
instead of invoking AS on ψi, we invoke AS on U , and whenever one of the output circuits ξi,j
makes a query to an input bit of U that corresponds to the circuit ζ, we hard-wiring the answer to
the query to be the corresponding bit of ψi. The circuits ξi,j that are constructed in this manner
should simulate the circuits ξij that were constructed in Section 2. The point is that for any fixed
j, the circuits ξ1,j , . . . , ξm(n),j are now identical to each other, up to the foregoing hard-wiring of the
answers to their queries. Using this fact, and the fact that the representation of each of the circuits
ψi is generated by the super-fast decomposition, it is easy to construct a succinct representation
of the circuit ηj . We note that in the actual construction, the circuit U is not given the circuit ζ
but rather an error-correcting encoding of the succinct representation of ζ, and that U takes as an

4We mention that this definition of assignment testers can be viewed as a variant of the notion of “verifier
specifications” of [BGH+05].

5We mention that a similar technique was used in [DR06] in order to transform an assignment tester to an oblivious
one.

18

input an additional proof string.

3.4.3 A finer analysis of Dinur’s amplification theorem

In order for our assignment testers to run in time poly logn, we need to make sure that all the steps
taken in a single iteration incur only a constant factor blow-up in the running time. In particular,
we need to show this holds for Dinur’s amplification theorem, since this was not proved in [Din07].

It turns out that in order to analyze the running time of Dinur’s amplification theorem, one
should make additional requirements from the assignment testers. Specifically, recall that the proof
of the amplification theorem works by representing the assignment testers as “constraint graphs”,
and by applying various transformations to those graphs. The running time of those transformations
depends on the explicitness of those graphs. Thus, in order to be able to present a super-fast
implementation of Dinur’s amplification technique, we must make sure that the corresponding
constraint graphs are strongly-explicit.

In the context of assignment testers, a strongly-explicit constraint graph corresponds to an
assignment tester that has a super-fast “reverse lister” (a.k.a “reverse sampler”6). A reverse lister
for an assignment tester A is an algorithm that behaves as follows: Suppose that on input ϕ over
variables set X, the assignment tester A outputs circuits ψ1, . . . , ψR over variables set X∪Y . Then,
given the name of a variable v ∈ X ∪ Y , the reverse lister allows retrieving the list of all circuits
ψi1 , . . . , ψim that take v as input.

We therefore have to make sure that all the assignment testers we construct in this work have
corresponding super-fast reverse listers, which turns out to be quite non-trivial in some of the
constructions. See Section 5.1 for more details regarding the definition of reverse listers.

Remark 3.4. We note that reverse listers are also used in the proof of the tensor product lemma,
and not just in the implementation of the Dinur’s amplification theorem.

3.4.4 Increasing the representation size

Recall that our iterative construction yields assignment testers that work only for circuits of a given
size, and each iteration increases the size of the circuits that can be handled. Moreover, recall that
super-fast assignment testers work with succinct representations of circuits rather than the circuits
themselves. Therefore, during our iterative construction, we need to make sure that the size of the
succinct representations for which the assignment tester works increases along with the circuits’
size.

In this work, we observe that the technique used by [DR06] to transform an assignment tester
to an oblivious one can also be used to increase the size of the succinct representations with which
the assignment tester can work, with the cost of decreasing the corresponding size of the input
circuits by a related factor. This observation essentially removes the need to pay attention to the
size of the succinct representations. See Section 5.7 for more details.

3.4.5 Bounding the fan-in and fan-out

Throughout this work, we consider circuits with unbounded fan-in and fan-out. In particular,
our definition of assignment testers requires an assignment tester to take as input a circuit ϕ with
arbitrarily large fan-in and fan-out. However, it may be easier sometimes to construct an assignment
tester that can only handle input circuits ϕ with bounded fan-in and fan-out. Thus, we would like

6The term “reverse sampler” was used in the context of PCPs [BG02]. However, we feel that the term “reverse
lister” is more natural in the context of assignment testers.

19

to reduce the construction of general assignment testers to the construction of assignment testers
that can only handle circuits with bounded fan-in and fan-out. While such a reduction is trivial
to do in polynomial time in the size of the circuits, it is not clear that this can be done in the
super-fast settings, where we only work with succinct representations.

In this work, we observe that the technique of [DR06] mentioned above can also be used to
transform assignment testers that can only handle bounded fan-in and fan-out into full-fledged
assignment testers, which can handle arbitrary fan-in and fan-out. This observation simplifies the
construction of assignment testers, and in particular simplifies our circuit decomposition method.
See Section 5.8 for more details.

3.4.6 Revisiting known PCP techniques

Our construction uses known PCP techniques such as composition (see [BGH+06, DR06]) and
robustization (see Lemma 3.3). However, when using those techniques in our construction, we have
to make sure that those techniques preserve the super-fast running time of the assignment testers,
as well as super-fast running time of their corresponding reverse listers (needed for the analysis
of Dinur’s amplification theorem). We thus present new implementations of those techniques that
meet both the latter conditions. In particular, we make the following contributions:

1. Composition: While a super-fast implementation of the composition technique has been
proposed in [BGH+06], their implementation did not preserve the running time of the corre-
sponding reverse listers. In this work, we give a more sophisticated implementation that does
preserve the running time of the reverse listers. See Section 5.4 for more details.

2. Robustization: As mentioned in Section 3.3.2, in this work we present a generalization of
the robustization technique of [DR06]. In particular, the robustization technique of [DR06]
works only for assignment testers that have block access and whose blocks are all of the same
size, and contain only proof bits, while the bits of the tested assignment are read separately.
Waiving some of those restrictions supports a cleaner proof of the Tensor Product lemma
(Section 3.3).
Implementing the robustization technique for super-fast assignment testers requires the as-
signment tester not only to have block access, but also to have block structure that has a
strongly explicit representation. We define this representation and prove a super-fast robus-
tization theorem. See Section 5.6 for more details.

3. Proof length: We revisit the connection between the randomness complexity of a PCP and
its proof length, which is more complicated in the settings of super-fast PCPs than in the
common settings. In the PCP literature it is common to assume that the proof length of PCPs
is bounded by an exponential function in the randomness complexity. It is not clear that this
can be assumed without loss of generality in the setting of super-fast PCPs. However, we
show that this assumption can indeed be made for assignment testers that have super-fast
reverse listers. See Section 5.2 for more details.

3.5 Organization of the rest of the paper

In Section 4, we present the definition of super-fast assignment testers and state our main con-
struction of assignment testers. In Section 5, we develop few generic tools that are used in our
construction, but are also of independent interest, and which were mentioned in Sections 3.4.4
and 3.4.6 above. In Section 6, we prove our main theorem, relying on the decomposition method

20

and on the tensor product lemma. In Section 7 we present our circuit decomposition method (which
was sketched in Section 3.2). Finally, in Section 8, we prove the tensor product lemma, which was
sketched in Section 3.3.

4 Super-Fast Assignment Testers: Definitions and Main Theorem

Recall that our final goal in this work is to construct the PCPPs that were stated in Theorem 2.16.
As discussed in Section 3.1.1, the work of [DR06] used a different notion of PCPPs, which they
named “assignment testers”. Since our construction of PCPPs is based the work of [DR06], it
is more convenient for us to construct assignment testers rather than to construct the PCPPs as
defined in Section 2.3. However, the actual definition of assignment testers used by [DR06] is not
suitable for constructing super-fast PCPPs, and we therefore work with a variant of their definition.
In this section, we present the definition of assignment testers with which we will work throughout
the paper. We note that our definition of assignment testers borrows ideas from the notion of
“verifier specifications” of [BGH+05], and may be viewed as a variant of this notion.

This section is organized as follows. In Section 4.1, we review a DR-style definition of assignment
testers, which does not support discussion of super-fast verifiers. Then, in Section 4.2, we discuss
the modifications that should be made to the DR-style definition in order to support discussion
of super-fast PCPPs, and present the actual definition of assignment testers with which we will
work. Finally, in Section 4.3, we state our construction of assignment testers, and prove that this
construction implies the desired construction of PCPPs.

4.1 DR-style assignment testers

We begin with some motivation for the notion of assignment testers. Suppose that we wish to
construct a PCPP for every pair-language that can decided in polynomial time. We first observe
that it suffices to construct a PCPP for the pair-language Circuit-Value defined as follows:

Circuit-Value
def
= {(ϕ, x) : x is a satisfying assignment to the circuit ϕ}

To see why, suppose that a pair language PL is decided by a machine M , and consider the following
reduction from PL to Circuit-Value. Given (w, x) ∈ PL, we construct the circuit ϕw that on
input x emulates M(w, x) and outputs the result. Now, the reduction maps the pair (w, x) ∈ PL to
the pair (ϕw, x) ∈ Circuit-Value, and it holds that PL (w) = Circuit-Value(ϕw). Therefore,
a PCPP verifier for Circuit-Value can be used to construct a PCPP verifier for PL.

Next, consider a PCPP verifier V for Circuit-Value. The behavior of V on a circuit ϕ, an
assignment x, and a proof π, can be described as follows: The verifier V tosses r coins and, based
on the coin tosses and on the circuit ϕ, chooses some “test” to be performed on x and π, where
the test reads only q bits of x and π. Now, let us view the action of V differently, and assume that
instead of actually performing the test, V outputs a circuit that performs the test. By running V
on all 2r possible coin tosses, we can view V as a transformation on circuits, that maps a circuit
that depends on |x| bits to 2r circuits that depend on q bits. This view of the verifier V leads to
the following definition.

Definition 4.1 (DR-style Assignment Testers). Let R, s, ` : N → N and let ρ ∈ (0, 1]. An assign-
ment tester with outputs’ number R(n), outputs’ size s(n), proof length `(n), and rejection ratio ρ is
an algorithm that satisfies the following requirements:

• Input: The algorithm takes as an input a circuit ϕ of size n over m inputs.

21

• Output: The algorithm outputs R(n) circuits ψ1, . . . , ψR(n) of size at most s(n) each. The
algorithm also outputs sets Q1, . . . , QR(n) ⊆ [m+ `(n)] such that for each i ∈ [R(n)] the
circuit ψi has |Qi| inputs.

• Completeness: For every assignment x ∈ {0, 1}m that satisfies ϕ, there exists a string

π ∈ {0, 1}`(n) such that the following holds: For every i ∈ [R(n)] the assignment (x ◦ π)|Qi

satisfies ψi. We refer to π as a proof of x, or as a proof that convinces A that x satisfies ϕ.

• Soundness: For every assignment x ∈ {0, 1}m and for every string π ∈ {0, 1}`(n), the follow-
ing holds: For at least ρ · dist (x,SAT(ϕ)) fraction of the indices i ∈ [R(n)], the assignment
(x ◦ π)|Qi

does not satisfy ψi. We refer to x as the tested assignment and to π as the proof
string.

Remark 4.2. Note that Definition 4.1 does not measure the query complexity of A, which can be
defined as the maximal size of a set Qi. Needless to say, the query complexity is upper bounded
by the outputs’ size s(n), and this bound suffices for our purposes.

Relation to Definition 2.11. It can be seen that the tested assignment x and the proof string π
in Definition 4.1 correspond to the implicit input x and to the proof π in Definition 2.11, while the
circuit ϕ corresponds to the explicit input. Furthermore, the rejection ratio ρ plays the same role
as in Definition 2.11, and the outputs’ number R(n) is simply 2r(n) where r(n) is the randomness
complexity in Definition 2.10.

4.2 Super-fast assignment testers

We turn to define assignment testers in a way that supports discussion of super-fast verification.
We note that Definition 4.1 does not support such a discussion due to the issues discussed next.

4.2.1 The size of the input circuit

The first issue that prevents Definition 4.1 from supporting super-fast verification concerns the size
of the circuit ϕ. Consider a pair-language PL that can be recognized in time T (n,m), and suppose
that we wish to verify membership in PL in time poly (n, log T (n,m)). If we apply the reduction of
PL to Circuit-Value as was described in Section 4.1, the resulting instance of Circuit-Value
will be of length at least T (n,m). Thus, if we use the assignment testers of Definition 4.1 to
verify PL, then they will run in time at least T (n,m), since only reading the input circuit ϕw
will take that much time. In order to solve this issue, we observe that while the circuit ϕw is of
size poly (T (n,m)), it has a “highly uniform” structure and can therefore be represented succinctly
using only poly log T (n,m) bits. Using this representation allows speeding-up the running time of
the assignment testers. To be more concrete, we define representations of circuits:

Definition 4.3. A circuit ϕrep is said to be a representation of a circuit ϕ if it satisfies the following
requirements:

1. When given as input an index of a gate g of ϕ, the circuit ϕrep outputs the the function that
g computes (one of OR, AND, NOT, or one of the constants 0 and 1), and the numbers of
wires going into and out of g.

2. ϕrep may be given as an additional input an index h of an incoming wire of g, and in such
case ϕrep outputs the index of the gate from which the h-th incoming wire of g comes.

22

3. Same as Item 2, but for outgoing wires instead of incoming wires.

In addition, we require that, if the circuit ϕ has m inputs, then the input gates are indexed from
1 to m.

Remark 4.4. In order not to confuse ϕrep with ϕ, we will always refer to ϕrep as a “representation”
and to ϕ as a “circuit”. In particular, we will never refer to ϕrep as a “circuit”.

Remark 4.5. The requirement that the indices of the input gates are the indices from 1 to m is
for convenience only. Instead, we could have required the representation to allow retrieving the
indices of the input gates. That is, we could have required that given an input coordinate k ∈ [m],
the representation will be able to output the index of the input gate that corresponds to k.

As noted above, we would like the representation ϕrep to be of size poly log |ϕ|. It is well-known
that such a representation exists for every circuit that is obtained from applying the standard
reduction of a Turing machine to a circuit:

Fact 4.6 (Folklore). Let T (n,m) be an admissible function, and let M be a Turing machine that
when given as input a pair (w, x) runs in time T (|w| , |x|). Then, there exists an infinite family

of circuits {ϕn,m}∞n=1,m=1 of size O
(
T (n,m)2

)
such that for every w, x ∈ {0, 1}∗ it holds that

ϕ|w|,|x|(w, x) = M(w, x). Furthermore, there exists a constant dCL such that for every n,m ∈ N,

the circuit ϕn,m has a representation ϕrep
n,m of size at most logdCL T (n,m), and there exists a Turing

machine that on input (n,m) outputs ϕrep
n,m in time logdCL T (n,m).

We now modify the definition of assignment testers to take as an input the representation ϕrep

instead of the circuit ϕ.

4.2.2 The size and number of the output circuits

A similar issue that should be handled is the size of the output circuits. We will sometimes
be interested in assignment testers whose outputs’ size s(n) is larger than poly log T (n,m), and
therefore we can not afford to output the circuits ψ1, . . . , ψR(n). As in the case of the input
circuit, we resolve this issue by modifying the assignment testers such that that they output the
representations ψrep

1 , . . . , ψrep
R(n) instead of the circuits ψ1, . . . , ψR(n).

Another issue we need to deal with is that the outputs’ number R(n) may be larger than
poly log T (n,m), and therefore we can not afford to output all of the representations ψrep

1 , . . . , ψrep
R(n).

This issue is resolved by modifying the assignment tester such that it gets as an additional input
an index i ∈ [R(n)], and such that it is only required to output the representation ψrep

i , instead of
outputting all the representations ψrep

1 , . . . , ψrep
R(n).

4.2.3 The queries sets

The next issue that we need to deal with is that the queries sets Q1, . . . , QR(n) may be larger than
poly log T (n,m), in which case we will not be able to output them. In order to resolve this issue,
we make the following modification to the definition of assignment testers: Instead of requiring the
assignment tester to output a queries set Qi, we only require it to output the κ-th element of Qi,
where κ is given as an extra input.

For convenience, we make two more modifications to the definition of assignment testers:

23

1. First, instead of defining Qi, . . . , QR(n) to be sets, we define them to be sequences. In partic-
ular, Qi may contain the same query more than once, and its elements are ordered in some
fixed order. As we shall see, making the same query more than once allows us to give different
“weight” to the queries, while the possibility to choose the order of the queries will make it
easier to implement some of the procedures efficiently.
In fact, instead of treating Qi, . . . , QR(n) as sequences, it will be more convenient to treat
them as functions. That is, instead of treating Qi as a sequence in [m+ `(n)]qi , we will treat
it as a function Qi : [qi]→ [m+ `(n)].

2. We allow Q1, . . . , QR(n) to make dummy queries. A dummy query is not directed to any of the
coordinates, and always returns the bit 0. Dummy queries will be represented by the symbol
dummy. Thus, Qi will be a function from [qi] to [m+ `(n)] ∪ {dummy}. Dummy queries will
make it easier to control the length of the sequences Q1, . . . , QR(n) without complicating the
implementation of the reverse listers (defined in Section 5.1).

The foregoing considerations lead to the following definition:

Definition 4.7. Let q, n ∈ N be natural numbers. A queries function is a function Q : [q] →
[n] ∪ {dummy}. For any string x ∈ {0, 1}n, we denote by x|Q ∈ {0, 1}q the string defined by(
x|Q
)
j

= x|Q(j) if Q(j) 6= dummy and
(
x|Q
)
j

= dummy otherwise.

Given an assignment tester A and a circuit ϕ, we denote by QA,ϕi the i-th queries function
computed by A when invoked on the input circuit ϕ. When A and ϕ are clear from the context,
we drop A and ϕ and write only Qi.

4.2.4 Syntactic modifications

Except for the foregoing issues, we make two more syntactic modifications to Definition 4.1. Those
modifications are done in order to simplify the presentation of our results, but are not essential:

1. Instead of defining an assignment tester as an algorithm, we define it as a circuit. Recall that
a circuit can only handle inputs of a fixed size, rather than all input sizes. In particular, this
means that the assignment testers defined below can not receive any circuit as an input, but
are defined only for circuits of a fixed size. However, our main theorem (see Theorem 4.11
below) states a construction of a uniform family of assignment tester circuits, so we can still
use our assignment testers for all circuit sizes.

2. An assignment tester should provide two different functionalities: Computing the representa-
tion ψrep

i of the i-th output circuit ψi, and computing the i-th queries function QA,ϕi , for every
i. In order to support both functionalities, we think of the assignment tester as having two
different modes of operation: a circuit mode, in which the assignment tester computes ψrep

i ,

and a query mode, in which the assignment tester computes the queries function QA,ϕi . We
can implement this “two modes view” by modifying the assignment tester such that it takes
an additional input bit, which determines in which mode the assignment tester is invoked.

4.2.5 The final definition

We are now ready to present the definition of assignment testers with which we will work throughout
the paper. In the rest of the paper, whenever we refer to “assignment testers” we always refer to the
following definition, and never to Definition 4.1. The following definition differs from Definition 4.1
only in the points discussed above.

24

Definition 4.8 (Assignment Testers, revised). An assignment tester A for circuits of size n with
outputs’ number R, outputs’ size s, proof length `, rejection ratio ρ, tester size t, input representation
size nrep, and output representation size srep is a circuit that satisfies the following requirements:

1. Input and output: The assignment tester A operates in two modes:

(a) In the circuit mode, A takes as an input a triplet (ϕrep,m, i), where i ∈ [R] and ϕrep is a
representation of a circuit ϕ of size at most n over m inputs. The size of ϕrep is required
to be at most nrep. The tester A then outputs a pair (ψrep

i , qi), where qi is a natural
number, and ψrep

i is a representation of a circuit ψi of size at most s over qi inputs. The
size of ψrep

i is at most srep.

(b) In the query mode, A takes as an input a quartet (ϕrep,m, i, κ), where ϕrep, m and
i are as in the circuit mode, and κ ∈ [qi], where qi is as in the circuit mode. The
assignment tester A outputs the κ-th query of ψrep

i , i.e., A outputs QA,ϕi (κ), where

QA,ϕi : [qi]→ [m+ `] ∪ {dummy} is as defined in Notation 4.7.

2. Completeness: For every assignment x ∈ {0, 1}m that satisfies ϕ there exists a string π ∈ {0, 1}`
such that the following holds: For every i ∈ [R], the assignment (x ◦ π)|Qi

satisfies ψi. We
refer to π as a proof of x, or as a proof that convinces A that x satisfies ϕ.

3. Soundness: For every assignment x ∈ {0, 1}m, and for every string π ∈ {0, 1}` the following
holds: For at least ρ ·dist (x,SAT(ϕ)) fraction of the indices i ∈ [R], the assignment (x ◦ π)|Qi

does not satisfy ψi. We refer to x as the tested assignment and to π as the proof string.

4. Size: The size of the assignment tester A (as a circuit) is at most t.

We will sometimes refer to n as the input size of A.

Remark 4.9. Note that Definition 4.8 specifies an upper bound on the size of the assignment
tester (i.e. the tester size t), while Definition 4.1 had no restrictions on the running time of the
assignment tester.

Remark 4.10. Definition 4.8 has more parameters than we would have liked it to have. However,
the most significant parameters are the circuit size n, the outputs’ number R, the outputs’ size
s and the tester size t. The rejection ratio ρ will require only little attention throughout our
construction. Furthermore, as we will see in Sections 5.2 and 5.7, we do not keep track of the proof
length ` throughout this work, and the representations’ sizes nrep and srep are of little significance.

4.3 Main theorem

The rest of this paper is devoted to proving the following theorem:

Theorem 4.11 (Main Theorem). There exists an infinite family of circuits {An,nrep}∞n=1,nrep=1,
such that An,nrep is an assignment tester for circuits of size n with outputs’ number R(n) =
poly (n), outputs’ size s(n) = O(1), proof length ` (n) = poly (n), rejection ratio ρ = Ω(1), tester
size t(n, nrep) = poly (log n, nrep), input representation size nrep, and output representation size
srep(n, nrep) = O(1). Furthermore, there exists an algorithm that on inputs n and nrep, runs in
time poly (log n, nrep) and outputs An,nrep.

We now show that the main theorem implies the desired construction of PCPPs (Theorem 2.16,
restated below), and thus implies the desired construction of PCPs as well (Theorem 2.7):

25

Theorem (2.16, restated). For any admissible function T (n,m) and a pair-language PL that is
decidable in time T , it holds that

PL ∈ PCPP [O (log T (n,m)) , O(1), poly (n, log T (n,m))]

Proof of Theorem 2.16 based on Theorem 4.11. The proof is straightforward, and consists
of reducing PL to Circuit-Value as discussed in Section 4.1 while using the representation of the
circuit instead of the circuit itself, and then applying the assignment testers of the main theorem
(Theorem 4.11) to the resulting representation. Details follow.

Let `(n) denote the proof length of the assignment tester of Theorem 4.11. Let T (n,m) and
PL be as in Theorem 2.16, and let M be the machine deciding PL in time T . We define a PCPP
verifier V for PL. Suppose that the verifier V is invoked on explicit input w ∈ {0, 1}n, implicit

input x ∈ {0, 1}m and proof π ∈ {0, 1}`(n). The verifier V acts as follows.

Let ϕ
def
= ϕn,m be the circuit that is obtained by applying Fact 4.6 to M for n and m, and let ϕrep

be the corresponding representation. Recall that ϕ is of size at most O
(
T (n,m)2

)
, and that ϕrep

is of size at most logdCL T (n,m), where dCL is the constant from Fact 4.6. The verifier V begins
by computing the representation ϕrep. Next, V computes the representation ϕrep

w of a circuit ϕw
that is obtained by hard-wiring w into the first |w| inputs of ϕ. Observe that PL(w) = SAT(ϕw),
and it therefore remains to verify that x is close to SAT(ϕw).

V proceeds to verify that x is close to SAT(ϕw) as follows: V chooses i ∈ [R (|ϕw|)] uniformly

at random and invokes the assignment tester A
def
= A|ϕw|,|ϕrep

w | of the main theorem on ϕrep
w and

on i. This invocation results in the circuit ψi (of size O(1)) and in the queries function Qi. Finally,
V queries its oracle to obtain (x ◦ π)|Qi

and checks that this string satisfies ψi.
We turn to analyze the parameters of V . It should be clear that the verifier V has constant

query complexity and rejection ratio. As for the randomness complexity, observe that V only tosses
coins in order to choose i, which can be done using

logR (|ϕw|) = log
(

poly
(
T (n,m)2

))
= O (log T (n,m))

coin tosses, since |ϕw| = O
(
T (n,m)2

)
. Similarly, the proof length of V is poly (T (n,m)).

We conclude by analyzing the time complexity of V : The representation ϕrep can be computed
in time poly log T (n,m) by Fact 4.6. The representation ϕrep

w can be computed from ϕrep in time
poly (n, log T (n,m)), by hard-wiring w into ϕrep, and changing ϕrep in the straightforward way. By
the main theorem, generating A and invoking it can be done in time poly (n, log T (n,m)) (here,
A is generated for input size |ϕw| = poly (T (n,m)) and for input representation size |ϕrep

w | =
n+ poly log T (n,m)). Finally, evaluating the circuit ψi on (x ◦ π)|Qi

can be done in time O(1). �

Our main theorem can be compared to the following constructions of assignment testers of [DR06]
and [Din07] (the running time stated below is implicit in those works):

Theorem 4.12 ([DR06, Theorem 1.2]). Same as the main theorem, but with R(n) = npoly logn and
t(n, nrep) = npoly logn + poly (n, nrep).

Theorem 4.13 ([Din07]). Same as the main theorem, but with t(n, nrep) = poly(n, nrep).

The difference between our main theorem and the latter two results is especially important when
nrep is poly-logarithmic in n, in which case our assignment testers run in time poly log n while the
assignment testers of the latter two results run in time npoly logn and poly(n) respectively. Viewed

26

from a different perspective, our assignment testers yield PCPPs that run in time poly (n, log T),
which is polynomial even when T is exponential in n, while the latter two results yield PCPPs that
run in time at least poly(n, T), which is super-polynomial whenever T is super-polynomial in n.

5 Tools for Constructing Assignment Testers

In this section, we develop few tools and techniques that are useful for our purposes as well as of
independent interest. The section is organized as follows:

• In Section 5.1, we define the auxiliary notion of “reverse listers”.

• In Section 5.2, we discuss the relation between the proof length of assignment testers to their
outputs’ number and size in the setting of super-fast assignment testers, and show that for
the purpose of this work we can do not need to keep track of the proof length of our assignment
testers.

• In Section 5.3, we adapt the gap amplification technique of Dinur to the setting of super-fast
assignment testers by using reverse listers.

• In Section 5.4, we amend the known technique of PCPP composition such that it maintains
the efficiency of the reverse listers of the involved assignment testers.

• In Section 5.5, we review useful known facts on error correcting codes in which membership
can be verified efficiently. Such codes are used in Sections 5.6, 5.7, 5.8, and 8.

• In Section 5.6, we present a super-fast and general variant of the known robustization tech-
nique.

• In Section 5.7, we present a generic technique for increasing the input representation size of
an assignment tester while losing only a small factor in its input circuit size. This technique
reduces the significance of the input representation size and output representation size of
assignment testers, and simplifies some of our proofs.

• In Section 5.8, we show that without loss of generality, it suffices to consider assignment
testers that can only handle input circuits with bounded fan-in and fan-out.

5.1 Reverse Listers

In this section we define the notion of reverse lister, which is a variant of the notion of reverse sampler
introduced in [BG02]. Informally, given an assignment tester A that outputs circuits ψ1, . . . , ψR,
a reverse lister for A is a circuit that maintains for each coordinate k the list of all the circuits ψi
that query k.

In the proof of our main result, we use reverse listers in order to analyze the effect of Dinur’s
amplification theorem on the tester size of assignment testers (see Section 5.3), as well as in the
proof of the tensor product lemma (see Section 8). In addition, as we show in Section 5.2, reverse
listers can be used to upper bound the proof length of assignment testers, which relieves us from
the need to keep track of the proof length of our assignment testers.

Before giving the formal definition of reverse listers, we first define the notion of reverse list ,
which is the list that is maintained by the reverse lister:

27

Definition 5.1. Let A be an assignment tester with outputs’ number R and proof length `. Let ϕ
be a a circuit over m inputs. For each k ∈ [m+ `], we denote the reverse list of k with respect to A
and ϕ by

RevListA,ϕ(k) =
{

(i, κ) : i ∈ [R] , κ ∈ [qi] , Q
A,ϕ
i (κ) = k

}
We turn to present the formal definition of reverse listers. Note that similarly to an assignment

tester, a reverse lister should provide a few different functionalities. Thus, as in the definition of
assignment testers (Definition 4.8), we define the reverse lister as a circuit that has few modes of
operation.

Definition 5.2. Let A be an assignment tester for circuits of size n, with outputs’ number R, proof
length `, tester size t, and input representation size nrep. A reverse lister RL for A is a circuit that
operates in three modes:

1. Counting mode: When given as input a triplet (ϕrep,m, k), where ϕrep is a represen-
tation of a circuit of size n over m inputs and k ∈ [m+ `], the reverse lister RL out-
puts |RevListA,ϕ(k)|. Here, ϕrep is required to be of size at most nrep.

2. Retrieval mode: When given as input a quartet (ϕrep,m, k, v) where ϕrep, m and k are as
in the counting mode, and where v ∈ [|RevListA,ϕ(k)|], the reverse lister RL outputs the
v-th element of RevListA,ϕ(k), according to some arbitrary order.

3. Reverse retrieval mode: When given as input a quintet (ϕrep,m, k, i, κ) where ϕrep, m
and k are as in the counting mode, and where (i, κ) ∈ RevListA,ϕ(k), the reverse lister RL
outputs the index v such that (i, κ) is the v-th element of RevListA,ϕ(k), according to order
used in the retrieval mode.

Remark 5.3. We will usually require RL to be of the same size as A, in order to avoid the need
to keep track of the size of the reverse lister in addition to keeping track of the tester size.

5.2 On the Proof Length of Assignment Testers

In the PCP literature, it is common to assume that the proof length of a PCPP is upper bounded
by 2r · q, where r and q are the randomness and query complexity of the verifier respectively.
Alternatively, in the terminology of assignment testers, the proof length of an assignment tester A
is upper bounded by R · s, where R and s are the outputs’ number and size of A respectively. The
justification for this upper bound is that R · s is the maximal number of different coordinates that
the output circuits of A may query. Hence, the “effective proof length” or the number of “effective
coordinates” is at most R · s.

While in principle the assignment tester A can make queries to coordinates that are much larger
than R ·s, this upper bound is indeed justified as long as we do not require our assignment testers to
be super-fast. To see it, note that given an assignment tester A with outputs’ number R, outputs’
size s and proof length `, we can always construct an equivalent assignment tester A′ that has proof
length R · s as follows: Let S ⊆ [m+ `] be the set of “effective coordinates”, i.e., the coordinates
that are queried by at least one output circuit of A. As noted above, it holds that |S| ≤ R · s. We
begin the construction of A′ by choosing an arbitrary one-to-one mapping φ of S into [R · s]. Then,
we define A′ to be the assignment tester that emulates A while redirecting the queries of A via φ.
It is easy to see that A′ has the desired proof length, while having the same outputs’ number and
size as A. Furthermore, the mapping φ can be constructed in time that is polynomial in R, in s

28

and in the tester size t of A. Thus, if R, s and t are polynomially bounded (as is the case in most
interesting cases), this transformation can be carried out efficiently.

However, note that the foregoing transformation results in A′ having tester size that is at
least R · s, since A′ computes φ, computing φ requires a circuit of size R · s in the worst case. Thus,
A′ can not be super-fast. It is therefore not clear whether we can always assume that the proof
length of a super-fast assignment tester is upper-bounded by R · s. Nevertheless, it turns out that
this bound can indeed be assumed for super-fast assignment testers that have super-fast reverse
listers. The reason is that given a super-fast reverse lister, we can choose a mapping φ that has
can be computed by a small circuit, as shown in the proof of the following result:

Theorem 5.4. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s,
proof length `, rejection ratio ρ, tester size t, input representation size nrep and output
representation size srep.

2. A reverse lister RL of size at most t.

• Output:

1. An assignment tester A′ with the same parameters as A except that its proof length is R·s
and its tester size is t′ = O(t).

2. A reverse lister RL′ for A′ of size at most t′.

Proof sketch. As in the foregoing discussion, we denote by S the set of “effective coordinates” of
A, i.e., the set of coordinates of the proof string that are queried by at least one output circuit of A.
Theorem 5.4 is proved by choosing a mapping φ : S → [R · s] that can be computed efficiently using
the reverse lister RL. We then use the construction of A′ described in the foregoing discussion,
while noting that this time the resulting assignment tester A′ has tester size O(t). Details follow.

We define the mapping φ : S → [R · s] as follows. We view the set [R · s] as the set of pairs
[R]× [s]. Let ϕ be a circuit of size n and let k ∈ S be an effective coordinate. Observe that this fact
that k is an effective coordinate implies that the reverse list RevListA,ϕ(k) is non-empty. Now,
set φ(k) to be the first element (i, κ) of RevListA,ϕ(k). It is easy to see that the mapping φ can
be computed using the retrieval mode of the reverse lister RL.

We now construct A′ as follows. A′ has the same output circuits as A. When A′ is required to

compute the queries function QA
′,ϕ

i (κ), it first invokes A to compute k = QA,ϕi (κ), and then invokes
RL to compute φ(k) and outputs it. It is not hard to verify that A′ has the parameters stated
in Theorem 5.4, and that the corresponding reverse lister RL′ can be implemented by a circuit of
size O(t). �

Dropping the proof length. Throughout this work all of our assignment testers have super-fast
reverse listers. Thus, in order to simplify the presentation of this work, we will not keep track of
the proof length of our assignment testers, and will always assume that the proof length is upper
bounded by R · s. This is acceptable, because we can always afford to apply Theorem 5.4 to reduce
the proof length to R · S.

29

5.3 Dinur’s Amplification Theorem

In this section we review Dinur’s amplification theorem [Din07]. The amplification theorem provides
a transformation that increases the rejection ratio ρ of a given assignment tester A to a universal
constant ρ0 at the expense of increasing the outputs’ number and tester size of A by a factor of
poly (1/ρ) (provided that the outputs’ size of A is a constant). The original amplification theorem,
given in [Din07, Section 9], was proved in a different setting than ours, and also does not analyze
the effect of the amplification on the tester size. Therefore, instead of using the original theorem, we
use the following variant, which can be derived from the original theorem. The differences between
the original theorem of [Din07] and the variant we use are discussed shortly.

Theorem 5.5. There exist constants s0 ∈ N and ρ0 ∈ (0, 1), and a polynomial time procedure that
satisfy the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s,
rejection ratio ρ, tester size t, input representation size nrep and output representation
size at most srep.

2. A reverse lister RL of size at most t.

• Output:

1. An assignment tester A′ for circuits of size n with outputs’ number at most poly
(
s, 1ρ

)
·R,

outputs’ size s0, rejection ratio ρ0, tester size at most t′
def
= poly

(
s, 1ρ

)
·(t+ poly (srep, log (R · n))),

input representation size nrep and output representation size s0.

2. A reverse lister RL′ for A′ of size at most t′.

Deriving Theorem 5.5 from the original amplification theorem of [Din07] is not very difficult,
but is tedious. Since it is not the focus of our work, we have not included its full proof.

Theorem 5.5 versus the original theorem of [Din07]. As mentioned above, the main dif-
ference between the original theorem of [Din07] and our Theorem 5.5 is that Theorem 5.5 gives an
upper bound on the tester size t′, while such a bound is not found in the original theorem of [Din07].
In order to prove such an upper bound, one needs to provide an efficient implementation of the
construction of [Din07]. Such an implementation requires some careful choices and some work, but
is not very interesting.

There are also three minor differences between the original theorem of [Din07] and Theorem 5.5:

1. The original theorem of [Din07] refers to “constraint graphs”, which are another variant of
assignment testers/PCPs. Deriving Theorem 5.5 from the original theorem of [Din07] requires
transforming assignment testers into constraints graphs and vice versa. This is easy to do
using standard techniques.

2. The original theorem of [Din07], if stated in our terms, would give a procedure that transforms
an assignment tester A with rejection ratio ρ and outputs’ number R into an assignment
tester A′ with rejection ratio 2 · ρ and outputs’ number O(R). The procedure of Theorem 5.5
is applying the aforementioned procedure of [Din07] for log ρ0

ρ times, thus making sure that

the resulting tester A′ has rejection ratio at least ρ0. In particular, the parameters of A′ that

30

are stated in Theorem 5.5 are the parameters obtained after invoking the procedure of [Din07]
for log ρ0

ρ times.

3. The original theorem of [Din07] assumes that the outputs’ size s of the assignment tester A
is constant, and does not spell out how s affects the parameters of A′. The procedure of
Theorem 5.5 states this dependence.
Moreover, a naive implemetation of the procedure of [Din07] would yield a very costly de-
pendence on s. The procedure of Theorem 5.5 uses a standard trick to make this dependence
less costly: First, the outputs’ size of A is reduced to a small constant by transforming its
output circuits to 3-CNF formulas, and outputting each clause as a separate output circuit.
Then, the procedure of [Din07] is applied to the resulting assignment tester.

The relation of reverse listers to Dinur’s amplification theorem. As mentioned in Sec-
tion 5.1, the proof of Theorem 5.5 relies crucially on the assignment tester A having an efficient
reverse lister. To see why the reverse lister is important, recall that in Dinur’s work, an assign-
ment tester is represented as a “constraint graph”. The point is that the claim that an assignment
tester A has a super-fast reverse lister is equivalent to the claim that A is represented by a strongly
explicit constraint graph. Now, recall that Dinur’s amplification theorem is proved by applying
graph transformations to constraint graphs. The running time of those transformations depends
on the explicitness of the constraint graphs, which is the reason that Theorem 5.5 relies on the
reverse lister being super-fast.

In order to see the equivalence between the efficiency reverse listers and the explicitness of
constraint graph, recall that a constraint graph is a graph whose the vertices correspond to the
coordinates of the tested assignment and the proof, and whose edges correspond to the output
circuits of the assignment tester. Now, given an assignment tester A that is represented as a
constraint graph G, a reverse lister of A corresponds to a circuit that when given the name of a
vertex v of G, lists all the edges that are adjacent to v. Thus, the reverse lister is indeed the circuit
that represents G.

5.4 Composition of Assignment Testers

Composition of assignment testers is a technique that allows combining two assignment testers
into a new assignment tester with related parameters. This technique was used, in some form, in
most of the previous PCP constructions, starting from [AS98]. The interested reader is referred to
[BGH+06, DR06] for a more detailed discussion of this technique. The basic idea of composition
is that given an assignment tester A1, we can decrease the size of its output circuits by applying
to them a second assignment tester A2. The assignment tester A1 is referred to as the “outer”
assignment tester, and A2 is referred to as the “inner” assignment tester.

The composition technique can only be applied when the outer assignment tester is “robust”,
where “robustness” is a strengthening of the standard soundness property (Requirement 3 of Def-
inition 4.8). Recall that, informally, the standard soundness property requires that, when the
assignment tester is invoked on an assignment x that is far from satisfying ϕ, a random output
circuit ψi rejects x with probability ρ. On the other hand, the robustness property requires that
for a random output circuit ψi, the assignment x will be far from satisfying ψi (in expectation).
Formally, robustness is defined as follows:

Definition 5.6. An assignment tester A is said to have (expected) robustness ρ if it satisfies the
following requirement: Let ϕ, ψ1, . . . , ψR, Q1, . . . , QR be as in the definition of assignment testers

31

(Definition 4.8). Then, for every assignment x to ϕ and for every proof π it holds that

Ei∈[R]

[
dist

(
(x ◦ π)|Qi

, SAT (ψi)
)]
≥ ρ · dist (x,SAT(ϕ)) .

Observe that expected robustness is a strengthening of the rejection ratio parameter. That is, if
an assignment tester that has (expected) robustness ρ, then it must also have rejection ratio at
least ρ. Therefore, whenever we state the robustness of an assignment tester, we avoid stating its
rejection ratio. In Section 5.6 we show that every assignment tester whose queries have a certain
structure can be modified into a robust assignment tester.

A composition theorem for super-fast assignment testers has already been proved in [BGH+05,
Section 7]. However, this theorem does not preserve the efficiency of the reverse listers of the
involved assignment testers. Below we state an alternative composition theorem that does preserve
the efficiency reverse listers, and describe the differences between the proof of this theorem and the
proofs of the previous composition theorems. We note that this theorem works under slightly more
restrictive conditions than the theorem of [BGH+05], see Remark 5.9 below.

Theorem 5.7 (Composition Theorem). There exists a polynomial time procedure that satisfies the
following requirements:

• Input:

1. An “outer” assignment tester A1 for circuits of size n with outputs’ number R1, outputs’
size n, robustness ρ1, tester size t1, input representation size nrep, and output represen-
tation size srep1 . Furthermore, we require that for every input circuit ϕ, all the output
circuits of A1 have the same input length (though this length may vary for different input
circuits ϕ).

2. An “inner” assignment tester A2 for circuits of size s1 with outputs’ number R2, out-
puts’ size s1, rejection ratio ρ2, tester size t2, input representation size srep1 , and output
representation size srep2 .

3. Reverse listers RL1 and RL2 for A1 and A2 of sizes at most t1 and t2 respectively.

• Output:

1. An assignment tester A′ for circuits of size n with outputs’ number 2 ·R1 ·R2, outputs’

size O(s2), rejection ratio 1
4 · ρ1 · ρ2, tester size t′

def
= O (t1 + t2) + poly log (n,R1, R2),

input representation size nrep, and output representation size srep2 + poly log(s2).

2. A reverse lister RL′ for A′ of size at most t′.

Remark 5.8. Without loss of generality, we may assume that n > s1 > s2 (the output size of
an assignment tester can always be assumed to be smaller than the input size, since otherwise the
assignment tester is useless). Now, observe that the assignment tester A′ improves over A1 in its
outputs’ size, which is roughly s2 < s1, and improves over A2 in its input size, which is n > s1.
In other words, the composed assignment tester A′ combines the good input size of A1 with the
good outputs’ size of A2. The cost of obtaining those improvements is that A′ has larger outputs’
number and tester size than both A1 and A2.

Remark 5.9. Theorem 5.7 works under slightly more restrictive conditions than the composition
theorem of [BGH+05]. Specifically, Theorem 5.7 makes the following two additional requirements
from A1 and A2:

32

The most restrictive requirement is that the output circuits of A1 all have the same input length.
However, we note that this requirement is less restrictive than it may seem. The reason is that
in most applications of the composition technique in the literature, the robustness of the outer
assignment tester is obtained by applying to it some form of “robustizing” transformation, and we
can design our robustization technique (Theorem 5.23) such that it will guarantee that A1 satisfies
this requirement of the composition theorem.

Remark 5.10. We note that it is not hard to modify an assignment tester such that all its output
circuits have the same input length, by taking each output circuit that has small input length and
repeating its queries multiple times. However, this transformation does not seem to preserve the
efficiency of the reverse lister of the assignment tester.

In the rest of this section, we describe the difference between the proof of Theorem 5.7 and the
proofs of previous composition theorems. The full details of the proof can be found in Appendix A.

In previous composition theorems, the assignment tester A′ is constructed as follows: Given
an input circuit ϕ, the assignment tester A′ first applies A1 to ϕ, then applies A2 to the resulting
output circuit ψi of A1 and finally outputs the output of A2. However, if A1 and A2 are arbitrary
assignment testers, then it may be difficult to construct an efficient reverse lister for A′. For
example, consider the task of counting the number of output circuits of A′ that query a coordinate
k in the input of ϕ. In order to compute this number, we need to compute the sum, over each output
circuit ψi of A1 that queries k, of the number of output circuits of A2 that query the corresponding
input coordinate of ψi. While we can use RL1 and RL2 to find each of the terms of this sum, the
number of those terms may be too large, and we may not be able to afford to go over all of them.
Thus, it is not clear how the sum of those terms can be computed.

This problem can be solved easily if we are guaranteed that, for every output circuit ψi of A1

and for every coordinate k′ in the input of ψi, the number of output circuits of A2 that query k′ is
the same. However, requiring this property from A2 is too restrictive. Instead, we require that the
number of output circuits of A2 that query k′ depends only on the input length of ψi, and not on
ψi itself or on k′. The latter requirement is sufficient for our purposes, since Theorem 5.7 assumes
that all the output circuits of A1 have the same input length. This calls for the following definition:

Definition 5.11. We say that an assignment tester A is input-uniform for every assignment length
m ∈ N, the size of the reverse list RevListA,ϕ(k) is the same for all circuits ϕ over m inputs and
all tested assignment coordinates k ∈ [m].

Using the foregoing ideas, we can prove a composition lemma for the case where A2 is input-
uniform (the full proof of this lemma is given in Appendix A):

Lemma 5.12 (Composition Lemma for Input Uniform Inner Testers). Same as Theorem 5.7, with
the following differences:

1. A2 is required to be input-uniform.

2. We do not require that R2 ≥ s1.

3. The outputs’ number, output size, rejection ratio, and output representation size of A′ are
R1 ·R2, s2, ρ1 · ρ2 and srep2 , respectively.

The more general Theorem 5.7 now follows as an immediate corollary of Lemma 5.13 and the
following lemma, which shows that every assignment tester can be transformed into an input-
uniform one with only a small cost:

33

Lemma 5.13. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s,
rejection ratio ρ, tester size t, input representation size nrep, and output representation
size srep.

2. A reverse lister RL for A of size at most t.

• Output:

1. An input-uniform assignment tester A′ for circuits of size n with outputs’ number 2 ·
R, outputs’ size O(s), rejection ratio 1

4 · ρ, tester size t′ = t + poly log (n,R), input
representation size nrep, and output representation size srep + poly log(n).

2. A reverse lister RL′ of size at most t′.

Proof Sketch. We begin by defining the proof strings of A′. Let ϕ be a circuit of size n over m
inputs, let x be a satisfying assignment of ϕ, and let π be the proof that convinces A that x satisfies
ϕ. Then, the proof string that convinces A′ that x satisfies ϕ is π′ = x ◦ π.

We turn to describe the behavior of A′. The assignment tester A′ implements the following
test: Suppose that A′ is given a tested assignment x for a circuit ϕ and an alleged proof π′ = x′ ◦π.
We view x and x′ as partitioned to m/s blocks of size s. Now, with probability 1/2, the tester A′

invokes A to test that x′ satisfies ϕ using the proof π, and with probability 1/2 checks that x agrees
with x′ on a random block of size s. It is easy to check that A′ has the required parameters, and
that both A′ and RL′ can be implemented in size t′. �

5.5 Efficiently verifiable error-correcting codes

Throughout this work we use the fact that there exist good error correcting codes that allow an
efficient verification of the claim that for two strings w, x it holds that w = C(x). Formally:

Fact 5.14. There exist constants RC and δC such that for every k ∈ N the following holds:

1. There exists a code Ck with message length k, rate RC , relative distance δC and block
length lk = k/RC .

2. There exists a circuit Hk of size O(k) that takes as input strings x ∈ {0, 1}k and w ∈ {0, 1}lk ,
and accepts if and only if w = Ck(x).

3. There exists an algorithm that on input k, runs in time poly log k and outputs a representa-
tion Hrep

k of Hk. In particular, Hrep
k is of size at most poly log k.

4. There exists an algorithm that on input x ∈ {0, 1}k, computes Ck(x) in time poly(k).

The codes of Fact 5.14 can be constructed from any systematic LDPC code whose parity check
matrix can be represented succinctly. For example, one can use the expander codes of Spielman
[Spi96], while using a strongly explicit expander for the construction.

Remark 5.15. We note that the codes of Fact 5.14 are stronger than what we need in order to
prove the main results of this paper. In particular, we could have relaxed Requirement 2 and require
only that the circuit Hk will be of size kpoly log k, which would have made the construction of such
codes much easier. However, the size of the circuit Hk affects the parameters of the robustization
theorem (Theorem 5.23). Since this theorem may be useful for future works, we wish to prove it
with the best possible parameters, and hence the use of the stronger requirements in Fact 5.14.

34

5.6 Robustization of Assignment Testers with Block Access

In this section, we show that every assignment tester whose queries have a certain block structure
can be transformed into a robust assignment tester. This transformation will allow us to compose
assignment testers in a relatively clean way.

Basically, an assignment tester has “block access” if the coordinates of the tested assignment
and the proof string can be partitioned into blocks, such that each of the output circuits ψi of the
assignment tester queries only on a small number of blocks. While it may be natural to define a block
as a set of coordinates, we prefer a somewhat more involved definition that allows more slackness
in the choice of the blocks, which is similar to the definition of queries functions (Definition 4.7).
Specifically, instead of defining a block to be a subset of [m+ `], we use the following definition of
a block:

Definition 5.16. A block of width w of [m+ `] is a function B : [w]→ [m+ `] ∪ {dummy}, where
dummy represents the “dummy query”, which is always answered with 0. We require that every
non-dummy coordinate is queried by B at most once, that is, every k ∈ [m+ `] has at most one
preimage via B. We denote by |B| the width of the block B. With some abuse of notation, we will
denote by k ∈ B the fact that k is a non-dummy coordinate in the image of B.

We turn to define the notion of “block access”.

Definition 5.17. Let Q : [q]→ [m+ `]∪{dummy} be a queries function (as in Definition 4.7), and
let B1, . . . Bb be blocks of [m+ `]. We say that Q queries B1, . . . Bb if Q queries all the coordinates
in the blocks consecutively, according to their order within the blocks. More formally, we say that
Q queries B1, . . . Bb if it holds that q =

∑b
j=1 |Bj | and

Q(1) = B1(1), . . . , Q(|B1|) = B1(|B1|)
Q(|B1|+ 1) = B2(1), . . . , Q(|B1|+ |B2|) = B2(|B2|)
...

Q

b−1∑
j=1

|Bj |+ 1

 = Bb(1), . . . , Q

 b∑
j=1

|Bj |

 = Bb(|Bb|)

Definition 5.18. Let A be an assignment tester with outputs’ number R, outputs’ size s and
proof length `. We say that A has b-block access if for every circuit ϕ over m inputs there exist
blocks B1, . . . , Bp of [m+ `] whose images form a partition of [m+ `], such that the following

holds: For each i ∈ [R] there exist Bj1 , . . . , Bjb′ (for b′ ≤ b) such that the queries function QA,ϕi

queries Bj1 , . . . , Bjb′ .
For each i ∈ [R], we refer to the corresponding blocks Bj1 , . . . , Bjb′ as the blocks queried by ψi

(where ψi is the i-th output circuit obtained by applying A to ϕ). Note that |Bj | ≤ s for all
blocks Bj , since each circuit ψi has size at most s.

For technical reasons that have to do with the efficiency of the implementation, we also make
the following requirements:

1. We require that every block contains either only tested assignment coordinates, or only proof
coordinates (but in both cases it may contain dummy coordinates). More formally, the image
of each block is either contained in [m]∪{dummy} or in [m+ `]∪{dummy} \ [m]. We refer to
the first type of blocks as assignment blocks and to the second type of blocks as proof blocks.

2. We require that all the assignment blocks are of the same width.

35

3. We require that for every assignment block Bj , the number of non-dummy coordinates in the
block image is at least (1/3) fraction of the block width.

4. We require that the assignment blocks will precede the proof blocks in the order of the blocks.

Remark 5.19. We stress that the different proof blocks in Definition 5.18 may be of different
widths.

Every assignment tester that has b-block access and rejection ratio ρ can be transformed into
a robust assignment tester with robustness Ω(ρ/b). However, in order to make the transformation
preserve the efficiency of the assignment tester, we need the assignment tester to have a block
structure that can be efficiently computed. This motivates the following notion of “block access
circuit”, which computes the block structure efficiently.

Before giving the formal definition of block access circuits, we note that similarly to an as-
signment tester, a block access circuit should provide few different functionalities. Thus, as in the
definitions of assignment testers and reverse listers (Definitions 4.8 and 5.2), we define the block
access circuit as a circuit that has a few modes of operation.

Definition 5.20. Let A, R, `, b, ϕrep, m, ψ1, . . . , ψR, and B1, . . . , Bp be as in Definition 5.18. A
block access circuit BA for A is a circuit that operates in five modes:

1. Number of Blocks mode: When given ϕrep and m, the circuit BA outputs the correspond-
ing number of blocks p.

2. Block to Coordinate mode: When given ϕrep, m, j ∈ [p], and v ∈ [|Bj |], the circuit BA
outputs Bj(v) and|Bj |.

3. Coordinate to Block mode: When given ϕrep, m and k ∈ [m+ `] , the circuit BA outputs
the unique j ∈ [p] and v ∈ [|Bj |] such that Bj(v) = k.

4. Number of Assignment Blocks mode: When given ϕrep and m, the circuit BA outputs
the corresponding number of assignment blocks.

5. Circuit to Blocks mode: When given ϕrep, m, and i ∈ [R], and v ∈ [b], the circuit BA
outputs the index of the v-th block that is queried by the output circuit ψi, and the number
b′ of blocks that are queried by ψi.

Remark 5.21. As in the case of reverse listers, we will always require that the size of BA is upper
bounded by the tester size of A, in order to avoid the need to introduce an extra parameter that
measures the size of BA.

Remark 5.22. Note that if an assignment tester A has a block access circuit BA, then the queries
of A are determined by BA, and especially by its Circuit to Blocks mode. In particular, the query
mode of A can be implemented by simple invocations of BA.

We turn to show how to transform any assignment tester that has block access into a robust
assignment tester. This transformation is a generalization of the robustization technique of [DR06]
and [BGH+06] (the latter used the term “alphabet reduction”), and is also related to the bundling
technique of [BGH+06], and to the parallelization technique of [AS98, ALM+98]. We prove the
following result.

Theorem 5.23. There exists a polynomial time procedure that satisfies the following requirements:

36

• Input:

1. An assignment tester A for circuits of size n that has b-block access, outputs’ number R,
outputs’ size s, rejection ratio ρ, tester size t, input representation size nrep, and output
representation size srep.

2. A reverse lister RL for A of size at most t.

3. A block access circuit BA for A of size at most t.

• Output:

1. An assignment tester A′ for circuits of size n with robustness Ω (ρ/b), outputs’ number 2·
R, outputs’ size O(b · s), tester size t′ = O (t) + b · poly log (R, s, n), input representation
size nrep, and output representation size srep + b · poly log (s).

2. A reverse lister RL′ for A′ of size at most t′.

Furthermore, A′ has the following property: On every input circuit ϕ, all the output circuits of A′

have the same input length.

Remark 5.24. Note that the “furthermore” part is important in order to make the composition
work. Specifically, this property is required in order to apply the composition theorem while using
A′ as the outer verifier. See the statement of the composition theorem (Theorem 5.7) for details.

Theorem 5.23 vs. previous robustization theorems. There are two differences between the
robustization theorems of [BGH+06, DR06] and Theorem 5.23:

1. Theorem 5.23 provides an implementation that maintains both the efficiency of both the
assignment tester and the reverse lister, while the theorems of [BGH+06, DR06] do not refer
to this issue.

2. In our terminology, the theorems of [BGH+06, DR06] require all the assignment blocks to
be of width 1, and all the proof blocks to be of the same width. Theorem 5.23 relaxes
these requirements, allowing the assignment blocks to be of arbitrary width (though it is still
required that all of them will be of the same width), and allowing the proof blocks to have
multiple widths.

Sketch of the proof of Theorem 5.23. Below we sketch the proof of Theorem 5.23, and in
particular the construction of A′ and the analysis of its robustness. The full proof of Theorem 5.23
is given in Appendix B. While we do not discuss below how to implement this construction in
a super-fast manner, such implementation is straightforward (but tedious), and is presented in
Appendix B.

Let ϕ be a circuit of size n over m inputs. We describe the action of A on ϕ. Let us denote by `
the proof length of A. Let ψ1, . . . , ψR and Q1, . . . , QR be the output circuits and queries functions
obtained by applying A to ϕ, and let B1, . . . , Bp be the blocks of A that correspond to ϕ.

The basic argument: The basic idea of the proof of Theorem 5.23 is as follows. Let x be a
satisfying assignment for ϕ, and let π be the proof of x. We construct the proof π′ that convinces A′

to accept x by encoding each of the strings (x ◦ π)|B1
, . . . , (x ◦ π)|Bm

via an error correcting code C
with relative distance δC , and appending the encoding of the blocks to π (specifically, we use the
codes of Section 5.5). Let Ej denote the encoding of the (x ◦ π)|Bj

via C. The assignment tester

37

A′ is constructed by modifying the circuits ψ1, . . . , ψR into the following “robustized” circuits
ψrob
1 , . . . , ψrob

R : If a circuit ψi queries the blocks Bj1 , . . . , Bjb′ , then the corresponding circuit ψ′i
queries both Bj1 , . . . , Bjb′ and Ej1 , . . . , Ejb′ , and verifies that Bj1 , . . . , Bjb′ satisfy ψi and that
Ej1 , . . . , Ejb′ are indeed the correct encodings of (x ◦ π)|Bj1

, . . . , (x ◦ π)|Bjb′
respectively.

To see why A′ should be robust, consider an assignment x that is ε-far from SAT(ϕ) and some
proof string π′. As a warm-up, assume that π′ consists of a proof π for A, and of the correct encoding
Ej of (x ◦ π)|Bj

via C for each block Bj . Furthermore assume that all the blocks B1, . . . , Bp are of
the same width. By the rejection ratio of A, at least ρ · ε fraction of the output circuits ψi of A
reject x ◦ π. We show that for each output circuit ψi that rejects (x ◦ π)|Qi

, it holds that x ◦ π′ is

Ω (1/b)-far from satisfying ψrob
i . This will imply that for a random i ∈ [R] it holds that x ◦ π′ is

Ω(ρ/b) · ε far from satisfying ψrob
i (in expectation), and will therefore imply the robustness of A′.

Fix an output circuit ψi of A that rejects x ◦ π. Then, there exists a coordinate k ∈ [m+ `]
that is queries by k and whose value needs to flipped in order to make ψi accept. Let Bj denote
the block to which k belongs. Now, observe that in order to make ψrob

i accept x and π′, at least
δC fraction of the bits of the encoding Ej need to be changed. Moreover, the encoding Ej forms
at least Ω (1/b)-fraction of the input of ψrob

i , since by our assumption all the blocks are of the
same width. Thus, it holds that the input of ψrob

i is Ω (δC/b)-far from SAT(ψrob
i), and the required

robustness follows (note that δC is a universal constant, and hence Ω (δC/b) = Ω (1/b)). We turn
to removing the warm-up assumptions.

Dealing with multiple block widths: We first remove the assumption that the blocks
B1, . . . , Bp are of the same width. Recall that we used this assumption in order to argue that the
encoding Ej forms Ω (1/b)-fraction of the input of ψrob

i . If the blocks are not of the same width,
then the block Bj may have a very small width, in which case Ej will only constitute a small part
of the input of ψrob

i . We resolve this issue by making the circuit ψrob
i query the blocks of small

width several times, so those blocks form a significant portion of its input. This solution uses the
convention that an output circuit of an assignment tester may query the same coordinate more
than once (see discussion in Section 4.2.3), so the circuit ψrob

i is allowed to query the same block
several times.

Dealing with inconsistencies between x and the Ej’s: It remains to remove the assump-
tion that the for each j, the string Ej is the correct encoding of (x ◦ π)|Bj

. Note that the proof π′

may not meet this condition. In such a case, the analysis of the basic argument breaks down: Even
if we know that a circuit ψi rejects x and π, and that some bits of (x ◦ π)|Bj

need to be flipped to
make ψi accept, one would still may not need to change the string Ej in order to make ψi accept,
since Ej may be the encoding of (x ◦ π)|Bj

after flipping these bits. Thus, even though ψi rejects

x ◦ π′ in this case, the string x ◦ π′ may still be close to satisfying it.
In order to resolve this issue, we consider the assignment xdec and the proof πdec that are

obtained by decoding each string Ej in π′ to the nearest legal codeword of Ck. If xdec is far from
SAT(ϕ) then the basic argument can be used as before, by replacing x with xdec and π with πdec.
It thus remains to deal with the case that xdec is close to SAT(ϕ).

Suppose that xdec is close to SAT(ϕ). Note that this implies that x and xdec are far from
each other, since by assumption x is far from SAT(ϕ). We can thus detect the error in this case
by checking consistency between x and xdec. To this end, we modify A′ to output additional
“consistency” circuits ψcon

1 , . . . , ψcon
R . Each consistency circuit ψcon

i queries some assignment block
Bj and its purported encoding Ej , and checks that Ej is indeed the correct encoding of Ej .

We can now make the following argument: If xdec is far from SAT(ϕ), then the foregoing basic
argument shows that many of the circuits ψrob

i are far from being satisfied by x ◦ π′ . On the other

38

hand, if xdec is close to SAT(ϕ), then x is far from xdec and thus many of the circuits ψcon
i are far

from being satisfied by x ◦ π′ . This establishes the robustness of A′.
We note that in the second part of the foregoing argument (i.e., when xdec is close to SAT(ϕ)),

one should be careful about a certain points: In order for the argument to hold, we need to show
that if x is far from xdec then, for a random assignment block Bj it holds that x|Bj

is far from xdec|Bj
.

To this end, we construct the consistency circuits ψcon
1 , . . . , ψcon

R such that each coordinate of the
tested assignment is checked by roughly the same number of consistency circuits. More specifically,
the consistency circuits ψcon

1 , . . . , ψcon
R are constructed such that each assignment block is queried

by roughly the same number of consistency circuits. By combining this with the assumptions of
Definition 5.18 that all assignments blocks are of the same width, and that in each block the fraction
of assignment coordinates is at least one third of the width, it follows that each coordinate of the
tested assignment is checked by roughly the same number of consistency circuits. �

5.7 Increasing the Representation Size, and Universal Circuits

In this section we present a technique for increasing the input representation size of an assignment
tester. Along the way, we construct “universal circuits” (Section 5.7.2), which will also be used in
the proof of the tensor product lemma (in Section 8)

One of the more cumbersome features of our definition of super-fast assignment testers is the
need to keep track of both the input circuit size and the input representation size, rather than
tracking only the input circuit size, and the same goes for the output representation size. The
reason that we have to track the input representation size is that it sets an upper bound on the
size of the representations to which we can apply the assignment tester. In this section we discuss
a result which shows that the input representation size of an assignment tester can always be made
as large as we want, while paying a reasonable cost in the input circuit size. This fact has two
useful implications:

1. The input representation size of an assignment tester is of little importance, i.e., it is not a
severe limitation on the circuits to which we can apply our assignment testers. The reason
is that we can always increase the input representation size as needed in order to apply our
assignment testers.

2. The output representation size of an assignment tester is of little importance. The reason is
that the output representation size is relevant mostly for the purposes of composition, i.e.,
in order to ensure that the output representations of the outer tester are not larger than the
input representation size of the inner tester. Now, since the input representation size of the
inner tester can always be made as large as the output representation size of the outer tester,
the output representation size loses its significance as well.

This means that while we still have to keep track of those parameters for technical purposes, the
reader may give them little attention. The formal result is as follows.

Lemma 5.25 (Input Representation Lemma). There exists a polynomial time procedure that sat-
isfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n that has outputs’ number R, outputs’ size s,

rejection ratio ρ, tester size t, input representation size nrep
def
= poly log (n) and output

representation size srep.

39

2. A reverse lister RL for A of size at most t.

3. A number nrep′ that is represented in unary, such that nrep′ ≥ nrep.

• Output:

1. An assignment tester A′ for circuits of size n′ = n/ (nrep′ · poly log (n)) that has input
representation size nrep′ , outputs’ number R, outputs’ size s + O(1), rejection ratio
ρ′ = Ω(ρ), tester size t′ = O(t) + poly (log n, nrep), and output representation size srep +
poly log (s).

2. An reverse lister RL′ of size at most t′.

Note that the procedure stated in Lemma 5.25 indeed increases the input representation size
of the assignment tester from nrep to nrep′, but decreases the input circuit size by a factor of
nrep′ · poly log (n).

In Section 5.7.1 below, we sketch the proof of Lemma 5.25. Then, in Section 5.7.2 we define
and construct universal circuits, which are a central gadget of the proof and are also used in the
proof of the tensor product lemma in Section 8. We do not provide a the full proof of Lemma 5.25,
since it is straightforward (given the sketch below) and is tedious. However, a similar technique is
used in the implementation of the tensor product lemma (Section 8).

Remark 5.26. We note that the construction of the assignment tester A′ of Lemma 5.25 is not
a new one, and in particular, [DR06] used a similar construction in order to transform assignment
testers to oblivious ones. The novelty of this work in this context is the observation that this
construction can also be used to increase the input representation size of an assignment tester.

5.7.1 Proof overview

The basic idea of how the input representation size can be increased is as follows. Suppose we have
the following objects:

1. A circuit ϕ of size n′ that has a representation ϕrep of size nrep′.

2. An assignment tester A that has input circuit size n ≥ n′ · nrep′ · poly log (n′) and input
representation size nrep ≥ poly log (n′).

Suppose now that we wish to invoke A on ϕ and on tested assignment x. The problem is that the
input representation size of A may be much smaller than the size of ϕrep. Thus, we can not apply
A directly to ϕ. Instead, we take the following indirect approach.

Consider a “universal circuit” U that takes as an input a representation ζrep of a circuit ζ and
an input y for ζ, and outputs ζ (y) (where ζrep and ζ are of sizes nrep′ and n′ respectively). As
we will see below (in Section 5.7.2), a variant of such a universal circuit can be implemented in
size n′ · nrep′ · poly log (n′), and has a representation of size poly log (n′). Now, we construct an
assignment tester A′ with input circuit size n′ and input representation size as follows. When A′

is invoked on input ϕrep and on tested assignment x, it emulates the invocation of the assignment
tester A on input circuit U and on tested assignment (ϕrep, x). Hopefully, this invocation of A on
U is equivalent to the action of A on ϕ, even though A is not applied to ϕ directly. The emulation
of A is done by invoking A on U , obtaining an output circuit ψi, then fixing the input gates of
ψi that correspond to bits of ζrep to the corresponding values in ϕrep, and finally outputting the
resulting circuit.

40

This construction of A′ essentially emulates the action of A on the circuit ϕ, even though the
input representation size of A may be much smaller than the size of ϕrep. Thus, we effectively
increase the input representation size of A. While this construction almost works, there are few
issues that need to be resolved, to be discussed next.

Using a weaker definition of U . The first issue is that we do not know how to implement the
foregoing definition of U in size n′ · nrep′ · poly log (n′). Thus, we use a weaker definition that still
suits our purposes - instead of requiring U to compute ζ(y) (when given as input the pair (ζrep, y)),
we only require U to verify that ζ accepts y, and to that end allow U to use an “auxiliary witness”.
Note that this weaker definition of U is still useful, since assignment testers too are only required
to verify that the input circuit accepts, and are allowed to use an auxiliary proof.

More specifically, we modify U such that it takes as input a tuple (ζrep, y, z) where z is an
auxiliary string, and act as follows:

1. If y is a satisfying assignment of ξ, then U accepts (ζrep, y, z) for some string z.

2. If y is not a satisfying assignment of ξ, then U rejects (ζrep, y, z) for every string z.

We now modify the definition of A′ as follows: On input representation ϕrep, tested assignment x
and proof string z ◦ π, the assignment tester A′ emulates the invocation of A on input circuit U ,
on tested assignment (ϕrep, x, z) and on proof string π.

Encoding ϕrep via an error correcting code. We turn to describe the second issue that should
be resolved. Invoking A on U and on tested assignment (ϕrep, x, z) does not verify that x is close
to a satisfying assignment of ϕ, but rather that the whole triplet (ϕrep, x, z) is close to a satisfying
assignment of U . In particular, it could be that x is far from any satisfying assignment of ϕ,
but ϕrep is close to a representation of a circuit ϕ′ that is satisfied by x. In this case, the triplet
(ϕrep, x, z) is close to the satisfying assignment (ϕrep′, x, z)of U (where ϕrep′ is the representation
of ϕ′) even though x is far from any satisfying assignment of ϕ.

We resolve this issue by constructing an augmented universal circuit Û as follows. The input of
Û consists of the inputs ζrep, y and z of U , and in addition, of a string c that is expected to be the
encoding of ζrep via the error correcting codes of Section 5.5. The circuit Û will now accept if and
only if U accepts (ζrep, y, z), and in addition that c is the correct encoding of ζrep. The point is that
due to the distance property of the error correcting code, the string c can not be close to encodings
of two distinct representations at the same time. Therefore, if c is indeed the correct encoding
of ϕrep, then except for an issue to be discussed next, we expect that the tuple (ϕrep, c, x, z) to be
close to a satisfying assignment of Û if and only if x is close to a satisfying assignment of ϕ. Now,
A′ will emulate the invocation of A on input circuit Û and on tested assignment (ϕrep, c, x, z).

Reweighing c, x and z. The third issue is that if the length of x is very small compared to
the length of the tuple (ϕrep, c, x, z), then it could be the case that x is very far from a satisfying
assignment to ϕ, but the tuple (ϕrep, x, z) is close to a satisfying assignment of Û . A similar
consideration applies to the length of c. In order to resolve this issue, we modify the input of Û
such that it contains many copies of x and of c, thereby increasing the “weight” of x and c within
the input of Û . The resulting circuit Û will reject if the alleged copies of x and c are not equal to
one another.

41

Emulating the invocation of A. Finally, we elaborate a little more on how the emulation of
the invocation of A is performed. Recall that we wish to emulate the invocation of A on Û and on
a tested assignment that consists of ϕrep, of multiple copies of the encoding c of ϕrep, of multiple
copies of x, and of the witness z (where z is provided in the proof string of A′). We perform the
emulation by redirecting the queries functions of A on Û as follows:

1. Whenever an output circuit of A queries a coordinate of one of the multiple copies of x in
the tested assignment of A, the assignment tester A′ redirects the query to the corresponding
coordinate of the unique copy of x in the tested assignment of A′.

2. Whenever an output circuit of A queries a coordinate of z in the tested assignment of A, the
assignment tester A′ redirects the query to the corresponding coordinate of z in the proof
string of A′.

3. The last case, where an output circuit of A queries a coordinate of ϕrepor of c in the tested
assignment of A, is slightly more complicated. The key point is that ϕrep and c are not given
in the tested assignment or proof string of A′, but are rather computed by A′ directly. Thus,
instead of redirecting the query to a coordinate of the tested assignment or proof string of A′,
we would like to force the query to be answered with a known bit.
To this end, we require the proof string of A′ to contain two additional special coordinates,
which should contain 0 and 1. Now, whenever we would like to force the answer to a query
to be 0 or 1, we redirect the query to corresponding special coordinate. In order to force the
special coordinates to contain 0 and 1, we modify the output circuits of A′ such that each
output circuit of A′ queries the special coordinates and checks that they are assigned the
correct values.

Wrapping all up. We conclude by reviewing the final construction of A′. When A′ is invoked
in circuit mode on a representation ϕrep of an input circuit ϕ, and on index i ∈ [R], the assignment
tester A′ acts as follows:

1. A′ begins by invoking A to compute the representation of ψi, the i-th output circuit of A
when invoked on the representation Ûrep.

2. A′ computes the encoding c of ϕrepvia the error correcting code of Section 5.5.

3. A′ outputs the representation of a circuit ψ′i, which emulates ψi, and in addition queries the
two special coordinates and verifies that they are assigned 0 and 1 as required.

4. A′ computes the queries function QA
′,ϕ

i of ψ′i by redirecting the queries function QA,Ûi of ψi as
explained above.

5.7.2 Universal circuits

In this section we describe how to construct the universal circuits discussed in Section 5.7.1. This
construction is used not only in this section, but also in Section 5.7.2 and in the proof of the tensor
product lemma in Section 8. We begin by proving the following result:

Lemma 5.27. There exists a polynomial time procedure that when given as input numbers n,
m ≤ n, and nrep, outputs a representation U rep = U rep

n,nrep,m (of size poly log (n)) of a circuit
U = Un,nrep,m (of size n · nrep · poly log (n)) that satisfies the following requirements:

42

1. The circuit U takes as input a representation ζrep (of size at most nrep) of a circuit ζ (of size
at most n) over m inputs, an input y ∈ {0, 1}m to ζ, and an additional string z of length
O(n).

2. If y is a satisfying assignment of ζ, then U accepts (ζrep, y, z) for some string z. We refer to
z as the witness that convinces U that y satisfies ζ.

3. If y is not a satisfying assignment of ξ, then U rejects (ζrep, y, z) for every string z.

Proof Sketch. The construction of U is similar to the circuit decomposition method described
in Sections 3.2 and 7, but is somewhat simpler. We first present a construction of a circuit U
of size n · poly (nrep, log n), and then explain how modify the construction to yield a circuit U of
size n · nrep · poly log (n).

In order to construct a circuit U of size n · poly (nrep, log n), we view the auxiliary string z as a
sequence of variables, where for each gate g and each wire w there are corresponding variables kg
and kw in z. The variable kg (respectively, kw) is expected to be assigned the value that is output
by g (respectively, carried by w) when ζ is invoked on input y. The variables are expected to be
arranged in z such that each gate variable kg is followed by the variables that correspond to the
outgoing wires of g. That is, z should begin with the variable which corresponds to the first gate,
followed by all the variables that correspond to the outgoing wires of that gate. The next variables
in z the variable which corresponds to the second gate, again followed by all the variables that
correspond to the outgoing wires of that gate, etc. The circuit U acts as follows:

1. The circuit U begins by checking that for each gate g and its outgoing wires w1, . . . , wd (where
d ≤ 2), it holds that kg = kw1 = . . . = kwd

, and rejects if one of the checks fails. Clearly, this
can be done in size O(n).

2. Then, the circuit U rearranges the variables in z such that each gate variable kg is followed by
the variables that correspond to the incoming wires of g rather than outgoing wires of g. That
is, the new arrangement should begin with the variable which corresponds to the first gate,
followed by all the variables that correspond to the incoming wires of that gate, and then the
same for the second gate, etc. This rearrangement can be computed in size n·poly (nrep, log n)
by implementing a standard sorting algorithm, where the poly (nrep) factor is due to the need
to invoke ζrep in order to determine the wires that are connected to each gate in ζ.

3. Finally, the circuit U checks for each gate g and its incoming wires w1, . . . , wd (where d ≤ 2),
that kg is assigned the output of the gate g when given as input the values of kw1 , . . . , kwd

.
Clearly, this can be done in size n ·poly (nrep), where the poly (nrep) factor is due to the need
to invoke ζrep in order to find the Boolean function computed by each gate.

It should be clear that U is of size n · poly (nrep, log n). In order to reduce the size of U to n · nrep ·
poly log n, note that the poly (nrep) factor in the foregoing construction is since each evaluation of
the representation ζrep requires a circuit of size poly (nrep). Now, the crucial observation is that the
circuit U does not need to evaluate ζrep by itself. Instead, we can require the auxiliary string z to
contain the result of the evaluation of ζrep, and then we require U only to verify the correctness of
this result, again using the auxiliary witness z . The verification of the computation of ζrep can be
done in the same way the verification of the computation of ζ is done by U above, using a circuit
of size Õ(nrep). After using this efficiency improvement, we get an implementation of U of size
n · nrep · poly log (n).

It is easy to verify that U has a representation of size poly log (n), and that this representation
can be constructed in polynomial time. We mention that in the foregoing calculations we used

43

the fact that without loss of generality it holds that nrep ≤ poly (n) and hence poly log (nrep) =
poly log (n) . The assumption that nrep ≤ poly (n) can be made since every circuit of size n has a
trivial representation of size poly (n), and hence there is no need to consider larger representations.

�

We turn to state the construction of the augmented circuit Û that was described in the overview.
The following result is a direct corollary of Lemma 5.27:

Corollary 5.28. There exists a polynomial time procedure that when given as input the numbers
n, m ≤ n, and nrep, outputs a representation Û rep = Û rep

n,nrep,m (of size poly log (n, nrep)) of a circuit

Û = Ûn,nrep,m (of size n · nrep · poly log (n, nrep)) that satisfies the following requirements:

1. The circuit Û takes as input a representation ζrep (of size at most nrep) of a circuit ζ (of
size at most n) over m inputs, a sequence of strings c1, . . . , cα of length O(nrep), a sequence
of strings y1, . . . , yβ of length m, and a string z of length O(n). The numbers α and β are
chosen such that the total length of each of c1 ◦ . . . , ◦cα and y1 ◦ . . .◦yβ is at least 1/4 fraction
of the input length of Û .

2. For every representation ζrep and strings c1, . . . , cα, y1, . . . , yβ, there exists a string z such
that Û accepts ζrep, c1, . . . , cα, y1, . . . , yβ and z if and only if the following conditions hold:

(a) c1 = . . . = cα and y1 = . . . = yβ.

(b) c1 is the encoding of ζrep via the error correcting codes of Fact 5.14.

(c) y1 is a satisfying assignment of ζ.

As before, we refer to z as the witness that convinces U ′ that y1 satisfies ζ.

5.8 Bounding the fan-in and fan-out of input circuits

So far, we discussed circuits with unbounded fan-in and fan-out. In particular, our definition of
assignment testers requires an assignment tester to take as input a circuit ϕ with arbitrarily large
fan-in and fan-out. However, it may be easier sometimes to construct an assignment tester that
can only handle input circuits ϕ with bounded fan-in and fan-out. Thus, we would like to reduce
the construction of general assignment testers to the construction of assignment testers that can
only handle circuits with bounded fan-in and fan-out. While such a reduction is trivial to do in
polynomial time in the size of the circuits, it is not clear that this can be done in the super-fast
settings, where we only work with succinct representations.

In this section, we observe that it is possible to transform assignment testers that can only handle
bounded fan-in and fan-out into a full-fledged assignment tester that can deal with arbitrarily large
fan-in and fan-out, while paying a small cost in the parameters. This implies that, in order to
construct a full-fledged assignment tester, it suffices to construct an assignment tester that can
only handle input circuits ϕ with bounded fan-in and fan-out, which may be easier. In particular,
we use this observation in Section 7 to simplify our circuit decomposition method. Formally, we
observe the following.

Lemma 5.29 (Fan-in/out Lemma). There exists a polynomial time procedure that satisfies the
following requirements:

• Input:

44

1. An assignment tester A that is only guaranteed to work for input circuits with fan-in and
fan-out that are upper bounded by 2, and which has input size n, outputs’ number R,
outputs’ size s, rejection ratio ρ, tester size t, input representation size nrep and output
size srep.

2. A reverse lister RL for A of size at most t.

• Output:

1. An assignment tester A′ that works for arbitrary input circuits, and which has input size
n′ = n/nrep · poly log (n), outputs’ number R′ = O(R), outputs’ size s′ = max {s,O(1)},
rejection ratio ρ′ = Ω(ρ), tester size t′ = O(t) + poly (nrep, log n), input representation
size nrep and output size srep + poly log s.

2. An reverse lister RL′ of size at most t′.

Proof idea. The proof is identical to the proof of the input representation lemma (Lemma 5.25)
for nrep′ = nrep, combined with the observation that the augmented universal circuit Û can be
implemented with fan-in and fan-out 2. Little more specifically, A′ acts as follows: when given an
input circuit ϕ with arbitrary fan-in and fan-out, we invoke A on Û , and hardwire the representation
of ϕ into the output circuits of A.

In order for this argument to work, we need to show that Û can indeed be implemented with
fan-in and fan-out 2. This is not hard to prove, but is tedious, and we do not include the proof
here. �

Remark 5.30. Both the input representation lemma (Lemma 5.25) and the above fan-in/out
lemma are instances of a more general phenomena: the augmented universal circuit Û is “complete”
for assignment testers, in the sense that given an assignment tester that can only take Ûn,nrep,m

as an input circuit, one can construct an assignment tester for arbitrary circuits of size n over m
inputs that have representations of size nrep. In other words, when constructing assignment testers,
we can always assume without loss of generality that the input circuit ϕ is the circuit Ûn,nrep,m (for
some n, nrep, and m), and then move to arbitrary circuits using the construction that is used in
the proof of the input representation lemma. We do not use this more general claim in this work.

6 Proof of the Main Theorem

In this section we state our main lemmas - the decomposition lemma and the tensor product lemma
- and prove the main theorem, restated below, relying on those lemmas.

Theorem (4.11, Main Theorem). There exists an infinite family of circuits {An,nrep}∞n=1,nrep=1,
such that An,nrep is an assignment tester for circuits of size n with outputs’ number R(n) =
poly (n), outputs’ size s(n) = O(1), proof length ` (n) = poly (n), rejection ratio ρ = Ω(1), tester
size t(n, nrep) = poly (log n, nrep), input representation size nrep, and output representation size
srep(n, nrep) = O(1). Furthermore, there exists an algorithm that on inputs n and nrep, runs in
time poly (log n, nrep) and outputs An,nrep.

This section is organized as follows: First, in Section 6.1, we first define the notion of circuit
decomposition with matrix access, which is used in both lemmas. Then, in Section 6.2, we state the
lemmas and prove the main theorem.

45

6.1 Circuit Decompositions with Matrix Access

A circuit decomposition is an assignment tester with the trivial soundness requirement, that is,

Definition 6.1. We say that D is a (circuit) decomposition if D is an assignment tester with
rejection ratio 1/R, where R is the outputs’ number of D. In other words, if D is invoked on an
input circuit ϕ and on an assignment x that does not satisfy ϕ, then we only require that at least
one output circuit of D rejects x ◦ π.

Remark 6.2. As a simple example, one can consider the circuit decomposition that when given
an input circuit ϕ, transforms it into a 3-CNF formula and outputs each of the clauses of the
formula as a separate output circuit. If ϕ is of size n, then this circuit decomposition has outputs’
number O(n) and outputs’ size O(1). Thus, the notion of circuit decomposition may be viewed as
a generalization of the reduction from Circuit-SAT to 3-SAT.

We turn to define the notion of “matrix access”. Basically, the property of matrix access is
a special case of block access, in which all the blocks are of the same width. In such case, one
can think of the blocks as rows of a matrix. During the course of the proof of the tensor product
lemma, we will use such a decomposition to construct a assignment tester that has block access
and whose blocks are the columns of the latter matrix. To this end, we need to use a little more
involved definition of matrix access:

1. First, recall that the definition of block access requires that each block contained coordinates
of either only the tested assignment or of the proof string. In our case, this requirement
should apply to both the rows and the columns, which is difficult to satisfy while using a
single matrix. This issue is resolved by considering two matrices - one matrix whose rows are
the assignment blocks of the decomposition (the “assignment matrix”), and a second matrix
whose rows are the proof blocks of the decomposition (the “proof matrix”). In this way, the
aforementioned requirement of the definition of block access is trivially satisfied.

2. Next, recall that the definition of block-based assignment tester requires that each assignment
block contains at least (1/3) fraction of non-dummy coordinates. Note that the rows of the
assignment matrix clearly satisfy this property, since a decomposition that has matrix access
in particular has block access with the blocks being the rows of the matrices. However, we
must also guarantee that the columns of the assignment matrix have this property, and we
therefore add this as a requirement to the definition of matrix access.

3. For technical reasons that have to do with the proof of the tensor product lemma, we also
require that every output circuit reads exactly the same numbers of assignment blocks and
proof blocks, and that the assignment blocks precede the proof blocks in the input of each
output circuit.

The foregoing considerations lead to the following definition of assignment tester that has matrix
access.

Definition 6.3. A circuit decomposition D is said to have b-matrix access if it has b-block access,
and for every input circuit ϕ the following hold: Let B1, . . . , Bp be the partition to blocks that
corresponds to ϕ, and let a denote the number of assignment blocks. Then:

1. All the proof blocks Ba+1, . . . , Bp are required to have the same width, denote it wπ. Also,
recall that all the assignment blocks are already required to have the same width by the
definition of block access (Definition 5.18), and denote this width by wa.

46

2. We define the assignment matrix to be the matrix whose rows are the assignment blocksB1, . . . , Ba.
Then, we is required that at least one third of the coordinates of each column of the assign-
ment matrix are non-dummy coordinates. Formally, for each v ∈ [wa], we define the v-th
column Cv : [a] → [m+ `] to be the function defined by Cv(j) = Bj(v), and require that for
at least one third of the indices j ∈ [a] it holds that Cv(j) 6= dummy.

3. Every output circuit reads the same number of assignment blocks and the same number of
proof blocks.

4. For every output circuit ψi of D, the assignment blocks precede the output blocks in the
input of ψi.

6.2 The main lemmas and the proof of the main theorem

We turn to state our main lemmas and prove the main theorem. The first lemma (the circuit
decomposition lemma) says roughly that for every n there is a super-fast decomposition that has
outputs’ number ≈

√
n, outputs’ size ≈

√
n, and O(1)-matrix access. The second lemma (the

tensor product lemma) says roughly that given a super-fast decomposition D for circuits of size nD
that has O(1)-matrix access, and a super-fast assignment tester A for circuits of size nA � nD, we
can construct a super-fast assignment tester A′ for circuits of size nD, provided that nA is slightly
larger than both the outputs’ number and the outputs’ size of D. By combining the two lemmas, we
obtain a procedure that takes as input a super-fast assignment tester for circuits of size ≈

√
n and

lifts it to a super-fast assignment tester for circuits of size n, which is the core of our construction.
We begin by stating the circuit decomposition lemma, which is proved in Section 7.

Lemma 6.4 (Circuit Decomposition Lemma). There exists a procedure that when given as inputs
numbers n, nrep ∈ N, runs in time poly (log n, nrep) and outputs the following:

1. A circuit decomposition D for circuits of size n that has 6-matrix access, outputs’ num-

ber RD(n)
def
= Õ(

√
n), outputs’ size sD(n)

def
= Õ(

√
n), tester size tD(n, nrep)

def
= poly log n +

O(nrep), input representation size nrep, and output representation size srepD (n, nrep)
def
= poly log n+

O(nrep).

2. A reverse lister RL for D of size at most tD(n, nrep).

3. A block-access circuit BA of size at most tD(n, nrep).

We proceed to state the tensor product lemma, which is proved in Section 8. The general statement
of the lemma is somewhat involved. Therefore, in order to simplify the presentation, we first state a
simplified version of the lemma that is specialized for the range of parameters that we are interested
in, and then state the general version of the lemma.

Lemma 6.5 (Tensor Product Lemma, simplified version). There exists a polynomial time procedure
that satisfies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size nD that has O(1)-matrix access, outputs’
number RD, outputs’ size sD, tester size tD = poly log(nD), input representation size
poly log(nD), and output representation size poly log(nD).

47

2. An assignment tester A for circuits of size nA ≥ Õ (sD) + O(RD) that has outputs’
number RA, outputs’ size O(1), rejection ratio ρA, tester size poly log(nD), input repre-
sentation size poly log(nD) ≥ tD and output representation size O(1).

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

• Output:

1. An assignment tester A′ for circuits of size nD with outputs’ number O(R2
A), outputs’

size O(1), rejection ratio Ω
(
ρ2A
)
, tester size poly log(nD), input representation size nrepD ,

and output representation size O(1).

2. An reverse lister RL′ for A′ of size at most t′.

We proceed to state the general version of the lemma. The main changes are the following: the
circuit decomposition D has b-matrix access for arbitrary b (rather than O(1)), has arbitrary tester
size tD and input representation size nrepD (rather than poly log(nD)), and has arbitrary output
representation size srepD (rather than poly log(sD)); the assignment tester A has arbitrary outputs’
size sA and output representation size srepA (rather than O(1)), and has arbitrary tester size tA and
input representation size nrepA (rather than poly log(nD)).

Lemma 6.6 (Tensor Product Lemma, general version). There exists a polynomial time procedure
that satisfies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size nD that has b-matrix access, outputs’
number RD, outputs’ size sD, tester size tD, input representation size nrepD , and output
representation size srepD .

2. An assignment tester A for circuits of size nA that has outputs’ number RA, outputs’
size sA, rejection ratio ρA, tester size tA, input representation size nrepA and output rep-
resentation size srepA .

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

5. Furthermore, the following inequalities should hold:

nA ≥ b · sD · srepD · poly log (b, sD) +O(RD · s2A)

nrepA ≥ O (tD) + poly
(
srepD , b, log sD

)
+ sA · poly log (RD, sD, nD, RA, sA, b) ,

where the degrees of the polynomials and the constants in the big-O notations are un-
specified universal constants.

• Output:

1. An assignment tester A′ for circuits of size nD with outputs’ number O(R2
A), outputs’

size O(sA), rejection ratio Ω
(
ρ2A/(sA · b)

)
, tester size

t′ = O (tD + sA · tA) + sA · poly
(
srepA , log nA, logRA

)
+poly

(
srepD , b, log sD

)
+ b · poly log (RD, sD, nD, RA, sA, b) ,

input representation size nrepD , and output representation size srepA + poly log(sA).

48

2. An reverse lister RL′ for A′ of size at most t′.

By combining the two main lemmas, we obtain a procedure that allows us to square the input
size of an assignment tester A at the cost of roughly squaring the outputs’ number of A, provided
that the outputs’ size of the original A is constant. In order to use this procedure in our main
construction, we also augment it in two ways:

1. The use of the tensor product lemma decreases7 the input representation size of the assignment
tester A, while we want the input representation size to increase, in order to accommodate
the larger input size. We resolve this issue by invoking the input representation lemma
(Lemma 5.25) to increase the input representation size.

2. The use of the tensor product lemma decreases the rejection ratio of the assignment tester,
while we wish to maintain it. In order to do so, we invoke Dinur’s amplification theorem
(Theorem 5.5) to increase the rejection ratio back to its original value.

We summarize the resulting procedure in the following lemma, to which we refer as the “single
iteration lemma”, since it will form a single iteration in our construction of assignment testers.

Lemma 6.7 (Single Iteration Lemma). Let s0 and ρ0 be the constants stated in the amplification
theorem (Theorem 5.5). Then, for every sufficiently large constant c ∈ N, there exists a polynomial
time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s0,

rejection ratio ρ0, tester size t, input representation size nrep
def
= c · logc n and output

representation size at most s0.

2. A reverse lister RL of size at most t.

• Output:

1. An assignment tester A′ for circuits of size at least n′
def
= n2/poly log n with outputs’

number O(R2), outputs’ size s0, rejection ratio ρ0, tester size at most t′ = O(t) +

poly log (R,n), input representation size nrep′
def
= c · logc (n′) and output representation

size s0.

2. A reverse lister RL′ for A′ of size at most t′.

Proof. Let A be as in the single iteration lemma, and let c ∈ N be some constant that is suffi-
ciently large to allow the choices of the parameters in the rest of the proof. Let D be the circuit
decomposition that is obtained from the circuit decomposition lemma (Lemma 6.4) for input size
nD = n2/poly log n and input representation size nrepD = poly log n, where nD and nrepD are chosen
such that A and D satisfy the requirements of the tensor product lemma (Lemma 6.6). That is,
we choose nD and nrepD such that corresponding outputs’ number RD, outputs’ size sD, tester size
tD, and output representation size sD of D satisfy

n ≥ 6 · sD · srepD · poly log (6, sD) +O(RD) =
√
nD · nrepD · poly log nD,

nrep ≥ O (tD) + poly
(
srepD , 6, log sD

)
+ sA · poly log (RD, sD, nD, RA, sA, 6)

= poly
(
log nD, n

rep
D

)
,

7Note that the input representation size of A′ is nrep
D , which is upper bounded by tD, which in turn is upper

bounded by nrep
A due to the requirement regarding nrep

A .

49

where the hidden constants are determined by the decomposition and the tensor product lemma.
It can be verified that for sufficiently large choice of the constant c, one can indeed choose nrepD =
poly log n in a way that satisfies the above inequalities.

We note that the decomposition D has outputs’ number Õ (n), outputs’ size Õ (n), tester size

tD
def
= poly log (n), input representation size nrepD , and output representation size poly log (n), and

that D is 6-matrix based. We also obtain from the circuit decomposition lemma a reverse lister
RLD for D and a block access circuit BAD for D, both of size at most tD.

We now invoke the tensor product lemma on D and A, resulting in an assignment tester A1

for circuits of size nD with outputs’ number R1
def
= O(R2), outputs’ size s0, rejection ratio ρ1

def
=

Ω
(
ρ20/(s0 · 6)

)
= Ω(1), tester size

t1
def
= O (tD + s0 · t) + s0 · poly (s0, log n, logR)

+poly
(
srepD , 6, log sD

)
+ 6 · poly log (RD, sD, nD, R, s0, 6) ,

= O(t) + poly log (n,R) ,

input representation size nrepD and output representation size s0. We also obtain a reverse lister
RL1 for A1 of size at most t1.

Next, we apply the input representation lemma (Lemma 5.25) to A1, with input representation

size nrep′
def
= c · logc(n2). We therefore obtain an assignment tester A2 for circuits of size

n′
def
= nD/n

rep′ · poly log nD = n2/poly log n

that has outputs’ number R2 = O(R1) = O(R2), outputs’ size s2 = max {s0, O(1)}, rejection ratio

ρ2
def
= Ω(ρ1) = Ω(1), tester size

t2
def
= O(t1) + poly

(
nrep′, log n

)
= O(t) + poly log (n,R) ,

input representation size nrep′ ≥ c · logc(n′) and output representation size max {s0, O(1)}. We
also obtain a reverse lister RL2 for A2 of size at most t2. We mention that in order for us to
be able to apply the input representation lemma, we need nrepD to be sufficiently large. However,
for sufficiently large choice of the constant c, it is possible to choose nrepD in a way such that the
conditions of both the tensor product lemma and the input representation lemma are met.

Finally, we apply the amplification theorem (Theorem 5.5) to A2, resulting in an assignment

tester A′ for circuits of size n′ with outputs’ number poly
(
s0,

1
ρ2

)
· R2 = O(R2), outputs’ size s0,

rejection ratio ρ0, tester size

t′
def
= poly

(
s0,

1

ρ2

)
·
(
t2 + poly (s0) + poly log

(
R2, n

′)) = O(t) + poly log (n,R) ,

input representation size nrep′ and output representation size s0. We also obtain a reverse lister
RL′ for A′ of size at most t′. We now output A′ and RL′ as the required assignment tester and
reverse lister. �

We finally turn to prove our main theorem, restated below, by starting from an assignment
tester for circuits of constant size, and applying the single iteration lemma for O(log log n) times.

Theorem (4.11, Main Theorem). There exists an infinite family of circuits {An,nrep}∞n=1,nrep=1,
such that An,nrep is an assignment tester for circuits of size n with outputs’ number R(n) =

50

poly (n), outputs’ size s(n) = O(1), proof length ` (n) = poly (n), rejection ratio ρ = Ω(1), tester
size t(n, nrep) = poly (log n, nrep), input representation size nrep, and output representation size
srep(n, nrep) = O(1). Furthermore, there exists an algorithm that on inputs n and nrep, runs in
time poly (log n, nrep) and outputs An,nrep.

Proof. Let c be a constant that will be determined later. We will choose c to be sufficiently large to
match the requirements of the single iteration lemma (Lemma 6.7). We first show how to construct
assignment testers An,nrep for nrep = c · logc n by iterative application of the single iteration lemma
(Lemma 6.7), and then use the input representation lemma (Lemma 5.25) to obtain assignment
testers for any desired input representation size. We also mention that in the following proof we do
not prove that the proof length is poly(n), but as in the rest of this paper, this can be established
using the upper bound ` ≤ R · s (Theorem 5.4). Details follow.

Let n ∈ N and let nrep = c · logc n. Let s0 and ρ0 be as in the single iteration lemma. We
construct an assignment tester An,nrep as in the theorem as follows. We begin by constructing
an assignment tester A0 for circuits of size n0, where n0 is some sufficiently large constant that
is independent of n. We construct A0 such that it has outputs’ size s0, rejection ratio ρ0, input

representation size nrep0
def
= c · logc n0, and output representation size s0, and such that its outputs’

number R0, and tester size t0, are constants independent of n. Such an assignment tester A0 can
be constructed, for example, by using the circuit decomposition lemma8 (Lemma 6.4) to generate
a circuit decomposition D with input size n0 and input representation size nrep0 , and then invoking
the amplification theorem (Theorem 5.5) to D in order to yield A0. This also yields a reverse lister
RL0 for A0.

Now, for each natural number i ≥ 1, we let Ai and RLi be the assignment tester and reverse
lister that are obtained by invoking the single iteration lemma on the assignment tester Ai−1 and
on the reverse lister RLi−1. We denote by ni the input size of Ai, by Ri the outputs’ number of
Ai, and by ti the tester size of Ai. Let k be the least natural number such that nk ≥ n. We output
Ak as our desired assignment tester An,nrep .

We turn to analyze the parameters of Ak, and start with finding an upper bound on k. By
the single iteration lemma, there exists a constant d such that for every i it holds that ni+1 =

n2i /d · logd n. In Appendix C, we show that for every i it holds that ni ≥
(
n0/d · 2d · logd n0

)2i
.

Hence, by taking n0 to be sufficiently large such that n0/d · 2d · logd n0 > 1, we get that

k ≤ log2 log(n0/d·2d·logd n0) n = log log n−O(1)

It is not hard to see that Ak has outputs’ size s0, rejection ratio ρ0, input representation size
at least c · logc n, and output representation size s0. We proceed to analyze the outputs’ number
and tester size of Ak. By the single iteration lemma, there exists some constant hR such that for
each i ≥ 1 it holds that Ri ≤ hR · (Ri−1)2. It is not hard to prove by induction that

Ri = h
∑i−1

j=0 2
j

R R2i

0 ≤ (hR ·R0)
2i ,

and therefore
Rk ≤ (hR ·R0)

2k ≤ (hR ·R0)
logn ≤ poly(n).

In addition, by the single iteration lemma, there exists some constant ht such that for each i ≥ 1
it holds that ti ≤ ht · t+ poly log n, and therefore

tk ≤ hkt · t0 + k · hkt · poly log n ≤ poly log n,

8Actually, since we do not need D to have matrix-access here, we can use the simpler decomposition described in
Remark 6.2, and thus have an even simpler construction of A0.

51

as required. Finally, observe that it is possible to compute Ak in time poly log n.
We now consider the case of general values of nrep. Let n, nrep ∈ N. We construct the assignment

tester An,nrep as follows. We first observe that we may assume without loss of generality that
nrep ≤ poly(n), since every circuit of size n has a trivial representation of size poly(n). Let
n′ = n ·nrep ·poly log n, and let nrep′ = c · logc (n′). We construct the assignment tester An′,nrep′ , and
invoke the input representation lemma (Lemma 5.25) on An′,nrep′ to increase its input representation
size to nrep. We then output the resulting assignment tester as An,nrep . It is not hard to check
that An,nrep has the required parameters, and that the latter invocation of the input representation
lemma is indeed legal, since the assignment tester An′,nrep′ indeed satisfies the requirements of the
input representation lemma for sufficiently large choice of c. �

7 Circuit Decomposition Lemma

In this section, we prove the circuit decomposition lemma, restated below.

Lemma (6.4, Circuit decomposition lemma, restated). There exists a procedure that when given
as inputs numbers n, nrep ∈ N, runs in time poly (log n, nrep) and outputs the following:

1. A circuit decomposition D for circuits of size n that has 6-matrix access, outputs’ num-

ber RD(n)
def
= Õ(

√
n), outputs’ size sD(n)

def
= Õ(

√
n), tester size tD(n, nrep)

def
= poly log n +

O(nrep), input representation size nrep, and output representation size srepD (n, nrep)
def
= poly log n+

O(nrep).

2. A reverse lister RL for D of size at most tD(n, nrep).

3. A block-access circuit BA of size at most tD(n, nrep).

In Section 7.1, we give an overview of the proof which is more detailed than the one given in
Section 3.2. Then, in Section 7.2, we provide the full proof of the lemma.

Bounding the fan-in and fan-out of circuits. In this section, we describe the construction of
a circuit decomposition D that can only handle input circuits whose fan-in and fan-out are upper
bounded by 2. However, such a decomposition can be transformed into a full-fledged decomposition,
which can deal with arbitrary fan-in and fan-out, by using the fan-in/out lemma (Lemma 5.29).

7.1 Overview

In this section we give an overview of the construction of the circuit decomposition D from the
decomposition lemma. In order to streamline the presentation, we describe D by describing its
action on a fixed input circuit ϕ of size n over m inputs, on a fixed assignment x ∈ {0, 1}m, and
on a fixed proof string π. As we mentioned above, the fan-in and fan-out of ϕ are assumed to be
upper bounded by 2. Furthermore, recall that we want D to have 6-matrix access, which essentially
means that:

1. The assignment x and proof string π should be arranged in two matrices, namely, the assign-
ment matrix and the proof matrix.

2. Every output circuit of D should query 6 rows of the assignment and proof matrices. Actually,
in this simplified overview, the output circuits of D will query even less than 6 rows of the
matrices.

52

This overview is divided to two parts. First, in Section 7.1.1, we describe a construction of D while
ignoring efficiency considerations, which yields a decomposition D that is not super-fast. Then, in
Section 7.1.2 we describe how to modify D into a super-fast decomposition.

7.1.1 Warm-up: ignoring efficiency considerations

The basic idea. The basic structure of our construction of the decomposition D is similar to the
construction of universal circuits in Section 5.7.2, and goes as follows. We require the proof string
π to contain the following values:

• The value that each gate g of ϕ outputs when ϕ is invoked on x. Let us denote by kg the
coordinate of π that contains the value of g.

• The value that each wire (g1, g2) of ϕ carries when ϕ is invoked on x. Let us denote by k(g1,g2)
the coordinate of π that contains the value of (g1, g2).

Then, the output circuits of D should check the following conditions hold:

1. For every input gate g, it holds that πkg equals to the corresponding assignment coordinate.

2. For the output gate gout of ϕ, it holds that πkgout = 1.

3. For every gate g and its outgoing wires (g, g1) and (g, g2), it holds that πkg = πk(g,g1) = πk(g,g2) .

4. For every gate g and its incoming wires (g1, g) and (g2, g), it holds that πkg is indeed the
value that g outputs when given as input πk(g,g1) and πk(g,g2) .

The nontrivial issue, of course, is to arrange the proof string π in a O(
√
n) × O(

√
n) matrix such

that the output circuits of D can verify the foregoing conditions and such that every output circuit
queries only 6 rows of the matrix. Observe that arranging π in such a matrix would have been easy
if we only wanted to verify only one of the Conditions 3 and 4:

• If we only wanted to verify the Condition 3, we could arrange π in a matrix such that for
each a gate g and its outgoing wires (g, g1) and (g, g2), the coordinates kg, k(g,g1), and k(g,g2)
are in the same row. Using this arrangement, Conditions 3, 1, and 2 could be verified with
each output circuit of D querying only one row of the matrix.

• On the other hand, if we only wanted to verify the Condition 4, we could arrange π in a
matrix such that for each a gate g and its incoming wires (g1, g) and (g2, g), the coordinates
kg, k(g1,g), and k(g2,g) are in the same row. Using this arrangement, Conditions 4, 1, and 2
could be verified with each output circuit of D querying only one row of the matrix.

The problem is that we do not know if there is a single arrangement of π in a matrix that allows
verifying both conditions simultaneously. Our first step toward solving the problem is to require π
to contain two matrices M and N , such that each of M and N contains a copy of the value of each
gate and each wire, and such that M is a arranged in the way that allows verifying Condition 3
(as described above), and N is arranged in a way that allows verifying Condition 4 (as described
above). More specifically,

• For each gate g, the proof string π has a coordinate kM,g of the matrix M , and a coordinate
kN,g of the matrix N , where both coordinates should contain the value that g outputs when
ϕ is invoked on the assignment x. The matrices M and N also have similar coordinates
kM,(g1,g2) and kN,(g1,g2) for each wire (g1, g2).

53

• For each a gate g and its outgoing wires (g, g1) and (g, g2), the coordinates kM,g, kM,(g,g1),
and kM,(g,g2) are in the same row of M . Similarly, for each a gate g and its incoming wires
(g1, g) and (g2, g), the coordinates kN,g, kN,(g1,g), and kN,(g2,g) are in the same row of N .

This way, the output circuits of D can verify that M satisfies Condition 3 and that N satisfies
Condition 4, while each output circuit queries only one row of those matrices. By concatenating
the matrices M and N into a single matrix, we arrange π in a single matrix such that the two
conditions can be verified while each output circuit queries only one row of this matrix.

Of course, in order for the foregoing construction of D to be sound, we also need to verify that
M and N are consistent. That is, in addition to verifying the above conditions, the decompositionD
must also verify that for each gate g and wire (g1, g2) it holds that

πkM,g
= πkN,g

and πkM,(g1,g2)
= πkN,(g1,g2)

. (1)

Moreover, D must verify that Equality 1 holds while maintaining the property that each output
circuit queries at most 6 rows of the proof matrix. Overcoming this issue of verifying the consistency
of M and N while maintaining the matrix access property is the main technical challenge that we
deal with in our construction of D.

Verifying the consistency of M and N . We now describe how D checks the consistency of
the matrices M and N . As a warm-up, consider the following naive solution: For each row of M ,
the decomposition D will output a circuit ψi that will check the consistency of the coordinates in
this row with the corresponding coordinates in N . This solution does not work, since some of those
output circuits ψi may read too many rows of N . To see it, observe that for the coordinates of a
given row of M , the corresponding coordinates in N may spread over all the rows of N rather then
being concentrated in only 5 rows of N .

On a more intuitive level, the latter naive solution does not work because the order of the
coordinates in M may be very different than the order of the corresponding coordinates in N . Our
solution is to add to the proof matrix auxiliary rows that serve as a “bridge” between M and N , and
to add output circuits of D that check the consistency of those auxiliary rows. More specifically,
we add auxiliary rows and output circuits such that:

• Each auxiliary row v consists of coordinates kv,g and kv,(g1,g2) that correspond to some of the
gates and wires of ϕ. As before, πkv,g is supposed to contain the value that the gate g outputs
when ϕ is invoked on x, and πkv,(g1,g2) is supposed to contain the value that the wire (g1, g2)

carries when ϕ is invoked on x. However, note that each auxiliary row is of width O(
√
n), so

it does not contain a coordinate for every gate and wire.

• For each auxiliary row v, there will be an output circuit of D that checks the consistency
of the row v with at most four other rows of the proof matrix. By saying that an output
circuit ψi checks the consistency of two rows u and v, we mean that ψi checks, for every two
coordinates ku,g and kv,g of u and v that correspond to the same gate g, that πku,g = πkv,g ,
and the same for the wires.

• We will choose the auxiliary rows and additional output circuits such that all the additional
output circuits are satisfied if and only if M and N are consistent.

It remains to explain how to choose for each auxiliary row v:

• For which gates g and wires (g1, g2) does the auxiliary row v have corresponding coordinates
kv,g and kv,(g1,g2)?

54

• What are the other rows of the proof matrix with which the auxiliary row v is checked for
consistency.

To this end, we use routing networks. Recall that a routing network of order n is a graph with two
special sets S and T , called the “sources” and the “targets”, and that a routing network satisfies
the following property: Suppose that for every source s ∈ S there are d messages that should be
sent to targets in T , and that every target t ∈ T should receive d messages from sources in S.
Then, it is possible to find a collection of paths P in G such that:

• Every message is routed through some path p ∈ P. We say that the path p routes the message
if its connects the source of the message to its target.

• Every vertex of G participates in at most d paths in P.

Let G = (V,E) be a routing network of order O(
√
n) with in-degree and out-degree upper bounded

by 2, and let S and T be its sources and targets respectively. We identify the vertices of G with
the rows of the proof matrix, and in particular we identify the rows of M with the vertices of S,
the rows of N with the vertices of T , and the auxiliary rows of the proof matrix with the other
vertices of G.

Now, for each gate g, we view the value that g outputs (under the assignment x) as a message
that should be sent from the row of M that contains the coordinate kM,g to the row of N that
contains the coordinate kN,g, where we view those rows of M and N as a source and a target
of G. We also view the values of wires (g1, g2) as messages in a similar way. Note that, when
taking this view, each row of M needs to send O(

√
n) messages and each row of N needs to receive

O(
√
n) messages.

Our next step is to find a collection of paths P along which the messages can be routed, such that
each auxiliary row participates in the routing of at most O(

√
n) messages (i.e., the vertex of G that

is identified with the auxiliary row participates in at most O(
√
n) paths in P). For each auxiliary

row v and a gate g, we define the auxiliary row v to contain a coordinate kv,g that corresponds to g
if and only if the auxiliary row v participates in routing the message that corresponds to the value
of g, and the same goes for each wire (g1, g2).

Finally, we define the output circuits of D that verify the consistency of the auxiliary rows
as follows. For each vertex v of G, the decomposition outputs a circuit ψi that acts as follows.
Suppose that v has outgoing edges to the vertices z1 and z2 of G (recall that the out-degree of G is
upper bounded by 2). Then, the circuit ψi queries the rows that correspond to v, z1, and z2, and
performs the following consistency check. For every gate g whose corresponding message is routed
through v, the circuit ψi verifies that πkv,g = πkz1,g if the message of g is routed through z1, and
otherwise ψi verifies that πkv,g = πkz2,g (since if the message is not routed through z1 then it must
be routed through z2). The circuit ψi also performs an analogous consistency check for every wire
(g1, g2) whose corresponding message is routed through v.

This concludes the description of our way of verifying the consistency of M and N , and in
particular our construction of the auxiliary rows and the output circuits of D. It is not hard to
see that if all the output circuits of D accept, then M and N must be consistent. Observe that
every output circuit queries at most three rows. Moreover, note that every auxiliary row contains
at most O(

√
n) coordinates, since it participates in the routing of at most O(

√
n) messages.

The assignment matrix. Our discussion so far has focused on the proof string π and the ar-
rangement of its coordinates in the proof matrix. However, we still need to describe the arrangement
of the assignment x in the assignment matrix. For convenience, let us denote the assignment matrix

55

by L. We choose L to be of width wa = min {θ(
√
n),m}, and arrange the coordinates of x in L

according to their natural order.
Another issue that we ignored so far is that the decomposition D should check the consistency

between the assignment matrix and the proof matrix. More formally, for every tested assignment
coordinate ka ∈ [m] whose corresponding input gate of ϕ is g, the decomposition D should check
that xka = πkM,g

. To this end, we choose the ordering of the coordinates of the matrix M such
that the assignment coordinate ka is in the j-th row of L if and only if the corresponding proof
coordinate kM,g belongs to the j-th row of M . Then, for each j, the decomposition D outputs a
circuit that checks that all the coordinates in the j-th row of L are consistent with the corresponding
coordinates in the j-th row of M .

Conclusion. It can be seen that x is a satisfying assignment if and only if there exists a proof
string π that makes all the output circuits ψi accept. Moreover, observe that the number and size
of output circuits of D is indeed Õ(

√
n), and that each output circuit queries at most three rows of

the assignment and proof matrices. This concludes our construction of D that ignores the efficiency
issues.

Remark 7.1. We mention again that the idea of using routing networks in the construction of
PCPs is not new, and already appeared in several works on PCPs (see, e.g., [BFLS91, PS94]).

7.1.2 Obtaining a super-fast circuit decomposition

We turn to explain how to modify the foregoing circuit decomposition such that it will have a
super-fast implementation. The main issue that needs to be resolved is the following: Recall that
the decomposition routes messages on the routing network G. More specifically, the decomposition
computes a collection P of paths on G that connect each coordinate of M to its corresponding
coordinate of N , where each vertex in G participates in at most O(

√
n) such paths. However,

those paths can not be computed by a super-fast decomposition, since merely writing those paths
down requires writing Ω(n) bits, which would force the decomposition to be of size Ω(n) rather
than poly log n. In order to resolve this issue, we modify the decomposition such that it does not
compute those paths by itself. Instead, we require the proof string to contain those paths, and
modify the decomposition such that it verifies that the paths that are given in the proof string are
valid.

This idea is implemented as follows: for each coordinate kv,g in the proof string, we add to the
row of kv,g additional log n coordinates that are supposed to be assigned the index of g - we refer to
this index as the label of kv,g. Similarly, for each coordinate kv,(g1,g2), we add to the row of kv,(g1,g2)
additional 2 log n coordinates that are supposed to contain the indices of g1 and g2, and refer to
the pair of those indices as the label of kv,(g1,g2). We note that this modification is also performed
on rows of M and N .

Now, we modify the output circuits ψi that verify the consistency of the routing as follows. Let
ψi be the output circuit that corresponds to a vertex v, and suppose that v has incoming edges from
the vertices u1 and u2, and has outgoing edges to the vertices z1 and z2. Then, the output circuit ψi
reads the rows that correspond to u1, u2, v, z1, z2, and verifies that the following conditions holds:

1. Every label in the row of v is found either in the row of u1 or in the row of u2.

2. Every label in the row of v is found either in the row of z1 or in the row of z2.

3. If a coordinate k in the row of v has the same label as a coordinate k′ in the row of u1, then
πk = πk′ . The same condition is checked when replacing u1 with either of u2, z1, or z2.

56

It can be seen that, if all the modified output circuits ψi accept, then we are guaranteed that the
matrices M and N are consistent. In addition to modifying the output circuits as above, we also
add new output circuits ψi that check that the coordinates of M and N have the correct labels,
and in particular that:

Every gate and every wire have corresponding coordinates in M and in N .

• For each a gate g and its outgoing wires (g, g1) and (g, g2), the coordinates kM,g, kM,(g,g1),
and kM,(g,g2) are in the same row of M .

• For each a gate g and its incoming wires (g1, g) and (g2, g), the coordinates kN,g, kN,(g1,g),
and kN,(g2,g) are in the same row of N .

Note that in the super-fast setting, in which the gate or wire to which a coordinate corresponds is
determined by its label, the latter three conditions must indeed be verified, and can not be assumed
to hold trivially as before. However, it is not hard to construct output circuits of D that verify
those conditions.

It is not hard to see that the decomposition D remains sound after the foregoing modifica-
tions. Moreover, since now D needs not compute the paths P for routing the messages, it can be
implemented in a super-fast way. This concludes the construction.

7.2 Proof of the circuit decomposition lemma

Below, we describe how to construct the circuit decomposition D for a given input size n and a given
input representation size nrep. This section is organized as follows: In Section 7.2.1, we describe
the block structure of D. In Section 7.2.2 we describe the proof strings of D. In Section 7.2.3, we
describe the output circuits of D and their queries. The remaining parts of the proof, namely, the
construction of the reverse lister RLD, the construction of the blocks access circuit BAD, and the
analysis of the parameters, are straightforward and will not be discussed.

7.2.1 The block structure of D

The assignment blocks. Let wa be the width of the assignment blocks, to be chosen shortly
below. We define the assignment blocks of D on input circuit ϕ as follows: There are dm/wae
assignment blocks, where the first assignment block consists of the coordinates 1, . . . , wa, the second
assignment block consists of the coordinates wa + 1, . . . , 2 · wa, etc. If wa does not divide m, then
the last assignment block consists of the last m mod wa assignment coordinates and of additional
wa − (m mod wa) dummy coordinates.

We now choose wa = min {θ(
√
n),m}, where the constant in the Big-Theta notation is chosen

as follows: Recall that the definition of block access requires that least 1
3 fraction of the coordinates

of every assignment block are non-dummy coordinates. The only assignment block that contains
dummy coordinates is the last block, so we only need to take care of this block. To this end, we
need to choose wa such that, if wa < m, then (m mod wa) ≥ 1

3 · wa. It is not hard to show that
one can choose such a value of wa that satisfies wa = min {θ(

√
n),m}, as required.

The proof blocks. We turn to define the proof blocks of D. Let wr
def
= 3 · max {

√
n,wa}.We

denote by wπ the width of the proof blocks, and choose it to be wπ
def
= wr · (2 · log n+ 3). the first

proof block of D consists of the coordinates m+1, . . . ,m+wπ, the second proof block of D consists
of the coordinates m+wπ + 1, . . . ,m+ 2 ·wπ, etc. We view each proof block as consisting of 3 ·wr

57

strings of length 2 · log n+ 1, to which we refer as the records of the block, and view each record of
consisting of two parts:

1. The label of the record, which consists of two elements in [n] ∪ {⊥} - this part is represented
by the first 2 · (log n+ 1) bits of the record.

2. The value of the record, which is a Boolean value, and is represented by the last bit of the
record.

Let G
def
= G√n be the routing network of order

√
n whose existence is guaranteed by Fact 2.21, and

let S and T be its sets of sources and targets respectively. We define the proof blocks of D to be
in one-to-one correspondence with the vertices of G, where the j-th proof block corresponds to the
j-th vertex of G. We view the

√
n proof blocks which correspond to the vertices in S of G as an√

n × wπ matrix M , and the
√
n proof blocks which correspond to vertices in T as an

√
n × wπ

matrix N .

7.2.2 The proof strings of D

Let x be a satisfying assignment for ϕ. We describe the proof string π that convinces D that x
satisfies ϕ. We consider the collection of all the records in all of the blocks, and view each record as
corresponding to a gate or a wire of ϕ, where each gate (or wire) has many records that correspond
to it. The content of π at a given record depends on whether the record corresponds to a gate or
to a wire, and is determined as follows:

1. If the record corresponds to a gate g, then the first element of the label of the record contains
the index of g (which is a number from 1 to n), and the second element of the label contains
the symbol ⊥. The value of the record is set to be the value that g outputs when ϕ is invoked
on the assignment x.

2. If the record corresponds to a wire (g1, g2), then first element of the label of the record contains
the index of g1 and the second element is of the label contains the index of g2 (recall that
those indices are numbers from 1 to n). The value of the record is set to be the value that is
passed through (g1, g2) when ϕ is invoked on the assignment x.

3. Finally, some records are dummy records that do not correspond to a gate or a wire of ϕ. In
this case, both elements of the label of the record are contain the symbol ⊥, and the value of
the record is arbitrary.

It remains to describe the correspondence between records and gates/wires - note that since the
content of a record is determined by the gate/wire to which it corresponds, this correspondence de-
termines π completely. We describe this correspondence separately for the matrix M , the matrix N ,
and the rest of the proof blocks.

The matrix M . There is a one-to-one correspondence between the records in M and the gates
and wires of ϕ. If there are more records than gates and wires, then the superfluous records are set
to be dummy records.
The order of the records in M is as follows: Each row of M consists of wr/3 triplets of records,
where each such triplet corresponds to a gate g of ϕ and is referred to as the triplet of g in M .
Given a gate g, the triplet of g contains the record that corresponds to g, and also the records that
corresponds to the (at most two) outgoing wires of g. If g has less than two outgoing wires, then
the (one or two) superfluous records are set to be dummy records, which contain only zeroes. The
triplets are ordered in M according to the order of the gates, from the first gate to the last.

58

The matrix N . The records of N are defined similarly to the records of M , with the following
differences. For each gate g, the triplet of g in N contains the records corresponding to the incoming
wires of g rather than the outgoing wires of g.

The auxiliary rows. Recall that each proof block corresponds to some vertex of the routing
network G, where the matrices M and N correspond to the sources set S and targets set T of
G. The correspondence of records to gates and wires in the auxiliary rows will be determined by
routing on G, which will be performed using Proposition 2.22, restated below.

Proposition (2.22, routing of multiple messages, restated). Let G = (V,E) be a routing network
of order n, let S, T ⊆ V be the sets of sources and targets of G respectively, and let d ∈ N. Let
σ ⊆ S × T be a relation such that each s ∈ S is the first element of at most d pairs in σ, and such
that each t ∈ T is the second element of at most d pairs in σ. We allow σ to be a multi-set, i.e.,
to contain the same element multiple times. Then, there exists a set P of paths in G such that the
following holds:

1. For each (s, t) ∈ σ, there exists a path p ∈ P that corresponds to (s, t), whose first vertex is s
and whose second vertex in t.

2. Every vertex of G participates in at most d paths in P.

We turn to describing the routing. We construct a relation σ ⊆ S × T (actually, a multiset) as
follows: For each gate g of ϕ, we add σ the pair (s, t), where

1. s ∈ S is the vertex of G that corresponds to the row of M that contains the record of g in M .

2. t ∈ T is the vertex of G that corresponds to the row of N that contains the record of g in N .

We do the same for the wires of ϕ. Now, by Proposition 2.22, there exists a collection Pof paths
such that

1. For each (s, t) ∈ σ, there exists a path p ∈ P that corresponds to (s, t), whose first vertex is
s and whose second vertex in t.

2. Every vertex of G participates in at most wr paths in P.

We now define the records of the auxiliary rows. For each gate g, we define the following records:
let (s, t) be the element of σ that corresponds to g, and let p ∈ P be the path that corresponds to
(s, t). Now, for each vertex v on the path p, the auxiliary row v contains a record that corresponds
to g. The same goes for each wire (g1, g2) and the corresponding element (s, t) and path p. If a
vertex v of G participates in less than wr paths, then the remaining records of the auxiliary row v
are set to be dummy records.

This concludes the description of the correspondence between the records and the gates/wires,
and hence concludes the description of the proof string π.

7.2.3 The output circuits of D

In this section we describe the output circuits of the circuit decomposition D and their queries.
Fix an input circuit ϕ of size n and over m inputs. Let V denote the vertex set of the routing
network G. We define the outputs’ number RD of D to be |V | + 2 ·

√
n. We view the first |V |

output circuits as being in one-to-one correspondence with the vertices of G, the next
√
n output

59

circuits as being in one-to-one correspondence with the rows of M and the last
√
n output circuits

as being in one-to-one correspondence with the rows of N .
We describe for each index i ∈ [RD] what the i-th output circuit checks and what blocks it

queries. We consider the following cases:

1. i ≤ |V |: In such case, the i-th output circuit ψi corresponds to some vertex v of G, which in
turn corresponds to the i-th proof block of D. The goal of the output circuit ψi is to check
that the routing at the vertex v is valid - that is, that every record that is routed through v
has came through one of the incoming edges of v and is sent through one of the outgoing
edges of v. To this end, the output circuit ψi queries the blocks that correspond to v and its
neighbors, and performs the following checks:

(a) Let u1, . . . , ud (for d ≤ 2) be the vertices of G from which v has incoming edges (if v has
no incoming edges, then this check is skipped). Then, ψi checks for each record of the
i-th proof block that one of the blocks that correspond to u1, . . . , ud contains a record
with the same label and the same value.

(b) The same check as the first one, but for vertices of G to which v has outgoing edges,
instead of vertices of G from which v has incoming edges. Again, if v has no outgoing
edges, then this check is skipped.

We note that the output circuit ψi can be implemented in size Õ (
√
n) as follows: For the

first check, ψi constructs a list of all the records that appear in the blocks that correspond
to u1, . . . , ud, and sorts those records according to lexicographic order of their label. Then,
ψi sorts the records that appear in the i-th block according to their label, thus obtaining a
second list of records. Finally, ψi checks that the second list of records is a sub-sequence of
the first list of records. The second check can be implemented similarly. It can be verified
that this implementation indeed requires a circuit of size Õ (

√
n).

2. |V |+ 1 ≤ i ≤ |V |+
√
n: Let j

def
= i− |V |. In this case, the output circuit ψi queries the j-th

row of M and checks that it is of the form described in Section 7.2.2. That is, ψi checks that
the j-th row of M consists of triplets of records, where each triplet consists of the record of
a gate and of the records of the gate’s outgoing wires, and where the values of the records of
each triplet are equal. More specifically, for every u ∈ [wr], the output circuit ψi performs
the following checks for the u-th triplet of the j-th row:

(a) ψi computes the index h
def
= (j−1) ·max {wa,

√
n}+u of the triplet among all the triplets

of M . Let us denote the h-th gate of ϕ by g.

(b) ψi checks that the the first record of the triplet corresponds to g, that is, that the first
element of the label of the first record contains h and that the second element contains ⊥.

(c) ψi checks that the labels of the two last records of the triplet are the labels of the
outgoing wires of the gate g. If g has only one outgoing wire then g checks that the
label of the middle record is the label of this unique outgoing wire, and that the label of
the last record consists of twice the symbol ⊥. If g has no outgoing wires, then g checks
that the labels of both the last records consist of twice the symbol ⊥.

(d) ψi checks that the values of all the three records in the triplet are equal (recall that those
values are supposed to be equal to the value that g outputs when ϕ is invoked on x).

60

If j ≤ dm/wae, then ψi also queries the j-th row of the assignment matrix, and checks
consistency between this row and the records ofM that correspond to input gates. Specifically,
observe that for each assignment coordinate in the j-th row of the assignment matrix, the
record of the corresponding input gate is found in the j-th row of M . The output circuit ϕi
checks for each such assignment coordinate that it is equal to the value of the corresponding
record.

3. |V | +
√
n + 1 ≤ i ≤ |V | + 2 ·

√
n: Let j

def
= i − |V | −

√
n. In this case, the output circuit ψi

queries the j-th row of N and checks that it is of the form described in Section 7.2.2. That
is, ψi checks that the j-th row of N consists of triplets of records where each triplet consists
of the record of a gate and of the records of its incoming wires, and where the value of each
gate record is computed correctly from the values of the records of the incoming wires. To
this end, ψi performs the same checks as in Case 2, with the following differences:

(a) Instead of checking for each triplet that the last two records contain the labels of the
outgoing wires, ψi checks that last two records contain the labels of the incoming wires

(b) Instead of checking for each triplet that the values of all the three records are the same, ϕi
checks that the value of the first record, which corresponds to the gate g, contains the
value that g outputs when g is given as input the values of the two last records. If g has
only one incoming wire, then we take only the value of the middle record, and if g has
not incoming wires, then this check is skipped.

(c) ψi does not check consistency with the tested assignment.

This concludes the description of the output circuits of D. It should be clear that those circuits
are of size Õ (

√
n). It is also not hard to see that both the circuit decomposition D and the reverse

lister RL can be implemented in size poly log n + O(nrep), using the representation ν of G. The
construction of the block-access circuit BA is straightforward as well, with one caveat: Recall that
the definition of matrix access (Definition 6.3) requires that every output circuit ψi of D reads the
same numbers of assignment blocks and proof blocks, and that the assignment blocks precede the
proof blocks in the input of ψi. Thus, we modify the foregoing construction of D such that every
output circuit ψi queries exactly one assignment blocks and five proof blocks in order to meet this
requirement. In particular, if i > |V |, we modify ψi such that it queries the j-th row of M or N five
times instead of one. In addition, if ψi is not among the circuits that check consistency between M
and the assignment matrix, then we modify ψi such that it queries the first row of the assignment
matrix and ignores it. This concludes the construction.

8 Tensor Product Lemma

In this section we prove the general version of the tensor product lemma, restated below.

Lemma (6.6, Tensor Product Lemma, restated). There exists a polynomial time procedure that
satisfies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size nD that has b-matrix access, outputs’
number RD, outputs’ size sD, tester size tD, input representation size nrepD , and output
representation size srepD .

61

2. An assignment tester A for circuits of size nA that has outputs’ number RA, outputs’
size sA, rejection ratio ρA, tester size tA, input representation size nrepA and output rep-
resentation size srepA .

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

5. Furthermore, the following inequalities should hold:

nA ≥ b · sD · srepD · poly log(b, sD) +O(RD · s2A)

nrepA ≥ O (tD) + poly
(
srepD , b, log sD

)
+ sA · poly log (RD, sD, nD, RA, sA, b) ,

where the degrees of the polynomials and the constants in the big-O notations are un-
specified universal constants.

• Output:

1. An assignment tester A′ for circuits of size nD with outputs’ number O(R2
A), outputs’

size O(sA), rejection ratio Ω
(
ρ2A/(sA · b)

)
, tester size

t′ = O (tD + sA · tA) + sA · poly
(
srepA , log nA, logRA

)
+poly

(
srepD , b, log sD

)
+ b · poly log (RD, sD, nD, RA, sA, b) ,

input representation size nrepD , and output representation size srepA + poly log(sA).

2. An reverse lister RL′ for A′ of size at most t′.

This section is organized as follows. In Section 8.1 we recall the ideas that underlie the con-
struction of the assignment tester A′, which were explained in Section 3, and sketch the technical
complications that arise when realizing those ideas. In Section 8.2, we discuss a robustness prop-
erty for decompositions, which differs from the notion of expected robustness defined in Section 5.4,
and which is used in the proof of the tensor product lemma. Next, in Section 8.3, we describe the
construction of an “intermediate assignment tester”, which is the key step in the proof of the tensor
product lemma. Finally, in Section 8.4, we complete the proof of the tensor product lemma using
the intermediate assignment tester.

8.1 Proof overview

Let D be a decomposition that has matrix access and A be an assignment tester as in the tensor
product lemma. For the purpose of this overview, we assume that the matrix access parameter b
and the outputs’ size sA of A are constants. We would like to construct an assignment tester A′

for circuits of size nD, which has outputs’ number ≈ R2
A, outputs’ size sA, and rejection ratio

Ω(ρ2A/b ·sA) = Ω(ρ2A). We begin by recalling the construction of A′ that was described in Section 3:
When given as input a circuit ϕ of size nD, the assignment tester A′ takes the following steps.

1. A′ invokes D on ϕ, thus obtaining circuits ψ1, . . . , ψRD
.

2. For each iD ∈ [RD], the assignment testerA′ invokesA on ψiD , resulting in circuits ξiD,1, . . . , ξiD,RA
.

3. For each iA ∈ [RA], the assignment tester A′ constructs the circuit ηiA
def
=
∧RD
iD=1 ξiD.iA , which

corresponds to the iA-th column of the matrix whose entries are ξiD,iA .

62

4. For each iA ∈ [RA], the assignment tester A′ invokes A on ηiA .

The assignment tester A′ finishes by outputting the output circuits of all the invocations of A on
the circuits ηiA .

In this section, it is more convenient for us to view of the construction of A′ in a slightly different
way than the one used in Section 3. We first define the “intermediate” assignment tester AI which
on input ϕ produces the circuits η1, . . . , ηRA

, and then define A′ to be the result of composing AI
and A. It is not hard to see that those two views are equivalent. We note that the view that is
used in this section is also the view that is used in the work of [DR06].

It can be verified that A′ has the required input size, outputs’ number and outputs’ size. The
non-trivial issues consist of showing that A′ has the required rejection ratio, and that it has a
super-fast implementation. Below, we discuss those two issues in Sections 8.1.1 and 8.1.2.

8.1.1 The rejection ratio of A′

We show that the rejection ratio of A′ is Ω
(
ρ2A
)

in two steps: we first argue that the rejection ratio
of the intermediate assignment tester AI is Ω(ρA), and then we deduce that the rejection ratio of
A′, which is the composition of AI with A, is Ω(ρ2A). Both steps are non-trivial and require some
work, and we discuss each of them separately.

The rejection ratio of AI . Consider first the step of showing that the rejection ratio of the
intermediate assignment tester AI is Ω(ρA). Fix an assignment x to ϕ that is far from any sat-
isfying assignment, and fix a proof string π for AI . We would like to argue that x ◦ π is rejected
by Ω(ρA) fraction of the circuits η1, . . . , ηRA

. Observe that since x does not satisfy ϕ, there ex-
ists a circuit ψi that rejects x ◦ π. We would now like to argue that due to the rejection ratio of
A, it holds that Ω(ρA) fraction of the circuits ξi,1, . . . , ξi,RA

reject x ◦ π. This, in turn, implies
thatΩ(ρA) fraction of the circuits η1, . . . , ηRA

reject x, as required.
However, in order to establish the claim that Ω(ρA) fraction of the circuits ξi,1, . . . , ξi,RA

reject
x ◦ π, we need to show that not only that ψi rejects x ◦ π, but that x ◦ π is far from satisfying ψi.
To this end, we require the decomposition D to have a certain robustness property. We then show
how to modify D to satisfy this property, while using the fact that D has matrix access. After
robustizing D, the foregoing analysis of the rejection ratio of AI goes through.

Both the definition of the robustness property of D, and the way to modify D such that it
satisfies this property, are described in Section 8.2.

The composition of AI and A. Next, we consider the step of showing that the composition
of AI with A has rejection ratio Ω(ρ2A). To this end, we show that AI is robust, that is, not only
that AI has rejection ratio Ω(ρA), but it actually has (expected) robustness Ω(ρA) (as defined in
Section 5.4), which implies the required. In order to make AI robust, we show that AI has block
access, and then apply the robustization technique of Section 5.6 to AI .

It remains to show that AI has block access. Recall that D has matrix access, and that this
means that the tested assignment x and the proof string πD of D can be arranged in two matrices
Mx and MD, such that each output circuit ψi queries only few rows of those matrices. We also
define an additional matrix N whose rows are the proof strings of A for each of the invocations
of A on a circuit ψiD . We now observe that for each of the output circuits ηiA of AI , the queries
of ηiA are contained in a constant number of columns of Mx, Mπ, and N . This implies that the
assignment tester AI has O(1)-block access, with the blocks being the columns of Mx, MD, and N ,
as required.

63

We still need to show that the queries of each output circuit ηiA are contained in few columns
of Mx, Mπ, and N . It will be easier to justify this claim after we discuss the efficient implementation
of AI . Thus, we postpone this discussion to Section 8.1.3 below.

8.1.2 Implementing AI efficiently

We turn to discuss the efficiency of the implementation of AI . As was mentioned in Section 3.4,
the main challenge in coming up with a super-fast implementation of AI is the need to represent

the circuits η1, . . . , ηRA
succinctly. Recall that ηiA

def
=
∧RD
iD=1 ξiD,iA , and observe that while each of

the circuits ξ1,iA , . . . , ξRD,iA has a succinct representation, this does not imply that the circuit ηiA
has a succinct representation. In particular, a representation of ηiA must represent all the circuits
ξ1,iA , . . . , ξRD,iA , and if those circuits are very different from one another, it may not be possible to
have a sufficiently succinct representation that describes all of them simultaneously.

In order to resolve this issue, we use the notion of universal circuit U of Section 5.7.2. Recall
that a universal circuit U takes as input a representation ζrep of a circuit ζ, an assignment y to ζ,
and verifies that ξ accepts y (using an auxiliary witness z). For simplicity, we ignore the auxiliary
witness z for the rest of this overview.

The basic idea of our solution is roughly the following. Fix a tested assignment x and a proof
string πD for D, and let QD1 , . . . , Q

D
RD

be the query functions of D that correspond to ψ1, . . . , ψRD

respectively. Now, for every iD ∈ [RD], instead of invoking A on the circuit ψiD and on the tested
assignment (x ◦ πD)|QD

iD

, we invoke A on the circuit U and on tested assignment that consists of

ψrep
iD

and of (x ◦ πD)|QD
iD

. Note that the latter invocation of A verifies essentially the same claim

as the first invocation of A, namely, that ψiD is satisfied by (x ◦ πD)|QD
iD

. However, we did gain

something: Instead of invoking A on the RD different circuits ψ1, . . . , ψRD
, we now invoke A only

on one circuit U , each time with a different tested assignment. Intuitively, the fact that all the
invocations of A are made on the same circuit U causes the outputs circuits ξ1,iA , . . . , ξRD,iA to be

similar to each other, which allows to construct a succinct representation for the circuit
∧RD
iD=1 ξiD,iA .

More specifically, this idea is implemented as follows: Let us denote by ξiA the iA-th output
circuit of A when invoked on the circuit U . Note that each output circuit ξiA may make queries
to either ζrep, y, or to the proof string of A (here we refer to the proof string of the invocation
of A on U). We now redefine ξiD,iA to be the circuit that is obtained from ξiA by modifying ξiA as
follows:

1. We hardwire the representation ψrep
iD

to the inputs of ξiA that correspond to queries to ζrep.
That is, if the κ-th query of ξiA queries the u-th coordinate of ζrep, then we hardwire the u-th
bit of the description of ψrep

iD
to the κ-th input gate of ξiD,iA .

2. We redirect the queries of ξiA to y to (x ◦ πD)|QD
iD

, that is, if the κ-th query of ξiA queries the

u-th coordinate of y, then the κ-th query of ξiD,iA queries the u-th coordinate of (x ◦ πD)|QD
iD

.

3. We redirect the queries of ξiA to the proof string of A to the iD-th row of the matrix N . That
is, if the κ-th query of ξiA queries the u-th coordinate of the proof string of A, then the κ-th
query of ξiD,iA queries the u-th coordinate of the iD-th row of N .
Here, we use a slightly different definition of the matrix N , and require the iD-th row of N is
contain the proof string that convinces A that the assignment (ψrep

iD
, (x ◦ πD)|QD

iD

) satisfies U .

Next, we construct and output the circuits η1, . . . , ηRA
, which are defined as before by ηiA

def
=∧RD

iD=1 ξiD,iA . It should be clear that this modified version of the circuits ηiA is essentially equivalent

64

to the original construction of those circuits, and hence the previous analysis of the rejection ratio
of AI still applies.

We can now construct a succinct representation ηrepiA of a circuit ηiA as follows. Suppose that
the representation ηrepiA is required to retrieve information about a gate g of ηiA . Observe that ηiA
consists of circuits ξ1,iA , . . . , ξRD,iA that are all identical to ξiA except for their input gates, which
are determined as listed above. Thus, if g is an internal gate of one of the circuits ξiD,iA , the
representation ηrepiA simply invokes the representation ξrepiA of ξiA to retrieve the information about
the corresponding gate of ξiA and outputs it. The only non-trivial case is when g is an input gate
one of the circuits ξiD,iA , in which case we consider the following two sub-cases:

1. If g is an input gate that corresponds to a query to ζrep in the input of U , then we would like
to hardwire g to the corresponding bit of the representation ψrep

iD
. To this end, ηrepiA invokes

D to compute ψrep
iD

, and hardwires g to the corresponding bit.

2. If g is an input gate that corresponds to a query to y or z in the input of U or to the proof
string of A, then we redirect the query to the corresponding coordinate of the matrices Mx,
MD, or N . This redirection can be computed efficiently using the block-access circuit of D.

This concludes the super-fast implementation of AI .

Remark 8.1. The above description ignored the fact that the universal circuit U takes as an
additional input an auxiliary witness z. In the actual proof, we will expect the matrix N to contain
the auxiliary witnesses in addition to the proof strings of A. In particular, for each iD, we will
require the iD-th row of N to contain an auxiliary witness for the iD-th invocation of A. Then, in
the construction of ξiD,iA , we will redirect queries of ξiA to z the iD-th row of N .

Remark 8.2. We mention that due to technical considerations that were discussed in Section 5.7.1,
in the actual construction we use the augmented universal circuit Û instead of the universal cir-
cuit U . Recall that Û is similar to U , but also takes as input multiple copies of the encoding of
ζrep via an error correcting code, as well as multiple copies of y.

8.1.3 Showing that the queries of AI are contained in columns

Recall that in Section 8.1.1, we claimed the the queries of every output circuit ηiAqueries are
contained in a constant number of columns of the matrices Mx, MD and N , where Mx is the
assignment matrix, MD is the proof matrix of D, and N is the matrix whose rows are the proof
strings of all the invocations of A. In this section, we establish this claim and thus conclude this
overview.

To this end, recall that the circuits ηiA are defined as ηiA
def
=
∧RD
iD=1 ξiD.iA , where each circuit

ξiD.iA makes at most sA = O(1) queries to the matrices Mx, MD, and N . We show that for each
circuit ξiD.iA , the columns of Mx, MD, and N to which the queries of ξiD.iA belong depend only on
the index iA and not on the index iD, and this will imply the required claim. In order to show the
latter assertion, recall that the queries of ξiD.iA are obtained from the queries of ξiA . Now, for each
query of ξiA we consider three cases, depending on the part of the input of U at which the query
is directed:

• The query of ξiA queries the u-th coordinate of the proof string of A: In this case,
the corresponding query of every circuit ξiD,iA queries the u-th coordinate of the iD-th row of
the matrix N . In other words, the corresponding query of every circuit ξiD,iA always queries
the u-th column of the matrix N , regardless of the the index iD, as required.

65

• The query of ξiA queries the u-th coordinate of y: In this case, the corresponding query
of each circuit ξiD.iA queries the u-th coordinate of (x ◦ πD)|QiD

. Now, since D has matrix

access (Definition 6.3), it holds that (x ◦ πD)|QiD
consists of few rows of Mx followed by few

rows of MD, where the numbers of rows of Mx and MD in (x ◦ πD)|QiD
are independent of the

index iD. It can be seen that this implies that the u-th coordinate of (x ◦ πD)|QiD
is always

mapped to the same column of Mx or MD, regardless of the index iD.

• The query of ξiA queries ζrep: In such case, the circuit ξiD,iA does not make any corre-
sponding query, and the corresponding input gate ξiD,iA is hardwired to the corresponding
bit of the description of ψrep

iD
. This means that in this case no column of Mx, MD or N is

queried, regardless of the index iD.

It follows that in all the three cases, the the columns of Mx, MD, and N to which the queries
of ξiD.iA belong depend only on the index iA and not on the index iD. We conclude that the queries
of every output circuit ηiA are contained in at most sA = O(1) columns of Mx and MD, as required.

8.2 Robustization of decompositions with matrix access

As discussed in Section 8.1.1, in order to establish the rejection ratio of AI , we require the decom-
position D to have a certain robustness property. Specifically, for our argument to go through, D
should satisfy the following property: Whenever D is invoked on an assignment x that is far from
satisfying the input circuit ϕ and on proof string π, there exists at least one output circuit ψiA
such that x ◦ π is far from satisfying x ◦ π. This leads to the following definition of “existential
robustness” of decompositions.

Definition 8.3. We say that a decomposition D has existential robustness ρ if the following holds
for every input circuit ϕ: Let ψ1, . . . , ψR be the output circuits of D on ϕ, and let Q1, . . . , QR be
the corresponding query functions. Then, for every assignment x to ϕ and any proof string π for D,
there exists i ∈ [R] such that

dist
(

(x ◦ π)|Qi
, SAT (ψi)

)
≥ ρ · dist (x,SAT(ϕ)) . (2)

Remark 8.4. The difference between existential robustness and expected robustness (of Defini-
tion 5.6) is that the definition of existential robustness requires Equation (2) to hold for some i ∈ [R],
while the definition of expected robustness requires Equation (2) to hold for a random i ∈ [R] in
expectation. Note that in general it is unlikely that a decomposition would have expected robust-
ness, since for a decomposition, it is not even guaranteed that a random output circuit will reject,
let alone that a random output circuit will be far from being satisfied.

We now observe that we can use the robustization technique of Section 5.6 to transform decom-
positions into existentially robust ones. We actually use the following variant of the procedure of
Section 5.6, which maintains the matrix access property of the decomposition. This is important
since in the construction of the intermediate assignment tester AI we need D to both be existentially
robust and have matrix access.

Proposition 8.5 (Robustization of decompositions with matrix access). There exists a polynomial
time procedure that satisfies the following requirements:

• Input:

66

1. A circuit decomposition D for circuits of size n that has b-matrix access. Furthermore, we
assume that D has outputs’ number R, outputs’ size s, tester size t, input representation
size nrep, and output representation size srep.

2. A reverse lister RL for D.

3. A block access circuit BA for D.

• Output:

1. A circuit decomposition D′ for circuits of size n with existential robustness ρ′ = Ω (1/b),
outputs’ number R′ = 2 · R, outputs’ size s′ = O(b · s), tester size t′ = O (t) + b ·
poly log (R, s, n, `), input representation size nrep′ = nrep, and output representation size
srep′ = srep + b · poly log (s).

2. A reverse lister RL′ for D′ of size at most t′.

3. A block access circuit BA′ for D′.

Furthermore, D′ has b′-matrix access (for some arbitrarily large b′, which in particular may depend
on n).

Remark 8.6. We stress that the parameter b′ of the matrix access of D′ may be very large. How-
ever, this does not harm our construction, since we only use the decomposition D′ of Proposition 8.5
in the construction of the intermediate assignment tester AI (Proposition 8.7, stated shortly below),
and for this use the value of the parameter b′ has no effect.

Proof sketch. Let us denote by ` and `′ the proof lengths of D and D′ respectively. It is not
hard to prove that if we apply the procedure of Theorem 5.23 to a decomposition D that has
b-block access, then the resulting decomposition will have existential robustness Ω (1/b). This can
be done using roughly the same argument used to establish the expected robustness in the proof
of Theorem 5.23.

For the “furthermore” part, we need to define for D′ a partition of the coordinates set [m+ `′] to
blocks B′1, . . . , B

′
p′ , and show that this partition satisfies the requirements of the definition of matrix

access (Definition 6.3). To this end, let B1, . . . , Bp be the partition of [m+ `] defined by D (that
is, by the matrix access of D). We begin the definition of the partition of [m+ `′] for D′ by setting
the first p blocks B′1, . . . , B

′
p of D′ to be equal to the blocks B1, . . . , Bp respectively. It remains to

define a partition B′p+1, . . . , B
′
p′ of the set [m+ `′] \ [m+ `] to blocks. Recall that the coordinates

in [m+ `′] \ [m+ `] consist of encodings Ej of the blocks Bj of D. The straightforward choice of
blocks B′p+1, . . . , B

′
p′ would be to choose the block B′p+j of D′ to be the encoding Ej . However,

such choice violates the requirement that all the proof blocks would be of the same width, in two
ways:

1. The encodings Ej that encode proof blocks of D are wider than the proof blocks of D them-
selves. This issue can be resolved rather easily, by adding dummy coordinates to the original
proof blocks of D such that the resulting blocks will be of the same width as the encodings
Ej .

2. The encodings Ej that encode the assignment blocks of D may be much shorter than those
that encode the proof blocks of D. This could be the case if the assignment blocks of D are
much shorter than the proof blocks of D. In order to resolve this issue, for each encoding Ej
that encodes an assignment block, we define the corresponding block B′p+j of D′ to consist of
many distinct copies of Ej , such that B′p+j has the same width as the encodings of the proof

67

blocks.
The latter definition of B′p+j can be implemented by redefining the proof string of D′ to
contain many copies of the encoding Ej . Note that we can not define the block B′p+j to
contain multiple queries to the same copy of Ej , because the definition of blocks forbids a
block to contain multiple queries to the same coordinate.

After performing the foregoing modifications to the construction of D′, as well as few other minor
modifications, the decomposition D′ can easily be shown to have matrix access. �

8.3 The intermediate assignment tester AI

In this section we describe the construction of the intermediate assignment tester AI , which is
summarized in the following proposition. We assume that the given circuit decomposition D is
existentially robust, and will later obtain this property by applying the robustization technique
(Proposition 8.5) to D.

For reasons that have to do with the efficient implementation of the reverse lister, we also
assume that the assignment tester A is input-uniform (Definition 5.11), and we will later obtain this
property by applying the generic transformation that was described in Lemma 5.13 in Section 5.4.

Proposition 8.7. There exists a polynomial time procedure that acts as follows:

• Input:

1. A circuit decomposition D for circuits of size nD that has outputs’ number RD, outputs’
size sD, existential robustness ρD, tester size tD, input representation size nrepD , and
output representation size srepD . Furthermore, D is required to have b′-matrix access (for
arbitrarily large b′).

2. An input-uniform assignment tester A for circuits of size nA that has outputs’ number
RA, outputs’ size sA, rejection ratio ρA, tester size tA, input representation size nrepA and
output representation size srepA .

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

5. Furthermore, the following inequalities should hold:

nA ≥ sD · srepD · poly log (sD)

nrepA ≥ poly log (sD)

• Output:

1. An assignment tester AI for circuits of size nD with outputs’ number RI
def
= RA, outputs’

size sI
def
= O(RD · sA), rejection ratio Ω (ρD · ρA), tester size

tI
def
= O (tD + sA · tA) + sA · poly

(
srepA

)
+ poly

(
srepD

)
+ poly log (RD, sD, nD, RA, sA)

input representation size nrepD , and output representation size

srepI
def
= O (tD + sA · log sD) + poly

(
srepD

)
+ poly log (RD, sD, nD, RA, sA) .

Furthermore, AI has sA-block access.

68

2. An reverse lister RL′ for AI of size at most tI .

3. A block-access circuit BAI for AI of size at most tI .

Remark 8.8. We note that in the above proposition, we stress that the parameter b′ of the matrix
access of D does not affect the parameters of AI . In particular, b′ may be arbitrarily large, and may
depend on nD. The reason that b′ does not affect the parameters of AI is that for the construction
of AI , we only use the following property from the definition of matrix access:

• he tested assignment and proof string of D can be arranged in matrices, such that every
output circuit of ψi reads the same number of rows from each matrix, and such that the rows
of the assignment matrix precede the rows of the proof matrix in the input of each ψi.

The parameter b′ of matrix access is only important for purposes of robustization, and in the above
proposition, D is already assumed to be robust.

Remark 8.9. Throughout this section, we use the family of error correcting codes {Ck}∞k=1 whose
existence was stated in Fact 5.14 in Section 5.5. Recall that for each k ∈ N, the code Ck has message
length k. With a slight abuse of notation, for every string x ∈ {0, 1}∗ we denote C(x) = C|x|(x),
and in general, we drop k whenever k is clear from the context.

Recall furthermore that all the codes in the family has relative distance that is lower bounded
by a universal constant δC , and that for each k ∈ N, the block length of Ck is denoted by lk = O(k).

The rest of this section is dedicated to the proof of Proposition 8.7. Let D, A, RLD, RLA,
BAD be as in the proposition, and let `D and `A be the proof lengths of D and A respectively.
Observe that since D has matrix access, all its output circuits have the same input length (i.e.
queries number), let us denote this length by qD.

Let Û = ÛsD,srepD ,qD
be the augmented universal circuit of Corollary 5.28, and recall that Û

has size sD · srepD · poly log (sD) ≤ nA and has representation Û rep of size poly log (sD) ≤ nrepA .

Furthermore, recall that Û takes as input a representation ζrep of a circuit ζ over qD inputs,
strings c1, . . . , cα, which are supposed to be the encoding C(ζrep) of ζrep, strings y1, . . . , yβ ∈
{0, 1}qD that are supposed to be equal to each other and to be an assignment to ζ, and string z of

length `U
def
= O(sD) that is supposed to “convince” Û that ζ accepts y1. More formally, we require

that if y1 = . . . = yβ is a satisfying assignment of ζ, then Û accepts for some choice of z, and
otherwise Û rejects for every choice of z.

In the rest of this section, we describe the action of D on a fixed input circuit ϕ of size nD over
m inputs that has representation ϕrep of size nrepD . Let ψ1, . . . , ψRD

be the output circuits of D when
invoked on ϕrep, and let ψrep

1 , . . . , ψrep
RD

and QD1 , . . . , Q
D
RD

be the corresponding representations and

query functions. Furthermore, let ξ1, . . . , ξRA
be the output circuits of A when invoked on Û rep, and

let ξrep1 , . . . , ξrepRA
and QA1 , . . . , Q

A
RA

be the corresponding representations and query functions. Note
that by our assumption on the input size and input representation size of A it is indeed possible to
invoke A on Û .

8.3.1 The proof strings of AI

Fix a satisfying assignment x of ϕ. We describe the proof string πI that convinces AI to accept x.
Recall that `D and `A denote the proof lengths of D and A respectively, and that `U is the length

of the witnesses of Û . The proof string πI is of length `I
def
= `D +RD · (`U + `A) and consists of the

following parts:

69

1. πI contains a proof string πD that convinces D that x satisfies ϕ.

2. For each iD ∈ [RD], the proof string πI contains a witness ziD that convinces Û that
(x ◦ πD)|QD

iD

satisfies ψi.

3. For each iD ∈ [RD], the proof string πI contains a string πiDA defined as follows. Let c =
C(ψrep

i) be the encoding of the binary description of ψrep
iD

via the code C. Then, πiA is the

string that convinces A that Û accepts the input which consists of the binary description of
ψrep
iD

, of α copies of c, of β copies of (x ◦ πD)|QD
iD

, and of ziD .

We denote by Mx and MD the assignment matrix and proof matrix in which x and πD can be
arranged due to the fact that D has matrix access, and denote by N the RD × (`U + `A) matrix
whose iD-th row is the string ziD ◦ πiDA .

8.3.2 The block access circuit BAI

We describe the behavior of the block access circuit BAI . Let us denote by a and wa the number
and width of the assignment blocks of D respectively, let us denote by wD the width of the proof
blocks of D, and observe that a, wa, and wD can be computed using BAD. As discussed in the the
proof overview, the blocks of AI consist of the wa columns of the matrix Mx, the wD columns of
the matrix MD, and the `U + `A columns of the matrix N .

Recall that BAI has five modes of operation. It is easy to implement efficiently the first four
modes of BAI , namely, the Number of Blocks mode, the Block to Coordinate mode, the Coordinate
to Block mode, and the Number of Assignment Blocks mode, and we do not elaborate on their
implementation. It remains to describe the implementation of the Circuit to Blocks mode, in which
BAI is given an index iA ∈ [RA], and is required to output the indices of the blocks that are queried
by ηiA , the iA-th output circuit of AI .

In the rest of this section, we describe the action of BAI in Circuit to Blocks mode on a fixed
index iA ∈ [RA]. As was explained in the overview in Section 8.1.3, the output circuit ηiA is defined

by ηiA
def
=
∧
iD∈[RD] ξiD,iA , where the circuits ξiD,iA are obtained by redirecting the queries of ξiA .

In particular, the columns of Mx, MD and N that are queried by ηiA are determined by the queries
of the circuit ξiA , where each column that is queried by ηiA corresponds to one query of ξiA . The
block access circuit BAI thus begins its action by computing the queries σ1, . . . , σqA ∈ [qD + `A]
of ξiA to the input of Û and to the proof string of A.

We now explain, for each query σh, what is the column of Mx, MD or N that corresponds to
σh that is queried by ηiA . The block access circuit BAI computes the indices of those columns for
each of the queries σh, and outputs the indices of all of those columns. Fix a query σh, and recall
that the input of Û consists of four parts: the description of ζrep in binary, α strings which are
supposed to be equal to the encoding C(ζrep) of ζrep, β supposed copies of the assignment y to ζ,
and an auxiliary witness z. The query σh may be directed at any of those parts, or to the proof
string of A for its invocation on Û . We consider each case separately:

1. σh is directed at z or at the proof string of A: In this case, if σh is directed at the u-th
coordinate of z, then ηiA queries the u-th column of N . Similarly, if σh is directed at the u-th
coordinate of z, then ηiA queries the (`U + u)-th column of N .

2. σh is directed at one of the supposed copies of y: In this case, the circuit ηiA queries
one of the columns of Mx or MD. As explained in the overview, when constructing the
circuit ξiD,iA , the queries of ξiA to the supposed copies of y are redirected to (x ◦ πD)|QD

iD

.

70

Recall that since D has matrix access, the string (x ◦ πD)|QD
iD

consists of rows of Mx followed

by rows of MD, where the numbers of rows of Mx and MD do not depend on iD. Let us
denote by ra and rD the numbers of rows of Mx and MD respectively that are queried by
every output circuit ψiD (again, ra and rD are independent of iD). In addition, recall that
we denote by wa and wD the widths of Mx and MD.
Let us view the assignment y as consisting of ra blocks of length wa followed by rD blocks of
length wD. It can be seen that queries of ξiA to the first ra blocks are redirected by ξiD,iA
to the corresponding rows of Mx and that the following rD blocks are always mapped to the
rows of MD. Now, suppose that the query σh is directed at the v-th coordinate of one of the
supposed copies of y. We consider two sub-cases:

(a) If v is the u-th coordinate of one of the first ra blocks of y, then the output circuit ηiA
queries the u-th column of Mx.

(b) On the other hand, if v is the u-th coordinate of one of the last rD blocks of y, then the
output circuit ηiA queries the u-th column of MD.

3. σh is directed at the description of ζrep or at one of its supposed encodings: In this
case, the circuit ηiA does not query any column that corresponds to σh, since, as explained
in the overview, the queries of ξiA to ζrep and its supposed encodings are hardwired to the
descriptions and encodings of the corresponding representations ψrep

iD
. This means that the

h-th input gate of each circuit ξiD,iA is hardwired to constants, and hence ηiA does not make
any query that corresponds to σh.

This concludes the description of the columns that ηiA queries, and the description of BAI . Observe
that AI indeed satisfies all the requirements for having sA-block access: every output circuit ηiA
queries at most sA columns since sA is an upper bound on the number of queries of ξiA . Furthermore,
all the assignment blocks of AI are of the same width a. Finally, since D has matrix access, and
by the definition of matrix access, it holds that every assignment block of AI (i.e., column of
Mx) contains (1/3) fraction of non-dummy coordinates. It follows that AI has sA-block access, as
required.

8.3.3 The implementation of AI

We proceed to describe the assignment tester AI itself. It suffices to describe the circuit mode
of AI , since the query mode of AI is determined by the Circuit-to-Blocks mode of BAI (see
Section 8.3.2), and can be implemented by using BAI . Thus, it suffices to describe, for every index
iA, what is the iA-th output circuit ηiA of AI , how its representation ηrepiA is implemented, and how
the representation ηrepiA is computed by AI . For the rest of this section, fix an index iA ∈ [RA].
We focus on the descriptions of ηiA and of ηrepiA , and skip the description of how AI computes ηrepiA ,
which is straightforward.

The output circuit ηiA. We begin by describing the output circuit ηiA . As explained in the
overview, the basic idea that underlies the definition of ηiA is the following: Recall that ξiA is the
iA-th output circuit of A when invoked on Û . For every iD ∈ [RD], we obtain a circuit ξiD,iA
from ξiA by fixing some of the queries of ξiA to the description of ψrep

iD
and its encoding, and by

redirecting the other queries of ξiA into the matrices Mx, MD, and N . Next, we observe that all
the queries of the circuits ξiD,iA are contained in few columns of Mx, MD, and N . Finally, we

71

define ηiA to be the circuit that queries the aforementioned columns of Mx, MD, and N and checks
that that all the circuits ξiD,iA are satisfied.

More formally, the output circuit ηiA is defined as follows. The circuit ηiA consists of three
parts:

1. Input gates.

2. An output gate which is an AND gate.

3. A collection of RD circuits, such that the iD-th circuit ξiD,iA is obtained from ξiA by modify-
ing ξiA as follows:

(a) Modifying the input gates of ξiD,iA that correspond to queries to the ζrep part in the
input of Û to be constant gates that contain the description of the output circuit ψrep

iD
.

(b) Modifying the input gates of ξiD,iA that correspond to queries to the supposed encodings
of ζrep in the input of Û to be constant gates that contain the encoding of the description
of ψrep

iD
.

(c) Connecting the output gate of ξiD,iA to the output gate of ηiA .

(d) Connecting each input gate of ξiD,iA to the corresponding input gate of ηiA : As explained
above, every query of ξiA should be redirected to some coordinate σ of the matrices Mx,
MD, and N , and ηiA queries the column inside which the coordinate σ is found. We
thus connect each input gate of ξiD,iA that should be directed to a coordinate σ to the
corresponding input gate of ηiA that queries σ.
More specifically, recall that the assignment to Û consists of ζrep and its encodings,
supposed copies of an assignment y to ζ, and of an auxiliary witness z. Furthermore,
we view y as consisting of ra blocks of length wa followed by rD blocks of length wD
(see Section 8.3.2). Let qiA be the number of input gates o ξiA . For each j ∈ [qiA], we
consider the following cases for the j-th input gate of ξiA :

i. Suppose that the j-th input gate of ξiA corresponds to a query to the u-th coordinate
of the h-th block of y (for one of the supposed copies of y). Suppose furthermore
and the h-th block that is queried by the output circuit ψiD is the v-th row of Mx

or MD. Then, we connect the j-th input gate of ξiD,iA to the input gate of ηiA that
corresponds to the v-th coordinate of the j-th column that is queried by ηiA (which
is the u-th column of Mx or MD).

ii. Suppose that the j-th input gate of ξiA corresponds to a query to the u-th coordinate
of z or to the u-th coordinate of the proof string of A. In this case, we connect the j-
th input gate of ξiA to the input gate of ηiA that corresponds to the iD-th coordinate
of the j-th column that is queried ηiA (which is the u-th column of N).

This concludes the description of ηiA .

The representation ηrepiA . Recall that ηrepiA computes the following functionality: the representa-
tion ηrepiA takes as input the index of a gate g of ηiA and an index h, and ηrepiA is required to retrieve
the function of g (one of AND, OR, NOT, or one of the constants 0 and 1), the index of the gate
from which the h-th incoming wire of g comes, and the index of the gate to which the h-th outgoing
wire of g goes. This functionality is straightforward to compute for most of the gates and wires
of ηiA , but is non-trivial in the following cases:

72

1. Suppose that g is one of the constant gates of a circuit ξiD,iA that should be fixed to the
description of ψrep

iD
or its encodings. In this case, the representation ηrepiA should determine

whether this gate is the constant 0 or the constant 1. The straightforward way to implement
this functionality is to hardwire to the representation ηrepiA the descriptions of all the repre-
sentations ψrep

iD
for every iD ∈ [RD]. However, this would cause the representation ηrepiA to be

of size at least RD, which is too large.
We therefore use the following alternative solution: We hardwire into ηrepiA the input repre-
sentation ϕrep and the decomposition D itself. Then, whenever ηrepiA needs the description of
ψrep
iD

for any iD ∈ [RD], the representation ηrepiA invokes D on ϕrep in order to generate ψrep
iD

.
We stress that the fact that ηrepiA can compute the description of ψrep

iD
using D is a key point

in our construction of AI , and is one of the central ideas of this work. What is actually
happening here is that we use the fact that the circuits ψrep

1 , . . . , ψrep
iD

are in a way “similar”
and “uniform”, in the sense that they can all be generated using D.
We note that when ηrepiA needs the encoding of the description of ψrep

iD
, it computes the descrip-

tion of ψrep
iD

and encodes it via C, which can be done using a circuit of size poly
(∣∣∣ψrep

iD

∣∣∣) =

poly
(
srepD

)
.

2. Suppose that g is an “input gate” of a circuit ξiD,iA , that is, g is one of the gates of ξiD,iA
that are obtained redirecting a query of ξiA to an input gate of ηiA . The representation ηrepiA
should determine the gates of ηiA from which g has incoming wires, which are all input gates
of ηiA . The key issue here is that if g corresponds to a query of ξiA that is redirected to Mx

or MD, then in order to determine the relevant input gates of ηiA , we should determine the
queries of the circuit ψiD . This can be done by invoking the decomposition D on the input
representation ϕrep in query mode to obtain the queries of ψiD , using again the fact that the
descriptions of D and ϕrep are hardwired into ηrepiA .

3. Suppose that g is one of the input gates of ηiA . The representation ηrepiA should determine the
gates of ηiA to which g has outgoing wires. All of those gates are “input gates” of circuits
ξiD,iA , that is, gates of ξiD,iA that are obtained redirecting a query of ξiA to an input gate
of ηiA . The challenge is to determine which are the relevant circuits ξiD,iA , that is, for which
indices iD the gate g has an outgoing wire to a gate of ξiD,iA .
The key issue here is that if g corresponds to a query to a coordinate σ of Mx or MD, then
we need to determine for which indices iD the output circuit ψiD queries the coordinate σ.
Fortunately, this can be done easily by invoking the reverse lister RLD, and therefore we
hardwire the description of RLD into ηrepiA as well. Once we determined those indices iD, the
rest of the implementation is straightforward.
Interestingly, we note that, except for the proof of Dinur’s amplification theorem, this is the
only place in our work where we use the fact that our assignment testers have super-fast
reverse listers9.

We mention that we also hardwire the description of the circuit ξiA and its queries into the rep-
resentation ηrepiA . The representation ηrepiA uses this information to compute the descriptions of the
internal gates of the circuits ξiD,iA . This concludes the implementation of ηrepiA , and the description
of the circuit mode of AI .

Remark 8.10. We note that instead of hardwiring the circuit ξiA and its queries into the represen-
tation ηrepiA , we could have also hardwired the assignment tester A into ηrepiA and use it to compute

9We also use this fact in order to upper bound the proof length, as in Section 5.2, but this is done only for
convenience and can be avoided.

73

the queries of ξiA . However, hardwiring A into ηrepiA would cause the output representation size of AI
to be at least tA, which in turn would have caused problems in the proof of the tensor product
lemma (see Remark 8.11).

8.3.4 The reverse lister of AI

We turn to describe the construction of the reverse lister RLI of AI . This construction is not
central to the understanding of the proof of the tensor product lemma, and can be skipped on first
reading. We also note that the construction is straightforward except for one subtle point in which
we use the assumption that the assignment tester A is input-uniform.

Fix a coordinate k ∈ [m+ `I], and consider the action of RLI on input representation ϕrep and
coordinate k. For simplicity, we assume that k belongs to the matrix Mx, while the cases where k
belongs to one of the matrices MD and N can be handled similarly.

Recall that the columns of Mx and MD that an output circuit ηiA queries are determined as
follows (see also Section 8.3.2): for each query of ξiA to one of the β supposed copies of y in the
input of Û , the output circuit ηiA queries either a column of Mx or a column of MD. The exact
column of Mx or MD that is queried depends on the place of the query within the supposed copy
of y. In particular if the query belongs to one of the first ra blocks of y (each of length wa), then
ηiA queries a column of Mx, and if the query belongs to one of the last rD blocks of y (each of
length wD), then ηiA queries a column of MD.

Now, let u be the index of the column of Mx to which the coordinate k belongs. It can
be seen that there exist β · ra coordinates σ1, . . . , σβ·ra in the input of Û such that an output
circuit ηiA queries the u-th column of Mx exactly once for each query of ξiA to a coordinate σi.
Observe that the coordinates σ1, . . . , σβ·ra can be computed efficiently from u, ra, wa, rD, wD, and

qD
def
= ra · wa + rD · wD. We turn to describe the action of RLI on the coordinate k in each of its

modes:

1. Counting mode: In this mode, RLI is given as input ϕrep and k, and is required to output
|RevListAI ,ϕ (k)|. By the above discussion, it can be seen that

|RevListAI ,ϕ (k)| =
β·ra∑
h=1

∣∣∣RevListA,Û (σh)
∣∣∣

Now, since the assignment tester A is assumed to be input-uniform, it holds that∣∣∣RevListA,Û (σ1)
∣∣∣ =

∣∣∣RevListA,Û (σ2)
∣∣∣ = . . .

∣∣∣RevListA,Û (σβ·ra)
∣∣∣

Thus, in order to compute |RevListAI ,ϕ (k)|, the reverse lister RLI invokes RLA on Û and

σ1 to determine
∣∣∣RevListA,Û (σ1)

∣∣∣, and outputs β · ra ·
∣∣∣RevListA,Û (σ1)

∣∣∣.
2. Retrieval mode: In this mode, RLI is given as input ϕrep, k, and v ∈ [|RevListAI ,ϕ (k)|],

and is required to output the v-th element (i, κ) of RevListAI ,ϕ (k). Recall that |RevListAI ,ϕ (k)| =
β · ra ·

∣∣∣RevListA,Û (σ1)
∣∣∣, so the index v can be viewed as a pair of indices (h, v′) where

h ∈ [β · ra] and v′ ∈
[∣∣∣RevListA,Û (σ1)

∣∣∣]. The reverse lister RLI begins by invoking RLA in

retrieval mode to compute the v′-th element (iA, κA) of RevListA,Û (σh).
Now, observe that the desired value of i is iA. Furthermore, observe that the place κ of
the query to the coordinate k within the input of ηi can be computed efficiently using BAI .

Hence, the reverse lister RLI computes this value of κ and outputs (i, κ) (where i
def
= iA).

74

3. Reverse retrieval mode: In this mode, RLI is given as input ϕrep, k, and a pair (i, κ) ∈
RevListAI ,ϕrep (k), and is required to output the index v such that (i, κ) is the v-th element
of RevListAI ,ϕ (k). Recall that κ is a coordinate in the input of ηi, and suppose that it
belongs to the j-th column that is queried by ηi. Thus, the query of ξi that corresponds to
this column is the j-th query of ξi that is not directed at the representation ζrep or to its
supposed encodings in the input of Û - suppose that this is the κA-th query of ξi. Now, the
reverse lister RLI first invokes the assignment tester A in query mode on κA to determine the
coordinate σh at which the κA-th query of ξi is directed. Then, RLI invokes RLA in reverse
retrieval mode to find the index v′ such that (i, σh) is the v′-th element of RevListA,Û (σh).

Finally, RLI outputs v
def
= (h− 1) ·

∣∣∣RevListA,Û (σ1)
∣∣∣+ v′.

This concludes the description of the action of RLI on a coordinate k of Mx. The cases where k
belongs to the matrix MD or to the matrix N are handled similarly. We note that if k belongs
to the matrix N , instead of Mx or MD, then the implementation is actually simpler, since the
coordinates σ1, . . . , σβ·ra in the input of Û are replaced with only one coordinate σ.

8.3.5 The parameters of AI

It is easy to verify that AI has the input size, input representation size, outputs’ number, and
outputs’ size that are stated in the lemma. In addition, as noted in Section 8.3.2, the assignment
tester AI indeed has sA-block access. We now argue that AI has the correct output representation
size

srepI
def
= O (tD + sA · log sD) + poly

(
srepD

)
+ poly log (RD, sD, nD, RA, sA) .

To see it, note that the actions of a representation ηrepiA consist of invoking the decomposition D to
compute a representation ψrep

iD
and its queries (which is a reason for the O(tD) term), computing

the encoding of ψrep
iD

(which is the reason for the poly
(
srepD

)
term), invoking the reverse lister RLD

and the block access circuit BAD (which is another reason for the O(tD) term), and performing
calculations on numbers in the sets [RD], [sD], [nD], [`D], [`A] and [sA] (which is the reason
for the term poly log (RD, sD, nD, `D, `A, sA)). Furthermore, the representation ηrepiA contains the

description of ξiA and all of its queries into the input of Û , which is the reason for the O (sA · log sD)
term.

Next, we claim that AI indeed has tester size

tI = srepI +O (sA · tA) + sA · poly
(
srepA

)
= O (tD + sA · tA) + sA · poly

(
srepA

)
+ poly

(
srepD

)
+ poly log (RD, sD, nD, RA, sA)

To see it, note that the actions of AI on index iA consist of computing the representation ξrepiA (which
accounts for a term of O(tA)), computing the description of ξiA from ξrepiA (which is the reason for

the sA · poly
(
srepA

)
term), computing the queries of ξiA (which accounts for a O(sA · tA) term), and

outputting the resulting representation ηiA (which accounts for the srepI term).
It remains to show that the rejection ratio of AI is Ω (ρD · ρA). Let x be an assignment to ϕ

that is ε-far from any satisfying assignment, and let πI be a proof string for AI . As before, we view
πI as consisting of a proof string πD for D, of a collection of witnesses zi for Û , and of a collection
of proof strings πiA for A. By the existential robustness of D, there exists iD ∈ [RD] such that
(x ◦ πD)|QD,ϕ

iD

is (ρD · ε)-far from satisfying ψiD . Now, let c = C(ψrep
iD

) be encoding of the binary

75

description of ψrep
iD

, and consider the following assignment y to Û :

y
def
= ψrep

iD
◦ c ◦ · · · ◦ c︸ ︷︷ ︸

α

◦ (x ◦ πD)|QD,ϕ
iD

◦ . . . ◦ (x ◦ πD)|QD,ϕ
iD︸ ︷︷ ︸

β

◦ziD ,

It is not hard to see that y is Ω (ρD · ε)-far from satisfying Û , and therefore for at least Ω (ρA · ρD · ε) frac-
tion of the circuits ξiA reject y ◦ πiDA . It follows that at least Ω (ρA · ρD · ε) fraction of the circuits
ξiD,iA reject their corresponding assignment, and this, in turn, implies that at least Ω (ρA · ρD · ε) frac-
tion of the circuits ηiA reject x ◦ πI , as required.

8.4 Proof of the Tensor Product Lemma

In this section, we complete the proof of the tensor product lemma, by describing the procedure of
the tensor product lemma that constructs the assignment tester A from the decomposition D and
the assignment tester A′. We note that the description of the procedure and the analysis of the
parameters are technical, and contain no new ideas.

When given as input a circuit decomposition D and an assignment tester A as in the lemma,
as well as circuits RLD, BAD, and RLA, the procedure takes the following steps:

1. The procedure applies the robustization technique of Proposition 8.5 to D, thus obtaining an
existentially robust decomposition Drob.

2. The procedure applies the transformation of Lemma 5.13 to A, thus obtaining an input-
uniform assignment tester Auni.

3. The procedure applies Proposition 8.7 to Drob and Auni to construct the intermediate assign-
ment tester AI .

4. The procedure applies Theorem 5.23 (the robustization theorem) to AI , yielding a robust
assignment tester AI′ .

5. the procedure composes AI′ with A using the composition theorem (Theorem 5.7), thus
obtaining the assignment tester A′.

6. The procedure outputs A′ and the corresponding reverse lister RL′, which is obtained in the
process of constructing A′.

We turn to analyze the parameters of A′ by analyzing the parameters obtained in each of the
foregoing steps:

1. By Proposition 8.5, it holds that Drob is a circuit decomposition for circuits of size nD with

outputs’ number RDrob
def
= 2 · RD, outputs’ size sDrob

def
= O(b · sD), existential robustness

ρDrob
def
= Ω (1/b), tester size tDrob

def
= O (tD) + b · poly log (RD, sD, nD), input representation

size nrepD , and output representation size srep
Drob

def
= srepD + b · poly log (sD). Furthermore, D has

b′-matrix access for some arbitrary b′.

2. By Lemma 5.13, it holds that Auni is an assignment tester for circuits of size nA with with

outputs’ number RAuni = 2 · RA, outputs’ size sAuni
def
= O(sA), rejection ratio 1

4 · ρA, tester
size tAuni = tA + poly log (nA, RA), input representation size nrepA , and output representation
size srep

Auni = srepA + poly log(nA).

76

3. By Proposition 8.7, it holds that AI is an assignment tester for circuits of size nD with

outputs’ number RI
def
= RAuni = O(RA), outputs’ size sI

def
= O(RDrob · sAuni) = O(RD · sA),

rejection ratio Ω (ρDrob · ρAuni) = Ω(ρA/b), tester size

tI
def
= O (tDrob + sAuni · tAuni) + sAuni · poly

(
srep
Auni

)
+poly

(
srep
Drob

)
+ poly log (RDrob , sDrob , nDrob , RAuni , sAuni)

= O (tD + sA · tA) + sA · poly
(
srepA , log nA, logRA

)
+poly

(
srepD , b, log sD

)
+ b · poly log (RD, sD, nD, RA, sA, b) ,

input representation size nrepD , and output representation size

srepI
def
= O (tDrob + sAuni · log sDrob) + poly

(
srep
Drob

)
+ poly log (RDrob , sDrob , nD, RAuni , sAuni)

= O (tD + sA · log (sD · b)) + poly
(
srepD , b, log sD

)
+ poly log (RD, sD, nD, RA, sA, b) .

Furthermore, AI has sAuni-block access. We also note that by our assumption on the input
size and input representation size of A, it is indeed legal to apply Proposition 8.7 to Drob

and Auni (recall that this proposition requires a lower bound on the input size and input
representation size of A).

4. By Theorem 5.23, it holds that AI′ is an assignment tester for circuits of size nD with outputs’

number RI′
def
= 2 · RI = O(RA), outputs’ size sI′

def
= O(sA · sI) = O

(
RD · s2A

)
, robustness

ρI′
def
= Ω (ρI/sAuni) = Ω (ρA/b · sA), tester size

tI′
def
= O (sAuni · tI) + sAuni · poly log (RI , sI , nD)

= O
(
sA · tD + s2A · tA

)
+ poly

(
sA, s

rep
A , srepD , b

)
· poly log (RD, sD, nD, RA, sA, nA) ,

input representation size nrepD , and output representation size

srepI′
def
= srepI + sAuni · poly log (sI)

= O (tD) + poly
(
srepD , b, log sD

)
+ sA · poly log (RD, sD, nD, RA, sA, b) .

5. Finally, by the composition theorem (Theorem 5.7), it holds that A′ is an assignment tester for

circuits of size nD with outputs’ number R′
def
= 2 ·RI ·RA = O

(
R2
A

)
, outputs’ size s′

def
= O(sA),

rejection ratio ρ′
def
= 1

4 · ρI′ · ρA = Ω
(
ρ2A/b · sA

)
, tester size

t′
def
= O (tI′ + tA) + poly log (nD, RI′ , `I′ , RA, `A)

= O
(
sA · tD + s2A · tA

)
+ poly

(
sA, s

rep
A , srepD , b

)
· poly log (RD, sD, nD, RA, sA, nA) ,

input representation size nrepD , and output representation size srep′
def
= srepA + poly log(sA).

Furthermore, RL′ is of size at most t′. We also note that applying the composition theorem
to AI′ and A is legal, since by our assumption on A, its input size is larger than sI′ , and its
input representation size is larger than srepI′ .

The required result follows.

77

Remark 8.11. We would like to highlight the fact that the output representation size srepI of AI
does not depend on the tester size tA of A, even though the tester size tI of AI does depend on tA.
This is an important and non-trivial fact that results from our particular implementation of AI .
To see why this fact is important, observe that had srepI depended on tA, we would not have been
able to perform the last composition step, since the output representation size srepI′ of AI′ would
have been greater than the input representation size nrepA of A.

While it is tempting to try to solve this problem using the input representation lemma (Lemma 5.13),
it is not clear that this solution would have worked, since this would have introduced a non-trivial
dependency into our iterative construction in Section 6.

Acknowledgement. The author is grateful to Oded Goldreich for many useful discussions and
ideas.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and intractability of approximation problems. Journal of ACM,
45(3):501–555, 1998. Preliminary version in FOCS 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characterization
of NP. Journal of ACM volume, 45(1):70–122, 1998. Preliminary version in FOCS 1992.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In STOC, pages 21–31, 1991.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In IEEE
Conference on Computational Complexity, pages 194–203, 2002.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Short pcps verifiable in polylogarithmic time. In IEEE Conference on Computational
Complexity, pages 120–134, 2005.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. SIAM Journal of
Computing, 36(4):120–134, 2006.

[BMS08] Eli Ben-Sassonand Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008. Preliminary version in STOC 2005.

[Cam98] Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge Univer-
sity Press, Cambridge CB2 2RU, MA, USA, 1998.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of ACM, 54(3):241–250,
2007. Preliminary version in STOC 2006.

[DM10] Irit Dinur and Or Meir. Derandomized parallel repetition of structured PCPs. In
IEEE Conference on Computational Complexity, pages 16–27, 2010. Full version can
be obtained as ECCC TR10-107.

78

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proof of the
PCP theorem. SIAM Journal of Computing, 36(4):155–164, 2006.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures: array,
trees, hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[MS88] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error
correcting codes. Elsevier/North-Holland, Amsterdam, 1988.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs.
In STOC, pages 194–203, 1994.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

[Sze99] Mario Szegedy. Many-valued logics and holographic proofs. In ICALP, pages 676–686,
1999.

A Proof of the Composition Lemma

In this appendix we provide the full proof of the composition lemma (Lemma 5.12). This proof
follows the proof of the composition theorem of [BGH+05, Section 7], except for the construction of
the reverse lister, which is new. Below, we recall the definition of input-uniform assignment tester
as well as Lemma 5.12.

Definition (5.11, restated). We say that an assignment tester A is input-uniform for every assign-
ment length m ∈ N, the size of the reverse list RevListA,ϕ(k) is the same for all circuits ϕ over m
inputs and all tested assignment coordinates k ∈ [m].

Lemma (5.12, Composition Lemma for Input Uniform Inner Testers, restated). There exists a
polynomial time procedure that satisfies the following requirements:

• Input:

1. An “outer” assignment tester A1 for circuits of size n with outputs’ number R1, outputs’
size n, robustness ρ1, tester size t1, input representation size nrep, and output represen-
tation size srep1 . Furthermore, we require that for every input circuit ϕ, all the output
circuits of A1 have the same input length (though this length may vary for different input
circuits ϕ).

2. An “inner” input-uniform assignment tester A2 for circuits of size s1 with outputs’
number R2, outputs’ size s1, rejection ratio ρ2, tester size t2, input representation size
srep1 , and output representation size srep2 .

3. Reverse listers RL1 and RL2 for A1 and A2 of sizes at most t1 and t2 respectively.

• Output:

1. An assignment tester A′ for circuits of size n with outputs’ number R′
def
= R1 ·R2, outputs’

size s2, rejection ratio ρ′
def
= ρ1 ·ρ2, tester size t′

def
= O (t1 + t2)+poly log (n,R1, `1, R2, `2),

input representation size nrep, and output representation size srep2 .

2. A reverse lister RL′ for A′ of size at most t′.

In the rest of this appendix, we define A′ and RL′, and analyze their parameters.

79

The proof strings of A′. Let ϕ be a circuit of size n and let x ∈ SAT(ϕ). For every i1 ∈ [R1], let
ψi1 be i1-th output circuit of A1 when invoked on input circuit ϕ, and let QA1,ϕ

i1
be the corresponding

queries function. We describe a proof string π′ that convinces A′ that x satisfies ϕ. The proof π′

consists of two parts:

1. The first part of π′ is the proof π1 that convinces A1 that x satisfies ϕ.

2. The second part of π′ is a collection of proofs {π2,i1}i1∈[R1]
, where π2,i1 is the proof that

convinces A2 that (x ◦ π1)|QA1,ϕ
i1

satisfies ψi1 .

Let `1 and `2 denote the proof lengths of A1 and A2 respectively. Observe that the assignment
tester A′ has proof length `′ = `1 +R1 · `2. Since we wish to be able to compute the place of each
string π2,i1 within π′ efficiently, we construct π′ such that that for every i1 ∈ [R1], the string π2,i1
is found between the coordinates m+ `1 + (i1 − 1) · `2 + 1 and m+ `1 + i1 · `2.

The assignment tester A′. We describe the action of A′ in circuit mode and in query mode
separately. Let ϕ be a circuit of size n over m inputs and let ϕrep be a representation of ϕ of size
at most nrep. In circuit mode, on input (ϕrep,m, i) for i ∈ [R′], the assignment tester A′ acts as
follows:

1. A′ views the input i, which is a number between 1 and R1 · R2, as representing a pair of
numbers (i1, i2) for i1 ∈ [R1] and i2 ∈ [R2].

2. The algorithm invokes A1 on input (ϕrep,m, i1) in circuit mode. The output is a representa-
tion ψrep

i1
of a circuit ψi1 of size s1 over q1 inputs. Note that by our assumption on A1, the

input length q1 does not depend on i1

3. The algorithm invokes A2 on input
(
ψrep
i1
, q1, i2

)
, resulting in a representation ξrepi1,i2 of a cir-

cuit ξi1,i2 of size s2 over qi1,i2 inputs.

4. The algorithm outputs the representation ξrepi1,i2 .

We turn to describe the action of A′ in query mode. In order to streamline the description, we
fix an assignment x to ϕ and proof string π′, and consider the action of A′ when querying x ◦ π′.
When A′ is required to compute the queries function QA

′,ϕ
i that corresponds to ξi1,i2 on input κ,

the tester A′ performs the following steps:

1. A′ computes κ1
def
= Q

A2,ψi1
i2

(κ), which is the κ-th query of the i2-th output circuit of A2 on
input circuit ψi1 . The index κ1 is a coordinate of the string (x ◦ π1)|QA1,ϕ

i1

◦ π2,i1 . We refer to

(x ◦ π1)|QA1,ϕ
i1

as the “first part” and to π2,i1 as the “second part”.

2. If κ1 ≤ q1, then κ1 falls in the first part. In such case, A′ computes QA1,ϕ
i1

(κ1), which is the
corresponding coordinate of x ◦ π1, and outputs it.

3. If κ1 > q1, then κ1 falls in the second part. In such case, A′ computes κ2 = κ1 − q1, which is
the offset of κ1 within the string π2,i1 . Then, A′ computes m+ `1 + (i1 − 1) · `2, which is the
offset of the string π2,i1 within x ◦ π′, and outputs m+ `1 + (i1 − 1) · `2 + κ2.

80

The parameters of A′. Clearly, A′ is an assignment tester for circuits of size n and has outputs’
number R′ = R1 · R2, outputs’ size s2, input representation size nrep and output representation
size srep2 . It is can also be seen that A′ has tester size t′ = O (t1 + t2) + poly log (n,R1, `1, R2, `2).

It remains to show that A′ has rejection ratio ρ′ = ρ1 · ρ2. Let ϕ be circuit of size n, and let
ψ1, . . . , ψR1 and ξ1,1, . . . , ξR1,R2 be as before. Let x ∈ {0, 1}m be an assignment to ϕ, let π′ be a
proof string for A′, and let π1 and {π2,i1}i1∈[R1]

be as before. We show that the fraction of the

circuits ξi1,i2 that reject x ◦ π′ is at least ρ′ · dist (x,SAT(ϕ)).
Let I1 and I2 be random variables uniformly distributed in [R1] and in [R2] respectively. Then

Pr
I1,I2

[ξI1,I2 rejects] = EI1
[
Pr
I2

[ξI1,I2 rejects]

]
(Rejection ratio of A2) ≥ EI1

[
ρ2 · dist

(
(x ◦ π1)|QA1,ϕ

i1

, SAT (ψi1)

)]
= ρ2 · EI1

[
dist

(
(x ◦ π1)|QA1,ϕ

i1

, SAT (ψi1)

)]
(Robustness of A1) ≥ ρ2 · ρ1 · dist (x, SAT(ϕ)) ,

as required.

The reverse lister RL′. We conclude with describing the reverse lister RL′. Before going into
the description, recall that since all the output circuits of A1 have the same input length q1, and
since A2 is input-uniform, it holds that the size of the reverse list RevListA,ψi1

(κ1) is the same for
all circuits ψi1 and all coordinates κ1 ∈ [q1]. Let us denote the size of all those reverse lists by z.

In all of its modes of operation, the reverse lister RL′ computes z by invoking the reverse lister
RL2 on one of the circuits ψi1 of size s1 over q1 inputs (again, z does not depend on ψi1). The next
steps of RL′ depend on its mode of operation, and we describe them separately for each mode:

1. Counting mode: Recall that in this mode, RL′ is invoked on input (ϕrep,m, k) for k ∈
[m+ `′] and is required to output

∣∣RevListA′,ϕ (k)
∣∣. We consider two cases:

(a) If k ≤ m + `1, then RL′ invokes RL1 in order to find |RevListA1,ϕ (k)|, the number
of output circuits of A1 that query k, and outputs |RevListA1,ϕ (k)| · z. Note this is
indeed the correct result, since the coordinate k is queried |RevListA1,ϕ (k)| times by
the output circuits ψ1, . . . , ψR1 of A1, and for each such circuit ψi1 , the coordinate k is
queried z times by the corresponding output circuits ξi1,1, . . . , ξi1,R2 of A′.

(b) Otherwise, k is a coordinate of a proof π2,i1 of A2. In this case, RL′ computes i1 and the
offset k2 of k within π2,i1 . Next, RL′ invokes A1 to compute ψrep

i1
. Finally, RL′ invokes

RL2 on ψrep
i1

to compute
∣∣∣RevListA2,ψi1

(k2)
∣∣∣, and outputs it.

2. Retrieval mode: Recall that in this mode, RL′ is invoked on input (ϕrep,m, k, v) for
k ∈ [m+ `′] and v ∈

[∣∣RevListA′,ϕ (k)
∣∣], and is required to output the v-th element of

RevListA′,ϕ (k). We consider two cases:

(a) Suppose that k ≤ m + `1. Recall that in such case it holds that
∣∣RevListA′,ϕ (k)

∣∣ =
|RevListA1,ϕ (k)| · z. The reverse lister RL′ begins by viewing v as a pair of in-
dices (v1, v2) where v1 ∈ [|RevListA1,ϕ (k)|] and v2 ∈ [z]. Then, RL′ invokes RL1

in order to find the v1-th element (i1, κ1) of RevListA1,ϕrep (k). Next, RL′ invokes A1

to compute ψrep
1 . Finally, RL′ invokes RL2 on ψrep

i1
to find the v2-th element (i2, κ2) of

RevListA2,ψi1
(κ1) and outputs (i′, κ2), where i′ is the index of ξi1,i2 .

81

(b) Suppose that k > m + `1, so k is a coordinate of a proof π2,i1 of A2. In this case,
RL′ computes i1 and the offset k2 of k within π2,i1 . Next, RL′ invokes A1 to com-
pute ψrep

i1
. Finally, RL′ and then invokes RL2 to compute the v-th element (i2, κ2) of

RevListA2,ψi1
(k2), computes the index i′ of ξi1,i2 , and outputs (i′, κ2).

3. Reverse retrieval mode: In this mode, RL′ is given an element (i, κ) of RevListA′,ϕ (k),
and is required to retrieve its index v within RevListA′,ϕ (k).. The reverse lister RL′ views
the index i ∈ [R1 ·R2] as a pair of indices (i1, i2) where i1 ∈ [R1] and i2 ∈ [R2]. Then, we
consider two cases:

(a) Suppose that k ≤ m + `1. The reverse lister RL′ begins its computation by invok-
ing A1 in circuit mode to compute ψrep

i1
, and then invokes A2 in query mode to find

κ1 = Q
A2,ψi1
i2

(κ). Note that κ1 is the κ-th query of ξi1,i2 inside the input of ψi1 .
Next, RL′ invokes RL1 to find the index v1 such that (i1, κ1) is the v1-th element
of RevListA1,ϕ (k), and invokes RL2 to find the index v2 such that (i2, κ) is the v2-th
element of RevListA2,ψi1

(κ1). Finally, RL′ translates the pair (v1, v2) to a number in

[|RevListA1,ϕ (k)| · z] =
[∣∣RevListA′,ϕ (k)

∣∣], and outputs it.

(b) Suppose that k > m + `1, so k is a coordinate of a proof π2,i1 of A2. In this case, RL′

computes i1 and the offset k2 of k within π2,i1 . Next, RL′ invokes A1 to compute ψrep
i1

.
Finally, RL′ invokes RL2 on ψrep

i1
to find the index v such that (i2, κ) is the v-th element

of RevListA2,ψi1
(k2), and outputs v.

It should be clear that RL′ is indeed of size at most

t′ = O(t1 + t2) + poly log (n,R1, `1, R2, `2)

= O(t1 + t2) + poly log (n,R1, s1, R2, s2) ,

as required.

B Proof of the Robustization Theorem

In this appendix, we provide the full details of the proof of the robustization theorem:

Theorem (5.23, restated). There exists a polynomial time procedure that satisfies the following
requirements:

• Input:

1. An assignment tester A for circuits of size n that has b-block access, outputs’ number R,
outputs’ size s, rejection ratio ρ, tester size t, input representation size nrep, and output
representation size srep.

2. A reverse lister RL for A of size at most t.

3. A block access circuit BA for A of size at most t.

• Output:

1. An assignment tester A′ for circuits of size n with robustness Ω (ρ/b), outputs’ number 2·
R, outputs’ size O(b · s), tester size t′ = O (t) + b · poly log (R, s, n), input representation
size nrep, and output representation size srep + b · poly log (s).

82

2. A reverse lister RL′ for A′ of size at most t′.

Furthermore, A′ has the following property: On every input circuit ϕ, all the output circuits of A′

have the same input length.

This appendix is organized as follows: In Section B.1 we describe the super-fast implementation
of the assignment tester A′, in Section B.2 we describe the super-fast implementation of the reverse
lister RL′, and in Section B.3 we show that A′ is robust.

Remark B.1. Throughout this appendix we use the family of error correcting codes {Ck}∞k=1

whose existence was stated in Fact 5.14 in Section 5.5. Recall that for each k ∈ N, the code Ck
has message length k. With a slight abuse of notation, for every string x ∈ {0, 1}∗ we denote
C(x) = C|x|(x), and in general, we drop k whenever k is clear from the context.

Recall furthermore that all the codes in the family has relative distance that is lower bounded
by a universal constant δC , and that for each k ∈ N, the block length of Ck is denoted by lk = O(k).
Moreover, recall that for every k ∈ N, there exists a circuit Hk of size O(k), which takes as input
strings x ∈ {0, 1}k and w ∈ {0, 1}lk , and accepts if and only if w = C(x). Finally, recall that for
every k ∈ N, the circuit Hk has a representation Hrep

k of size poly log k, and that this representation
can be computed in time poly log k. Again, with slight abuse of notation, we drop k and write H
instead of Hk whenever k clear from the context

B.1 The construction of A′

Let ϕ be a circuit of size n over m inputs that has representation ϕrep of size nrep. In this section
we describe the action of the assignment tester A′ on input circuit ϕ. As discussed in Section 5.6,
the assignment tester A′ outputs two types of circuits: the robustized circuits ψrob

1 , . . . , ψrob
R and

the consistency circuits ψcon
1 , . . . , ψcon

R .
The following description of A′ consists of three parts: In Section B.1.1 we describe the proof

strings of A′, in Section B.1.2 we describe the construction of the robustized circuits and the
corresponding queries functions, and in Section B.1.3 we describe the consistency circuits and the
corresponding queries functions.

The numbering of the output circuits. Recall that by the definition of assignment testers,
each output circuit of A′ should be given an index between 1 to R′ = 2 ·R. To this end, we choose
the convention that the index of the i-th robustized circuit ψrob

i is i, and the index of the i-th
consistency circuit ψcon

i is R+ i.

B.1.1 The proof strings of A′

Let ϕ be a circuit of size n over m inputs, and let ` denote the proof length of A. Let x ∈ SAT(ϕ).
We describe a proof string π′ that convinces A′ that x satisfies ϕ. Recall that A has block access,
and let B1, . . . , Bp be the partition of [m+ `] to blocks that corresponds to ϕ. The proof π′ consists
of two parts: The first part is a proof π that convinces A that x satisfies ϕ. The second part consists

of strings E1, . . . , Ep, where the j-th string Ej is the encoding C
(

(x ◦ π)|Bj

)
.

In order to allow A′ to access the strings Ej efficiently, we need to place them inside π′ in a way
that given j, it will be easy to compute the coordinates of Ej inside π′. To this end, recall that
by Definition 5.18, for every j ∈ [p] it holds that |Bj | ≤ s. Thus, the length of each encoding Ej
is upper-bounded by ls = O(s). Now, for each j ∈ [p], we place the encoding Ej to between the

83

coordinate m + ` + ls · (j − 1) + 1 and the coordinate m + ` + ls · (j − 1) + l|Bj |. The coordinates
between m+ `+ ls · (j − 1) + l|Bj | + 1 and m+ `+ l|s| · j will not be used.

For the rest of this appendix, we denote the proof length of A′ by `′.

B.1.2 The robustized circuits ψrob
1 , . . . , ψrob

R

Let i ∈ [R]. In what follows, we describe the output circuit ψrob
i and the queries function Qrob

i
def
=

QA
′,ϕ

i that are obtained from the action of A′ on ϕrep, and explain how A′ computes them. For the
convenience of the following description, we fix some tested assignment x and some proof string π′,
and describe the action of ψrob

i when acting on a x and π′. Furthermore, we view π′ as consisting
of a string π of length ` and of a collection of additional strings Ej of length l|Bj | that are arranged
as described in Section B.1.1.

Sketch. Assume that i ≤ R. Let Bj1 , . . . , Bjb′ be the blocks queried by ψi (where b′ ≤ b). As
described in Section 5.6, the circuit ψrob

i reads the strings (x ◦ π)|Bj1
, . . . , (x ◦ π)|Bj′

b

and their

purported encodings Ej1 , . . . , Ejb′ , and verifies that:

1. ψi accepts the strings (x ◦ π)|Bj1
, . . . , (x ◦ π)|Bjb′

.

2. The strings Ej1 , . . . , Ejb′ are the correct encodings of (x ◦ π)|Bj1
, . . . , (x ◦ π)|Bjb′

respectively.

Moreover, as mentioned in Section 5.6, the circuit ψ′i reads each of the encodings Ej1 , . . . , Ejb′
several times, such that each of them constitutes about the same fraction of the input of ψrob

i . The
circuit ψrob

i also verifies for each h ∈ [b′] that the different copies of Ejh are identical (the reason
for this check is discussed in Remark B.2 below).

Finally, recall that the “furthermore” part of the robustization theorem requires that all output
circuits of A′ have the same input length. In order to achieve this property, we make some additional

dummy queries such that the input length of ψrob
i becomes q′

def
= 2 · b · ls.

Details. We turn to give a more detailed description of ψrob
i and Qrob

i . We view the input of
ψrob
i as partitioned to b chunks, each of of length 2 · ls. Each of the first b′ chunks correspond to

one of the blocks Bj1 , . . . , Bjb′ , while the rest of the chunks consist of dummy queries. For each
h ∈ [b′], the h-th chunk consists of two parts, each of length ls: The first part consists of the
string (x ◦ π)|Bjh

and of additional dummy queries that complete the length of this part to ls. The

second part consists of
⌊
ls/l|Bjh |

⌋
copies of the string Ejh , and of additional dummy queries that

complete the length of this part to ls. Note that the input length of ψrob
i is indeed q′ = b · 2 · ls.

We move to describe the circuit ψrob
i . The circuit ψrob

i computes the AND function of several
circuits, which are listed below:

1. The first circuit is the circuit ψi. That is, the circuit ψrob
i checks that ψi is satisfied by

(x ◦ π)|Bj1
, . . . , (x ◦ π)|Bjb′

.

2. For each chunk h that corresponds to a block Bjh , there is a circuit that checks that all the
copies of Ejh are the same.

3. For each chunk h that corresponds to a block Bjh , there is a copy of the circuit H, which
checks that the first copy of Ejh in the chunk is the correct encoding of (x ◦ π)|Bjh

via the

code C.

84

The implementation of the representation of ψrob
i is straightforward, and so is its computation by A′.

We now explain how A′ computes the queries function Qrob
i . On input κ ∈ [q′], the assignment

tester A′ begins by computing the indices j1, . . . , jb′ of the blocks queried by ψi, by using the Circuit
to Blocks mode of BA. The assignment tester A′ proceeds by computing the index h of the chunk
to which the index κ belongs, the offset v of κ within this chunk, and the index jh of the block Bjh .
Note that v and h can be computed efficiently. Next, A′ considers the following cases:

1. If v ≤ |Bjh |, then κ belongs to (x ◦ π)|Bjh
. In such case, the assignment tester A′ invokes BA

in Block to Coordinate mode to determine the v-th coordinate of Bjh , and outputs the result.

2. If v > |Bjh | but v ≤ ls then κ is a dummy query, and A′ outputs dummy.

3. If v > ls but v ≤ ls+
⌊
ls/l|Bjh |

⌋
· l|Bjh |, then this means that κ belongs to one of the copies of

Ejh . In such case, the circuit Q′i computes the offset u of v within the copy of Ejh (by using
the formula u = ((v − ls − 1) mod l|Bjh |) + 1), and outputs m + ` + (jh − 1) · ls + u (recall

that Ejh starts at the coordinate m+ `+ (jh − 1) · ls + 1 of π′).

4. If v > ls +
⌊
ls/l|Bjh |

⌋
· l|Bjh |, then κ is a dummy query, and A′ outputs dummy.

This concludes the computation of Qrob
i (κ).

Remark B.2. At first glance, it may seem odd that the circuit ψrob
i needs to check that the copies

of each Ej are equal, since it will never be invoked on an input in which those copies are not equal.
However, recall that the definition of robustness requires that the input of ψrob

i will be far (in
expectation) from every satisfying assignment of ψ′i. Now, had the circuit ψrob

i not checked that
the copies of Ej are equal, it would have had satisfying assignments in which those copies are not
equal. Such satisfying assignments could violate the aforementioned robustness requirement, even
though they will never occur as actual inputs of ψrob

i . This is the reason that the equality check
between the copies of each Ej is required.

B.1.3 The consistency circuits ψcon
1 , . . . , ψcon

R

Let B1,...,Ba be the assignment blocks. We associate each assignment block with z
def
= bR/ac

consistency circuits, and the remaining (R mod a) consistency circuits are dummy circuits that
always accept. If ψcon

i is a consistency circuit that is associated with an assignment block Bj , then
ψcon
i queries x|Bj

and Ej , and checks that Ej is the correct encoding of x|Bj
. Furthermore, ψcon

i

queries x|Bj
and Ej multiple times and makes some additional dummy queries such that the input

length of ψcon
i becomes q′ = 2 · b · ls.

We now provide a more detailed description. Recall that z
def
= bR/ac. The consistency cir-

cuit ψcon
i is associated with the assignment block Bj for j = di/ze. If j > a, then ψcon

i is the
dummy circuit that always accepts and makes no queries. For the rest of this section, on we only
consider the case where j ≤ a.

The input of ψcon
i consists of two halves, each of length b·ls. The first half consists of bb · ls/ |Bj |c

consecutive copies of x|Bj
, where the remaining coordinates are dummy coordinates. The second

half consists of bb · ls/ |Ej |c consecutive copies of Ej , where the remaining coordinates are dummy
coordinates. The circuit ψcon

i accepts if and only if the following conditions hold:

1. All the purported copies of x|Bj
are equal.

85

2. All the purported copies of Ej are equal.

3. The first purported copy of Ej is the correct encoding via C of the first purported copy of
x|Bj

(this is checked using the circuit H).

The reason for the first two conditions is as described in Remark B.2 It is easy to construct an
efficient representation for ψcon

i given the width of Bj , and this width can be determined using the
circuit BA.

We conclude by describing the computation of the queries function Qcon
i . On input κ ∈ [q′] in

query mode, the assignment tester A′ acts as follows:

1. Suppose that κ ≤ b · ls, in which case κ belongs to the first half of the input of ψcon
i . If

κ > bb · ls/ |Bj |c · |Bj | then A′ outputs dummy. Otherwise, A′ computes the offset v
def
=

(κ− 1) mod |Bj |+ 1, and outputs Bj(v) (which can be computed using the Block to Coor-
dinate mode of BA).

2. Suppose that κ ≤ b · ls, in which case κ belongs to the second half of the input of ψcon
i . Let

κ′ = κ− b · ls. If κ′ > bb · ls/ |Ej |c · |Ej | then A′ outputs dummy. Otherwise, A′ computes the

offset v
def
= (κ′ − 1) mod |Ej |+ 1, and outputs m+ `+ (j − 1) · ls + v.

This concludes the computation of Qcon
i (κ).

B.2 The reverse lister RL′

We describe the implementation of RL′. Fix a representation ϕrep of a circuit ϕ over m inputs,
and suppose that RL′ is invoked on ϕrep and on a coordinate k ∈ [m+ `′]. Below, we describe the
action of RL′ on ϕrep, m, and k.

We first consider the case in which k ≤ m + `, i.e., k belongs to the tested assignment x or to
the proof string π of the original assignment tester A. Let j denote the index of the block Bj to

which the coordinate k belongs, let a denote the number of assignment blocks, and let z
def
= bR/ac

be as in Section B.2. Observe that both j and a can be computed efficiently using BA. We turn
to describe the behavior of RL′ in each of mode of operation:

1. Counting mode: In this mode, RL′ is required to retrieve
∣∣RevListA′,ϕ (k)

∣∣. The reverse
lister RL′ begins by using RL to compute |RevListA,ϕ (k)|. If k > m, then RL′ outputs
|RevListA,ϕ (k)|. Otherwise, RL′ uses BA to compute |Bj |, and outputs

|RevListA,ϕ (k)|+ bzc · bb · ls/ |Bj |c .

The reason is that every coordinate k ∈ [m+ `] is queried by robustized circuits ψrob
i exactly

the same number of times that it is queried by the original output circuits ψi of A, and
that every assignment coordinate k ∈ [m] is also queried by bzc consistency circuits, for
bb · ls/ |Bj |c times by each consistency circuit.

2. Retrieval: In this mode, RL′ is required to retrieve the v-th element of RevListA′,ϕ (k) for
some index v ∈

[∣∣RevListA′,ϕ (k)
∣∣]. We consider two cases:

(a) If v ≤ |RevListA,ϕ (k)|, then v corresponds to a query by a robustized circuit. In this
case, RL′ invokes RL to compute the v-th element (i, κ) of RevListA,ϕ (k). Next, RL′

uses BA to determine the index u such that k is the u-th coordinate of Bj , and the

86

index h such that Bj is the h-th block that is queried by ψi - if Bj is queried by ψi
multiple times, then index h is chosen according to the copy of Bj to which κ belongs.

Finally, RL′ sets κ′
def
= (2 · ls) · h+ u and outputs (i, κ′)

(b) If v > |RevListA,ϕ (k)|, then k ≤ m and v corresponds to a query by a consis-
tency circuit. Recall that there are bzc · bb · ls/ |Bj |c such queries. Let v′ = v −
|RevListA,ϕ (k)|. The reverse lister now views v′ as pair of indices (i, h), where i ∈ [z]
and h ∈ [bb · ls/ |Bj |c]. Next, the reverse lister RL′ invokes BA to compute the offset u

of k within the block Bj . Finally, RL′ computes κ
def
= (h− 1) · |Bj |+ u, and outputs the

pair (R+ i, κ) (Recall that R+ i is the index of the i-th consistency circuit).

3. Reverse Retrieval: In this mode, RL′ is given an element (i, κ) of RevListA′,ϕ (k), and is
required to retrieve its index v within RevListA′,ϕ (k). We consider two cases:

(a) i ≤ R: In this case, i is the index of a robustized circuit. The reverse lister RL′ begins
by computing the indices of j1, . . . , jb′ of the blocks that are queried by ψi, by using
the Circuit to Blocks mode of BA. Then, RL′ computes the place κ0 of k within the
input of the output circuit ψi of A. The place κ0 can be computed from the widths of
Bj1 , . . . , Bjb′ , and from the index of the chunk to which κ belongs. Finally, RL′ invokes
RL to compute the index of (i, κ0) within RevListA,ϕ (k) and outputs it.

(b) i > R: In this case, let i′ = i − R, and note that i is the index of ψcon
i′ . The reverse

lister RL′ begins by computing ι
def
= (i′−1) mod z+ 1, which is the index of ψcon

i′ among
the consistency circuits that are associated with Bj . Next, RL′ computes u = dκ/ |Bj |e,
which is the copy of x|Bj

in the input of ψcon
i′ to which κ belongs. Finally, RL′ views the

pair of numbers ι ∈ [z] and u ∈ [bb · ls/ |Bj |c] as a single number v ∈ [z · bb · ls/ |Bj |c]
and outputs it.

It remains to deal with the case where k > m+`, which means that k belongs to some encoding Ej .
The implementation of RL′ in this case is very similar to the previous case, with the main differences
being the following:

1. The reverse lister RL′ begins by finding a coordinate k′ ≤ m+ ` that belongs to the block Bj
that is encoded by Ej . Then, whenever we used the list RevListA,ϕ (k) in the case of
k ≤ m+ `, we now use the list RevListA,ϕ (k′).

2. Robustized circuits query multiple copies of each encoding Ej , and this can be dealt with in
the same way we deal with the fact that consistency circuits query multiple copies of each x|Bj

.

This concludes the construction of RL′.

B.3 The robustness of A′

In this section, we show that A′ is robust, and in particular has robustness Ω (ρ/b). Let ϕ be a
circuit of size n over m inputs, let ϕrep be a representation of ϕ, let ψrob

1 , . . . , ψrob
R and ψcon

1 , . . . , ψcon
R

be the output circuits of A′ when invoked on ϕrep, and let Qrob
1 , . . . , Qrob

R and Qcon
1 , . . . , Qcon

R be the
corresponding query functions. Similarly, let ψ1, . . . , ψR and Q1, . . . , QR be the output circuits and
query functions of A when invoked on ϕrep. Let x ∈ {0, 1}m be an assignment to ϕ, let π′ ∈ {0, 1}`

′

a proof string for A′, and let εx = dist (x,SAT(ϕ)) . We show that either

Ei∈[R]

[
dist

((
x ◦ π′

)
|Qrob

i
,SAT

(
ψrob
i

))]
≥ Ω (ρ · εx/b) , (3)

87

or
Ei∈[R]

[
dist

((
x ◦ π′

)
|Qcon

i
, SAT (ψcon

i)
)]
≥ Ω (ρ · εx) , (4)

and this will imply the robustness of A′. In the following argument, recall that we denote the
relative distance of the codes {Ck}∞k=1 by δC .

We view the proof string π′ as consisting of a proof string π of A and of a collection of purported
encodings Ej . For every j ∈ [p], let Edec

j be the codeword of C that is nearest to Ej . Let

xdec ∈ {0, 1}m and πdec ∈ {0, 1}` be the assignment of ϕ and proof string of A that are encoded

by the encodings Edec
j , i.e., xdec and πdec satisfy Edec

j = C
((
xdec ◦ πdec

)
|Bj

)
for every block Bj .

Note that xdec and πdec are well defined, since the blocks B1, . . . , Bp are disjoint. Our argument
now proceeds as described in Section 5.6: We argue that if dist

(
xdec, SAT(ϕ)

)
≥ 1

2 · εx, then x ◦ π′
must be far (in expectation) from satisfying the robustized circuits ψrob

i (so Inequality 3 holds),
and that otherwise x ◦ π′ must be far (in expectation) from satisfying the consistency circuits ψcon

i

(so Inequality 4 holds).

The case where dist
(
xdec, SAT(ϕ)

)
≥ 1

2 · εx. Suppose that dist
(
xdec, SAT(ϕ)

)
≥ 1

2 · εx. We
prove that Inequality 3 holds. By the rejection ratio of A, it holds for at least ρ · 12 ·εx of the indices
i ∈ [R] that the circuit ψi of A rejects

(
xdec ◦ πdec

)
|Qi

. We prove that for each such index i it holds

that
dist

((
x ◦ π′

)
|Qrob

i
, SAT(ψrob

i)
)
≥ δC/8b,

and this will imply Inequality 3, as required.
Fix i ∈ [R] such that the circuit ψi of A rejects

(
xdec ◦ πdec

)
|Qi

. Let w′ be a string nearest

to (x ◦ π′)|Qrob
i

that satisfies ψrob
i . Let w be the input to ψi that is obtained by projecting w′ to

Bj1, . . . , Bjb′ . Clearly, w 6=
(
xdec ◦ πdec

)
|Qi

, so there exists κ ∈ [qi] such that w and
(
xdec ◦ πdec

)
|Qi

differ on the coordinate κ. Let Bjh be the block to which κ belongs, i.e., Bjh is the unique block
such that Qi(κ) ∈ Bjh .

Recall that (x ◦ π′)|Qrob
i

contains bls/ |Bjh |c copies of Ejh , and observe that the corresponding

part of w′ contains bls/ |Bjh |c copies of some codeword Ew
′

j of C (here we use the fact that ψrob
i

checks that the different copies of Ej are equal, see Remark B.2). Furthermore, recall that Edec
j is

the codeword of C nearest to Ej . Since w and
(
xdec ◦ πdec

)
|Qi

differ on the coordinate κ, it holds

that Ew
′

j 6= Edec
j . This implies that Ew

′
j and Edec

j are δC-far from each other, and therefore Ej is

δC/2-far from Ew
′

j . Finally, it is easy to verify that the copies of Ej form at least 1
3b -fraction of the

input of ψrob
i , and therefore

dist
((
x ◦ π′

)
|Qrob

i
,SAT(ψrob

i)
)

= dist
((
x ◦ π′

)
|Qrob

i
, w′
)
≥ δC/3b.

This concludes the proof of Inequality 3.

The case where dist
(
xdec,SAT(ϕ)

)
< 1

2 · εx. Suppose that dist
(
xdec, SAT(ϕ)

)
< 1

2 · εx. We
prove that Inequality 4 holds. By the triangle inequality, it holds that

dist
(
x, xdec

)
≥ εx − dist

(
xdec,SAT(ϕ)

)
≥ 1

2
· εx.

Let B1, . . . , Ba be the assignment blocks, and recall that B1, . . . , Ba are all of the same width.
Furthermore recall that the number of non-dummy coordinates in each assignment block Bj is

88

between |Bj | /3 and |Bj |. Given the latter fact, it is not hard to prove that

Ej∈[a]
[
dist(x|Bj

, xdec|Bj
)
]
≥ 1

3
· dist

(
x, xdec

)
≥ 1

6
· εx.

We now prove that for each j ∈ [a] and each consistency circuit ψcon
i that is associated with Bj , it

holds that
dist

((
x ◦ π′

)
|Qcon

i
, SAT(ψcon

i)
)
≥ Ω

(
dist(x|Bj

, xdec|Bj
)/b
)

(5)

and this will imply Inequality 4, as required.
We turn to prove Inequality 5. Fix j ∈ [a] and consistency circuit ψcon

i that is associated
with h. Recall that (x ◦ π′)|Qcon

i
consists of bb · ls/ |Bj |c copies of x|Bj

and of bb · ls/ |Ej |c copies of

Ej . Let w′ be a string nearest to (x ◦ π′)|Qcon
i

that is accepted by ψcon
i . Note that w′ consists of

bb · ls/ |Bj |c copies of a string w ∈ {0, 1}|Bj | and of bb · ls/ |Ej |c copies of the encoding C(w). Now,
we consider two possible cases:

1. w = xdec: In this case, it holds that x|Bj
and w differ on dist(x|Bj

, xdec|Bj
) fraction of bits. Since

the copies of x|Bj
form at least (1/3) fraction of the input of ψcon

i , it follows that

dist
((
x ◦ π′

)
|Qcon

i
, SAT(ψcon

i)
)
≥ 1

3
· dist(x|Bj

, xdec|Bj
),

and hence Inequality 5 holds.

2. w 6= xdec: In this case, it holds that C(w) 6= Edec
j . Now, recall that Edec

j is a codeword of C
that is nearest to Ej , and therefore Ej and C(w) must differ on at least δC/2 fraction of
coordinates. Since the copies of Ej form at least one third of the input of ψcon

i , it follows that

dist
((
x ◦ π′

)
|Qcon

i
,SAT(ψcon

i)
)
≥ 1

6
· δC ,

and hence Inequality 5 holds (recall that δC is a universal constant that is independent of
dist(x|Bj

, xdec|Bj
)).

This concludes the proof of Inequality 4.

C Lower bound on input size in the proof of the main theorem

Recall that in the proof of the main theorem we had a sequence {ni}∞i=0 defined by ni+1 =
n2i /d · logd n for some constant d. In this appendix, we prove that for every i it holds that

ni ≥
(
n0/d · 2d · logd n0

)2i
. It is not hard to see that for every i ≥ 1 it holds that ni ≤ n2

i

0 .
Now, we first prove by induction that for every i ≥ 1 it holds that

ni ≥ n2
i

0 /
(
d · logd n0

)2i−1
· 1/2d·

∑i−1
j=0 2

j ·(i−1−j)

The induction step goes as follows:

89

ni = n2i−1/
(
d · logd (ni−1)

)
(Since ni−1 ≤ n2

i−1

0) ≥ n2i−1/
(

2d·(i−1) · d · logd (n0)
)

(The induction hypothesis) ≥
(
n2

i−1

0 /
(
d · logd n0

)2i−1−1
· 1/2d·

∑i−2
j=0 2

j ·(i−2−j)
)2

·1/
(

2d·(i−1) · d · logd (n0)
)

= n2
i

0 /
(
d · logd n0

)2i−2
· 1/2d·

∑i−1
j=1 2

j ·(i−1−j)

·1/
(

2d·(i−1) · d · logd (n0)
)

= n2
i

0 /
(
d · logd n0

)2i−1

· 1/2d·
∑i−1

j=0 2
j ·(i−1−j)

We now prove that 1/2d·
∑i−1

j=0 2
j ·(i−1−j) ≥ 1/2d·2

i
, and this will imply the required result. To this

end, it suffices to prove that for every m ≥ 0 it holds that

m∑
j=0

2j · (m− j) ≤ 2m+1

We first rewrite the sum as follows:

m∑
j=0

2j · (m− j) =
m∑
j=0

2m−j · j = 2m−1
m∑
j=0

j · 2−(j−1)

So it remains to show that
∑m

j=0 j · 2−(j−1) ≤ 4. Since this should hold for every m, we actually

need to show that
∑∞

j=0 j · 2−(j−1) ≤ 4. The latter inequality is folklore, and is proved as follows.
Consider the function

f(x) =
∞∑
j=0

xj ,

and at its derivative

f ′(x) =

∞∑
j=0

j · xj−1.

Observe that the series that we wish to upper bound is exactly f ′(12). Next, observe that for
x ∈ (0, 1), it holds that

f(x) =
1

1− x
,

and therefore the derivative of f in (0, 1) can also be written as

f ′(x) =
1

(1− x)2
.

Thus, the series we wish to bound converges to f ′(12) = 1

(1− 1
2)

2 = 4, as required.

90

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

