
Streaming Graph Computations with a Helpful Advisor

Graham Cormode∗ Michael Mitzenmacher† Justin Thaler‡

Abstract

Motivated by the trend to outsource work to commercial cloud computing services, we consider a
variation of the streaming paradigm where a streaming algorithm can be assisted by a powerful helper
that can provide annotations to the data stream. We extend previous work on such annotation models by
considering a number of graph streaming problems. Without annotations, streaming algorithms for graph
problems generally require significant memory; we show that for many standard problems, including all
graph problems that can be expressed with totally unimodular integer programming formulations, only
constant space (measured in words) is needed for single-pass algorithms given linear-sized annotations.
We also obtain protocols achieving essentially optimal tradeoffs between annotation length and memory
usage for several important problems, including integer matrix-vector multiplication and a large class of
linear programs, as well as shortest s-t path in small-diameter graphs. We obtain non-trivial tradeoffs
for minimum weight bipartite perfect matching and shortest s-t path in general graphs.

1 Introduction

The recent explosion in the number and scale of real-world structured data sets including the web, social
networks, and other relational data has created a pressing need to efficiently process and analyze massive
graphs. This has sparked the study of graph algorithms that meet the constraints of the standard streaming
model: restricted memory and the ability to make only one pass (or few passes) over adversarially ordered
data. However, many results for graph streams have been negative, as many foundational problems require
either substantial working memory or a prohibitive number of passes over the data [1]. Apparently most
graph algorithms fundamentally require flexibility in the way they query edges, and therefore the combina-
tion of adversarial order and limited memory makes many problems intractable.

To circumvent these negative results, variants and relaxations of the standard graph streaming model
have been proposed, including the Semi-Streaming [2], W-Stream [3], Sort-Stream [4], Random-Order [1],
and Best-Order [5] models. In Semi-Streaming, memory requirements are relaxed, allowing space propor-
tional to the number of vertices in the stream but not the number of edges. The W-Stream model allows the
algorithm to write temporary streams to aid in computation. And, as their names suggest, the Sort-Stream,
Random-Order, and Best-Order models relax the assumption of adversarially ordered input. The Best-Order
model, for example, allows the input stream to be re-ordered arbitrarily to minimize the space required for
the computation.
∗AT & T Labs – Research, graham@research.att.com
†Harvard University, School of Engineering and Applied Sciences, michaelm@eecs.harvard.edu. This work was supported in

part by NSF grants CCF-0915922 and CNS-0721491, and in part by grants from Yahoo! Research, Google, and Cisco, Inc.
‡Harvard University, School of Engineering and Applied Sciences, jthaler@seas.harvard.edu. Supported by the Department of

Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 105 (2011)

In this paper, our starting point is a relaxation of the standard model, closest to that put forth by
Chakrabarti et al. [6], called the annotation model. Motivated by recent work on outsourcing of database
processing, as well as commercial cloud computing services such as Amazon EC2, the annotation model
allows access to a powerful advisor, or helper who observes the stream concurrently with the algorithm. Im-
portantly, in many of our motivating applications, the helper is not a trusted entity: the commercial stream
processing service may have executed a buggy algorithm, experienced a hardware fault or communication
error, or may even be deliberately deceptive [5, 6]. As a result, we require our protocols to be sound: our
verifier must detect any lies or deviations from the prescribed protocol with high probability.

The most general form of the annotation model allows the helper to provide additional annotations in
the data stream at any point to assist the verifier, and one of the cost measures is the total length of the
annotation. In this paper, however, we focus on the case where the helper’s annotation arrives as a single
message after both the helper and verifier have seen the stream. The helper’s message is also processed as a
stream, since it may be large; it often (but not always) includes a re-ordering of the stream into a convenient
form, as well as additional information to guide the verifier. This is therefore stronger than the Best-Order
model, which only allows the input to be reordered and no more; but it is weaker than the more general
online model, because in our model the annotation appears only after the input stream has finished.

We argue that this model is of interest for several reasons. First, it requires minimal coordination between
helper and verifier, since it is not necessary to ensure that annotation and stream data are synchronized.
Second, it captures the case when the verifier uploads data to the cloud as it is collected, and later poses
questions over the data to the helper. Under this paradigm, the annotation must come after the stream is
observed. Third, we know of no non-trivial problems which separate the general online and our “at-the-
end” versions of the model, and most prior results are effectively in this model. Indeed, for protocols with
linear annotation, the two models are clearly equivalent, as the helper can afford to push the annotation to
the end simply by replaying the stream with the required annotation.

Besides being practically motivated by outsourced computations, annotation models are closely related
to Merlin-Arthur proofs with space-bounded verifiers, and studying what can (and cannot) be accomplished
in these models is of independent interest.

Relationship to Other Work. Annotation models were first explicitly studied by Chakrabarti et al. in
[6], and focused primarily on protocols for canonical problems in numerical streams, such as Selection,
Frequency Moments, and Frequent Items. The authors also provided protocols for some graph problems:
counting triangles, connectedness, and bipartite perfect matching. The Best-Order Stream Model was put
forth by Das Sarma et al. in [5]. They present protocols requiring logarithmic or polylogarithmic space
(in bits) for several problems, including perfect matching and connectivity. Historical antecedents for this
work are due to Lipton [7], who used fingerprinting methods to verify polynomial-time computations in
logarithmic space. Recent work verifies shortest-path computations using cryptographic primitives, using
polynomial space for the verifier [8].

Our Contributions. We identify two qualitatively different approaches to producing protocols for problems
on graphs with n nodes andm edges. In the first, the helper directly proves matching upper and lower bounds
on a quantity. Usually, proving one of the two bounds is trivial: the helper provides a feasible solution to the
problem. But proving optimality of the feasible solution can be more difficult, requiring the use of structural
properties of the problem. In the second, we simulate the execution of a non-streaming algorithm, using
the helper to maintain the algorithm’s internal data structures to control the amount of memory used by the
verifier. The helper must provide the contents of the data structures so as to limit the amount of annotation
required.

Using the first approach (Section 3), we show that only constant space and annotation linear in the input

2

size m is needed to determine whether a directed graph is a DAG and to compute the size of a maximum
matching. We describe this as an (m, 1) protocol, where the first entry refers to the annotation size (which
we also call the hcost) and the second to the memory required for the verifier (which we also call the
vcost). Our maximum matching result significantly extends the bipartite perfect matching protocol of [6],
and is tight for dense graphs, in the sense that there is a lower bound on the product of hcost and vcost of
hcost · vcost = Ω(n2) bits for this problem. Second, we define a streaming version of the linear program-
ming problem, and provide an (m, 1) protocol. By exploiting duality, we hence obtain (m, 1) protocols
for many graph problems with totally unimodular integer programming formulations, including shortest s-t
path, max-flow, min-cut, and minimum-weight bipartite perfect matching (MWBPM). We also show all are
tight by proving lower bounds of hcost · vcost = Ω(n2) bits for all four problems. A more involved pro-
tocol obtains optimal tradeoffs between annotation cost and working memory for dense LPs, matrix-vector
multiplication, and eigenvalue verification; this complements recent results on approximate linear algebra
in streaming models (see e.g. [9, 10]). Next, motivated by applications in which weak peripheral devices or
sensors perform error correction on signals, we present extensions of our LP protocol to the more general
class of quadratic programs. Finally, we present a novel extension of techniques from [6] to obtain non-
trivial tradeoffs (optimal in some important regimes) for two of the totally unimodular integer programs:
shortest s-t path and MWBPM (Section 4).

For the second approach (Section 5), we make use of the idea of “memory checking” due to Blum et
al. [11], which allows a small-space verifier to outsource data storage to an untrusted server. We present a
general simulation theorem based on this checker, and obtain as corollaries tight protocols for a variety of
canonical graph problems. In particular, we give an (m, 1) protocol for verifying a minimum spanning tree,
an (m + n log n, 1) protocol for single-source shortest paths, and an (n3, 1) protocol for all-pairs shortest
paths. We provide a lower bound of hcost · vcost = Ω(n2) bits for the latter two problems, and an identical
lower bound for MST when the edge weights can be given incrementally. While powerful, this technique has
its limitations: there does not seem to be any generic way to obtain the same kind of tradeoffs between hcost
and vcost observed above. Further, there are some instances where direct application of memory checking
does not achieve the best bounds for a problem. We demonstrate this by presenting an (n2 log n, 1) protocol
to find the diameter of a graph; this protocol leverages the ability to use randomized methods to check
computations more efficiently than via generating or checking a deterministic witness. In this case, we
rely on techniques to verify matrix-multiplication in quadratic time, and show that this is tight via a nearly
matching lower bound for diameter of hcost · vcost = Ω(n2).

In contrast to problems on numerical streams, where it is often trivial to obtain (m, 1) protocols by
replaying the stream in sorted order, achieving linear-sized annotations with logarithmic space is more chal-
lenging for many graph problems. Simply providing the solution (e.g. a graph matching or spanning tree)
is insufficient, since we have the additional burden of demonstrating that this solution is optimal. A conse-
quence is that we are able to provide solutions to several problems for which no solution is known in the
best-order model (even though one can reorder the stream in the best-order model so that the “solution”
edges arrive first).

2 Model and Definitions

Consider a data streamA = 〈a1, a2, . . . , am〉with each ai in some finite universe U . Consider a probabilistic
verifier V who observes A and a deterministic helper H who also observes A and can send a message h to
V after A has been observed by both parties. This message, also referred to as an annotation, should itself
be interpreted as a data stream that is parsed by V , which may permit V to use space sublinear in the size of

3

the annotation itself. That is,H provides an annotation h(A) = (h1(A), h2(A), . . . h`(A)).
We study randomized streaming protocols for computing functions f(A) → Z. Specifically, assume V

has access to a private random string R and at most w(m) machine words of working memory, and that V
has one-way access to the input A · h , where · represents concatenation. Denote the output of protocol P
on input A, given helper h and random string R, by out(P,A,R, h). We allow V to output ⊥ if V is not
convinced that the annotation is valid.

If the function f is non-boolean, we sometimes consider a notion of approximation. We say f is com-
puted correctly if the answer returned is in some set C(f(A)), e.g., {a : |a − f(A)| ≤ ε|f(A)|} for
multiplicative approximations, and C(f(A)) = {f(A)} for exact protocols.

Definition 2.1. h is a valid helper with respect toP if for all streamsA, PrR(out(P,A,R, h) ∈ C(f(A))) =
1.

Definition 2.2. P is a valid protocol for f if

1. There exists at least one valid helper h with respect to P and

2. For all helpers h ′ and all streams A,

Pr
R

(out(P,A,R, h ′) 6∈ C(f(A)) ∪ {⊥}) ≤ 1/3.

Conceptually, P is a valid protocol for f if for each stream A there is at least one way to convince V of the
true value of f(A), and any false claims are detected by V with probability at least 1/3. The constant 1

3 can
be any constant less than 1

2 .
Let h be a valid helper chosen to minimize the length of h(A) for allA. We define the help cost hcost(P)

to be the maximum length of h over all A of length m, and the verification cost vcost(P) = w(m), the
amount of working memory used by the protocol P . All costs are expressed in machine words of size
Θ(logm) bits, i.e. we assume any quantity polynomial in the input size can be stored in a constant number
of words. In contrast, lower bounds are expressed in bits. We say that P is an (h, v) protocol for f if P
is valid and hcost(A) = O(h), vcost(A) = O(v). While both hcost and vcost are natural costs for such
protocols, we often aim to achieve a vcost of O(1) and then minimize hcost. In other cases, we show that
hcost can be decreased by increasing vcost, and study the tradeoff between these two quantities.

In this paper we primarily consider graph streams, which are streams whose elements are edges of a
graph G. More formally, consider a stream A = 〈e1, e2, . . . , em〉 with each ei ∈ [n] × [n]. Such a stream
defines a (multi)graph G = (V,E) where V = {v1, ..., vn} and E is the (multi)set of edges that naturally
corresponds to A. We use the notation {i : m(i)} for the multiset in which i appears with multiplicity
m(i). Finally, we will sometimes consider graph streams with directed edges, and sometimes with weighted
edges; in the latter case each edge ei ∈ [n] × [n] × Z+, and we assume all edge weights are polynomial in
n.

Note throughout that whenever we state a lower bound it is shown by generating a “worst-case” input
instance. For the bounds we show, this corresponds to a dense graph, i.e. one with m = Ω(n2) edges. Thus,
we often show upper bounds proportional to m, and lower-bounds on dense graphs proportional to n2.

2.1 Fingerprints

Our protocols make careful use of fingerprints, permutation-invariant hashes that can be efficiently com-
puted in a streaming fashion. They determine in small space (with high probability) whether two streams

4

have identical frequency distributions. They are the workhorse of algorithms proposed in earlier work on
streaming models with an untrusted helper [5, 6, 7, 12]. We sometimes also need the fingerprint function to
be linear.

Definition 2.3 (Fingerprints). A fingerprint of a multiset M = {i : m(i)}, where each i ∈ [q] for some
known upper bound q, is defined as an element over the finite field with p elements, Fp, as fp,α(M) =∑q

i=1m(i)αi, where α is chosen uniformly at random from Fp. We typically leave p, α implicit, and just
write f(M).

Some properties of f are immediate: it is linear in M , and can easily be computed incrementally as
elements of [q] are observed in a stream one by one. The main property of f is that if M 6= M ′ then
Pr[f(M) = f(M ′)] ≤ q/p over the random choice of α (due to standard properties of polynomials over
a field). Therefore, if p is sufficiently large, say, polynomial in q and in an (assumed) upper bound on the
multiplicities m(i), then this event happens with only polynomially small probability. For cases when the
domain of the multisets is not [q], we either establish a bijection to [q] for an appropriate value of q, or
use a hash function to map the domain onto a large enough [q] such that there are no collisions with high
probability (whp). In all cases, p is chosen to be O(1) words.

A common subroutine of many of our protocols forcesH to provide a “label” l(u) for each node upfront,
and then replay the edges in E, with each edge (u, v) annotated with l(u) and l(v) so that each instance of
each node v appears with the same label l(v).

Definition 2.4. We say a list of edges E′ provided byH is label-augmented if (a) E′ is preceded by a sorted
list of all the nodes v ∈ V , each with a value l(v) and deg(v), where l(v) is the label of V and deg(v) is
claimed to be the degree of v; and (b) each edge e = (u, v) in E′ is annotated with a pair of symbols l(e, u)
and l(e, v). We say a list of label-augmented edges E′ is valid if for all edges e = (u, v), l(e, u) = l(u) and
l(e, v) = l(v); and E′ = E as sets, where E is the set of edges observed in the stream.

Lemma 2.5 (Consistent Labels). There is an (m, 1) protocol that outputs one given any valid list of label-
augmented edges,and outputs ⊥ with probability at least 2/3 if the list is not valid.

Proof. Let E′ denote the set of edges in the label-augmented list. V uses the annotation from Definition
2.4 (a) to make a fingerprint of the multiset S1 := {(u, l(u)) : deg(u)}. V also maintains a fingerprint
of the multiset S′1 of all (u, l(e, u)) pairs seen while observing the label-augmented list. V outputs one if
f(S1) = f(S′1) and f(E) = f(E′), otherwise V outputs ⊥.

Clearly if the list of label-augmented edges is valid, V will output one with probability 1. If the list is not
valid, then either E′ 6= E (as sets), or there exists an edge (u, v) such that l(e, u) 6= l(u) or l(e, v) 6= l(v).
In the first case, f(E) 6= f(E′) whp, so V will output ⊥ whp. In the second case, assume without loss of
generality that l(e, u) 6= l(u). The multiset S′1 does not equal S1, because (u, l(u)) is the unique tuple in
S1 whose first coordinate equals u. Therefore, f(S1) 6= f(S′1) whp, and V will output ⊥ whp in this case as
well.

3 Directly Proving Matching Upper and Lower Bounds

3.1 Warmup: Topological Ordering and DAGs

A (directed) graph G is a DAG if and only if G has a topological ordering, which is an ordering of V as
v1, . . . vn such that for every edge (vi, vj) we have i < j [13, Section 3.6]. Hence, if G is a DAG, H can
prove it by providing a topological ordering. If G is not a DAG,H can provide a directed cycle as witness.

5

Theorem 3.1. There is an (m, 1) protocol to determine if a graph is a DAG.

Proof. If G is not a DAG,H provides a directed cycle C as (v1, v2), (v2, v3) . . . (vk, v1). To ensure C ⊆ E,
H then provides a set C ′ claimed to equal E \ C, and V checks that f(C ∪ C ′) = f(E).

If G is a DAG, let v1, . . . vn be a topological ordering of G. We requireH to replay the edges of G, with
edge (vi, vj) annotated with the ranks of vi and vj i.e. i and j. We ensure H provides consistent ranks via
the Consistent Labels protocol of Lemma 2.5, with the ranks as “labels”. If any edge (vi, vj) is presented
with j > i, V immediately outputs ⊥.

3.2 Maximum Matching

We give an (m, 1) protocol for maximum matching which leverages the combinatorial structure of the
problem. This is tight up to logarithmic factors. Previously, matching was only studied in the bipartite case,
where an (m, 1) protocol and a lower bound of hcost · vcost = Ω(n2) bits for dense graphs were shown [6,
Theorem 11].

Our protocol shows matching upper and lower bounds on the size of the maximum matching. Any
feasible matching presents a lower bound. For the upper bound we appeal to the Tutte-Berge formula [14,
Chapter 24]: the size of a maximum matching of a graph G = (V,E) is equal to

1
2

min
VS⊆V

(|VS | − occ(G− VS) + |V |),

where G − VS is the subgraph of G obtained by deleting the vertices of VS and all edges incident to them,
and occ(G − VS) is the number of components in the graph G − VS that have an odd number of vertices.
So for any set of nodes VS , 1

2(|VS | − occ(G − VS) + |V |) is an upper bound on the size of the maximum
matching, and there exists some VS for which this quantity equals the size of a maximum matching M .
Conceptually, providing both VS and M , H proves that the maximum matching size is M . Additionally, H
has to provide a proof of the value of occ(G− VS) to V .

Theorem 3.2. There is an (m, 1) protocol for maximum matching. Moreover, any protocol for max-
matching requires hcost · vcost = Ω(n2) bits.

Proof. To prove a lower bound of k on the size of the maximum matching, H provides a matching M =
(VM , EM) of size |EM | = k, and then proves that M is indeed a matching. It suffices to prove that |VM | =
2|EM | and M ⊆ E. First,H lists EM , and V fingerprints the nodes present as f(VM). H then presents V ′M
which is claimed to be VM in sorted order, allowing V to easily check no node appears more than once and
that f(VM) = f(V ′M). Next, H provides E \M , allowing V to check that f(M ∪ (E \M)) = f(E). Hence
M is a matching.

To prove an upper bound of k on the size of the maximum matching, H sends a (sorted) set VS ⊆ V ,
where 1

2(|VS | − occ(G − VS) + |V |) = k. Both |VS | and |V | are computed directly; for occ(G − VS),
H sends a sequence of (sub)graphs Ci = (Vi, Ei) ⊆ V × E claimed to be a partition of G − VS into
connected components. V can easily compute c, the number of Ci’s with an odd number of nodes. To
ensure that the Ci’s are indeed the connected components of G − VS , it suffices to show that (a) each Ci is
connected in G − VS ; (b) V \ VS is the disjoint union of the Vi’s; and (c) there is no edge (v, w) ∈ E s.t.
v ∈ Vi, w ∈ Vj , i 6= j.

To prove Property (a),H presents the (sub)graph Ci as Vi ⊂ V (in sorted order) where each V is paired
with its degree deg(v); followed by Ei ⊂ E (in arbitrary order). Fingerprints are used to ensure that the
multiset of nodes present in Ei matches the claimed degrees of nodes in Vi. If these fingerprints agree,

6

then (whp) Ei ⊆ Vi × Vi. Then H uses the connectivity protocol from [6, Theorem 5.6] on the (sub)graph
Ci = (Vi, Ei) to prove that Ci is connected. Each of these checks on Ci has hcost O(|Ei|). Note that V
requires only a constant number of fingerprints for these checks, and can use the same working memory
for each different Ci to check that Ei ⊆ Vi × Vi and that Ci is connected. The total vcost over all Ci is a
constant number of fingerprints; the total hcost is O(m).

Property (b) is checked by testing f
(
(∪iVi)∪VS

)
= f(V), where the unions in the LHS count multiplic-

ities; if the fingerprints match then whp V \ VS is the disjoint union of the Vi’s. For (c), it suffices to ensure
that each each edge in E \ (

⋃
iEi) is incident to at least one node in VS , as we have already checked that no

edges in
⋃
iEi cross between Vi and Vj for i 6= j. To this end, we use the “Consistent Labels” protocol of

Lemma 2.5, with l(u) = 1 indicating u ∈ VS and l(u) = 0 indicating u /∈ VS , to force H to replay all of E
with each edge (u, v) annotated with l(u) and l(v). This allows V to identify the set ES of edges incident
to at least one node in VS . V checks that f

(
(∪iEi) ∪ ES

)
= f(E), which ensures (whp) that Property (c)

holds and that over the entire partition of G no edges are added or omitted. Finally, provided all the prior
fingerprint tests pass, the protocol accepts if c, the number of Ci’s with an odd number of nodes, satisfies
1
2(|S| − c+ |V |) = k.

For the lower bound, note that a lower bound of hcost · vcost = Ω(n2) bits for dense graphs was shown
in [6, Theorem 11] for bipartite perfect matching, and the same lower bound applies to the more general
problem of maximum matching considered here.

3.3 Linear Programming

We present protocols to verify solutions of large classes of linear programming problems in our model by
leveraging the theory of LP duality. This leads to non-trivial protocols for a variety of graph problems.

Definition 3.3. Given a data stream A containing entries of vectors b ∈ Zb, c ∈ Zc, and non-zero entries
of a b×c matrixA in some arbitrary order, possibly interleaved. We assume the absolute value of all entries
is polynomial in b and c. Each item in the stream indicates the index of the object it pertains to. The LP
streaming problem on A is to determine the value of the linear program min{cTx | Ax ≤ b}.

Our definition makes the standard assumption that the contraints and optimization criteria are integral.
We explain later when and how our results extend to rational valued programs.

We present our protocol as if each entry of each object appears at most once (if an entry does not appear,
it is assumed to be zero). When this is not the case, the final value for that entry is interpreted as the sum of
all corresponding values in the stream.

Numerical Issues. Our methods requireH to specify an optimal solution to the linear program, and there-
fore our protocols are only efficient if there exists an optimal solution with a succinct representation. How-
ever, the fact that all entries of A, b, and c are integral is not sufficient to guarantee this property, as the
following example demonstrates:

Example 3.4. Consider the following linear program:

minimize 1Tx subject to
[
A
−A

]
x ≤

[
b
−b

]
.

Here 1 denotes the all-ones vector, b = 2e1 has 2 in the first coordinate and 0 in all others, and A is the

7

b× c matrix

A =


1 0 0 . . . 0 0
−2 1 0 . . . 0 0
0 −2 1 . . . 0 0

...
0 0 0 . . . −2 1


Note that A is sparse, with only O(b) non-zero entries. The linear program has a unique feasible point: the
vector x ∈ Zc with xi = 2i. The value of the linear program is 1Tx = Ω(2c), and therefore specifying
the value as an integer requires essentially linear space; V cannot manipulate values this large in sublinear
space. Moreover, specifying the optimal solution x requires Ω(bc) bits of annotation, which is quadratic in
the stream length if b = c.

We therefore identify a simple and general condition that rules out unmanageable linear programs such
as Example 3.4. Specifically, denote the maximum absolute value over all the subdeterminants of A by
∆. We observe that if ∆ = poly(b, c), then the optimal solution has bounded size (i.e. each entry is
bounded) as a function of ∆, and hence the optimal value is also bounded. This ensures that we can verify
the computation using exact computations in a field of bounded size. As an important special case, which
we elaborate upon below, we obtain protocols for all totally unimodular integer programs. More generally,
linear programs with bounded subdeterminants are a common object of study in the optimization literature,
with many algorithms running in time polynomial in b, c, and ∆ or log ∆ depending on the algorithm and
the setting (see e.g. [15], [16], and the references therein).

Theorem 3.5. There is an (|A|(1 + log ∆
log |A|), 1 + log ∆

log |A|) protocol for the LP streaming problem, where |A| is
the number of non-zero entries in the constraint matrix A of A. In particular, if ∆ = poly(|A|) then there
is an (|A|, 1) protocol.

Proof. First assume the value of the linear program is finite. The protocol shows an upper bound by provid-
ing a primal-feasible solution x, and a lower bound by providing a dual-feasible solution y. When the value
of both solutions match, V is convinced that the optimal value has been found.

Bounded Solution Size. We begin by arguing that there exists a primal-optimal solution x which requires
O(c(1 + log ∆

log |A|)) words to represent. This argument is standard in the theory of linear and integer program-
ming; we present it here for completeness.

Let P = {x|Ax ≤ b} denote the feasible region of the linear program. It is well known that for any
linear program with a finite optimum, the set of optimal solutions contains a minimal face of P as a subset,
where a set F is a minimal face of P if ∅ 6= F ⊆ P and F = {x|A′x = b′} for some subsystem A′x ≤ b′

of Ax ≤ b with A′ having full row-rank [17, Theorem 8.4]. We may write A′ =
[
U V

]
, possibly after

permuting coordinates, for some integer matrix U whose determinant satisfies 0 < | det(U)| ≤ ∆. Then

x =
[
U−1b′

0

]
is an optimum solution to the linear program. By Cramer’s Rule, xi = det(eUi)

det(U) , where

Ũi is obtained from U by replacing the i’th column with b′. Both the numerator and denominator of this
fraction are integers of magnitude poly(b, c,∆), and hence each entry of x can be represented exactly using
O(1 + log ∆

log |A|) words.
An identical argument shows by that there also exists a dual-optimal solution y requiring O(b) words to

represent. Indeed, letting P = {y|ATy = c,y ≥ 0} denote the feasible region of the dual linear program,

8

the set of optimal solutions contains a minimal face of P as a subset. We can therefore find a dual-optimal

y such that yi = det(eUi)
det(U) , where (possibly after permuting coordinates) U is a submatrix of

[
A −A I

]T ,

and Ũi is obtained from U by replacing the i’th column with
[
cT cT 0T

]T . Since the subdeterminants

of A are bounded in absolute value by ∆, the subdeterminants of
[
A −A I

]T are as well (this is an
easy extension of [17, Corollary 19.1a]). Hence both the numerator and denominator of yi are integers of
magnitude poly(b, c,∆), and each entry of y can be represented in O(1 + log ∆

log |A|) words.

Protocol Specification and Correctness. From the stream, V fingerprints the sets SA = {(i, j, Ai,j)},
SB = {(i,bi)} and SC = {(i, cj)}. Then H provides all pairs of values cj ,xj , 1 ≤ j ≤ c, with xj
represented as pj/qj for integers p, q = poly(b, c,∆), and with each xj additionally annotated with |A·j |,
the number of non-zero entries in column j ofA. This allows V to fingerprint the multiset SX = {(j, pj , qj) :
|A·j |} and calculate the solution cost

∑b
j=1 cjxj .

To prove feasibility, for each row Ai· of A, H sends bi, then (the non-zero entries of) Ai· so that Aij is
annotated with xj . This allows the ith constraint to be checked easily usingO(1+ log ∆

log |A|) words of memory.

Note that the denominator qj in the expression xj = det(fUj)
det(U) = pj

qj
is the same across all j, so V can exactly

represent
∑

j Aijxj in O(1 + log ∆
log |A|) words and compare to bi, without any need for rounding.

V fingerprints the values given by H for A, b, and c, and compares them to those for the stream. A
single fingerprint of the multiset of values presented for x over all rows is compared to f(SX). The protocol
accepts x as feasible if all constraints are met and all fingerprint tests pass.

Correctness follows by observing that the agreement with f(A) guarantees (whp) that each entry of A is
presented correctly and no value is omitted. Since H presents each entry of b and c once, in index order,
the fingerprints f(SB) and f(SC) ensure that these values are presented correctly. The claimed |A·j | values
must be correct: if not, then the fingerprints of either SX or SA will not match the multisets provided byH.
f(SX) also ensures that each time xj is presented, the same value is given (similar to Lemma 2.5).

To prove that x is primal-optimal, it suffices to show a feasible solution y to the dual AT so that cTx =
bTy. That is, V checks that y ≥ 0, ATy = c, and cTx = bTy. The first check is trivial, while the latter two
checks can be done as in the protocol above, with A replaced by AT and b replaced by c.

Infeasible Programs. If the value of the primal linear program is∞, i.e. the primal is infeasible, then by
Farkas’ Lemma [17, Corollary 7.1e], H can prove this by specifying a vector y ≥ 0 such that ATy = 0,

bTy = −1. We may write this in matrix form as
[
AT

b

]
y =

[
0
−1

]
. Let D be a matrix consisting of a

maximal subset of linearly independent rows in the matrix
[
AT

b

]
and let d be the corresponding entries of[

0
−1

]
. Clearly the absolute value of all subdeterminants of D is poly(b, c,∆) because all subdeterminants

of AT are bounded in absolute value by ∆ and all entries in b are poly(b, c) in absolute value. Since D has
full row rank, we may write D =

[
U V

]
, possibly after permuting coordinates, for some integer matrix

U with 0 < | det(U)|. Then y =
[
U−1d

0

]
satisfies ATy = 0, bTy = −1 as desired. By Cramer’s

Rule, yi = det(eD)
det(D) , where D̃ is obtained from D by replacing the i’th column with d. Both the numerator

and denominator of this fraction are integers of magnitude poly(b, c,∆), and hence each entry of y can be

9

represented exactly in O(1 + log ∆
log |A|) words.

SoH can specify y, and by essentially repeating the original protocol, V can check that indeedATy = 0
and bTy = −1.

Finally, if the value of the primal program is −∞, then the dual is infeasible, and we can apply the
previous argument to the dual instead of the primal.

Remark 3.6. Notice that for each (multi)set fingerprinted in the above protocol, the fingerprint must be
computed over a finite field large enough to represent the universe over which the (multi)set is defined. In
particular, the size of the universe over which the multiset SX = {(j, pj , qj) : |A·j |} is defined depends on
the magnitudes of the pj and qj values, which in turn depend on ∆. If ∆ is not known to V , it is sufficient for
the prover to provide an upper bound on the pj and qj values before sending the multiset SX , as this allows
V to choose a sufficiently large finite field over which to fingerprint SX .

Rational Linear Programs. More generally, we are sometimes interested in solving linear programs with
rational entries. Here, bounding subdeterminants is not sufficient to ensure the existence of an optimal
solution which can be represented exactly with polynomial precision, or even the existence of an optimum
of polynomial magnitude. Instead, we can have the prover send a rounded solution which is essentially
optimal for a slightly perturbed linear program. We present full details in Appendix A.

3.4 TUM Integer Programs

For any graph problem that can be formulated as a linear program in which each entry of A, b, and c
can be derived as an linear function of the nodes and edges, we may view each edge in a graph stream
A as providing an update to values of one or more entries of A, b, and c. Therefore, we immediately
obtain a protocol for problems of this form via Theorem 3.5. More generally, we obtain protocols for
problems formulated as totally unimodular integer programs (TUM IPs), which are integer programs for
which ∆ = 1, since optimality of a feasible solution is shown by a matching feasible solution of the dual of
its LP relaxation [17, Corollary 19.1a].

Corollary 3.7. There is a (|A|, 1) protocol for any graph problem that can be formulated as a TUM IP in
which each entry of A, b, and c is a linear function of the nodes and edges of graph.

This follows immediately from Theorem 3.5 and the subsequent discussion: note that the linearity of
the fingerprinting builds fingerprints of SA, SB and SC , so H presents only their (aggregated) values, not
information from the unaggregated graph stream.

Corollary 3.8. Shortest s-t path, max-flow, min-cut, and minimum weight bipartite perfect matching (MWBPM)
all have (m, 1) protocols. For all four problems, a lower bound of hcost · vcost = Ω(n2) bits holds for dense
graphs.

Proof. The upper bound follows from the previous corollary because all the problems listed possess formu-
lations as TUM IPs and moreover the constraint matrix in each case has O(m + n) non-zero entries. For
example, for max-flow, x gives the flow on each edge, and the weight of each edge in the stream contributes
(linearly) to constraints on the capacity of that edge, and the flow through incident nodes.

The lower bound for MWBPM, max-flow, and min-cut holds from [6, Theorem 11] which argues
hcost · vcost = Ω(n2) bits for bipartite perfect matching, and straightforward reductions of bipartite perfect
matching to all three problems, see e.g. [13, Theorem 7.37]. The lower bound for shortest s-t path follows

10

from a straightforward reduction from INDEX, for which a lower bound linear in hcost · vcost was proven
in [6, Theorem 3.1]. In the annotation setting, the INDEX problem is where the initial portion of the stream
defines a binary string x. The final element of the stream is an index k, and the problem is to return the bit
xk.

Given an instance (x, k) of INDEX where x ∈ {0, 1}(
n
2), k ∈ [

(
n
2

)
], we construct a graph G, with

VG = [n + 2], and EG = EA ∪ EB . The edge set EA = {(i, j) : x(i,j) = 1} is created from x alone,
where, without loss of generality, we assume that x is indexed by edges (i, j) with 1 ≤ i < j ≤ n. Then
EB is created from k alone, as EB = {(n+ 1, i), (j, n+ 2)} using (i, j) = k. Note that EA and EB can be
created by V incrementally as the stream is seen, using O(1) words of memory, to generate an implicit edge
stream. The shortest path between nodes n+ 1 and n+ 2 is 3 if xk = 1 and is 4 or more otherwise. Hence,
solving the s-t path problem with hcost · vcost = o(n2) would also solve the INDEX problem with this
bound, contradicting the linear (in the length of x) bound from [6]. This also implies that any approximation
within

√
4/3 requires hcost · vcost = Ω(n2) (better inapproximability constants may be possible).

4 Trading off space and annotation size

In this section, we break the linear annotation barrier for a variety of problems. We first obtain optimal
tradeoffs for dense matrix-vector multiplication, and use this result to obtain tradeoffs for dense linear and
quadratic programs, as well as for eigenvalue computation. However, these results do not themselves yield
efficient protocols for any of the totally unimodular graph problems considered earlier, as all four problems
have sparse, rectangular constraint matrices. In Sections 4.5 and 4.6 we therefore present a different ap-
proach that allows us to obtain optimal tradeoffs between space and annotation length for shortest s-t path
in graphs with small diameter, as well as non-trivial tradeoffs for the general shortest s-t path problem and
MWBPM.

4.1 Tradeoffs for Linear Programs

Conceptually, the above protocols for solving the LP streaming problem are straightforward: H provides a
primal solution, potentially repeating it once for each row of A to prove feasibility, and repeats the protocol
for the dual. There are efficient protocols for the problems listed in the corollary since the constraint ma-
trices of their IP formulations are sparse. For dense constraint matrices, however, the bottleneck is proving
feasibility. We observe that computing Ax reduces to computing b inner-product computations of vectors of
dimension c. There are (cα, c1−α) protocols to verify such inner-products [6]. But we can further improve
on this since one of the vectors is held constant in each of the tests. This reduces the space needed by V to
run these checks in parallel; moreover, we prove a lower bound of hcost · vcost = Ω(min(c, b)2) bits, and
so obtain an optimal tradeoff for square matrices, up to logarithmic factors.

Theorem 4.1. Given a b× c integer matrix A and a c-dimensional integer vector x, with all entries having
absolute value polynomial in b and c, the product Ax can be verified with a (bcα, c1−α) protocol. Moreover,
any such protocol requires hcost · vcost = Ω(min(c, b)2) bits for dense matrices.

Proof. We begin with the upper bound. The protocol for verifying inner-products which follows from
[6] treats a c dimensional vector as an h × v array F , where hv ≥ c. Through interpolation, this then
defines a two-variate polynomial f over a suitably large field, such f(x, y) = Fx,y; f has degree h − 1 in
variable x and degree v − 1 in variable y. For an inner-product between two vectors, we wish to compute∑

x∈[h],y∈[v] Fx,yGx,y =
∑

x∈[h],y∈[v] f(x, y)g(x, y) for the corresponding arrays F,G and polynomials

11

f, g. These polynomials can then be evaluated at locations outside [h] × [v], so in the protocol V picks a
random position r, and evaluates f(r, y) and g(r, y) for 1 ≤ y ≤ v. H then presents a degree 2(h − 1)
polynomial s(x) which is claimed to be

∑v
y=1 f(x, y)g(x, y). V checks that s(r) =

∑v
y=1 f(r, y)g(r, y),

and if so accepts
∑h

x=1 s(x) as the correct answer.
In [6] it is shown how V can compute f(r, y) efficiently as F is defined incrementally in the stream:

each addition of w to a particular index is mapped to (x, y) ∈ [h] × [v], which causes f(r, y) ← f(r, y) +
wp(r, x, y), where p(r, x, y) depends only on x, y, and r. Equivalently, the final value of f(r, y) over
updates in the stream where the jth update is tj = (wj , xj , yj) is f(r, y) =

∑
tj :yj=y wjp(r, xj , y).

To run this protocol over multiple vectors in parallel naively would require keeping the f(r, y) values
implied by each different vector separately, which would be costly. Our observation is that rather than keep
these values explicitly, it is sufficient to keep only a fingerprint of these values, and use the linearity of
fingerprint functions to finally test whether the polynomials provided by H for each vector together agree
with the stored values.

In our setting, the b×cmatrixA implies b two-variate polynomials, each of degree h in the first variable
and v in the second. We evaluate each polynomial at (r, y) for 1 ≤ y ≤ v for the same value of r: since
each test is fooled by H with small probability, the chance that none of them is fooled can be kept high by
choosing the field to evaluate the polynomials over to have size polynomial in b+ c. Thus, conceptually, the
parallel invocation of b instances of this protocol require us to store fi(r, y) for 1 ≤ y ≤ v and 1 ≤ i ≤ b
(for the b rows of A), as well as fx(r, y) for 1 ≤ y ≤ v (where fx is the polynomial derived from x). Rather
than store this set of bv values explicitly, V instead stores only V fingerprints, one for each value of y, where
each fingerprint captures the set of b values of fi(r, y).

From the definition of our fingerprints, this means over stream updates tj = (wj , ij , xj , yj) of weight
wj to row ij and column indexed by xj and yj we compute a fingerprint

f(A, y) =
b∑
i=1

fi(r, y)αi =
b∑
i=1

∑
tj :yj=y,ij=i

wjp(rj , xj , y)αi

for each y, 1 ≤ y ≤ v. Observe that for each y this can be computed incrementally in the stream by storing
only r and the current value of f(A, y).

To verify the correctness, V receives the b polynomials si, and builds a fingerprint of the multiset of
S = {i : si(r)} incrementally. V then tests whether

v∑
y=1

f(A, y)fx(r, y) = f(S)

To see the correctness of this, we expand the lhs, as

v∑
y=1

f(A, y)fx(r, y) =
v∑
y=1

(b∑
i=1

fi(r, y)αi
)
fx(r, y)

=
v∑
y=1

(b∑
i=1

fx(r, y)fi(r, y)αi
)

=
b∑
i=1

(v∑
y=1

fx(r, y)fi(r, y)
)
αi

12

Likewise, if all si’s are as claimed, then

f(S) =
b∑
i=1

si(r)αi =
b∑
i=1

(
v∑
y=1

fx(r, y)fi(r, y)
)
αi

Thus, if the si’s are as claimed, then these two fingerprints should match. Moreover, by the Schwartz-
Zippel lemma, and the fact that α and r are picked randomly by V and not known toH, the fingerprints will
not match with high probability if the si’s are not as claimed, when the polynomials are evaluated over a
field of size polynomial in (b+ c).

To analyze the vcost, we observe that V can compute all fingerprints inO(v) space. AsH provides each
polynomial si(x) in turn, V can incrementally compute f(S) and check that this matches

∑v
y=1 f(A, y)fx(r, y).

At the same time, V also computes
∑b

i=1

∑h
x=1 si(x), as the value of Ax. Note that if each si is sent one

after another, V can forget each previous si after the required fingerprints and evaluations have been made;
and if h is larger than V , does not even need to keep si in memory, but can instead evaluate it term by term
in parallel for each value of x. Thus the total space needed by V is dominated by the fingerprints and check
values.

Setting h = cα and v = c1−α, the total size of the information sent by H is dominated by the b
polynomials of degree h = cα.

To prove the lower bound, following the outline of Corollary 3.8, we give a simple reduction of INDEX

to matrix-vector multiplication. Suppose we have an instance (x, k) of INDEX where x ∈ {0, 1}n2
, k ∈ [n2].

Without loss of generality, we assume that x is indexed canonically by node pairs (i, j) with 1 ≤ i ≤ j ≤ j.
An n× n matrix A is constructed incrementally from x alone, in which Ai,j = 1 if x(i,j) = 1, and Ai,j = 0
otherwise. Then a vector x ∈ Rn is contructed from k = (i, j) such that xi = 1 and all other entries of x are
0. Then the j’th entry of Ax is 1 if and only if x(i,j) = 1, and therefore the value of x(i,j) can be extracted
from the vector Ax. Therefore, if we had an (h, v) protocol for verifying matrix-vector multiplication given
an n×nmatrixA (even for a stream in which all entries ofA come before all entries of x), we would obtain
a (
√
h,
√
v) protocol for INDEX. The lower bound for matrix-vector multiplication thus holds by the lower

bound for INDEX given in [6, Theorem 3.1].

Corollary 4.2. Denote the maximum absolute value of the subdeterminants of integer-valued A by ∆, with
an upper bound on ∆ known in advance. For c ≥ b there is a (c1+α(1 + log ∆

log c), c1−α(1 + log ∆
log c)) protocol

for the LP streaming problem.

Proof. First assume the optimum is finite. We can use the protocol of Theorem 4.1 to verify Ax ≤ b and
ATy = c within the protocol of Theorem 3.5. Some changes are needed, since Theorem 4.1 only applies to
integer matrices and vectors, while x and y may be rational vectors (for the special case of TUM IPs, x and
y are indeed integers, and the following protocol can be simplified).

We focus on verifying Ax ≤ b as the protocol for verifying ATy = c is identical. We show that there
exists an integer q such that the optimal solution x can be written in the form x = (1/q)x̂ with x̂ an integral
vector. V requiresH to send x̂ and q, and uses the protocol of Theorem 4.1 to computeAx̂. While observing
coordinate i of Ax̂, V can compute (Ax̂)i/q = (Ax)i and compare this to bi.

Examining the proof of Theorem 3.5, x can be chosen such that all entries are quotients of subdeter-

minants of A. Moreover, the denominator of each quotient is the same over all i, i.e. all xi = det(fUi)
det(U) are

integer multiples of det(U) ≤ ∆. Therefore,H can let q = det(U).
Observe that all entries of Ax̂ are integers of absolute value at most u, for u = poly(b, c,∆). It is

therefore safe for V to use the protocol of Theorem 4.1 working over the finite field Fp where p > 2u can

13

be determined in advance of observing the data stream. That is, the natural map from {−u,−u+ 1, . . . , u}
to Fp is an injection, and hence V can determine for each i which integer corresponds to Ax̂i (viewed as an
element of Fp), and check whether that integer is at most qbi.

The argument is essentially identical if the value of the LP is∞, and the case of −∞ is symmetric, as
explained in Theorem 3.5. If the value is∞, the protocol of Theorem 3.5 checks that ATy = 0, bTy = −1.

x and can be chosen so that all entries are quotients of subdeterminants of
[
AT

bT

]
, and all subdeterminants

of this matrix are integers polynomial in ∆. Moreover, the denominator of each quotient is the same, so the
proof proceeds as in the case where the LP has finite value.

Each element of the field requires O(1 + log ∆
log c) words to specify, and the cost thus becomes ((bcα +

cbα)(1 + log ∆
log c), (c1−α + b1−α)(1 + log ∆

log c)). If c ≥ b, this is dominated by (c1+α(1 + log ∆
log c), c1−α(1 +

log ∆
log c))

Rational Linear Programs. Corollary 4.2 extends to rational data with no constraints on the subdetermi-
nants in the same way as Theorem A.2 follows from Theorem 3.5.

Corollary 4.3. Suppose all entries of A, b, and c are rational numbers p/q for p, q ∈ Z. Assume the value
of the linear program is finite, and there is a known polynomial upper bound on the length of an optimum.
For any 0 < ε1 < 1/c, there is an ε2 = g(A)ε1, with g(A) = poly(b, c) independent of ε1, such that the
following is true. If c ≥ b, there is a (c1+α log 1/ε1

log c , c1−α log 1/ε1
log c) protocol for for obtaining an additive-

ε2 approximation to the value of the perturbed primal LP min{cTx | Ax ≤ b + ε11}. In particular, if
ε1 = 1/ poly(c), then we obtain a (c1+α, c1−α) protocol.

Proof. We use the protocol of Theorem 4.1 to compute all matrix products within the protocol of Theorem
A.2. All numbers arising in the protocol of Theorem A.2 are integer multiples of ε (where ε was an internal
parameter of the proof of Theorem A.2), so A/ε, x/ε, and y/ε are all integral. Hence we can compute
Ax/ε2 and ATy/ε2 using Theorem 4.1, working over the finite field Fp with p = poly(b, c, 1/ε1) known in
advance. From these values, V can extract Ax and ATy.

In the next two subsections, we use the above results to obtain tradeoff between hcost and vcost for
eigenvalue computation and quadratic programming.

4.2 Eigenvalue Verification.

Theorem 4.1 and its corollaries imply the existence of protocols for graph problems where both hcost and
vcost are sublinear in the size of the input (for dense graphs). For example, we obtain an (n1+α log 1/ε1

logn , n1−α log 1/ε1
logn)

protocol for verifying that λ is of an eigenvalue of the adjacency matrix A or the Laplacian L of G (within
±ε1 for any desired precision ε1 < 1/n) as follows.
H provides a number λ̂ as well as a vector x̂, normalized so that 1 ≤ ‖x̂‖22 ≤ 2, and with all numbers

integer multiples of ε = ε1
n1/2(u+2)

. Here, u ∈ Z is a known upper bound on ‖A‖∞ and ‖L‖∞; note u = n

for A and u = 2n for L suffice. V can check that ε1/ε ≥ n1/2(u+ 2), i.e. x̂ is provided at sufficiently high
precision.

We now focus on A; the protocol for L is identical. Since all entries of x are integer multiples of ε, V
can safely use the integer matrix-vector multiplication protocol of Theorem 4.1 to compute y = (1/ε)Ax̂,
working over a finite field Fp for a prime p = poly(n, 1/ε). H annotates each coordinate of y with (a value

14

claimed to be) x̂i, which allows verifier to check that |yi − (1/ε)λ̂x̂i| ≤ u + 2 for all i. V ensures x̂i is as
claimed using fingerprints, and if all checks pass, V outputs λ̂, otherwise V outputs ⊥.

We first argue that if, as claimed, λ̂ and x̂ are actually an eigenvalue, eigenvector pair with all numbers
rounded to the nearest integer multiple of ε, then V will output λ̂ with probability 1. Indeed, ‖x− x̂‖∞ ≤ ε,
and |λ̂− λ| ≤ ε, where λx = Ax. Hence,

‖(1/ε)Ax̂− (1/ε)λ̂x̂‖∞ ≤ (1/ε)
(
‖Ax̂−Ax‖∞ + ‖Ax− λx‖∞ + ‖λx− λ̂x‖∞

)
≤ 1
ε

(
uε+ 0 + 2ε

)
≤ u+ 2.

Now we argue that if V’s checks pass, then with high probability λ̂ = λ ± ε1 for some eigenvalue λ
of A. Indeed, if V’s checks pass, then with high probability ‖Ax̂ − λ̂x̂‖∞ ≤ ε(u + 2) ≤ ε1

n1/2 . We show
this implies there exists an eigenvalue λ of A such that |λ − λ̂| ≤ ε1. As A is symmetric, we may write
A = V DV T for an orthogonal matrix V and matrix D = diag(λ1, . . . , λn) with the eigenvalues of A on
the diagonal. Then

ε21 ≥ n‖Ax̂− λ̂x̂‖2∞
≥ ‖Ax̂− λ̂x̂‖22
= ‖V (D − λ̂I)V T x̂‖22
= ‖(D − λ̂I)x̂‖22
=
∑
i

(
(λi − λ̂)x̂i

)2
≥
(

min
i
|λi − λ̂|

)2‖x̂‖22
≥
(

min
i
|λi − λ̂|

)2
.

We conclude that there exists an i such that |λi − λ̂| ≤ ε1 as claimed.

4.3 Other Convex Programs

Our protocol for verifying the solution to a linear program relied on two main properties: strong duality, and
the ability to compute the value of a solution x and check feasibility via matrix-vector multiplication. These
properties also hold for more general convex optimization problems, such as quadratic programming and a
large class of second-order cone programs [18], and we can therefore apply these techniques to large classes
of mathematical programs. Such programs can, for example, be useful for applications in which weak
peripheral devices or sensors must perform error correction of received communication, or in compressed
sensing. See e.g. [19, 20].

However, unlike the Linear Programming case, there do not appear to be a reasonable set of sufficient
conditions which suffice to ensure that we can exactly solve such general classes of programs. For example,
the optimal solution of second order cone program min{x2− 2|x2 ≥ 2} is irrational [21], and hence cannot
be specified exactly in any finite amount of precision. As in Theorem A.2 and Corollary 4.3, our solution
is to represent the optimum at some finite precision and observe that this does not introduce more than
polynomial error in both the constraints and the objective function. For illustration, we describe in detail the
protocol for Quadratic Programming.

15

Definition 4.4. Consider a data stream A containing entries of vectors b ∈ Qb, c ∈ Qc, non-zero entries
of a c× c positive-definite integer matrix Q, and a b× c integer matrix A in some arbitrary order, possibly
interleaved. We assume the absolute value of all entries are polynomial in b and c. Each item in the stream
indicates the index of the object it pertains to. The QP streaming problem on A is to determine the value of
the quadratic program min{1

2x
TQx + cTx | Ax ≤ b}.

In order to guarantee that the optimal solution is of polynomial length, we assume that the polyhedron
{Ax ≤ b} is bounded and all subdeterminants of A have absolute value polynomial in b and c; if this is the
case then any feasible x satisfies ‖x‖∞ ≤ b‖b‖∞∆ [22, p. 30]. Alternatively, we may assume there is a
known upper bound on the length of the optimum. We obtain the following theorem, whose proof is similar
to Theorem A.2 and is presented in Appendix B.

Theorem 4.5. Assume all eigenvalues of Q are greater than 1/ poly(b, c). Also assume that the polyhedron
{Ax ≤ b} is bounded and all subdeterminants of A have absolute value polynomial in b and c, or alterna-
tively that there is a known polynomial bound on the length of an optimum. For any 0 < ε1 < 1/c, there
is an ε2 = g(A)ε1, with g(A) = poly(b, c) independent of ε1, such that the following is true. If c ≥ b,
there is a (c1+α log 1/ε1

log c , c1−α log 1/ε1
log c) protocol for obtaining an additive-ε2 approximation to the value of the

perturbed QP min{1
2x

TQx + cTx|Ax ≤ b + ε11}. In particular, if ε1 = 1/ poly(c), then we obtain a
(c1+α, c1−α) protocol. There is also a ((|A|+ |Q|) log 1/ε1

log c , log 1/ε1
log c) protocol for this problem.

4.4 Polynomial Agreement Protocol

Unfortunately, Theorem 4.1 and Corollary 4.2 are not sufficient to immediately result in improved protocols
for any of the four totally unimodular graph problems we consider. The problem is that the constraint
matrices of all four problems are sparse and rectangular, and the protocol of Theorem 4.1 is only efficient
for dense (nearly) square matrices. Different ideas are required to break the linear annotation barrier for
these problems. Specifically, we now describe an extension of the frequency moment protocol of [6] that
is needed in order to obtain tradeoffs between annotation length and space usage for shortest s-t path and
MWBPM.

The frequency moment protocol allows us to verify the function
∑

i F
2
i , where Fi is the number of

times item i appeared in the stream. We will require the ability to compute
∑

i g(Xi) for arbitrary functions
g : Z → Z and vectors X ∈ Zn; the frequency moment protocol is clearly of this form, with Xi = Fi and
g(Xi) = X2

i .
The protocol for verifying frequency moments from [6] treats a c dimensional vector as an h × v array

F , where hv ≥ c. Through interpolation, this defines a two-variate polynomial f over a suitably large field,
so that for all x ∈ [h], y ∈ [v], f(x, y) = Fx,y. To compute the second frequency moment of a vector, we
wish to compute

∑
x∈[h],y∈[v] F

2
x,y =

∑
x∈[h],y∈[v] f

2(x, y).
f can then be evaluated at locations outside [h] × [v], so in the protocol V picks a random position r,

and evaluates f(r, y) for 1 ≤ y ≤ v ([6] shows how V can do this using v words of memory in a streaming
manner). H then presents a degree 2(h − 1) polynomial s(x) which is claimed to be

∑v
y=1 f(x, y)2. V

checks that s(r) =
∑v

y=1 f(r, y)2, and if so accepts
∑h

x=1 s(x) as the correct answer. The proof of validity
follows from the Schwartz-Zippel lemma: if s(x) 6=

∑v
y=1 f(x, y)2 as claimed byH, then

Pr[s(r) =
v∑
y=1

f(r, y)2] ≤ 2(h− 1)
p

16

where p is the size of the finite field.
We observe that there is nothing special about the function f(x, y)2; given any degree-d polynomial g

over Fp, the protocol just described works for computing
∑

x∈[h],y∈[v] g ◦ f(x, y). V can evaluate g ◦ f(r, y)
for 1 ≤ y ≤ v by computing each f(r, y) while observing the stream as in [6], and then computing
g(f(r, y)). Rather than send a degree 2(h − 1) polynomial s(x) which is claimed to be

∑v
y=1 f(x, y)2, H

sends a degree d(h− 1) polynomial s(x) claimed to be
∑v

y=1 g ◦ f(x, y). V checks that s(r) =
∑v

y=1 g ◦
f(r, y), and if so accepts

∑h
x=1 s(x) as the correct answer. By the Schwartz-Zippel lemma, if s(x) 6=∑v

y=1 g ◦ f(x, y) as claimed byH, then

Pr[s(r) =
v∑
y=1

g ◦ f(r, y)] ≤ d(h− 1)
p

.

The result is a valid (dh, v) protocol for computing
∑

x∈[h],y∈[v] g ◦ f(x, y), since V requires v words of
memory for storing each f(r, y), and dh words of memory are required for H to send the degree d(h − 1)
polynomial s(x). To summarize:

Theorem 4.6 (Polynomial agreement protocol). Let h, v ≥ 0 be such that hv ≥ n. Given a stream defining
a vector of n values F , let f be the two-variate polynomial (over finite field Fp) of degree at most h − 1 in
x and v − 1 in y such that f(x, y) = Fx,y for all x ∈ [h] and y ∈ [v]. For any degree-d polynomial g over
Fp, there is a (dh, v)-protocol for computing

∑
x g ◦ f(x).

4.5 Shortest s-t Path

We use the above polynomial agreement protocol in proving the following theorem. The key insight is that
any dual solution is quite compact, requiring O(n) words to specify, while a primal optimal solution can be
succinctly specified by directly demonstrating a path which obtains the claimed length.

Theorem 4.7. Given a graphG specified as a stream of weighted directed edges such that each edge appears
at most once, let d(s, w) denote the shortest-path distance from s to w in G, and let Cs be the set of nodes
reachable from s. Let d = maxw∈Cs d(s, w) be the maximum distance from s to any node reachable from
s. For any h, v such that hv ≥ dn2 and h ≥ dn, there is a (h, v) protocol for shortest s-t path on directed
graphs with non-negative integer edge weights.

Proof. Our protocol handles graphs with non-negative integer edge weights; notice however that the lower
bound of hv = Ω(n2) from Corollary 3.8 applies even to unweighted graphs with constant diameter, so our
protocol is optimal in this regime. We assume an upper bound on d is known in advance, and later show
how to remove this assumption at the cost of a logarithmic factor in space, and no asymptotic increase in
annotation.

To aid in the computation, V tracks properties of an (implicit) derived matrix X . Before observing the
stream, V conceptually sets all entries of X to d, where d is the (assumed) upper bound on the distances.
Then V sees the set of weights wij while observing the stream and treats each as an addition of wij − d
to entry (i, j) of X; this has the effect of setting Xij = wij . This requires the assumption that each edge
(i, j) appears at most once in the stream. At the end of the stream, Xij = wij if (i, j) ∈ E, and Xij = d
otherwise. We note that it is straightforward for V to check in parallel that each edge appears at most once
by tracking the matrix Y which counts the number of times each edge (i, j) is seen, and verifying that the
squared Frobenius norm of Y , ‖Y ‖2F =

∑
i,j Y

2
ij , satisfies ‖Y ‖2F = m, using the F2 protocol described

above.
First we handle the case where an s-t path exists.

17

Upper bound on path length. To prove an upper bound on the value of the shortest path,H lists the edges
in a valid s-t path P .

To compute the cost of P , the inner-product protocol of [6] is used to compute P ·X , where we treat P
as an indicator matrix, i.e. Pij = 1 iff (i, j) is an edge in P , and 0 otherwise. If P includes any edges (i, j)
not present in E, then Xij = d and so these are charged at a cost of d. That is, the cost of P is made higher
than the bound on distances, so it is easily detected if P contains edges not in E. This protocol requires
O(h) annotation and O(v) space for any hv ≥ n2.

Lower bound on path length. To prove a lower bound on the value of the shortest path, we leverage the
total unimodularity of the integer program for the problem. The dual integer program for shortest s-t path
has a variable yi for every v ∈ V and a constraint for every edge (i, j) ∈ E:

maximize yt − ys subject to yj − yi ≤ wij for all (i, j) ∈ E.

At a high level,H will prove a lower bound on the value of the shortest s-t path by presenting a feasible
solution y to the above linear program. Importantly, we note that the solution is compact: y has only n
variables. We present a carefully posed protocol allowing V to check y satisfies all m constraints using
sublinear annotation.

First, we show that there exists an optimal solution to the dual such that ys = 0 and all y are non-
negative integers with yi ≤ d for all i, where d = maxv∈Cs d(s, v) and Cs is the set of nodes reachable
from s. Let yv = d for all v not reachable from s, and let yv = d(s, v) if v is reachable from s. All dual
constraints are satisfied by y: if not, suppose yj − yi > w(i, j) for some edge (i, j). Then clearly yi < d
since edge weights are non-negative and yj ≤ d, and hence i is reachable from s. But then j is reachable
from s as well, and this contradicts that yj = d(s, j), as there is a path from s to j of cost yi+w(i, j) < yj .

Specifying y requires O(n) words of annotation since there are n dual variables (more precisely, it
requires n′ words where n′ = |Cs|, since there are only n′ variables not set to d). V immediately outputs ⊥
if any variable yi in the solution is non-integral, if ys 6= 0, or if yv > d for any v.

Given the dual assignment y, let W ∈ Zn2
be the matrix defined by

Wij = wij − yj + yi if (i, j) ∈ E and Wij = d− yj + yi if (i, j) 6∈ E.

It is clear that the yi’s constitute a feasible assignment to the dual if and only if Wij ≥ 0 for all (i, j) ∈ E:
if (i, j) ∈ E, Wij ≥ 0 only if the constraint corresponding to edge (i, j) is satisfied, and if (i, j) 6∈ E,
the addition of d to Wij ensures Xij ≥ 0, which corresponds to “no constraint”. We also observe that
Wij = Xij − yj + yi for X as described above.

Let wmax be the heaviest edge in G. We can assume wmax ≤ d since V can filter away any edges with
wmax > d, as these edges will not effect the value of the shortest s− t path.

We apply the polynomial agreement protocol of Theorem 4.6 to W , using the lowest-degree polynomial
g over Fp such that g(x) = 0 for x ∈ {1, . . . , d + wmax} and g(x) = 1 for x ∈ {−d, . . . , 0}. g has degree
wmax + 2d = O(d), and clearly

∑
i,j∈[n] g(wi,j) = 0 if and only if y is feasible for the dual LP, as for all

(i, j), −d ≤Wij ≤ wmax + d. The cost of the polynomial agreement protocol is thus O(dh) annotation and
O(v) space for any hv ≥ n2. Lastly, note that V can apply the polynomial agreement protocol on the matrix
X derived from the stream, and updated by performing the necessary additions and subtractions of yi and
yj values to all affected coordinates.

We now remove the assumption that d is known in advance, at the cost of a logarithmic increase in space.
At a high level, while observing the stream V can keep logarithmically many “guesses” for the value of d,

18

and after the stream is seen,H can tell V which guess is the tightest upper bound on the value of all variables
in the optimal solution to the dual LP. Then V can forget about the other guesses, and simply complete the
execution of the protocol corresponding to the best guess.

More formally, it suffices for V , while observing the stream, to run O(log n) instances of the above
protocol in parallel, with the i’th instance run with parameter d = 2i. This ensures that one instance
will be run with parameter d ≤ maxi yi < 2d. We require H to prepend the annotation with the value
d∗ = min{2i : yj ≤ 2i for all j}. V then only needs to continue the instance of the protocol run with
parameter d = d∗. If d∗ is not as claimed, V will detect this when a dual variable yj is presented with
yj > d∗, and output ⊥. Thus, the protocol is valid. The space cost increases by a logarithmic factor
compared to when the true value of d is known in advance, since V must run O(log n) instances of the
protocol while observing the stream. The annotation cost does not increase asymptotically, since the only
instance of the protocol V continues to run after the stream has been observed satisfies 2d ≤ maxi yi i.e.
was run with a “guess” for d that was within a factor of two of the true value of d.

No path from s to t. If the shortest s-t path is infinite (there is no s-t path), let Ct ⊆ V be the connected
component of t. Then the dual assignment with yi = 1 for i ∈ Ct and yi = 0 for all other i satisfies
yi − yj = 0 for all (i, j) ∈ E, and the value of the dual objective function yt − ys is positive. By Farkas’
Lemma, this serves as a witness to the fact that the primal is infeasible. V can check y is as claimed
by running the polynomial agreement protocol on the vector Y with Yij = yi − yj if (i, j) ∈ E, and
Yij = yi − yj − 3 if (i, j) 6∈ E and using the degree-5 polynomial g over Fp such that g(0) = g(−4) =
g(−3) = g(−2) = 0 and g(−1) = g(1) = 1. We can construct the derived stream in the same manner as
X and W above. It is clear that if (i, j) 6∈ E then Yij ∈ {−4,−3,−2}, if (i, j) ∈ E with yi − yj = 0 then
Yij = 0, and otherwise Yij ∈ {−1, 1}. Thus,

∑
i,j g(Yij) = 0 if and only if y is as claimed; this instance of

the polynomial agreement protocol requires annotation O(h) and space O(v) for any hv ≥ n2.

Remark 4.8. If d is not known in advance, then neither H nor V knows the annotation cost of the protocol
of Theorem 4.7 until after observing the stream. Only the space usage v can be fixed in advance in this case,
and the annotation cost will be O(n2d/v).

We note that the protocol of Theorem 4.7, as well as Theorem 4.9 below, does not handle edge weights
which are specified incrementally. The reason is that V must be able to derive a stream specifying the
matrices X and W , which we only know how to do in the absence of duplicate edges. This is in contrast to
the earlier protocols of Theorems 3.5, A.2, and 4.1, as well as their corollaries, which work even when edge
weights are specified incrementally.

4.6 Minimum Weighted Bipartite Perfect Matching (MWBPM)

Theorem 4.9. Let wmax be the heaviest edge in G. For any h, v such that hv ≥ n3wmax and h ≥ nwmax,
there is a (h, v) protocol for MWBPM with non-negative integer edge weights. Both hcost and vcost can be
chosen sublinear in the stream length if the number of edges m satisfies m = ω(n3/2w

1/2
max).

Proof. Upper bound. To prove an upper bound on the value of the minimum weight perfect matching, H
sends the edges in a valid perfect matching M . It is straightforward for V to store M and verify that it is
perfect matching over n nodes in O(n) space. As in the previous protocol, V can compute the cost of this
matching as an inner productM ·X , whereXij is set to wij if (i, j) is an edge, or 2nwmax otherwise. Hence,
if M includes edges not present in E, it will have excessively high cost, and can be rejected. V can check
M is a perfect matching by comparing a fingerprint of the set {1, . . . , n} to that of the (multi)set of nodes

19

incident to an edge in M . If the fingerprints match, then with high probability, each node in n is incident to
exactly one edge in M .

Lower bound. A lower bound on the cost of the optimal matching is proven via a feasible solution to the
dual linear program. The dual is given by:

maximize
∑
i∈A

yi +
∑
j∈B

yj

subject to yi + yj ≤ wij for all (i, j) ∈ E,
where A and B are the two sides of the bipartition of G, and wij is the cost of edge (i, j). Given a dual
solution y ∈ Zn, let X ∈ {0, 1}n2

be the vector with Xij = yi + yj − wij if (i, j) ∈ E and Xij =
yi + yj − 2d′ otherwise, where d′ is an upper bound on the value of any variable y. We show below
d′ = nwmax is sufficient. y is a feasible solution to the dual if and only if all entries of X are less than or
equal to zero.

The protocol now proceeds essentially identically to that of Theorem 4.7, although here we can only
guarantee the existence of a a dual-optimal assignment y with |yi| ≤ nwmax for all i. This results in
increased annotation requirements compared to those of Theorem 4.7. We remark that this bound is tight,
in that there are graphs for which any dual-optimal solution y has |yi| = Ω(nwmax) for some i; one such
example is a simple path on n vertices, with wi,i+1 = wmax if i is odd and wi,i+1 = 0 if i is even.

To argue that there always exists a dual-optimal y with |yi| ≤ nwmax for all i, notice it follows from the

argument in Theorem 3.5 that there exists a dual optimum y with yi = det(fUi)
det(U) for some submatrix U of the

constraint matrix of the dual, where Ũi obtained from U by replacing the i’th column with the vector w of
edge weights. By total unimodularity of the dual program, det(U) = ±1, and hence |yi| ≤ |det(Ũi)| ≤
nwmax, where the last inequality can be seen by performing cofactor expansion along the i’th column of Ũi.

To conclude, we apply the polynomial agreement protocol to the vector X with Xij = yi + yj − wij
if (i, j) ∈ E and Xij = yi + yj − 2nwmax otherwise. V can construct a derived stream defining X
just as in Theorem 4.7, and the polynomial agreement protocol is applied using a polynomial g such that
g(x) = 1 for x ∈ {1, . . . , 2nwmax} and g(x) = 0 for x ∈ {−4nwmax, . . . , 0}. g has degree O(nwmax), and∑

i,j∈[n] g(wi,j) = 0 if and only if y is feasible for the dual LP. This protocol has hcost = O(hnwmax) and
vcost = O(v) for for any hv = Ω(n2) and h ≥ nwmax.

If no perfect matching exists, Farkas’ Lemma implies this can be proven by demonstrating a dual solu-
tion y such that yi + yj = 0 for all (i, j) ∈ E, and

∑
i∈A yi +

∑
j∈B yj > 0. V can check this similarly to

the protocol of Theorem 4.7 when no s-t path exists.

5 Simulating Non-Streaming Algorithms

Next, we give protocols by appealing to known non-streaming algorithms for graph problems. At a high
level, we can imagine the helper running an algorithm on the graph, and presenting a “transcript” of oper-
ations carried out by the algorithm as the proof to V that the final result is correct. Equivalently, we can
imagine that V runs the algorithm, but since the data structures are large, they are stored byH, who provides
the contents of memory needed for each step. There may be many choices of the algorithm to simulate and
the implementation details of the algorithm: our aim is to choose ones that result in smaller annotations.

To make this concrete, consider the case of requiring the graph to be presented in a particular order,
such as depth first order. Starting from a given node, the exploration retrieves nodes in order, based on the

20

pattern of edges. Assuming an adjacency list representation, a natural implementation of the search in the
traditional model of computation maintains a stack of edges representing the current path being explored.
Edges incident on the current node being explored are pushed, and pops occur whenever all nodes connected
to the current node have already been visited. H can allow V to recreate this exploration by providing at
each step the next node to push, or the new head of the stack when a pop occurs, and so on. To ensure the
correctness of the protocol, additional checking information can be provided, such as pointers to the location
in the stack when a node is visited that has already been encountered.

With care, this idea of “augmenting a transcript” of a traditional algorithm can be made to work on an
algorithm-by-algorithm basis. However, while the resulting protocols are lightweight, it rapidly becomes
tedious to provide appropriate protocols for other computations based on this idea. Instead, we introduce
a more general approach which argues that any (deterministic) algorithm to solve a given problem can be
converted into a protocol in our model. The running time of the algorithm in the RAM model becomes the
size of the proof in our setting.

Our main technical tool is the off-line memory checker of Blum et al. [11], which we use to efficiently
verify a sequence of accesses to a large memory. Consider a memory transcript of a sequence of read
and write operations to this memory (initialized to all zeros). Such a transcript is valid if each read of
address i returns the last value written to that address. The protocol of Blum et al. requires each read to be
accompanied by the timestamp of the last write to that address; and to treat each operation (read or write)
as a read of the old value followed by the write of a new value. Then to ensure validity of the transcript, it
suffices to check that a fingerprint of all write operations (augmented with timestamps) matches a fingerprint
of all read operations (using the provided timestamps), along with some simple local checks on timestamps.
Consequently, any valid (timestamp-augmented) transcript is accepted by V , while any invalid transcript is
rejected by V with high probability.

We use this memory checker to obtain the following general simulation result.

Theorem 5.1. Suppose P is a graph problem possessing a non-randomized algorithmM in the random-
access memory model that, when given G = (V,E) in adjacency list or adjacency matrix form, outputs
P (G) in time t(m,n), where m = |E| and n = |V |. Then there is an (m+ t(m,n), 1) protocol for P .

Proof. H first repeats (the non-zero locations of) a valid adjacency list or matrix representation G, as writes
to the memory (which is checked by V); V uses fingerprints to ensure the edges included in the represen-
tation precisely correspond to those that appeared in the stream, and can use local checks to ensure the
representation is otherwise valid. This requires O(m) annotation and effectively initializes memory for the
subsequent simulation. Thereafter, H provides a valid augmented transcript T ′ of the read and write op-
erations performed by algorithmM, which is checked by V using the memory checking protocol of [11].
V rejects if the memory checking protocol rejects T ′, or if any read or write operation executed in T ′ does
not agree with the prescribed action ofM. As only one read or write operation is performed byM in each
timestep, the length of T ′ is O(t(m,n)), resulting in an (m+ t(m,n), 1) protocol for P .

Although Theorem 5.1 only allows the simulation of deterministic algorithms,H can non-deterministically
“guess” an optimal solution S and prove optimality by invoking Theorem 5.1 on a (deterministic) algorithm
that merely checks whether S is optimal. Unsurprisingly, it is often the case that the best-known algorithms
for verifying optimality are more efficient than those finding a solution from scratch (see e.g. the MST
protocol below), and this gives the simulation theorem considerable power.

Theorem 5.2. There is a valid (m, 1) protocol to find a minimum cost spanning tree; a valid (m+n log n, 1)
protocol to verify single-source shortest paths; and a valid (n3, 1) protocol to verify all-pairs shortest paths.

21

Proof. We first prove the bound for MST. Given a spanning tree T , there exists a linear-time algorithmM
for verifying that T is minimum (see e.g. [23]). LetM′ be the linear-time algorithm that, given G and a
subset of edges T in adjacency matrix form, first checks that T is a spanning tree by ensuring |T | = n − 1
and T is connected (by using e.g. breadth-first search), and then executesM to ensure T is minimum. We
obtain an (m, 1) protocol for MST by havingH provide a minimum spanning tree T and using Theorem 5.1
to simulate algorithmM′.

The upper bound for single-source shortest path follows from Theorem 5.1 and the fact that there exist
implementations of Djikstra’s algorithm that run in time m+n log n. The upper bound for all-pairs shortest
paths also follows from Theorem 5.1 and the fact that the Floyd-Warshall algorithm runs in timeO(n3).

We now provide near-matching lower bounds for all three problems.

Theorem 5.3. Any protocol for verifying single-source or all pairs shortest paths requires hcost · vcost =
Ω(n2) bits. Additionally, if edge weights may be specified incrementally, then an identical lower bound
holds for MST.

Proof. The lower bounds for single-source and all-pairs shortest paths are inherited from shortest s-t path
(Corollary 3.8).

To prove the lower bound for MST, we present a straightforward reduction from an instance of the
problem INDEX, (x, k), where x ∈ {0, 1}(

n
2), k ∈ [

(
n
2

)
]. As in Corollary 3.8, we show how to construct

a graph from x and k so that solving MST on this graph reveals the answer to the instance of INDEX. We
construct graph G incrementally from x and k, with VG = [n]. Without loss of generality, we assume that x
is indexed canonically by node pairs (i, j) with i 6= j, so k = (k1, k2). We write (i, j, w) to denote an edge
between nodes i and j with weight w. The edge set EA = {(i, j, 1) : x(i,j) = 1} is created from x alone,
using O(1) words of memory. Likewise, EB = {(u, v, n) : (u, v) 6= k} is created from k alone; intuitively
this increments the weight of all edges by n, except for the “k’th” edge of G. We consider EG = EA ∪EB;
if edge (u, v) is in EA ∩EB then we interpret the weight of (u, v) in EG to be the sum of its weights in EA
and EB .

Studying the combination of these two edgesets, we observe that all edges in EG except edge k have
weight at least n and at most n+ 1, while the k’th edge has weight 1 if xk = 1 and does not exist in EG if
xk = 0. Thus, if xk = 0, the cost of the minimum spanning tree of G is at least n(n− 1) = n2 − n, while
if xk = 1, the cost of the minimum spanning tree is at most (n+ 1)(n− 2) + 1 = n2 − n− 1.

Thus, by determining the cost of the minimum spanning tree, we can determine whether xk = 0.
Therefore, from the hardness of INDEX, we must have the claimed bound, linear in the length of x.

Diameter. The diameter of G can be verified by simulating any known algorithm for the problem via
Theorem 5.1, but the next protocol improves over the memory checking approach. Indeed, the best known
algorithm for computing diameter even in unweighted undirected graphs requires time O(nω) where ω is
the exponent of matrix multiplication [24, 25]. As the best known bounds on nω are currently polynomially
larger than O(n2 log n), the following theorem cannot be obtained by direct application of the memory
checking approach to any known algorithm.

Theorem 5.4. There is a valid (n2 log n, 1) protocol for computing graph diameter in unweighted directed
graphs. Further, any protocol for diameter requires hcost · vcost = Ω(n2) bits.

Proof. [6, Theorem 5.2] gives an (n2, 1) protocol for matrix multiplication, and notes that, by repeated
squaring, this yields an (n2 log l, 1) protocol for verifying that Al = B for a matrix A presented in a data

22

stream and for any positive integer l. More specifically, assume for presentation purposes that l is a power
of 2. V treats the result A2i

of the ith “squaring step” as a new data stream, and runs the (n2, 1) matrix
multiplication protocol of [6, Theorem 5.2] on the new stream to compute A2i+1

. This requires O(log l)
instances of the (n2, 1) protocol for matrix multiplication (we emphasize there is only a single message
fromH to V , consisting of the concatenation of all log l instances of the matrix multiplication protocol).

If A is the adjacency matrix of G, then (I + A)lij 6= 0 if and only if there is a path of length at most l
from i to j. Therefore, the diameter of G is equal to the unique l > 0 such that (I + A)lij 6= 0 for all (i, j),
while (I + A)l−1

ij = 0 for some (i, j). Our protocol requires H to send l to V , and then run the protocol of
[6, Theorem 5.2] to compute (I + A)l−1 and (I + A)l, to verify that l is as claimed. Since the diameter is
at most n− 1, this gives an (n2 log n, 1) protocol.

A subtlety is that the entries in (I + A)l may be exponentially large, so specifying them exactly is
prohibitively expensive. Fortunately, V only needs to determine whether the entries of (I + A)l and (I +
A)l−1 are non-zero. Thus, as H plays to V the result of each squaring step, it suffices for H and V to treat
each non-zero entry of the resulting matrix as 1 before moving on to the next squaring step. This ensures
that all zero entries remain zero and all non-zero entries remain non-zero, while guaranteeing that all values
arising in the protocol never exceed n. At each squaring step, each entry of the derived 0-1 valued result
equals 0 if the corresponding entry of the unmodified matrix is 0 and equals 1 otherwise, so V can clearly
pull out the necessary information to run the next squaring step on the derived matrix. This completes the
description of the (n2 log n, 1) protocol for diameter.

We prove the lower bound via a reduction from an instance of INDEX, (x, k), where x ∈ {0, 1}n2/4,
k ∈ [n2/4]. A bipartite graph G = (V,E) is created from x alone: it includes edge (i, j) in E if and only
if x(i,j) = 1, again using the convention that x is indexed by edges. We also add to G two nodes L and R,
with edges from L to each node in the left side of the bipartition, edges from R to each node in the right side
of the bipartition, and an edge between L and R. This ensures that the graph is connected, with diameter at
most 3. Finally, given k = (k1, k2), we append a path of length 2 to node k1, and a path of length 2 to node
k2. If xk = 0, then the diameter is now 7, while if xk = 1, the diameter is 5. The lower bound follows from
the hardness of INDEX [6, Theorem 3.1] (this also shows that any protocol to approximate diameter better
than
√

1.4 requires hcost · vcost = Ω(n2) bits).

6 Conclusion and Future Directions

In this paper, we showed that a host of graph problems possess streaming protocols requiring only constant
space and linear-sized annotations. For many applications of the annotation model, the priority is to min-
imize vcost, and these protocols achieve this goal. However, these results are qualitatively different from
those involving numerical streams in the earlier work [6]: for the canonical problems of heavy hitters, fre-
quency moments, and selection, it is trivial to achieve an (m, 1) protocol by having H replay the stream in
sorted (“best”) order. The contribution of [6] is in presenting protocols obtaining optimal tradeoffs between
hcost and vcost in which both quantities are sublinear in the size of the input. There are good reasons to
seek these tradeoffs. For example, consider a verifier with access to a few megabytes or gigabytes of work-
ing memory. If an (m, 1) protocol requires only a few kilobytes of space, it would be desirable to use more
of the available memory to significantly reduce the running time and communication cost of the verification
protocol. Achieving a (

√
n,
√
n) protocol would potentially allow both space and annotation costs to be

under a megabyte, even when the stream contains terabytes of data.
In contrast to [6], it is non-trivial to obtain (m, 1) protocols for the graph problems we consider.

Nonetheless, we obtain tradeoffs involving sublinear values of hcost and vcost for several important prob-

23

lems: matrix-vector multiplication, computing eigenvalues of the Laplacian, shortest s-t path and MWBPM.
We thus leave as an open question whether it is possible to obtain such tradeoffs for a wider class of graph
problems, and in particular if the use of memory checking can be adapted to provide tradeoffs. Showing
such tradeoffs are impossible seems to require fundamentally new techniques in communication complexity.
Particularly important problems left to characterize are flow problems and minimum spanning tree.

A final open problem is to ensure that the work of H is scalable. In motivating settings such as cloud
computing environments, the data is very large, and H may represent a distributed cluster of machines.
We leave open the question of demonstrating that these protocols can be executed in a model such as the
MapReduce framework.

Acknowledgements. We thank Moni Naor for suggesting the use of memory checking as a general ap-
proach to generating protocols. We also thank Dorit Hochbaum, Dimitri Bertsekas, Thomas Steinke, and
Varun Kanade for helpful discussions, and the anonymous reviewers for providing helpful suggestions for
improving the clarity and completeness.

References

[1] A. McGregor, “Graph mining on streams,” in Encyc. of Database Systems. Springer, 2009.

[2] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On graph problems in a semi-
streaming model,” Theor. Comput. Sci., vol. 348, no. 2, pp. 207–216, 2005.

[3] C. Demetrescu, I. Finocchi, and A. Ribichini, “Trading off space for passes in graph streaming prob-
lems,” in SODA, 2006, pp. 714–723.

[4] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl, “On the streaming model augmented with a
sorting primitive,” in FOCS, 2004, pp. 540–549.

[5] A. Das Sarma, R. J. Lipton, and D. Nanongkai, “Best-order streaming model,” in Theory and Applica-
tions of Models of Computation, 2009, pp. 178–191.

[6] A. Chakrabarti, G. Cormode, and A. Mcgregor, “Annotations in data streams,” in ICALP, 2009, pp.
222–234.

[7] R. J. Lipton, “Efficient checking of computations,” in STACS, 1990, pp. 207–215.

[8] M. Yiu, Y. Lin, and K. Mouratidis, “Efficient verification of shortest path search via authenticated
hints,” in ICDE, 2010.

[9] K. L. Clarkson and D. P. Woodruff, “Numerical linear algebra in the streaming model,” in STOC, 2009,
pp. 205–214.

[10] T. Sarlos, “Improved approximation algorithms for large matrices via random projections,” in IEEE
FOCS, 2006.

[11] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking the correctness of memories,”
Algorithmica, pp. 90–99, 1995.

[12] R. J. Lipton, “Fingerprinting sets,” Princeton University, Tech. Rep. Cs-tr-212-89, 1989.

24

[13] J. Kleinberg and E. Tardos, Algorithm Design, 2005.

[14] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, 2003.

[15] E. Tardos, “A strongly polynomial algorithm to solve combinatorial linear programs,” Oper. Res.,
vol. 34, pp. 250–256, March 1986. [Online]. Available: http://portal.acm.org/citation.cfm?id=11117.
11123

[16] D. S. Hochbaum and J. G. Shanthikumar, “Convex separable optimization is not much harder
than linear optimization,” J. ACM, vol. 37, pp. 843–862, October 1990. [Online]. Available:
http://doi.acm.org/10.1145/96559.96597

[17] A. Schrijver, Theory of linear and integer programming, 1986.

[18] D. Bertsekas, Convex Optimization Theory, 2009.

[19] E. J. Candès and P. A. Randall, “Highly robust error correction by convex programming,” CoRR, vol.
abs/cs/0612124, 2006.

[20] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measure-
ments,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[21] D. S. Hochbaum, “Personal communication,” 2011.

[22] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1982.

[23] V. King, “A simpler minimum spanning tree verification algorithm,” Algorithmica, vol. 18, no. 2, pp.
263–270, 1997.

[24] R. Seidel, “On the all-pairs-shortest-path problem in unweighted undirected graphs,” J.
Comput. Syst. Sci., vol. 51, pp. 400–403, December 1995. [Online]. Available: http:
//dx.doi.org.ezp-prod1.hul.harvard.edu/10.1006/jcss.1995.1078

[25] R. Yuster, “Computing the diameter polynomially faster than apsp,” CoRR, vol. abs/1011.6181, 2010.

A Linear Programs with Rational Entries

One might hope that Theorem 3.5 extends naturally to linear programs with rational entries. The following
simple variant of Example 3.4 demonstrates that with rational data it is no longer sufficient to assume all
subdeterminants of the constraint matrix are bounded in absolute value.

Example A.1. Consider the linear program of Example 3.4, with A replaced by the matrix

A =


1 0 0 . . . 0 0
−1 1/2 0 . . . 0 0
0 −1 1/2 . . . 0 0

...
0 0 0 . . . −1 1/2

 .

25

Observe that all subdeterminants of this matrix are bounded (above) in absolute value by 1. Exactly as
in Example 3.4, the unique feasible point is the vector x ∈ Zc with i’th coordinate equal to 2i, and the value
of the linear program is Ω(2c). V cannot manipulate quantities of such magnitude exactly with less than
linear space.

However, context often provides an a priori bound on the value of the program and the length of the
optima, especially in applications to combinatorial optimization. Still, without sufficiently strong assump-
tions we cannot guarantee that there is an optimal solution that can be exactly specified in small precision,
and H must therefore send an approximate representation of the optimum. This rounded optimum is not
guaranteed to be feasible for the exact LP, but will be essentially optimal for a very slightly perturbed LP.

Theorem A.2. Suppose all entries of A, b, and c are rational numbers p/q for p, q ∈ Z. Assume the value
of the linear program is finite, and there is a known polynomial upper bound on the length of an optimum.
For any 0 < ε1 < 1/|A|, there is an ε2 = g(A)ε1, with g(A) = poly(b, c) independent of ε1, such that the
following is true. There is a valid (|A| log 1/ε1

log |A| ,
log 1/ε1
log |A|) protocol for obtaining an additive-ε2 approximation

to the value of the perturbed primal LP min{cTx | Ax ≤ b + ε11}. In particular, if ε1 = 1/ poly(|A|),
then we obtain an (|A|, 1) protocol.

Proof. First, suppose all entries of A, b, and c are integer multiples of ε for ε = 1/ poly(b, c, ε−1
1) to be

determined; we remove this assumption later. Notice that all entries ofA, b and c are elements of a universe
of size poly(b, c, ε−1

1), and V can fingerprint all multisets as in Theorem 3.5 using a finite field Fp where
p = poly(b, c, ε−1

1). These fingerprints require O(log 1/ε1
log |A|) words of space.

Since the value of the LP is finite, there exist primal and dual optimal solutions x∗ and y∗, and by
assumption all entries of x∗ and y∗ have absolute value polynomial in b and c. The protocol is exactly as
in Theorem 3.5, except H sends vectors x̂∗ and ŷ∗ claimed to be x∗ and y∗ with all entries rounded up to
integer multiple of ε where ε = ε1

2u . Here, u ∈ Z is a strict upper bound on ‖A‖∞, ‖c‖1, ‖b‖1, ‖x‖1, and
‖y‖1, where throughout, if A is a matrix then ‖A‖p denotes the operator norm of A induced by the p norm
on vectors, and if x is a vector then ‖x‖p denotes the p-norm on vectors. Notice u is polynomial in b and c,
does not depend on ε1, and can be determined by V while observing the stream. V checks that

1. ε1/ε ≥ 2u. That is, x and y are represented at sufficiently high precision.

2. x̂∗ is feasible for the perturbed primal.

3. bT ŷ∗ − cT x̂∗ ≤ ε1.

4. ŷ∗ is feasible for the LP
maximize bTy

subject to
[
AT

−AT
]
y ≤

[
c
−c

]
+ ε11,

y ≥ 0.

This LP can be thought of as the perturbed dual, although it is not the dual of the perturbed primal. If
all checks pass, V outputs cT x̂∗.

Write e(x∗) = x̂∗ − x∗ and e(y∗) = ŷ∗ − y∗. Notice ‖e(x∗)‖∞ ≤ ε and ‖e(y∗)‖∞ ≤ ε for all i. Since x∗

and y∗ are primal and dual feasible, it is easy to see x̂∗ and ŷ∗ are feasible for the perturbed LPs. Indeed,

‖Ax∗ −Ax̂‖∞ = ‖Ae(x∗)‖∞ ≤ ‖A‖∞‖e(x∗)‖∞ ≤ uε ≤ ε1,

26

and a similar argument shows ŷ is feasible for the perturbed dual.
Since cTx = bTy, it follows that

cT x̂∗ − bT ŷ∗ ≤ |cTe(x)|+ |bTe(y)| ≤ 2εu ≤ ε1.

Therefore, if x̂ and ŷ are as claimed, all of V’s checks will pass.
To prove the protocol is valid, it therefore suffices to show that if vectors x and y pass V’s checks, then

cTx is within an additive ε2 = (u + 2)ε1 of the true value of the perturbed primal LP. cTx is clearly an
upper bound on the value of the perturbed primal, since x is feasible for the perturbed primal. We claim
bTy − (u + 1)ε1 is a lower bound on the value of the perturbed primal. Indeed, since y is feasible for the
perturbed dual, ‖ATy − c‖∞ ≤ ε for all i, and thus for all feasible x of the perturbed primal,

cTx ≥ yTAx− |(ATy − c)Tx|
≥ yTAx− εu
≥ yTb− ε1|yT1| − uε
≥ bTy − (u+ 1)ε1,

where the third inequality holds because x is feasible for the perturbed primal and y ≥ 0. Therefore, cTx
is an upper bound on the value of the perturbed primal and bTy− (u+ 1)ε1 ≥ cTx− (u+ 2)ε1 is a lower
bound, which completes the proof of validity.

If the entries of A, b, and c are not integer multiples of ε, but are instead arbitrary rationals p/q for
p, q ∈ Z, we run the above protocol on the derived stream in which each stream element is rounded to
the nearest integer multiple of ε. (If V cannot determine the necessary precision ε in advance, we can
afford for V to calculate it while observing the stream, and then have H replay the entire stream). This
introduces poly(b, c)ε error into all of the above calculations, but we can obtain the same approximation
guarantees by setting ε a polynomial factor smaller than above. This does not affect the asymptotic costs of
the protocol.

B Proof of Theorem 4.5

Proof. The dual function of any quadratic programming problem is given by

q(µ) = −1
2
µTAQ−1ATµ− µT (b +AQ−1c)− 1

2
cTQ−1c if µ ≥ 0

and q(µ) = −∞ otherwise. Strong duality always holds for quadratic programs. That is, for all µ, q(µ) is
a lower bound on the value f∗ of the primal Quadratic Program, and moreover there exists a µ∗ ≥ 0 such
that q(µ∗) = f∗ [18, Example 5.3.1]. Consequently, we can use a protocol akin to that of Theorem A.2 and
Corollary 4.3: essentially H proves optimality of a primal solution x by providing a dual-optimal solution
µ, and proving to V that the values of x and µ are equal. But since H cannot afford to send an exact
representation of x or µ, H instead sends vectors x̂ and µ̂ with all entries integer multiples of ε = ε1

h(A) .
Here h is some function polynomial in b and c and independent of ε1, to be specified later. These vectors
are claimed to be rounded versions of the true optima.

Let f(x) denote the primal objective function evaluated at x. V checks that

1. ε1/ε ≥ h(A). That is, x and µ are represented at sufficiently high precision.

27

2. Ax̂ ≤ b + ε11.

3. µ ≥ 0.

4. q(µ̂)− f(x̂) ≤ ε1.

If all checks pass, V outputs cT x̂, otherwise V outputs ⊥.

The first and third checks are trivial to perform, and V can perform the second check with a single matrix-
vector multiplication operation. To perform the fourth check, V first computesf(x̂) with a single matrix-
vector multiplication and two inner product computations. V then computes q(µ) by verifying a constant
number of matrix-vector multiplications and inner product computations as follows. First V computes z1 :=
−1

2µ
TAQ−1ATµ in a sequence of four matrix-vector multiplications: (1) z11 := ATµ; (2) z12 := Q−1z11

(computed by having H specify z12 and verifying that Qz12 = z11); (3) z13 := Az12; and (4) z1 =
−1

2µ
T z13. We stress that V need not explicitly invertQ or be provided withQ−1 to compute z12 := Q−1z11;

instead, it suffices to verify a single matrix-vector multiplication. Next, V computes z2 := µTb with a single
inner product computation, and computes z3 := µTAQ−1c and z4 := 1

2c
TQ−1c similarly to z1. Given

z1, z2, z3, and z4, V may compute the value q(µ) = z1 − z2 − z3 − z4.
It remains to argue that we can set ε = ε1/h(A) such that: if x̂ and µ̂ are as claimed, then all checks

will pass with probability 1, and if all checks pass then with high probability the value of the perturbed QP
is cT x̂± ε.

Suppose x̂ and µ are as claimed. Then first and third checks will pass, and the second check will pass
by exactly the same argument as in Theorem A.2. For the final check, let e = µ− µ̂; ‖e‖∞ ≤ ε. Then

q(µ)− q(µ̂) = µTAQ−1ATe +
1
2
eTAQ−1ATe− eT (b +AQ−1c)

By repeated application of the triangle inequality to each term in the above sum, it can be seen that the
above expression is at most poly(u)ε, where u is a known upper bound on ‖A‖∞, ‖Q‖∞, ‖Q−1‖∞, ‖b‖1,
‖c‖1, ‖x‖1 and ‖µ‖1. Notice that ‖Q−1‖∞ is polynomially bounded as long as Q is sufficiently positive
definite, in the sense that all eigenvalues of Q are at least 1/poly(b, c). All other quantities for which u
is an upper bound are polynomial in b and c by assumption, and the above expression is therefore at most
poly(b, c)ε for some known polynomial in b and c that is independent of ε1.

Similarly, f(x̂) − f(x) = poly(b, c)ε for some polynomial in b and c that is independent of ε1. Thus,
f(x̂)− q(µ̂) ≤ |f(x)− q(µ)|+ |f(x̂)− f(x)|+ |q(µ)− q(µ)| is also poly(b, c)ε for some polynomial in
b and c that only depends on u and is independent of ε1. We can therefore choose h(A) = poly(b, c)ε such
that the final check will pass if x̂ and µ̂ are as claimed.

Finally, we argue that if all four checks pass, then f(x) is a g(A)ε1-approximation to the value of the
perturbed primal for some g(A) = poly(b, c) independent of ε1. The argument in this case is simpler than
that in Theorem A.2, because if the third check passes, then µ is actually feasible for the dual of the perturbed
primal, as the only constraint of the dual is that µ ≥ 0. Indeed, let qP denote the dual of the perturbed primal;
it is easy to see that qP (µ) = q(µ)− µT (ε11). By weak duality, for any x that is feasible for the perturbed
primal, and any µ, f(x) ≥ qP (µ) ≥ q(µ) − uε1. Since the fourth check passed, f(x) − q(µ) ≤ ε1, and
therefore f(x)− qP (µ) ≤ (u+ 1)ε1. We can let g(A) = u+ 1.

By invoking the matrix-vector multiplication protocols of Theorem 3.5 and Theorem 4.1 (handling the
fact that the vectors are not integral as in Corollary 4.3) to compute all matrix-vector multiplications in the
above description, we obtain the theorem.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

