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Abstract

We study differential privacy in a distributed setting where two parties would like to perform analysis
of their joint data while preserving privacy for both datasets. Our results imply almost tight lower
bounds on the accuracy of such data analyses, both for specific natural functions (such as Hamming
distance) and in general. Our bounds expose a sharp contrast between the two-party setting and
the simpler client-server setting (where privacy guarantees are one-sided). In addition, those bounds
demonstrate a dramatic gap between the accuracy that can be obtained by differentially private data
analysis versus the accuracy obtainable when privacy is relaxed to a computational variant of differential
privacy.

The first proof technique we develop demonstrates a connection between differential privacy and
deterministic extraction from Santha-Vazirani sources. A second connection we expose indicates that
the ability to approximate a function by a low-error differentially private protocol is strongly related to
the ability to approximate it by a low communication protocol. (The connection goes in both directions.)
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1 Introduction

A common architecture for database access is client-server, where the server manages the data and answers
clients’ queries according to its access policy. In such an architecture, there may be two very distinct privacy
considerations. The first has to do with client’s privacy and is highly motivated in cases where the server’s
knowledge of client’s queries may be harmful, for instance, in patent litigation or market research. In
such cases, without an expectation of privacy, clients may be discouraged from querying the database in
the first place. Such concerns can be answered using various cryptographic solutions such as oblivious
transfer [Rab81, EGL85], single-server private-information retrieval (PIR) [KO97], and more generally,
secure function evaluation (SFE) [Yao82], which may be used to restore privacy for the clients.

The focus of this paper has to do with a complementary privacy concern: what kind of access should
a server allow to the database while preserving the privacy of sensitive data that it may contain. In other
words, the question we study is not how data analysis can be performed while preserving client’s privacy
(the cryptographic question) but rather what kind of data analysis preserves data privacy. While the answer
to this question may be dependent on the nature of the data, a very powerful general-purpose notion is that
of differential privacy [DMNS06, Dwo06]. Informally, a randomized function of a database is differentially
private if its output distribution is insensitive to the presence or absence of any particular record in the
database. Therefore, if the analyses allowed on a database are guaranteed to preserve differential privacy,
there is little incentive for an individual to conceal his or her information from the database (and in this
respect the privacy of individual records is preserved).

Assume that a query to a database is a deterministic real-valued function. In such a case, differential
privacy may be enforced by adding a small amount of noise, calibrated to the sensitivity of that function
(defined as the largest change in its output that can be caused by adding or removing a record from
its input). In the basic client-server setting, queries of constant sensitivity can be answered by adding
Laplacian (symmetric exponential) noise with standard deviation inversely proportional to the privacy
parameter [DMNS06], and indeed this mechanism can be shown to be optimal for counting queries as well
as for a large class of clients’ preferences [GRS09].

Two-party differential privacy. In this paper, we contrast the client-server setting with a setting
where the database is distributed between two parties who would like to perform data analysis on their
joint data. In this setting we would like to guarantee two-sided differential privacy, protecting the data
of both parties. That is, each party’s view of the protocol should be a differentially private function of
the other party’s input. Differential privacy for distributed databases was first considered in the seminal
work on privacy-preserving distributed datamining by Dwork and Nissim [DN04]. More accurately, the
definition of privacy in [DN04] is a precursor (and indeed a special case) of the now-standard definition of
approximate differential privacy. Differential privacy in a highly distributed setting (which is less related
to our work), was also considered in [BNO08].

Although the distributed setting was considered earlier in the line of research on differential privacy, the
state of knowledge in this setting was very minimal. While there were protocols given for specific functions
(e.g., in [DN04, DKM+06, MPRV09]), there were no general results or lower bounds for computing functions
with two-sided differential privacy guarantees (in sharp contrast with the case of one-sided differential
privacy). The goal of this paper is to start filling that gap.

The limitations of two-party differential privacy. Motivated by the work of Dwork and Nis-
sim [DN04], we start our study with two related and very natural problems: the Hamming distance
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between two binary vectors (in how many locations they differ) and their scalar product.1 We formulate
the following prototypical problem for privacy-preserving two-party computations:

Question 1. What is the least additive error of any protocol for computing the Hamming distance
between two binary vectors that is differentially private for both sides?

Note that the Hamming distance is a function of sensitivity one (changing one bit can change the
function by at most one). Therefore in the client-server setting this function could be approximated up to
a constant additive error, while ensuring differential privacy (as discussed above). In this paper we show
that the case of two-sided privacy is very different: Any protocol for computing the Hamming distance
of two n-bit vectors that is differentially private for both sides incurs additive error of Ω̃(

√
n) and this is

tight up to the a hidden log factor. This result also extends to the commonly used notion of approximate
differential privacy (specifically, (ε, δ)-differential privacy for δ = o(1/n)).

A natural approach to approximating the Hamming distance by two parties is to use secure function
evaluation in order to emulate a trusted third party, which has access to both parties’ inputs, and operates
as in the client-server setting (i.e., evaluates the Hamming distance and adds appropriate Laplacian noise).
Similarly, every function with small sensitivity can be approximated well using secure-function evaluation.
The “catch” (and the reason this does not contradict our aforementioned result on the Hamming distance) is
that this approach only achieves a relaxed notion of computational differential privacy [MPRV09]. Loosely,
this notion of differential privacy only holds against computationally-bounded adversaries. In other words,
our result regarding the Hamming distance implies a separation between (information-theoretic) differential
privacy and computational differential privacy for two-party protocols. This stands in sharp contrast with
the client-server setting where all of the known positive results have achieved information-theoretic differ-
ential privacy and there are not even candidates for a separation. (Indeed, subsequent to our work, Groce,
Katz, and Yerukhimovich [GKY11] have shown that a wide class of computationally differentially private
mechanisms in the client-server setting can be converted into ones that achieve information-theoretic dif-
ferential privacy with essentially the same accuracy and efficiency.) In this respect, differential privacy
in the two-party setting is closer to cryptography, where most interesting tasks can only be obtained with
computational rather than information-theoretic security.

It is natural to ask if the above separations can be made even stronger:

Question 2. What is the largest gap in accuracy between two-party and client-server differen-
tially private protocols?

We show that the gap between accuracy can be as large as linear. We do so by exhibiting a function
on two n-bit strings with constant sensitivity that cannot be approximated within error o(n) by a 2-party
differentially private protocol. Unlike our result about Hamming distance, here our proof does not apply to
approximate differential privacy. (In the conference version [MMP+10], we claimed that it did apply, but
there was an error in the proof and a counterexample to the key lemma was found by De [De11].) Thus, this
result does not provide a separation between information-theoretic and computational differential privacy,
since the information-theoretic analogue of computational differential privacy is approximate differential
privacy. Whether a stronger separation can proved remains an intriguing open question:

(Open) Question 3. What is the largest gap in accuracy between information-theoretic and
computationally differentially private 2-party protocols?

The techniques we develop to address the above questions rely on new connections with other topics in
the theory of computation: the first is a connection between differential privacy in the two-party setting and

1In [DN04], a central data-mining problem (detecting correlations between two binary attributes) was reduced to approx-
imating the scalar product between two binary vectors.
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deterministic extractors for Santha-Vazirani sources. The second connection is with the communication
complexity of two-party protocols. We further develop this latter connection and in particular demonstrate
that the connection works in both directions. Loosely speaking, and ignoring the relation between the
various parameters, we show that a small-communication protocol for a function exists if and only if a
low-error differentially private protocol exists. We now discuss our results in more detail and elaborate on
these connections.

Hamming distance and deterministic extraction. We resolve the first question discussed above by
establishing a connection between differentially private protocols and deterministic extractors for Santha-
Vazirani sources.

Consider two uniformly distributed n-bit strings x and y which are the inputs of two parties that would
like to approximate the Hamming distance. For any two-party protocol, conditioned on the transcript of
the protocol, x and y are independent. Furthermore, if the protocol is differentially private then each
bit of x has some entropy even conditioned on all other bits of x (and similarly for y). In other words,
conditioned on the transcript, x and y are two independent Santha-Vazirani sources. We then generalize a
result of Vazirani [Vaz87] to argue that the inner product modulo b

√
nc is a good (deterministic) extractor

for such sources (i.e., it is distributed nearly uniformly over its range). This implies that no party is
able to estimate the inner product (and consequently, the Hamming distance) of the inputs with accuracy
o(
√
n/ log n). This is almost tight, as standard randomized response [War65] allows parties to approximate

their Hamming distance with error Θ(
√
n/ε) (both bounds assume that the privacy parameter ε is smaller

than 1). More formally, the following theorem answers Question 1 from above:

Theorem 3.9 (Section 3). Let P (x, y) be a randomized protocol with ε-differential privacy for inputs
x, y ∈ {0, 1}n, and let δ > 0. Then, with probability at least 1− δ over x, y ← {0, 1}n and the coin tosses

of P , party B’s output differs from 〈x, y〉 by at least ∆ = Ω
( √

n
logn ·

δ
eε

)
.

Communication complexity and differential privacy. Towards answering the second question posed
above, we note that the method based on deterministic-extraction from Santha-Vazirani sources is unlikely
to yield (at least näıvely) a lower bound on additive error better than O(

√
n) (see Section 3.3). We

therefore develop a different approach based on a new connection between differentially private protocols
and communication complexity. We systematically explore these connections.

We first prove that the information cost (as defined by Bar-Yossef et al. [BYJKS02]) and the parti-
tion bound (as defined by Jain and Klauck [JK10]) of an ε-differentially-private protocol are both O(εn).
Loosely, information cost measures the amount of information that is shared between the transcript and
the input of both parties. Therefore, the O(εn) bound on the information cost in particular is quite natural,
since differential privacy condition limits the amount of information learned on each individual bit of the
inputs (and is thus only stronger). Motivated by applications in direct-sum theorems for communication
complexity, Barak et al. [BBCR10] proved that a protocol over a product distribution can be compressed
down to its information cost (up to a polylogarithmic factor in its original communication complexity).
We can conclude that every ε-differentially-private protocol can be compressed to a small (roughly O(εn))
communication protocol (see Theorem 4.8).

Given the reduction from differential privacy to information cost, we construct a function with two
properties: (1) the function has sensitivity 1 and range Θ(n); (2) approximating the function to within
o(n) by a 2-party protocol requires linear (in its input length) information cost. We construct such a
function by taking an arbitrary boolean function with high information cost, embedding it in the space of
codewords and extending its domain to all inputs in a manner consistent with the sensitivity condition.
Such a function proves that the answer to Question 2 on the gap between two-party and client-server
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differential privacy is linear: On the one hand, by property (1) the function can be approximated with
differential privacy by a trusted third party (or server) with error proportional to 1/ε. On the other hand,
every (information-theoretic) differentially private protocol has linear additive error. More precisely, the
following theorem claims these properties of our construction:

Theorem 4.11 (Section 4.3). There exists an absolute constant β > 0 such that for every n, there is
an efficiently computable function f : {0, 1}n × {0, 1}n → R and a distribution D over its inputs, with the
following properties

(a) for every ε < β/3, every ε-differentially private protocol P has expected additive error at least βn.
(b) f has sensitivity 1, i.e., |f(x, y)− f(x′, y′)| ≤ |(x, y)− (x′, y′)|H for every x, y, x′, y′.

We note that the connection between differential privacy and the partition bound can be used to prove
lower bounds on the error in computing specific functions for which lower bounds on the partition bound
is known. For the specific example of Hamming distance (see [CR11]), the results obtained in this manner
are incomparable with those obtained via deterministic extraction; we get a error bound of

√
n instead of

Ω(
√
n/ log n) but it applies only for pure (not approximate) differential privacy.

The connection between differential privacy and communication complexity is quite strong and we
explore it beyond our original motivation discussed above. In particular, for the application above we only
cared that differentially private protocols can be compressed into protocols that have low communication
but are not necessarily differentially private. Our next result demonstrates that every differentially private
protocol with r rounds can be compressed down to O(εrn) while keeping it differentially private. Com-
pression is implemented using privacy-preserving consistent sampling [Man94, Hol09] and has a negligible
probability of failure (which affects accuracy, not privacy). The formal theorem is stated as follows:

Theorem 4.12 (Section 4.5). Let P be an ε-differentially private protocol with r rounds. Then, for
every δ > 0, there exists an O(rε)-differentially-private protocol P ∗ that has communication complexity
O(r · (εn+ log log 1

εδ )) and except with probability rδ, simulates P perfectly.

In our final result we show that the connection between differential privacy and communication com-
plexity goes the other way too: a deterministic protocol with r rounds and communication C can be
transformed into an ε-differentially-private protocol with additive error O(Cr/ε):

Theorem 4.14 (Section 4.6). Let P be a deterministic protocol with communication complexity CC(P )
and the number of rounds r approximating a sensitivity-1 function f : Σn × Σn → Z with error bounded
by ∆. Then there exists an ε-differentially-private protocol with the same communication complexity and
number of rounds that computes f with expected additive error ∆ +O(CC(P )r/ε).

The linear dependency on the communication complexity in the last theorem is unlikely to be improved
due to the lower bound of Theorem 4.11.

2 Definitions

Let Σ be a finite alphabet and for strings x, y ∈ Σn, let |x−y|H = |{i ∈ [n] : xi 6= yi}| denote the Hamming
distance between x and y. We recall the standard definition of differential privacy for mechanisms defined
over strings from a finite alphabet Σ and generalize it to interactive protocols, following [BNO08].

Definition 2.1 (Differential privacy). A mechanism M on Σn is a family of probability distributions
{µx : x ∈ Σn} on R. The mechanism is ε-differentially private if for every x and x′ such that |x−x′|H = 1
and every measurable subset S ⊂ R we have

µx(S) ≤ exp(ε)µx′(S).
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A common relaxation of ε-differential privacy is the following definition of δ-approximate ε-differential
privacy, abbreviated as (ε, δ)-differential privacy:

Definition 2.2 (Approximate differential privacy). The mechanism M satisfies δ-approximate ε-differential
privacy if for every x and x′ such that |x− x′|H = 1 and every measurable subset S ⊂ R we have

µx(S) ≤ exp(ε)µx′(S) + δ.

The definition of differential privacy naturally extends to interactive protocols, by requiring that the
views of all parties be differentially private in respect to other parties’ inputs. The following definition
assumes semi-honest parties, i.e., parties that are guaranteed to follow the protocol. Since the focus of
this work is on establishing lower bounds on accuracy of differentially private protocols, its results apply
to models with weaker restrictions on adversarial parties as well.

More concretely, let VIEWA
P (x, y) be the joint probability distribution over x, the transcript of the

protocol P , private randomness of the party A, where the probability space is private randomness of both
parties. For each x, VIEWA

P (x, y) is a mechanism over the y’s. Let VIEWB
P (x, y) be similarly defined view

of B whose input is y.

Definition 2.3 (Differential privacy for two-party protocols). We say that a protocol P has ε-differential
privacy if the mechanism VIEWA

P (x, y) is ε-differentially private for all values of x and same holds for
VIEWB

P (x, y) and all values of y.

Approximate differential privacy for interactive protocols is defined analogously. Without loss of gener-
ality, we assume that the parties do not share any public random bits since they may share private random
bits without violating the privacy condition. Also, note that the above definition of privacy trivially main-
tains the privacy of x and y against a third party who only observes the transcript. In fact, this notion of
privacy will be sufficient to imply many of the lower bounds we present.

The notion of (global) sensitivity of a function is useful in designing differentially private protocol
computing this function:

Definition 2.4 (Sensitivity). For a real-valued function f : Σn → R define its sensitivity as the maximal
difference in value on adjacent inputs, i.e., max|x−y|H=1 |f(x)− f(y)|.

The following definition plays a role in Sections 3 and 4:

Definition 2.5 (Statistical distance and δ-closeness). Given random variables X and X ′ taking values in
Ω, we say that X and X ′ are δ-close if the statistical distance between their distributions is at most δ, i.e.,

‖X −X ′‖SD :=
1

2

∑
x∈Ω

∣∣Pr[X = x]− Pr[X ′ = x]
∣∣ ≤ δ .

Communication Complexity. Yao [Yao79] introduced the following, by now classical, two-player com-
munication game: Alice and Bob want to collaboratively compute a function f : {0, 1}n×{0, 1}n → {0, 1}.
Alice gets an n-bit string x and Bob gets another, called y. The players have unlimited computational
power. They agree on a protocol beforehand, according to which they take turns in communicating with
each other. At a player’s turn, what that player communicates is a function of her input and what has
been communicated so far. We call the sequences of messages, the transcript of the protocol and denote it
by Π. The protocol also specifies a function fA(·, ·) (resp. fB(·, ·)) that define the value computed by Alice
(resp. Bob). Let P be a deterministic communication protocol. The cost of P , denoted CC(P ), is the total
number of bits that Alice and Bob communicate for the worst input. The deterministic complexity of f ,
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denoted by D(f), is the cost of the best deterministic protocol for f that outputs the correct answer for
every input, i.e. fA(x,Π) = fB(y,Π) = f(x, y). We also consider randomized communication protocols
where the players may each flip private coins and we permit an arbitrarily small constant probability of
failure, so that Pr[fA(x,Π) = f(x, y)] ≥ 1− γ and similarly for B. For a randomized protocol, the cost of
the protocol is defined as the maximum number of bits communicated over all inputs and coin flips.

3 Differential Privacy and Santha-Vazirani Sources

Differential privacy requires that a differentially private protocol contains a limited amount of information
about the parties’ inputs. In particular, if the parties’ inputs had a lot of entropy to begin with, then they
still have a lot of entropy after we condition on the transcript of the protocol. In this section, we show that
they retain much more structure than merely having high entropy. Specifically, if the parties’ inputs were
initially uniform and independent strings from {0, 1}n, then conditioned on any transcript of the protocol,
the parties’ inputs are unpredictable bit sources (also known as semi-random sources), as introduced by
Santha and Vazirani [SV86] and studied in the literature on randomness extractors.

We then generalize a result of Vazirani [Vaz87] that shows that the inner product function has good
randomness extraction properties on unpredictable bit sources, and use this to prove that no differentially
private two-party protocol can approximate the inner product (or the Hamming distance) to within additive
error o(

√
n/ log n). The extension of the result to protocols satisfying approximate differential privacy

(Definition 2.2) appears in Section A.

3.1 Unpredictable Sources from Differential Privacy

The model of random sources introduced by Santha and Vazirani [SV86] is one where each bit is somewhat
unpredictable given the previous ones:

Definition 3.1 (α-unpredictable bit source2). For α ∈ [0, 1], random variable X = (X1, . . . , Xn) taking
values in {0, 1}n is an α-unpredictable bit source if for every i ∈ [n], and every x1, . . . , xi−1 ∈ {0, 1}, we
have

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1]

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1]
≤ 1/α.

Note that when α = 1, the source must be the uniform distribution, and when α = 0 the source is
unconstrained. The larger α is, the more “randomness” the source is guaranteed to have. Commonly
α ∈ (0, 1) is thought of as being held constant as n → ∞. Note also that under an α-unpredictable
source, no string has probability mass greater than 1/(1 + α)n. Thus an α-unpredictable source always
has min-entropy, defined as minx log(1/Pr[X = x]), at least βn, where β = log(1 + α) ≥ α.

A more stringent requirement, previously studied in [RVW04], is to require that each bit is somewhat
unpredictable given all of the other bits, even the future ones:

Definition 3.2 (Strongly α-unpredictable bit source). For α ∈ [0, 1], a random variable X = (X1, . . . , Xn)
taking values in {0, 1}n is a strongly α-unpredictable bit source if for every i ∈ [n], and every x1,. . . ,xi−1,
xi+1,. . . ,xn ∈ {0, 1}n, we have

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn]

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn]
≤ 1/α.

We now prove that conditioned on a differentially private transcript, the parties’ inputs not only have
a lot of entropy, but in fact are strongly unpredictable sources (assuming they were initially uniform):

2In the terminology of Santha and Vazirani [SV86], this is an α/(1 + α) semi-random source.
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Lemma 3.3. Let P be an ε-differentially private randomized protocol. Let X and Y be independent
random variables uniformly distributed in {0, 1}n and let random variable Π(X,Y ) denote the transcript
of messages exchanged when protocol P is run on input (X,Y ). Then for every π ∈ Supp(Π), the random
variables corresponding to the inputs conditioned on transcript π, Xπ and Yπ, are independent, strongly
e−ε-unpredictable bit sources.

Proof. The fact that independent inputs remain independent when conditioning on a transcript is a stan-
dard fact in communication complexity, which can be proved by induction on the number of rounds. (When
we condition on the first message, the two inputs remain independent, and then what follows is a protocol
with fewer rounds.)

To see that Xπ is a strongly unpredictable bit source, we observe that by Bayes’ Rule and the uniformity
of X,

Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn,Π = π]

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn,Π = π]

=
Pr[Π = π|X1 = x1, . . . , Xi−1 = xi−1, Xi = 0, Xi+1 = xi+1, . . . , Xn = xn]

Pr[Π = π|X1 = x1, . . . , Xi−1 = xi−1, Xi = 1, Xi+1 = xi+1, . . . , Xn = xn]

=
Pr[Π(x1 · · ·xi−10xi+1 · · ·xn, Y ) = π]

Pr[Π(x1 · · ·xi−11xi+1 · · ·xn, Y ) = π]
.

By ε-differential privacy, the latter ratio is between e−ε and eε.

3.2 Randomness Extraction and Lower Bounds for Inner Product

Vazirani [Vaz87] showed that the inner product function modulo 2 extracts an almost-uniform bit from any
two independent unpredictable sources (in sharp contrast to the fact that from one unpredictable source,
no function can extract a bit that is more than α-unpredictable [SV86]). We generalize this to show that
the inner product function modulo m extracts an almost-uniform element of Zm, provided that the length
n of the sources is at least roughly m2. We then combine this with the results of the previous section
to show that every two-party differentially private protocol for approximating the inner product function
must incur an error of roughly m ≈

√
n. Indeed, if a significantly better approximation could be computed

given the transcript (and one party’s input), then the inner product would be concentrated in an interval
of size significantly smaller than m, contradicting the fact that it reduces to an almost-uniform element of
Zm.

Our extractor is the following:

Theorem 3.4. There is a universal constant c such that the following holds. Let X be an α-unpredictable
bit source on {0, 1}n, let Y be a source on {0, 1}n with min-entropy at least βn (independent from X), and
let Z = 〈X,Y 〉 mod m for some m ∈ N. Then for every δ ∈ [0, 1], the random variable (Y, Z) is δ-close to
(Y, U) where U is uniform on Zm and independent of Y , provided that

n ≥ c · m
2

αβ
· log

(
m

β

)
· log

(m
δ

)
.

Notice that for constant α, β, and δ, we can take m as large as Ω(
√
n/ log n) and satisfy the condition

of the theorem. Note also that the output Z is guaranteed to be close to uniform even given the source Y .
Two-source extractors with this property have been studied in several papers, starting with [DO03].

The first step is to reduce proving near-uniformity of the extractor’s output distribution Z to bounding
the magnitude of its Fourier coefficients E[ωZ ]:
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Lemma 3.5. Let Z be a random variable taking values in Zm. Then the statistical distance between Z
and the uniform distribution on Zm is at most

1

2

√∑
ω 6=1

|E [ωZ ]|2,

where the sum is over all complex mth roots of unity ω other than 1.

Proof. Let U be a uniformly distributed random variable in Zm. Let pZ(·) and pU (·) denote the probability
mass function of Z and U respectively. We have

‖Z − U‖SD =
1

2
‖pZ − pU‖1 ≤

√
m

2
‖pZ − pU‖2 =

1

2

√√√√m−1∑
k=0

|p̂Z(k)− p̂U (k)|2 .

Plugging in the Fourier coefficients p̂Z(0) and p̂U (·), the claim follows.

Next, instead of estimating the Fourier coefficients of the output Z = 〈X,Y 〉 mod m when both sources
X and Y are random, we fix Y = y and argue that there are not many y’s for which the Fourier coefficients
are large. To get a good bound on the number of y’s, we estimate the 2tth moment of the Fourier
coefficients.

Lemma 3.6. Let X be any random variable taking values in {0, 1}n, ω ∈ C a primitive mth root of unity,
and t ∈ N . Then

∑
y∈Znm

∣∣∣E [ω〈X,y〉]∣∣∣2t ≤ mn · Pr

[∑
i

(X(i)−X(i)′) ≡ 0n (mod m)

]
,

where X(1), . . . , X(t), X(1)′, . . . , X(t)′ are iid copies of X.

Proof. For every complex number u, we have |u|2 = uu, where u is the complex conjugate of u. Thus∑
y∈Znm

∣∣∣E [ω〈X,y〉]∣∣∣2t =
∑
y∈Znm

E
[
ω〈X,y〉

]t
· E
[
ω〈X,y〉

]t
=

∑
y∈Znm

E
[
ω〈X,y〉

]t
· E
[
ω−〈X,y〉

]t
=

∑
y∈Znm

E
[
ω〈

∑t
i=1(X(i)−X(i)′),y〉

]
,

= Pr

[
t∑
i=1

(X(i)−X(i)′) ≡ 0n (mod m)

]
·mn,

where the last equality uses the fact that for every nonzero vector x ∈ Znm,
∑

y∈Znm ω
〈x,y〉 = 0. (Note that

this fact is only true if ω is a primitive mth root of unity; indeed, if all the components of x were divisible
by the order of ω, then the sum would equal mn.)

Next we show that 2t independent unpredictable sources on {0, 1}n sum to zero with probability
approaching 1/mn at rate that vanishes exponentially in t.
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Lemma 3.7. Let X(1), . . . , X(t), X(1)′, . . . , X(t)′ be independent, α-unpredictable bit sources and m ∈ N.
Then

Pr

[∑
i

(X(i)−X(i)′) ≡ 0n (mod m)

]
≤

[
1

m
+

(
1− 1− cos(2π/m)

1 + (α+ α−1)/2

)t]n
=

[
1

m
+ exp

(
−Ω

(
αt

m2

))]n
.

Proof. We observe that it suffices to prove the case n = 1, because

Pr

[∑
i

(X(i)−X(i)′) ≡ 0n (mod m)

]

= Pr

[∑
i

(X(i)1 −X(i)′1) ≡ 0 (mod m)

]

·Pr

[∑
i

(X(i)2...n −X(i)′2...n) ≡ 0n−1 (mod m)

∣∣∣∣∣ ∑
i

(X(i)1 −X(i)′1) ≡ 0 (mod m)

]
,

and conditioned on the values of all the first bits of the sources (namely X(i)1 and X(i)′1), the remaining
n− 1 bits of the sources (namely X(i)2...n and X(i)′2...n) are independent α-unpredictable sources.

Assume n = 1 (so each X(i) ∈ {0, 1}), let S =
∑t

i=1(X(i) − X(i)′) ∈ Z, and let Ω be a uniformly
random mth root of unity. Then

Pr[S ≡ 0 mod m] = E
[
ΩS
]
≤ 1

m
+ max

ω 6=1

∣∣E [ωS]∣∣ =
1

m
+ max

ω 6=1

t∏
i=1

∣∣∣E [ωX(i)
]∣∣∣ · ∣∣∣E [ω−X(i)

]∣∣∣ .
So now we only need to bound |E[ωW ]| and |E[ω−W ]| for an α-unpredictable 1-bit random variable W .
Thinking of C as R2, |E[ωW ]| is the length of a convex combination of two unit vectors, namely u = ω and
v = 1, where the ratio of coefficients is at least α. This length is maximized when the two coefficient have
ratio exactly α, namely when u has coefficient p = 1/(1+α) and v has coefficient 1−p = α·p = 1/(1+α−1).
In this case, the length is

‖pu+ (1− p)v‖ =
√

1− 2p · (1− p) · (1− 〈u, v〉) =

√
1− 1

1 + (α+ α−1)/2
· (1− cos θ).

where ω = exp(2πiθ). Since ω is an mth root of unity other than 1, we have cos θ ≤ cos(2π/m). The same
analysis works to bound the length of |E[ω−W ]|, since ω−1 is also an mth root of unity.

Therefore,

Pr[S ≡ 0 (mod m)] ≤ 1

m
+

(√
1− 1

1 + (α+ α−1)/2
· (1− cos θ)

)2t

,

as desired.

It follows that:

Lemma 3.8. Let X be an α-unpredictable source on {0, 1}n, ω ∈ C a primitive mth root of unity, and
t ∈ N . Then ∑

y∈Znm

∣∣∣E [ω〈X,y〉]∣∣∣2t ≤ [1 +m exp

(
−Ω

(
αt

m2

))]n
.
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We will apply this taking t a bit larger than m2/α, so that the exp(−Ω(αt/m2)) term is small. We
now put the above pieces together to obtain our extractor:

Proof of Theorem 3.4. Let X be an α-unpredictable bit source on {0, 1}n, Y a βn-source on {0, 1}n. For
every complex mth root of unity ω 6= 1, let

Lω =

{
y ∈ {0, 1}n :

∣∣∣E [ω〈X,y〉]∣∣∣ > δ√
m

}
,

and let L =
⋃
ω Lω. By Lemma 3.5, it holds that for every y /∈ L, the statistical distance between

Zy = 〈X, y〉 mod m and the uniform distribution on Zm is at most (1/2)
√

(m− 1) · (δ/
√
m)2 ≤ δ/2. Thus

it suffices to prove that Pr[Y ∈ L] ≤ δ/2, which in turn follows if Pr[Y ∈ Lω] ≤ δ/2m for each ω 6= 1.
Every mth root of unity ω 6= 1 is a primitive `th root of unity for some `|m. By Lemma 3.8, we have

|Lω| ≤
∑

y∈Zn`

∣∣E [ω〈X,y〉]∣∣2t
(δ/
√
m)2t

≤
[
1 + ` · exp(−Ω(αt/`2))

]n
(δ2/m)t

≤
[
1 +m · exp(−Ω(αt/m2))

]n
(δ2/m)t

≤ 2βn/2

(δ2/m)t
.

for t = dc0 · (m2/α) · log(m/β)e for a sufficiently large universal constant c0.
Thus, by the union bound.

Pr[Y ∈ Lω] ≤ 2−βn · |Lω| ≤
2−βn/2

(δ2/m)t
≤ δ

2m
,

provided that n ≥ (2/β) · (t · log(m/δ2) + log(2m/δ)), which holds by hypothesis.

We now combine the fact that the inner product modulo m is good extractor for unpredictable sources
with the connections between differentially private protocols and unpredictable sources to show that no
differentially private protocol can estimate inner product to within error o(

√
n/ log n):

Theorem 3.9. Let P be a randomized protocol with ε-differential privacy and let δ > 0. Then with
probability at least 1 − δ over the inputs x, y ← {0, 1}n and the coin tosses of P , party B’s output differs
from 〈x, y〉 by at least

∆ = Ω

( √
n

log n
· δ
eε

)
.

Proof. Let X and Y be uniform and independent in {0, 1}n and Π be the communication transcript. Party
B’s output is a function fB(Y,Π). Let m = 4∆/δ.

By Lemma 3.3, we know that for every π ∈ Supp(Π), Xπ and Yπ are independent α-unpredictable
sources for α = e−ε. This implies that Yπ has min-entropy at least βn for β = log(1 + α) ≥ α. By
Theorem 3.4, (Yπ, 〈Xπ, Yπ〉 mod m) has statistical distance at most δ/2 from (Yπ, U), provided

n ≥ c0 ·
m2

αβ
· log

(
m

β

)
· log

(m
δ

)
,
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for a universal constant c0. Using the fact that m = 4∆/δ and β ≥ α, this follows if:

n ≥ c1 ·
[

∆ · eε

δ
· log

(
∆ · eε

δ

)]2

,

for some universal constant c1, which in turn follows if

∆ · eε

δ
≤ c2 ·

√
n

log n
,

for a small universal constant c2 > 0.
Consider the set S = {(π, y, z) : (fB(π, y)−z) mod m ∈ {m−∆, . . . ,m−1, 0, 1, . . . ,∆}}. Notice that in

every execution where B’s output fB(π, y) differs from 〈x, y〉 by at most ∆, we have (π, y, 〈x, y〉 mod m) ∈
S. We can bound the probability of this occurring by using the fact that (Π, Y, 〈X,Y 〉 mod m) has
statistical distance at most δ/2 from (Π, Y, U). Specifically, we have:

Pr[(Π, Y, 〈X,Y 〉 mod m) ∈ S] ≤ Pr[(Π, Y, U) ∈ S] + δ/2 ≤ 2∆/m+ δ/2 = δ .

This theorem implies a similar result for the Hamming distance, because the inner product between
two bitstrings x, y ∈ {0, 1}n can be expressed as 〈x, y〉 = |x|H + |y|H − |x − y|H . Thus, a differentially
private protocol for estimating the Hamming distance |x−y|H can be turned into one for the inner product
by having the parties send differentially private estimates of the Hamming weights of their inputs.

3.3 Limitation of the Extractor Technique

The deterministic extractor approach above depends crucially on the fact that the xi’s are independent,
or nearly independent of each other. We observe that standard measure concentration techniques imply
that such a technique cannot go beyond

√
n for any function with sensitivity 1.

Theorem 3.10. Let f : {0, 1}n × {0, 1}n → R be a sensitivity-1 function. Then for every distribution µ
such that for every input y, the conditional distribution µ(X | Y = y) is a product distribution Πn

i=1µi(Xi |
Y = y), there is function g(y) such that Pr(x,y)∼µ[|g(y)− f(x, y)| > t] ≤ 2 exp(−t2/2n).

Proof. Standard martingale concentration results (see e.g. [DP09]) say that every sensitivity-1 function on
a product distribution is well concentrated around its expectation. Specifically, for every h : {0, 1}n → R,
and every product distribution ν on X,

Pr[|h(x)− Ex∼ν [h(x)]| > t] ≤ 2 exp(−t2/2n).

Applying this result to the function f(X, y) and setting g(y) = Ex∈µ(X|Y=y)[f(x, y)] yields the result.

In other words, f(x, y) can be computed by Bob up to an expected additive error of O(
√
n) without

any communication, provided that Alice’s input comes from a product distribution (conditioned on Bob’s).
Since the connection to unpredictable bit sources (Lemma 3.3) requires that the inputs come from a product
distribution, we cannot get a lower bound better than Θ(

√
n) from that approach.
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4 Differential Privacy and Communication Complexity

In this section we relate differentially private protocols to communication complexity. We first show that
techniques used to prove lower bounds for communication complexity can also be used to show lower
bounds on differentially private protocols. There are two main approaches to proving communication
complexity lower bounds. The information-theoretic approach lower bounds the communication of any
protocol computing a function f by the Information Cost of computing f on some distribution (see Sec-
tion 4.1 for a formal definition). The combinatorial approaches such as richness and the rectangle bound
are generalized by the Partition Bound (see Section 4.2 for a formal definition). We show that both these
approaches can be used to prove lower bounds for differentially private protocols. Specifically, we show that
if an ε-differentially private protocol computes a function f , then both the information cost (Section 4.1)
and the (logarithm of the) partition bound (Section 4.2) are O(εn). Thus a linear lower bound on the
communication complexity using either of the approaches yields a lower bound for differentially private
protocols. We can extend the information cost bound to approximate differential privacy for distributions
where all private input bits are drawn independently of the others. However, analogous results for general
distributions, and a corresponding result for the partition bound do not hold (Section 4.4).

We then prove stronger separations between information-theoretic and computational differential pri-
vacy (Section 4.3). We also note that the message compression technique of Barak et al. [BBCR10], implies
that all differentially private protocols are compressible.

Furthermore, we show that if there exists a differentially private protocol with a constant number of
rounds, it can be compressed while keeping it differentially private (Section 4.5). Finally, we show that
low-communication protocols can be converted into privacy-preserving ones with some loss of accuracy
(Section 4.6).

4.1 Differential Privacy and Information Cost

As a first tool of proving feasibility of differentially private protocol with certain accuracy, we establish a
connection between differential privacy and the concept of information cost as defined by Bar-Yossef et
al. [BYJKS02] (based on a earlier concept introduced by Chakrabarti et al. [CSWY01].)

The definition of information cost is based on the following standard definitions of mutual information
and conditional mutual information:

Definition 4.1 (Mutual Information). Given two random variables X and Y over the same probability
space, their mutual information is defined as follows:

I(X;Y ) = H(X)−H(X | Y ),

where H denotes Shannon entropy. The conditional mutual information is I(X;Y | Z) = H(X | Z)−H(X |
Y Z).

Intuitively, I(X;Y ) captures the amount of information shared by two variables. For example, if the
variables are identical, their mutual information equals their entropy; if they are independent, it is zero.
Mutual information motivates the definition of information cost for protocols, which corresponds to the
amount of information that is learnt about the players’ inputs from the messages communicated.

Definition 4.2 (Information Cost). Given a distribution µ over inputs X and Y to the two parties of
protocol P , we define information cost of P for distribution µ as

ICostµ(P ) = I(XY ; Π(X,Y )),

where Π(X,Y ) is the random transcript of the protocol on input (X,Y ).
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By the definition of differential privacy, none of the input bits in a differentially private protocol are
fully revealed to the other party. This implies the following natural bound on the information cost of a
differentially private protocol.

Proposition 4.3. If P (x, y) has ε-differential privacy, where x, y ∈ Σn for a finite alphabet Σ, then for
every distribution µ on Σn × Σn, the information cost of P is bounded as follows:

ICostµ(P ) ≤ 3εn.

If Σ = {0, 1} and µ is the uniform distribution, then the bound can be improved to ICostµ(P ) ≤ 1.5ε2n.

Proof. Consider the mutual information between the random input Z = (X1, . . . , Xn, Y1, . . . , Yn) and the
protocol’s transcript Π. For every z, z′, differential privacy implies that

exp(−2εn) ≤ Pr[Π(z) = π]

Pr[Π(z′) = π]
≤ exp(2εn).

so that

exp(−2εn) ≤ Pr[Π(z) = π]

Pr[Π(Z ′) = π]
≤ exp(2εn).

where Z ′ is an independent sample from µ.

I(Π(Z);Z) = H(Π(Z))−H(Π(Z)|Z)

= E(z,π)←(Z,Π(Z)) log
Pr[Π[Z] = π|Z = z]

Pr[Π(Z) = π]

≤ 2(log2 e)εn.

If µ is the uniform distribution and Σ = {0, 1} (i.e., each bit of Z is uniform and independent), then
we can improve the bound as follows. By additivity of mutual information

I(Z; Π(Z)) =
∑
i∈[2n]

I(Zi; Π(Z) | Z1Z2 . . . Zi−1)

Each term of the last expression can be written as:

I(Zi; Π(Z) | Z1 . . . Zi−1) = H(Zi | Z1 . . . Zi−1)−H(Zi | Π(Z)Z1 . . . Zi−1).

Since each Zi is independent and uniform in µ, the first term is 1. By the differential privacy property,

Pr[Π[Z] = π|Z1, . . . , Zi = z1, . . . , zi−1, 0]

Pr[Π[Z] = π|Z1, . . . , Zi = z1, . . . , zi−1, 1]
∈ (exp(−ε), exp(ε))

so that by Bayes’ rule, we can conclude that the ratio

Pr[Zi = 0|Z1, . . . , Zi−1 = z1, . . . , zi−1,Π[Z] = π]

Pr[Zi = 1|Z1, . . . , Zi−1 = z1, . . . , zi−1,Π[Z] = π]
∈ (exp(−ε), exp(ε))

for all z1 . . . , zi−1, π. Thus the second term above is bounded by H(exp(ε)/2). An easy calculation shows
that the difference (1−H(exp(ε)/2)) is bounded by ε2/(2 ln 2). The bound of log2(e)ε2n on the information
cost of the protocol follows by summing over 2n terms.
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In the conference version of this paper [MMP+10], we claimed an extension of the above proposition to
(ε, δ)-differential privacy, but there was an error in the proof and De [De11] gave a counterexample. (See
Section 4.4.) However, we can still show such a bound in the case when components of x and y are all
independent.

Proposition 4.4. Let µ be a product distribution over Σ2n, i.e., µ(x, y) =
∏
i µi(xi)µ

′
i(yi). If P (x, y)

has (ε, δ)-differential privacy, where x, y ∈ Σn for a finite alphabet Σ, ε < 1, and δ < ε/4|Σ|2, then the
information cost of P is bounded as follows:

ICostµ(P ) ≤
(

2ε+
4δ|Σ|2

ε
· log

ε

2δ|Σ|

)
· n.

Proof. Let µ be a product distribution over Z = (X1, . . . , Xn, Y1, . . . , Yn). For i ∈ [2n], let Z−i denote
(Z1, . . . Zi−1, Zi+1, . . . Z2n). By the chain rule and Lemma B.1 in the appendix, we have

I(Π(Z);Z) =
∑
i

I(Π(Z);Zi|Z1 . . . Zi−1)

≤
∑
i

I(Π(Z);Zi|Z−i)

=
∑
i

E(z−i←Z−i)[I(Π(Z);Zi|Z−i = z−i)].

We will upper bound each term in the summation. Fix a set of values for z−i. Now Π(Z) is a mechanism
dependent on Zi alone; let g(·) denote Π(Z) as a function of Zi. Then by the definition of differential
privacy, for any subset A ⊆ R, and for any a, b ∈ Σ,

Pr[g(a) ∈ A] ≤ exp(ε) · Pr[g(b) ∈ A] + δ.

Let Bab be a maximal subset A ⊆ R such that Pr[g(a) ∈ A] > exp(2ε) ·Pr[g(b) ∈ A]. Thus every A ⊆ Bc
ab

satisfies Pr[g(a) ∈ A] ≤ exp(2ε) · Pr[g(b) ∈ A]. Moreover from the definition of Bab, we have

exp(2ε) · Pr[g(b) ∈ Bab] ≤ Pr[g(a) ∈ Bab] ≤ exp(ε) · Pr[g(b) ∈ Bab] + δ.

Rearranging we get

Pr[g(a) ∈ Bab] ≤
exp(ε)

exp(ε)− 1
· δ ≤ 2δ/ε

for ε < 1. Let Bi = ∪a,b∈ΣBab so that Pr[g(a) ∈ Bi] < 2δ|Σ|2/ε.
Now we write

I(Π(Z);Zi|Z−i = z−i) ≤ H
(
1Π(Z)∈Bi |Z−i = z−i

)
+ I(Π(Z);Zi|Z−i = z−1,1Π(Z)∈Bi)

≤ H

(
2δ|Σ|2

ε

)
+ Pr[Π(Z) ∈ Bi|Z−i = z−i] · I(Π(Z);Zi|Z−i = z−i,Π(Z) ∈ Bi)

+ Pr[Π(Z) 6∈ Bi|Z−i = z−i] · I(Π(Z);Zi|Z−i = z−i,Π(Z) 6∈ Bi)

≤ H

(
2δ|Σ|2

ε

)
+

(
2δ|Σ|2

ε

)
·H(Zi) + I(Π(Z);Zi|Z−i = z−i,Π(Z) 6∈ Bi)

≤ H

(
2δ|Σ|2

ε

)
+

2δ|Σ|2 log |Σ|
ε

+E(a,π)←(Zi,g(Zi))|g(Zi) 6∈Bi

[
log

Pr[g(Zi) = π|Zi = a]

Pr[g(Zi) = π]

]
.
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By definition of Bi, Pr[g(a) = π] ≤ exp(2ε) · Pr[g(b) = π] for every a, b ∈ Σ and π /∈ Bi, so that the last
term is at most 2ε. Thus we conclude that when µ is a product distribution,

I(Π(Z);Zi|Z−i) ≤ 2ε+
4δ|Σ|2

ε
· log

ε

2δ|Σ|
.

We can in fact extend the result allowing some limited dependencies.

Definition 4.5. Let X1, . . . , Xkn be a sequence of random variables taking values in Σ and let Zi
def
=

(X(i−1)k+1, . . . , Xik) denote the Σk-valued random variable denoting the ith block. We say the collection
{X1, . . . , Xkn} is k-block independent if under some permutation of indices, the resulting random variables
Z1, . . . , Zn are independent.

In other words, the random variables can be represented by a graphical model with n components
of size k each. The following corollary extends this result to distributions that are mixtures of k-block
independent distributions.

Corollary 4.6. Let µ be a distribution over Σ2n such that there is a random variable W with the property
that µ|W is a k-block independent distribution. If P (x, y) has (ε, δ)-differential privacy, where x, y ∈ Σn

for a finite alphabet Σ, ε < 1, and δ < ε/4|Σ|2, then the information cost of P is bounded as follows:

ICostµ(P ) ≤
(

2kε+
4δ|Σ|2k

ε
· log

ε

2δ|Σ|

)
· n+H(W ).

Proof. We can handle the case that µ is k-block independent by observing that then Π(Z) is (kε, kδ)-
differentially private with respect to the Σk-valued blocks, which are fully independent. For the case that
µ|W is k-block independent for a random variableW , we have I(Π(X,Y );XY ) ≤ H(W )+I(Π(X,Y );XY |W ).

Compressing Differentially Private Protocols The information cost of protocol is closely related
to the communication complexity since I(XY ; Π(X,Y )) ≤ H(Π(X,Y )) ≤ |Π(X,Y )| for every distribution
on X and Y . Barak et al. recently proved a bound in the other direction.

Theorem 4.7 (Barak et al. [BBCR10]). For every product distribution µ, for every protocol randomized
P with output out(P ), and every γ > 0, there exists functions fA, fB, and protocol Q such that

‖fA(X,Q(X,Y ))− out(P )‖SD < γ ,

Pr[fA(X,Q(X,Y )) 6= fB(Y,Q(X,Y ))] < γ , and

IContentµ(P )γ−1polylog(CC(P )/γ) ≥ CC(Q) ,

where IContentµ(P ) = I(X; Π(X,Y ) | Y )+ I(Y ; Π(X,Y ) | X) which satisfies IContentµ(P ) = O(ICostµ(P )).

It follows that differentially private protocols can be compressed.

Theorem 4.8. Let P be an ε-differentially private protocol P with output out(P ) where the input (X,Y )
is distributed according to an arbitrary product distribution µ. Then for every γ > 0, there exists
functions fA, fB, and a protocol Q such that ‖fA(X,Q(X,Y )) − out(P )‖SD < γ, Pr[fA(X,Q(X,Y )) 6=
fB(Y,Q(X,Y ))] < γ and CC(Q) ≤ 3εγ−1n · polylog(CC(P )/γ).
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Minimize
∑

z∈Z
∑

R∈Rwz,R
subject to∑

R:(x,y)∈R wf(x,y),R ≥ 1− γ ∀{x, y} ∈ Supp(f)∑
R:(x,y)∈R

∑
z∈Z wz,R = 1 ∀{x, y} ∈ X × Y

wz,R ≥ 0 ∀z ∈ Z, R ∈ R

Figure 1: Linear program for the Partition Bound for a function f .

4.2 Differential Privacy and the Partition Bound

Jain and Klauck [JK10] define the partition bound for a partial function f : X × Y → Z. This bound is
given by the linear program in Figure 1. Here R = 2X×2Y is the set of all rectangles in X×Y. Denoting by
prtγ(f) the optimum of this linear program, Jain and Klauck show that every randomized γ-error public
coin protocol computing f has communication complexity at least log prtγ(f). Moreover, they showed
that this lower bound dominates most other lower bounding techniques in randomized communication
complexity such as (smooth) rectangle bound and (smooth) discrepancy bound (see [JK10] for precise
definitions of these bounds).

In this subsection, we show that for any differentially private protocol computing a partial function
f , the value of the partition bound is small. Thus a proof that f has large communication complexity
using the partition bound also shows that f has no ε-differentially private protocol for some ε. Since the
definition of the partition bound assumes that the transcript determines the output of the protocol (this
is without loss of generality in communication protocols, but not necessarily so in private communication
protocols), we assume that this is the case for the private protocol. A similar result can be proved without
this assumption for an appropriately modified linear program.

We also note that considering partial functions allows us to also capture protocols that compute approx-
imations (as is typically the case for differentially private protocols). For example, a differentially private
protocol that computes function g to within additive error α whp yields, for any threshold t, a differentially
private protocol that computes the partial function f whp, where f(x, y) = 1 when g(x, y) > t + α and
f(x, y) = 0 when g(x, y) < t− α.

Theorem 4.9. Suppose that an ε-differentially private protocol P computes a partial function f : {0, 1}n×
{0, 1}n → Z with error probability at most γ. Then log prtγ(f) ≤ 3εn.

Proof. Given P , we show how to construct a solution for the linear program defining prtγ(f) with objective
function value at most 23εn. Let the inputs (X,Y ) to the protocol be chosen independently and uniformly
at random. Let Π(x, y) be the distribution of transcripts of the protocol on inputs (x, y) and let fπ be
the output of the protocol on transcript π. Thus for every (x, y) ∈ Supp(f), we have Prπ←Π(x,y)[fπ =
f(x, y)] ≥ 1− γ.

For a transcript π, let Xπ be the distribution on x conditioned on the the transcript being π and let
Yπ be similarly defined. Since P is differentially private, for every x, x′ ∈ {0, 1}n,

exp(−εn) ≤ Pr[Π(x, y) = π]

Pr[Π(x′, y) = π]
≤ exp(εn).

Thus by Bayes’ rule, we conclude that

exp(−εn) ≤ Pr[Xπ = x]

Pr[Xπ = x′]
≤ exp(εn).
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In other words, the min entropy of the distribution Xπ is at least n − ε′n where ε′ = ε log2 e. Let
p ∈ <{0,1}n be defined by px = Pr[Xπ = x]. Consider the greedy algorithm that starts with all απ,S as
zero, and increases απ,S for S = Supp(p−

∑
S απ,S1S) as long as each coordinate of p−

∑
S απ,S1S stays

non-negative. Repeating until all coordinates become zero, we get numbers απ,S : S ⊆ {0, 1}n such that
for all x,

Pr[Xπ = x] =
∑

S⊆{0,1}n:x∈S

απ,S ,

and ∑
S⊆{0,1}n

απ,S ≤ 2−n+ε′n.

Doing a similar decomposition of Yπ, and taking the pairwise product, we can define numbers βπ,R for
R ∈ R such that for all (x, y),

Pr[(Xπ, Yπ) = (x, y)] =
∑

R∈R:(x,y)∈R

βπ,R,

and ∑
R∈R

βπ,R ≤ 2−2n+2ε′n.

For a z ∈ Z and R ∈ R, we now define wz,R = 22n
∑

π:fπ=z Pr[Π(X,Y ) = π] · βπ,R. We will show that
this setting of variables satisfies all the constraints of the above linear program.

First note that for every (x, y),

2−2n = Pr[(X,Y ) = (x, y)]

=
∑
π

Pr[Π(X,Y ) = π] · Pr[(Xπ, Yπ) = (x, y)]

=
∑
π

Pr[Π(X,Y ) = π] ·
∑

R∈R:(x,y)∈R

βπ,R

=
∑
z∈Z

∑
π:fπ=z

Pr[Π(X,Y ) = π] ·
∑

R∈R:(x,y)∈R

βπ,R

=
∑

R∈R:(x,y)∈R

∑
z∈Z

∑
π:fπ=z

Pr[Π(X,Y ) = π] · βπ,R

= 2−2n
∑

R∈R:(x,y)∈R

∑
z∈Z

wz,R.

Moreover, for every (x, y) ∈ Supp(f), we similarly have

(1− γ)2−2n ≤ Pr[(X,Y ) = (x, y) ∧ fπ = f(x, y)]

=
∑

π:fπ=f(x,y)

Pr[Π(X,Y ) = π] · Pr[(Xπ, Yπ) = (x, y)]

=
∑

π:fπ=f(x,y)

Pr[Π(X,Y ) = π] ·
∑

R∈R:(x,y)∈R

βπ,R

=
∑

R∈R:(x,y)∈R

∑
π:fπ=f(x,y)

Pr[Π(X,Y ) = π] · βπ,R

= 2−2n
∑

R∈R:(x,y)∈R

wf(x,y),R.
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Finally, ∑
z∈Z

∑
R∈R

wz,R = 22n
∑
z∈Z

∑
R∈R

∑
π:fπ=z

Pr[Π(X,Y ) = π] · βπ,R

= 22n
∑
π

Pr[Π(X,Y ) = π] ·
∑
R∈R

βπ,R

≤ 22n
∑
π

Pr[Π(X,Y ) = π] · 2−2n+2ε′n

= 22ε′n.

The claim follows.

Chakrabarti and Regev [CR11] showed that the Gap Hamming problem — distinguishing inputs with
Hamming distance at most n/2 − c

√
n from those with Hamming distance at most n/2 + c

√
n — has a

smooth rectangle bound of 2Ω(n) (for some absolute constant c). By the results of Jain and Klauck [JK10],
this implies that the partition bound for the Gap Hamming (partial) function is at least as large. Coupled
with the above result, this implies that for some small constant ε, any ε-differentially private mechanism
for Hamming distance must incur additive error Ω(

√
n). This improves on the Ω(

√
n/ log n) lower bound

that we showed using our deterministic extractor approach. However, this partition-bound approach does
not apply to (ε, δ)-differential privacy. (See Section 4.4.)

4.3 A Stronger Separation

In this section, we show that for worst case error, the gap between computational and information-theoretic
differential privacy is essentially as large as possible. We first argue that there are low sensitivity functions
such that any protocol approximating the function to a additive linear error must incur linear information
cost.

Theorem 4.10. There exists an absolute constant β > 0 such that for every m, there is an efficiently
computable function f : {0, 1}m×{0, 1}m → R and distribution D over {0, 1}m×{0, 1}m with the following
properties
(a) every protocol that outputs a βm additive approximation to f with probability at least 9

10 over inputs
from D must have information cost at least βm.

(b) f has sensitivity 1, i.e., |f(x, y)− f(x′, y′)| ≤ |(x, y)− (x′, y′)|H for every x, y, x′, y′.

Proof. We show that given a predicate function g : {0, 1}n × {0, 1}n → {0, 1} and distribution Dg over its
inputs, we can transform it to a a sensitivity-1 function fg : {0, 1}m × {0, 1}m → R, and a distribution D
over its inputs, for m

n constant. This transformation has the property that every protocol approximating fg
within error cm (for some constant c > 0 to be determined) with probability (1−γ) over D has information
cost at least ICostDg ,γ(g). Plugging in a function g and distribution Dg with large information cost would
then imply the result.

We embed a large multiple of g in a low-sensitivity function fg. We do so by first defining fg on the
set of well-separated points C ⊆ {0, 1}m, where C is the set of codewords of a code with linear distance.
Low sensitivity is then ensured by interpolating the value of fg appropriately.

Let Enc : {0, 1}n → {0, 1}m be an encoding algorithm for a linear-rate error-correcting code C with a
decoding algorithm Dec : {0, 1}m → {0, 1}n that works up to decoding radius αm for some constant α > 0.
Such codes exist with n = rm for some constant r = r(α) > 0. Let d(x,C) be the distance from x to the
closest codeword in C. We then define

fg(x, y) =

{
g(Dec(x),Dec(y)) · (αm− d(x,C)− d(y, C)) if d(x,C) + d(y, C) ≤ αm,
0 otherwise.
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Note that when x and y are both codewords, fg(x, y) is exactly αm · g(Dec(x),Dec(y)). As we move
away from C, fg(x, y) smoothly decays to 0. Moreover, since C has decoding radius αm, the function
is well-defined and efficiently computable: if any of Dec(x) or Dec(y) fails to decode, it means that
d(x,C) + d(y, C) > αm and the function is zero by definition.

The distribution D is concentrated on the codewords with pD(Enc(x),Enc(y)) = pDg(x, y).
We first argue that any communication protocol Pfg approximating fg to within error less than αm/2 =

αn/(2r) (with probability (1−γ) over D) yields a γ-error communication protocol Pg for g on distribution
Dg, with the same communication complexity. This is done in the natural way: in Pg, Alice and Bob on
input (x, y) simply run the protocol Pfg on inputs x′ = Enc(x) and y′ = Enc(y), and Alice outputs 0 if
her output fA(x′,ΠPfg

) in protocol Pfg is smaller than αm/2, and 1 otherwise. Since fg(x
′, y′) is equal to

αm · g(x, y), if Pfg has error less than αm/2 on (x′, y′), then∣∣∣fA(x′,ΠPfg
)− fg(x′, y′)

∣∣∣ < αm

2
,

in which case Alice’s output of Pg on (x, y) is exactly g(x, y). A similar claim holds for Bob. From the
definition of D it follows that the failure probability of Pg is the same as that of Pfg .

Next we bound the sensitivity of fg. Let (x1, y1) and (x2, y2) be neighboring inputs and assume without
loss of generality that y1 = y2. The main observation is that fg(·, y1) is zero except for small neighborhoods
around certain codewords, i.e., except for ∪x:g(x,Dec(y1))=1B(Enc(x), αm − d(y1, C)). It is easily seen to
have sensitivity 1 within each ball, since d(x,C) has sensitivity 1. Since the decoding radius of C is αm,
these balls are disjoint. As fg is zero on the boundary of these balls, the sensitivity is at most 1 everywhere.

Finally, plugging in any function g which has Ω(n) information cost, e.g., the inner product func-
tion [BYJKS02], we get the desired result.

Combining this result with Proposition 4.3, we conclude

Theorem 4.11. There exists an absolute constant β > 0 such that for every n, there is an efficiently
computable function f : {0, 1}n × {0, 1}n → R and a distribution D over its inputs, with the following
properties

(a) for every ε < β/3, every ε-differentially private protocol P has expected additive error at least βn.
(b) f has sensitivity 1, i.e., |f(x, y)− f(x′, y′)| ≤ |(x, y)− (x′, y′)|H for every x, y, x′, y′.

4.4 Counterexample for Approximate Differential Privacy

As mentioned earlier, in the conference version of the paper [MMP+10], a theorem analogous to Theo-
rem 4.11 was also claimed for (ε, δ) differential privacy, but there was an error in the proof and we do not
know how to extend it. In fact, for inputs in the support of the distribution D constructed in the proof of
Theorem 4.11, there is an (ε, δ) differentially private protocol (with δ negligible in n) that allows the two
parties to perfectly reconstruct each others’ inputs and hence compute f exactly. This example is based
on the work of De [De11].

Let C, fg and D be as in the proof of Theorem 4.11. We will show an approximately differentially
private protocol that computes fg exactly on Supp(D) with high probability. Indeed observe that for any
i ∈ [n], the function hi : {0, 1}m → < defined as hi(x) = Deci(x) · (αm − d(x,C)) · 1(d(x,C) ≤ αm)
has sensitivity 1, where Deci(x) denoted the ith bit of the decoding of x. Thus Alice can communicate
hi(x) + N(0,

√
n log(1/δ))/ε) for each i while preserving (ε, δ)-differential privacy [DKM+06]. For any

x ∈ C, hi(x) ∈ {0, αm} whereas the magnitude of the noise will be smaller than αm = Θ(n) for all i
with probability 1 − o(1), as long as

√
n log(1/δ)/ε = o(n/ log n). Such noisy measurements enable Bob

to compute Deci(x) for all i with high probability, and thus compute fg. Thus, for example, there is an

(n−0.1, 2−n
0.1

)-differentially private protocol that computes fg with high probability on D.
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This construction also shows that Proposition 4.3 does not extend to approximate differential privacy,
as the information cost of the above protocol is close to n (since Bob learns Alice’s input with high
probability). Similarly, if we start with a function g with a partition bound of 2Ω(n) and consider the
partial function fg defined on Supp(D) above, we can rule out an extension of Theorem 4.9 to approximate
differential privacy.

4.5 Private Message Compression

In this section, we argue that for protocols with a constant number of rounds, compression can be done
while maintaining differential privacy. The basic idea is for Alice (resp. Bob) to use consistent sampling
(dart throwing) [Man94, Hol09] from the distribution µx (resp. µy) to pick a message to be sent. Instead
of sending the message itself which may be arbitrarily long, Alice and Bob use shared randomness to pick
the darts, so that it suffices to send the index of the dart picked. We argue that this can be done privately
with small communication.

Theorem 4.12. Let P be an ε-differentially private protocol with r rounds. Then for every δ > 0, there
exists an O(rε)-differentially-private protocol P ∗ that has communication complexity O(r · (εn+log log 1

εδ ))
and except with probability rδ, simulates P perfectly. In other words, there exist functions πx, πy such that
Pr[πx(VIEWA

P ∗(x, y)) = VIEWA
P (x, y)] ≥ 1− rδ, and similarly for B.

Proof. We show how to simulate one round of the protocol; the result for r rounds follows by composition.
Suppose that Alice sends k bits in round t in protocol P . Thus given the messages sent in rounds 1, . . . , t−1,
there is a distribution µx on {0, 1}k for every x ∈ Σn. Let ν(z) = maxx∈Σn µx(z), the envelope of the
distributions µx(z) for all x. Set N = exp(εn)(1

ε + log 1+ε
εδ ). The mechanism P ∗ simulates round t as

follows:

1. With probability δ/(1 + ε) output fail and abort.
2. Interpret shared randomness as a sequence of N independent random values z1, . . . , zN from {0, 1}k,

where z ∈ {0, 1}k is picked with probability proportional to ν(z).
3. For each i ∈ [N ], Alice uses private randomness to pick ri ∈ [0, ν(zi)] uniformly at random.
4. Let C = {i : ri ≤ µx(zi)}. If C is nonempty, output a random element of C. Else output fail.

Bob, on receiving i 6= fail, interprets it as zi using the shared randomness. In other words, the map πy
maps a message i to zi. To prove the theorem, we need to establish three properties.

1. Low communication. Observe that in round t of P ∗, Alice sends dlog(N + 1)e bits to Bob.

2. Accuracy of simulation. For each z ∈ {0, 1}k,

Pr[(zi = z) ∧ (i ∈ C)] = Pr[zi = z] · Pr[i ∈ C|zi = z] =
ν(z)

ν∗
× µx(z)

ν(z)
=
µx(z)

ν∗
,

where ν∗ =
∑

z maxx∈Σn µx(z) is a normalization factor. It follows that if C is nonempty, {zi : i ∈ C}
is a set of |C| samples from µx. Hence whenever the mechanism does not fail, it respects the
input distribution. By differential privacy of P , ν(z) ≤ exp(εn)µx(z) for every x ∈ Σn. Thus
Pr[i ∈ C] ≥ exp(−εn). This implies that Pr[|C| = 0] ≤ (1 − exp(−εn))N ≤ εδ/(1 + ε). The
probability of outputting fail is thus bounded as δ/(1 + ε) + εδ/(1 + ε) = δ.

3. Privacy. To argue privacy, we first defineXj as a Bernoulli random variable with E[Xj ] = µx(zj)/ν(zj)
and observe that the size of set C is distributed as

∑
j Xj . The probability of outputting i is exactly

Pr
[
P ∗ outputs i

∣∣ x, z1, . . . , zN
]

=
µx(zi)

ν(zi)
E
[
(1 +

∑
j 6=i

Xj)
−1
]
.
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Since N ≥ 1+exp(εn)/ε, it follows that E[
∑

j 6=iXj ] ≥ 1/ε. Lemma C.1 in the Appendix then implies
that

µx(zi)

ν(zi)
(

1 +
∑

j 6=i
µx(zj)
ν(zj)

) ≤ Pr
[
P ∗ outputs i

∣∣ x, z1, . . . , zN
]
≤ exp(ε)

µx(zi)

ν(zi)
(

1 +
∑

j 6=i
µx(zj)
ν(zj)

) .
Since both the numerator and the denominator in the fraction change by at most exp(±ε) when
one moves from x to a neighboring database x′, the likelihood of outputting i changes by at most
exp(±4ε). Thus, if the mechanism does not output fail, it is guaranteed to be 4ε-differentially private.
Since the mechanism fails with probability between δ/(1 + ε) and δ for all x, it follows that it has
5ε-differential privacy.

Repeating this argument for each of the r rounds leads to protocol with communication O(εrn +
r log log 1

εδ ) and that guarantees 5rε-differential privacy.
Finally, note that this protocol required the use of exponentially many bits of public randomness. By

using the standard sampling-based reduction of [New95], we can reduce this to O(log n) bits of public
randomness [New95], which can then be communicated by the protocol. Since the protocol was private
for every choice of public random bits, this process does not affect the privacy guarantee.

4.6 From Low Communication to Privacy

The previous sections show that, loosely speaking, differential privacy implies low communication com-
plexity. In this section we demonstrate the converse: if there exists a protocol for computing a sensitivity-1
function, the function can be approximated in a differentially private manner with error proportional to
the communication and round complexity of the original protocol. The lower bound proven in Section 4.3
suggests that the linear dependency on the communication complexity is best possible, at least without
further restrictions on the functionality, as there are sensitivity-1 functions that can be computed exactly
using communication C but cannot be approximated by any differentially private protocol with error better
than Ω(C).

Our main tool in designing differentially private protocols is the exponential mechanism due McSherry
and Talwar [MT07], whose definition and properties we recall:

Definition 4.13 (Exponential Mechanism). A real-valued score function q(x, r) is defined over the space
of all possible inputs x and outputs r. For given x and privacy parameter ε the exponential mechanism
denoted as Eεq(x) outputs r with probability proportional to exp(−εq(x, r)/2).

McSherry and Talwar prove that for a sensitivity-1 score function, the exponential mechanism satisfies
ε-differential privacy. Moreover, if the number of possible outputs is |R|, the loss in the value of the
score function imposed by the mechanism, q(x, Eεq(x))−minr q(x, r), is dominated as a random variable by
2 log |R|/ε + Exp(1/ε), where Exp(1/ε) is the exponentially distributed random variable with parameter
1/ε. On expectation E[q(x, Eεq(x))]−minr q(x, r) < 4 log |R|/ε.

Given a deterministic protocol for computing the sensitivity-1 function f(x, y) we construct an ε-
differentially-private protocol by sampling messages of the new protocol using the exponential mechanism.
The score function q(x,m), which specifies the exponential mechanism, is defined as the smallest number
of bits one has to flip in the input x to make the protocol output m. More formally,

Theorem 4.14. Let P be a deterministic protocol with communication complexity CC(P ) approximating
a sensitivity-1 function f : Σn × Σn → Z with error bounded by ∆. Then there exists an ε-differentially-
private protocol with the same communication complexity and the number of rounds which computes f with
expected additive error ∆ +O(CC(P )r/ε).
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Proof. Let πi be the transcript up to and including the ith round of the protocol P , and let the protocol
be specified as r functions mi(·, ·), so that the first message of the protocol is m1(x, π0), where π0 is empty,
the second message is m2(y, π1), etc. The protocol approximates f(x, y) with error ∆ in the sense that
|f(x, y)− fA(x, πr)| ≤ ∆ if r is even and |f(x, y)− fB(y, πr)| ≤ ∆ if r is odd for all x, y ∈ Σn.

We define a new differentially private protocol P ∗ by applying the exponential mechanism at each round
to sample from the set of messages consistent with the transcript of the protocol so far. Assume wlog that i
is odd, and letXi ⊂ Σn be Alice’s set of inputs that are consistent with the transcript π∗i−1 under the original
protocol P . In other words, if the jth message in π∗i−1 is µj , it holds that µj = mj(x, π

∗
j−1) for all x ∈ Xi and

odd j < i. If the length of ith message of P is ki bits, let Mi ⊂ {0, 1}ki be the set of all messages that the
protocol P may output for the given transcript, i.e., Mi = {µ ∈ {0, 1}ki : ∃x′ ∈ Xi, s.t. mi(x

′, π∗i−1) = µ}.
Define the score function q : Σn ×Mi → R as

qi(x, µ) = min
mi(x′,π∗i−1)=µ, x′∈Xi

‖x− x′‖1,

which counts the least number of bits one has to flip in x, such that P on that input would have produced
the transcript π∗i−1 and output µ as the ith message.

Let the ith message of the new randomized protocol P ∗(x, y) be the output of the exponential mecha-

nism Eε/br/2cqi (x). To compute the function, if the party receiving the last message of the protocol is Alice,
she finds the closest x′ ∈ Xr to her input x and outputs fA(x′, π∗r ), and similarly for Bob.

To prove the theorem we have to demonstrate the following three properties of the protocol P ∗: (1) It
is well-defined i.e., it always completes; (2) it is ε-differentially private; (3) its additive error is bounded as
in the theorem statement. We address these points in turn.

1. P ∗ is well-defined. Since the ith round of P ∗ is the output of the exponential mechanism, the only
possibility for the protocol’s not completing is for Mi to be empty for some i. By construction it
cannot happen, since for every feasible output µ there is an input x′, which is consistent with µ. As
the sets Xi and Mi never become empty, the protocol never aborts.

2. P ∗ is ε-differentially private. P ∗ consists of sequential ε/br/2c-differentially-private applications of
the exponential mechanism. The total privacy budget consumed by either party is thus at most ε.

3. P ∗ has bounded error. Let ε∗ = ε/br/2c and Ki =
∑i−1

j=1 kj—the length of π∗i−1. We claim that for
the closest to x element x′ ∈ Xi, the distance between x and x′ is dominated as a random variable
by Ki/ε

∗ + Γ(i, 1/ε∗). The proof is by induction on the round number i. For the first round X1

includes all possible inputs, and the distance ‖x′ − x‖ is zero. For subsequent rounds, if x′ is the
closest to x element of Xi, the optimal (minimal) value of the score function qi(x, µ) is ‖x′ − x‖.
Since the exponential mechanism returns a message whose score exceeds the optimal value by less
than ki/ε

∗ + Exp(1/ε∗), it means that there is a corresponding feasible input x′′ ∈ Xi+1, at distance
dominated by the random variable Ki−1/ε

∗+ Γ(i− 1, 1/ε∗) + ki/ε
∗+ Exp(1/ε∗) = Ki/ε

∗+ Γ(i, 1/ε∗).
Finally, when Alice approximates the value of the function by computing fA(x′, π∗r ) for x′ ∈ Xr

closest to her input x, the error of this approximation is dominated by

|f(x, y)− fA(x′, π∗r )| ≤ |f(x, y)− f(x′, y′)|+ |f(x′, y′)− fA(x′, π∗r )|
≤ |x− x′|+ |y − y′|+ ∆ = ∆ + 2Kr/ε

∗ + Γ(r, 1/ε∗),

where y′ is similarly defined value closest to Bob’s input y and consistent with the protocol’s tran-
script. In particular, it means that the expected approximation error is less than ∆ + 2Kr/ε

∗+ r/ε∗.
Since Kr > r and ε < 3rε∗, the expected error of P ∗ is ∆ +O(CC(P )r/ε) as claimed.
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5 Conclusions and Open Problems

We have investigated the limitations of two-party differential privacy and exposed interesting connections
to deterministic extractors for Santha-Vazirani sources and to communication complexity. In our first
result we prove a lower bound on accuracy of approximating the Hamming distance between two vectors—
the classical problem in two-party computations—with two-sided guarantees of differential privacy. The
lower bound on the additive error, which is tight up to a logarithmic factor, is proportional to Ω̃(

√
n)

and matches the recently obtained bound on accuracy of sublinear communication protocols [CR11]. The
connection between differential privacy and communication complexity seems to be a genuine phenomenon,
exemplified by the following results:

— We present bounds on the information cost and the partition bound in terms of the privacy parameter.
The information cost bound, in combination with the message compression technique of Barak et
al. [BBCR10], implies that all differentially private protocols are compressible. Furthermore, using
existing bounds on the information cost of specific communication problems allows us to construct
a function that exhibits the largest possible gap between accuracy of optimal two-party and client-
server differentially private protocols.

— Any deterministic protocol can be converted into a differentially private one with accuracy propor-
tional to its communication complexity and the number of rounds.

There are several immediate open questions left by our work. The most glaring is identifying the largest
accuracy gap possible between two-party and client-server protocols that satisfy approximate differential
privacy. We would also like to strengthen Theorems 4.12 and 4.14 to be independent of the number of
rounds of communication, and extend Theorem 4.14 to randomized protocols.

In addition, there are connections between two-party differential privacy and pan-privacy [DNP+10].
A pan-private algorithm requires not only that its output be differentially private, but also that the
internal state be differentially private as well. In other words, the algorithm must be privacy-preserving
both inside and out. Such algorithms can be viewed as streaming algorithms, where the internal state is
privacy-preserving at each point in time. (For streaming purposes the size of the internal state should also
be kept small.) In [DNP+10], many important and natural statistics, such as density estimation, were
shown to be computable pan-privately and with reasonable accuracy.

Our lower bound on the two-party complexity of the Hamming distance function implies a lower bound
on multi-pass pan-private algorithms for density estimation, as well as for other natural statistics, for a
constant number of passes. (While not defined in [DNP+10], it is also natural to consider multi-pass pan-
private algorithms.) Indeed, by a straightforward reduction, a k-pass pan-private algorithm for density
estimation implies a kε-differentially private two-party protocol for estimating the Hamming distance of
two binary strings, with similar error. We sketch a proof of this observation in Appendix D. What further
limitations for pan-privacy can be obtained?
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A Approximate Differential Privacy and Unpredictable Sources

In this section, we generalize the results of the previous section to approximate differential privacy. We will
do this by showing that approximate differentially private protocols give rise to the following approximate
forms of unpredictable bit sources:

Definition A.1 (δ-approximate (strongly) α-unpredictable bit source). For α ∈ [0, 1], a random variable
X = (X1, . . . , Xn) taking values in {0, 1}n is a δ-approximate α-unpredictable bit source if with probability
at least 1− δ over i← [n] and (x1, . . . , xi−1)← (X1, . . . , Xi−1), we have

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1]

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1]
≤ 1/α.

A random variable X = (X1, . . . , Xn) taking values in {0, 1}n is a δ-approximate strongly α-unpredictable
bit source if with probability at least 1 − δ over i ← [n] and (x1, . . . , xi−1, xi+1, . . . , xn) ← (X1, . . . , Xi−1,
Xi+1, . . . , Xn), we have

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1Xi+1 = xi+1, . . . , Xn = xn]

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn]
≤ 1/α.

Here δ should be thought of as negligible in n, while α remains a constant. Now we relate the
above two definitions (showing that the strong definition implies the other one, albeit with some loss
in parameters), and prove that approximately unpredictable sources are statistically close to standard
unpredictable sources. This will allow us to apply our extractor from the previous section to these sources
as a black box.

Lemma A.2.

1. If X is a δ-approximate strongly α-unpredictable bit source, then for every ν > 0, X is a δ/ν-
approximate α′-unpredictable bit source for

α′ = α · 1− ν
1 + αν

≥ α · 1− ν
1 + ν

.

2. If X is a δ-approximate α-unpredictable bit source, then X is nδ-close to some α-unpredictable bit
source.

Proof. 1. Let

B =

{
(i, x1 . . . xi−1, xi+1 . . . xn) :

Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn]

Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn]
/∈ [α, 1/α]

}
.

We know that Pr[(I,X1 . . . XI−1, XI+1 . . . Xn) ∈ B] ≤ δ, where I is a uniformly random element of
[n]. Let

B′ = {(i, x1 . . . xi−1) : Pr[(i, x1 . . . xi−1, Xi+1 . . . Xn) ∈ B|X1 = x1, . . . , Xi−1 = xi−1] > ν} .

It follows by Markov’s inequality that Pr[(I,X1 . . . XI−1) ∈ B′] ≤ δ/ν.
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Now, for every (i, x1 . . . xi−1) /∈ B′, we have

Pr[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1] ≤ ν + Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1]/α.

Writing p = Pr[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1] and 1 − p = Pr[Xi = 1 | X1 = x1, . . . , Xi−1 =
xi−1], we see that p ≤ (1 + αν)/(1 + α). Similarly, it can be shown that 1 − p ≤ (1 + αν)/(1 + α).
This implies that p/(1− p) and (1− p)/p are both at least

α′ =
1−

(
1+αν
1+α

)
(

1+αν
1+α

) =
α · (1− ν)

1 + αν
.

2. Call a prefix x ∈ {0, 1}<n bad if

Pr[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1]

Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1]
/∈ [1/α, α].

Define X ′ as follows:

(a) Sample x← X.
(b) If x has no bad prefix, output x.
(c) Else let x1 . . . xi be the shortest bad prefix of x. Choose x′i+1, . . . , x

′
n ← {0, 1}. Output

x1 . . . xix
′
i+1 . . . x

′
n.

It can be verified that X ′ is an α-unpredictable bit source. X ′ is nδ-close to X because for each
i ∈ {0, . . . , n− 1}, a random sample x← X has a bad prefix of length i with probability at most δ.

As a first step towards relating approximate differentially private protocols to approximate unpre-
dictable sources, we show that approximate differentially private mechanisms behave like differentially
private ones with high probability, in the following sense:

Lemma A.3. Let M : {0, 1}n → R be a δ-approximate, ε-differentially private mechanism. Then for every
γ > 0, and every x, y ∈ {0, 1}n such that |x− y|H = 1, if we generate m←M(x), then we have

e−(ε+γ) ≤ Pr[M(y) = m]

Pr[M(x) = m]
≤ eε+γ

with probability at least 1− δ′, for

δ′ = δ · 1 + e−ε−γ

1− e−γ
.

Note that for small values of ε, γ > 0, δ′ is roughly 2δ/γ.

Proof. Let S = {m : Pr[M(x) = m] < e−ε−γ · Pr[M(y) = m]}. Then

Pr[M(x) ∈ S] < e−ε−γ · Pr[M(y) ∈ S]

≤ e−ε−γ · (eε · Pr[M(x) ∈ S] + δ)

≤ e−γ · Pr[M(x) ∈ S] + e−ε−γ · δ,

and thus

Pr[M(x) ∈ S] ≤ δ · e
−ε−γ

1− e−γ
.
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Similarly, for T = {m : Pr[M(x) = m] > eε+γ · Pr[M(y) = m]}, we have

Pr[M(x) ∈ T ] ≤ eε · Pr[M(y) ∈ T ] + δ

< eε · e−ε−γ · Pr[M(x) ∈ T ] + δ

= e−γ · Pr[M(x) ∈ T ] + δ,

so

Pr[M(x) ∈ T ] < δ · 1

1− e−γ
,

and the probability that M(x) ends up either in S or T is bounded as

Pr[M(x) ∈ S ∪ T ] < δ · 1 + e−ε−γ

1− e−γ
.

Now we show that approximate differentially private protocols give rise to approximate unpredictable
sources:

Lemma A.4. Let P be a randomized protocol with δ-approximate ε-differential privacy. Let X and Y
be independent random variables uniformly distributed in {0, 1}n, and let random variable Π denote the
transcript of P when run on input (X,Y ). Then for every γ > 0, there are numbers {δπ}π∈Supp(Π) such
that

1. For every π ∈ Supp(Π), the random variables Xπ and Yπ are independent δπ-approximate strongly
e−(ε+γ)-unpredictable bit sources.

2. E[δΠ] ≤ δ′, for

δ′ = 2δ · 1 + e−ε−γ

1− e−γ
.

Proof. For i ∈ [n] and (x, π) ∈ Supp(X,T ), define

ρ(i, x, t) =
Pr[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn,Π = π]

Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn,Π = π]

=
Pr[Π(x1 · · ·xi−10xi+1 · · ·xn, Y ) = π]

Pr[Π(x1 · · ·xi−11xi+1 · · ·xn, Y ) = π]
,

where the equality is by the same calculation in the proof of Lemma 3.3. Let B = {(i, x, π) : ρ(i, x, π) /∈
[e−ε−γ , eε+γ ]}. By Lemma A.3, we have Pr[(i,X,Π) ∈ B] ≤ δ′/2.

Similarly, we can switch the role of X and Y , and define ρ′(i, y, π) for (y, π) ∈ Supp(Y,Π) and a
corresponding set B′. Again we we have Pr[(i, Y,Π) ∈ B′] ≤ δ′/2.

Now, for π ∈ Supp(Π), if we define δπ = max{Pr[(I,Xπ) ∈ B],Pr[(I, Yπ) ∈ B′]}, then Xπ and Yπ are
both δπ-approximate strongly (ε+ γ)-unpredictable bit sources. We have

E[δΠ] ≤ Eπ←Π[Pr[(I,Xπ) ∈ B] + Pr[(I, Yπ) ∈ B′]]
= Pr[(I,X,Π) ∈ B] + Pr[(I, Y,Π) ∈ B′]
≤ δ′/2 + δ′/2,

where the last inequality is by approximate differential privacy and Lemma A.3. (Indeed, it holds even for
each fixed value of i.)
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Finally, we again use the randomness extraction properties of the inner product function to show that
differentially private protocols must incur an error of nearly

√
n.

Theorem A.5. Let P be a randomized protocol with δ-approximate ε-differential privacy. Then for every
δ′ ≥ 48nδ, with probability at least 1 − δ′ over x, y ← {0, 1}n and the coin tosses of P , party B’s output
differs from 〈x, y〉 by at least

∆ = Ω

( √
n

log n
· δ
′

eε

)
.

Notice that the error bound here is the same as in Theorem 3.9, up to the hidden constant and the
constraint δ′ ≥ 48nδ. The latter constraint is very reasonable as we typically think of δ as negligible in n,
i.e., δ = n−ω(1).

Proof. Let X and Y be uniform and independent in {0, 1}n and Π the random transcript on input (X,Y ).
Party B’s output is a function fB(Y,Π). Let m = 6∆/δ, γ = 1 and ν = 1/2.

By Lemmas A.2 and A.4, we know that there are numbers {δπ}π∈Supp(Π) such that

1. for every π ∈ Supp(Π), the random variables Xπ and Yπ are each nδπ/ν-close to an α-unpredictable
bit-source for

α = e−ε−γ · 1− ν
1 + ν

= Ω(eε),

and

2. E[δΠ] ≤ δ′′, for

δ′′ = 2δ · 1 + e−ε−γ

1− e−γ
≤ 8δ.

Setting β = log(1 + α), item 1 and Theorem 3.4 imply that (Yπ, 〈Xπ, Yπ〉 mod m) has statistical distance
at most nδt/ν + δ′/3 from (Yπ, U) where, as in the proof of Theorem 3.9, this follows provided:

∆ ≥ c2 ·
√
n

log n
· δ
′/3

eε+γ

= c3 ·
√
n

log n
· δ
′

eε
,

as guaranteed by the hypothesis of the theorem.
Now we observe that the statistical distance between (Π, Y, 〈X,Y 〉 mod m) and (Π, Y, U) is at most

E[nδΠ/ν + δ′/3] ≤ n · (8δ) · 2 + δ′/3 = 2δ′/3, so the probability of an error at most ∆ is now at most
2δ′/3 + 2∆/m = δ′.

B Missing Lemma from Section 4.1

The following lemma is used in the proof of proposition 4.4.

Lemma B.1. Let X,Y, Z be random variables such that X and Y are independent. Then I(X;Z) ≤
I(X;Z|Y )

Proof.

I(X;Z) = H(X)−H(X|Z)

= H(X|Y )−H(X|Z)

≤ H(X|Y )−H(X|ZY )

= I(X;Z|Y ).

30



Here in the second step we have used the fact that X and Y are independent, and in the third step that
conditioning decreases entropy.

C Expectation of the inverse

In this section, we prove that

Lemma C.1. Let {Xi}Ni=1 be a sequence of independent Bernoulli random variables with E[Xi] = µi and

let µ
def
=
∑

i µi. Then

1

1 + µ
≤ E

[
(1 +

N∑
i=1

Xi)
−1

]
≤ 1

µ
.

Proof. The first inequality follows by applying Jensen’s inequality to the function φ(X) = 1/(1+X), which
is convex for X ≥ 0.

To prove the second inequality, we use a result from [CS72] who gave a formula for negative moments
of random variables. We reproduce the proof of the case we use for completeness. Observe that for every
t, x > 0,

tx

x
=

∫ t

0
ux−1 du.

Setting t = 1 and taking expectations over random x, we get

E
[ 1

X

]
=

∫ 1

0
E
[
uX−1

]
du.

For X = 1 +
∑

iXi, we upper bound

E
[
uX−1

]
=

∏
i

E
[
uXi
]

=
∏
i

(1− (1− u)µi)

≤
∏
i

exp(−(1− u)µi)

= exp(−(1− u)µ).

We conclude that

E
[ 1

X

]
≤ exp(−µ)

∫ 1

0
exp(µu) du =

1− exp(−µ)

µ
<

1

µ
.

D Pan-Privacy and Differentially Private Communication

In this section, we explore the connection between differentially private communication protocols and pan-
private stream algorithms [DNP+10]. Pan-private stream algorithms are stream algorithms where at every
point in time, the internal state of the algorithm is differentially private. A well-known connection between
communication complexity and stream algorithms establishes space lower bounds for stream algorithms
from two-party communciation complexity lower bounds. Similarly, in this section, we will use the same
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connection to establish negative results (on the error) for pan-private stream algorithms from our two-
party differentially private communication complexity lower bounds. Other upper and lower bounds for
pan-private algorithms have been obtained in [DNP+10] and more recently in [MMNW10].

For the notion of pan-privacy, we consider an algorithm A that processes a stream of data items
S = 〈s1, s2, . . . , sm〉 ∈ Σ∗.

Definition D.1. We say streams S, S′ ∈ Σ∗ are Σ-adjacent if they differ only in the presence or absence
of any number of occurrences of a single element σ ∈ Σ.

As the algorithm processes each symbol, it updates its internal state according to some probabilistic
mapping. The idea behind pan-privacy is that an adversary should not be able to distinguish between two
Σ-adjacent streams by inspecting the internal state of the algorithm. The following definition makes this
precise in the context of algorithms that may take multiple passes over the data stream.3

Definition D.2 (Multi-Pass Pan-Privacy). Let A be an algorithm that takes p passes over a finite length
stream S, maintaining an internal state from a state space M during its computation, and outputs a value
out(S) ∈ O. (One pass is defined to be a left-to-right scan over the input.) Let B be an adversary that can
make intrusions during the computation of A (getting to see the internal state of A at time steps chosen
by B). The time steps of the intrusions can be chosen adaptively (chosen based on what B has seen so
far) or non-adaptively (fixed prior to the computation), and announced (A is notified of the intrusions and
can modify its state based on them) or unannounced (the computation of A is oblivious to the intrusions).
Let VIEWB

A(S) denote the view of adversary B when making intrusions to the computation of A on input
stream S, and also seeing the final output of A. (So if B makes t intrusions, then VIEWB

A(S) ∈Mt ×O.)
We say that A is ε-differentially private against B if for every two data streams S, S′ ∈ Σ∗ that are

Σ-adjacent, and every set T of possible views of B, we have

Pr[VIEWB
A(S) ∈ T ] ≤ eε · Pr[VIEWB

A(S′) ∈ T ].

((ε, δ)-differential privacy is defined analogously, allowing an additional additive δ term.)

By exploiting the well-known connection between communication protocols and streaming algorithms,
we deduce the following theorem from our lower bounds for differentially private two-party protocols:

Theorem D.3. Any p-pass estimator for the density F0(S) = |{σ : σ ∈ S}|, that is ε-pan-private for
all adversaries that make 2p − 1 non-adaptive announced intrusions, has error Ω(δe−2ε√n/log n) with
probability 1− δ.

Proof. Let A be a p-pass, ε-pan-private density estimator with error E. Suppose two players Alice and
Bob, with inputs x, y ∈ {0, 1}n respectively, want to estimate the Hamming distance |x− y|H . They may
use the stream algorithm A to construct a communication protocol as follows. Alice generates the stream
Sx = 〈i : xi = 1〉 and Bob generates the stream Sy = 〈i : yi = 1〉. Consider the stream SxSy and note that

F0(SxSy) = |x|H/2 + |y|H/2 + |x− y|H/2 .

Hence, an additive E approximation of F0 yields an additive 2E + O(1/ε) approximation of |x − y|H if
|x|H + |y|H is known up to additive error O(1/ε). To get an approximation of F0(SxSy), Alice runs A on Sx
and transmits the resulting internal state to Bob who instantiates A with this state and continues running

3The corresponding definition for single-pass algorithms in [DNP+10] adds a further condition for pan-privacy. There, the
authors suppose that the algorithm may be designed to output a sequence of values as the stream is processed. In that case,
it is required that this sequence also does not compromise privacy. For the purposes of our lower bounds we may ignore the
output sequence other than the final output.
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the algorithm on Sy. If p > 1, he then sends the new memory state back to Alice and they continue in this
manner until all p passes of the algorithm have been emulated. Note that because A is ε-pan-private, the
resulting transcript is ε-DP. The transcript can be augmented with a O(1/ε) approximation of |x|H and still
be 2ε-DP. However, Theorem 3.9 states that any protocol whose transcript is a 2ε-DP mechanism for the
player’s inputs has error Ω(δe−2ε√n/log n) with probability 1−δ. Hence we deduce E = Ω(δe−2ε√n/log n)
with probability 1− δ.

Note that the special case of p = 1 in the above theorem gives an accuracy lower-bound for only a
single announced intrusion. Also, by using Theorem A.5 instead of Theorem 3.9, we also get a lower bound
for approximate differential privacy.

We now present a result for multi-pass pan-private stream algorithms for the case of two announced in-
trusions. The result follows from the observation that the communication protocols that arise by simulating
stream algorithms have a particular “Markovian” property which we now define.

Definition D.4 (Markovian Communication Protocols). Consider a communication protocol P between
two parties A and B in which the players take turns to send messages back and forth. Suppose there are t
messages and let Mi denote the ith message sent in this protocol: if i is odd then Mi is sent by A and if i
is even then Mi is sent by B. We say the protocol is Markovian if for all i ≥ 2 and messages m1, . . . ,mi

Pr[Mi = mi|M1 = m1,M2 = m2, . . . ,Mi−1 = mi−1] = Pr[Mi = mi|Mi−1 = mi−1] .

The following lemma establishes that if the transcript of a Markovian protocol compromises privacy,
then there exists two successive messages in the protocol that together also compromise privacy.

Lemma D.5. For a t-message Markovian communication protocol P , consider the transcript Π of the
protocol as a mechanism for the input of the players Z = (X,Y ). If Π is not ε-DP then there exists two
successive messages in the protocol Mi and Mi+1 such that (Mi,Mi+1) is not ε/2t-DP.

Proof. If Π is not ε-DP, there exists a sequence of t messages, m1, . . . ,mt, such that for two adjacent inputs
z = (x, y) and z′ = (x′, y′), ∣∣∣∣ln Prz[Π = (m1, . . . ,mt)]

Prz′ [Π = (m1, . . . ,mt)]

∣∣∣∣ > ε .

By the Markov property of the protocol we may write:

Prz[Π = (m1, . . . ,mt)]

Prz′ [Π = (m1, . . . ,mt)]
=

Prz[M1 = m1] ·
∏
i∈[t−1] Prz[Mi+1 = mi+1|Mi = mi]

Prz′ [M1 = m1] ·
∏
i∈[t−1] Prz′ [Mi+1 = mi+1|Mi = mi]

and hence

ε <

∣∣∣∣∣∣ln Prz[M1 = m1]

Prz′ [M1 = m1]
+
∑

i∈[t−1]

ln
Prz[Mi+1 = mi+1|Mi = mi]

Prz′ [Mi+1 = mi+1|Mi = mi]

∣∣∣∣∣∣ .
Consequently, either

∣∣∣ln Prz [M1=m1]
Prz′ [M1=m1]

∣∣∣ > ε/t or there exists i ∈ [t− 1] such that
∣∣∣ln Prz [Mi+1=mi+1|Mi=mi]

Prz′ [Mi+1=mi+1|Mi=mi]

∣∣∣ >
ε/t. Assume

∣∣∣ln Prz [Mi=mi]
Prz′ [Mi=mi]

∣∣∣ ≤ ε/(2t) for all i ∈ [t], otherwise we are done. Therefore,∣∣∣∣ln Prz[Mi = mi,Mi+1 = mi+1]

Prz′ [Mi = mi,Mi+1 = mi+1]

∣∣∣∣ =

∣∣∣∣ln Prz[Mi = mi]

Prz′ [Mi = mi]
+ ln

Prz[Mi+1 = mi+1|Mi = mi]

Prz′ [Mi+1 = mi+1|Mi = mi]

∣∣∣∣ > ε

t
− ε

2t
=

ε

2t
,

as required.
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Note that above lemma is not true for communication protocols that are not Markovian. Consider
an arbitrary t message protocol P that compromises privacy. This can be transformed into a t + k
message protocol Q such that observing any k messages does not compromise the privacy at all: in
message i ∈ [k] of Q the players exchange random strings Ri1, . . . , Rit and the (k + j)th message sent is
Mj ⊕R1j ⊕R2j ⊕ · · · ⊕Rkj .

Theorem D.6. Any p-pass density estimator that is ε-pan-private for all adversaries that make two
announced intrusions, has error Ω(δe−4(2p−1)ε√n/log n) with probability 1− δ.

Proof. The proof follows along similar lines to Theorem D.3 except this time A is a p-pass stream algorithm
that maintains ε-pan-privacy under two announced intrusions. Hence, the emulation of A gives a 2p − 1
message communication protocol such that observing any two of the messages maintains 2ε-DP. Hence, by
Lemma D.5, this implies the entire transcript maintains 4(2p− 1)ε-DP. By appealing to Theorem 3.9, we
conclude that the error is Ω(δe−4(2p−1)ε√n/log n) with probability 1− δ.
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