
On Computational Power of Partially Blind Automata

Pavol Ďurǐs 1

Department of Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University
Mlynská dolina

842 48 Bratislava
Slovakia

Abstract In this paper we deal with 1-way multihead finite automata, in
which the symbol under only one head (called read head) controls its move
and other heads cannot distinguish the input symbols, they can only distin-
guish the end-marker from the other input symbols and they are called the
blind head. We call such automaton a partially blind multihead automaton.
We prove that partially blind k + 1-head finite automata are more powerful
than such k-head finite automata. We show also that nondeterministic par-
tially blind k-head finite automata languages are not closed under iteration
and intersection for any k ≥ 2, and moreover, deterministic partially blind
k head finite automata languages are not closed under intersection, union,
complementation and reversal for any k ≥ 2. Finally we prove that de-
terministic partially blind k-head finite automata with endmarker are more
powerful that such automata without endmarker for each k ≥ 4.

Keywords: computational power, one-way multihead automata, blind head

1This work was supported by Slovak Grant Agency for Science (VEGA) under contract
#1/0726/09 ”Algorithmics and Complexity Aspects of Information Processing”.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 107 (2011)

1 Introduction

Ibarra and Ravikumar in [6] investigate one-way multihead finite automata
(deterministic and also nondeterministic), in which all the heads except one
are unable to distinguish the input symbols; they can only distinguish the
end-marker from the other input symbols and they are called the blind head.
The head that can distinguish the input symbol is called the read head. This
model will be called as a partially multihead blind finite automaton.

The authors in [6] present several basic results concerning the partially
blind multihead finite automata (FA). More particularly, they show the
equivalence and the containment problems are undecidable for the nondeter-
ministic model while they are decidable for the deterministic model. More-
over, they show how to simulate a counter machine by a partially blind
multihead FA and vice-versa (with respect to the number of counters and
heads needed). They also present some results concerning the simulation of
partially blind multihead FA by a 2-way probabilistic finite automaton.

The basic results on the related models of multihead automata (in which
all the heads can recognize the input symbols) and on the multicounter ma-
chines are presented in [3, 8, 1, 5, 2, 4].

Our main aim of this paper is to bring more results on partially blind mul-
tihead finite automata. We prove here that partially blind (k+1)-head finite
automata are more powerful than such k-head finite automata. Similar result
was shown by Yao and Rivest in [9] for one-way read-only multihead finite
automata. Ibarra and Ravikunar present in [6] results on some basic closure
properties (intersection, union and complementation) of family of languages
recognizable by partially blind multihead finite automata (deterministic and
nondeterministic as well). We extend these results by showing (among oth-
ers) that the family of languages recognizable by partially blind nondeter-
ministic automata with k heads are not closed under iteration for any k,
and the family of languages corresponding to such deterministic automata
are not closed under reversal. We also show that there is a NSPACE(log n)-
complete problem that cannot be accepted by any nondeterministic partially
blind multihead finite automaton. Analogical result was presented in [6]
but only for automata with two heads. The problem whether a partially
blind multihead finite automaton can accept a language that is complete for
NSPACE(log n) was addressed also in [6]. Finally we show that determinis-
tic partially blind k-head finite automata with endmarker are more powerful

1

than such automata without endmarker for k ≥ 4. Ibarra and Ravikunar
[6] showed that endmarker does not increase the computational power of
nondeterministic partially blind k-head finite automata for any k ≥ 1.

2 Preliminaries

By |S| we denote cardinality of a set S and by |x| we denote the length of
a word x. In this section we also introduce the basic computational models
from [6].

For k ≥ 1 let k-NFA [let k-DFA] denote nondeterministic [deterministic]
finite automaton with k one-way read-only input heads. We assume that the
input is augmented with the endmarker $.

Let M be a k-NFA where only one head (called the read head) is capable
to distinguish the input symbols, the other k − 1 heads (called the blind
heads) cannot differentiate the input symbols, they can differentiate only an
input symbol from the endmarker. A configuration of M is (k + 1)-tuple
(p1, p2, . . . , pk, q), where pi is the position of the i-th head from the left-end
of the input tape, and q denotes the current state. We assume that the
acceptance is by accepting state with all heads scan the endmarker. The
language accepted by M is denoted by L(M). We call M a partially blind
k-NFA (shortly, k-NPBFA). The deterministic version is called a partially
blind k-DFA (shortly, k-DPBFA). A partially blind multihead-NFA [DFA] is
k-NPBFA [is k-DPBFA] for some k ≥ 1.

By L(k-NPBFA) [by L(k-DPBFA)] we denote the family of languages
accepted by k-NPBFAs [by k-DPBFAs].

3 Results

3.1 k+1 Heads versus k Heads

Yao and Rivest showed in [9] that for every k ≥ 1 there is a language Rk+1

that can be recognized by a (k + 1)-DFA but cannot be recognized by any
k-NFA. Consequently, k + 1 heads are more powerful than k heads for one-
way deterministic as well nondeterministic finite automata. Here we prove
an analogical result for partially blind multihead finite automata.

2

For every k ≥ 2, let

Jk = {w|w = al1
1 al2

2 . . . a
lk+1

k+1#am1
1 am2

2 . . . a
mk+1

k+1 ,

2k(li + mi) = |w| − 1 for 1 ≤ i ≤ k}.

Theorem 1. Let k ≥ 2. Then Jk can be recognized by a (k +1)-DPBFA A,
but cannot be recognized by any k-NPBFA.

Proof. A recognizes w = al1
1 . . . a

lk+1

k+1#am1
1 . . . a

mk+1

k+1 as follows. At the be-
ginning, A moves all its blind heads one input tape cell (for #). Then the
read head traverses w and whenever it enters a tape cell containing ai for
some 1 ≤ i ≤ k, then the read head stays at this tape call for 2k steps during
which the i-th blind head traverses 2k tape cells. If the read head scans ak+1,
then no blind head moves. One can easily observe that w ∈ Jk iff all blind
heads scan $ when the read head enters $.

Now suppose to the contrary, that there would be a k-NPBFA B recog-
nizing Jk. Let Q denote the set of states of B. Choose a positive integer n
large enough and let

Jn
k = {w|w ∈ Jk, |w| = n,w = al1

1 . . . a
lk+1

k+1#am1
1 . . . a

mk+1

k+1 , 2Σk+1
i=1 li = n− 1}.

Thus, the symbol # is in the middle of each w ∈ Jn
k . For each w ∈ Jn

k choose
any accepting computation of B on w and let C(w) be the configuration at
which the read head of B enters # during that computation. It holds

((n− 1)/(2k))k ≤ |Jn
k |, (1)

since for each sequence of integers l1, l2, . . . , lk, where 0 ≤ li ≤ (n − 1)/(2k)
for 1 ≤ i ≤ k, there is a word w ∈ Jn

k with such values l1, l2, . . . , lk. On
the other hand, |{C(w)|w ∈ Jn

k }| ≤ |Q|(n + 1)k−1), where |w| = n, since
the position of each blind head of B is between 1 and |w| + 1 = n + 1,
and the read head of B reads # in the middle of w, when B is in any
configuration C(w). Clearly, |Q|(n + 1)k−1 < ((n − 1)/(2k))k for n large
enough, and hence, by(1), there are two different words w = w1#w2 and
w′ = w′

1#w′
2 in Jn

k with C(w) = C(w′). It means that B has to accept also
w̃ = w1#w′

2, since B can behave by the same way on w and on w̃ during
the computation from the initial configuration to the configuration C(w);

3

note that during such computation the read head traverses in both cases
the same string w1. Similarly, B can behave by the same way on w′ and
on w̃ during the computation from the configuration C(w′) = C(w) to an
accepting configuration; note that during such computation the read head
traverses in both cases the same string w′

2. But w̃ /∈ Jk, since w1 6= w′
1 or

w2 6= w′
2 (recall w 6= w′), and moreover, one can easily observe that for each

word v1 [for each word v2] there is at most one word v2 [there is at most one
word v1] width |v1| = |v2| such that v = v1#v2 ∈ Jk . Hence B cannot accept
Jk - a contradiction. 2

Theorem 2. For every k ≥ 1 the following holds.
(a) L((k + 1)-DPBFA)⊂ L(k-DPBFA),
(b) L((k + 1)-NPBFA)⊂ L(k-NPBFA).

Proof. Theorem 1 yields the proof. 2

3.2 Closure Properties

The following two Theorems were proved in [6].

Theorem 3 [6]. The family of languages accepted by partially blind mul-
tihead NFAs is closed under union and intersection, but not closed under
complementation.

Theorem 4 [6]. The family of languages accepted by partially blind multi-
head DFAs is closed under union, intersection and complementation.

We prove here the following related results.

Theorem 5. Neither L(k-NPBFA) nor L(k-DPBFA) is closed under inter-
section for any k ≥ 2.

Proof. Let us prove Theorem only for L(k-NPBFA). (The proof for L(k-
DPBFA) is similar.) Suppose to the contrary that L(k-NPBFA) is closed
under intersection for some k ≥ 2. For every j, 1 ≤ j ≤ k, let

Pj,k = {w|w = al1
1 al2

2 . . . a
lk+1

k+1#am1
1 am2

2 . . . a
mk+1

k+1 , 2k(lj + mj) = |w| − 1}.
Clearly, Pj,k ∈ L(2-DPBFA) ⊆ L(k-DPBFA) ⊆ L(k-NPBFA) for every 1 ≤
j ≤ k, (see the proof of Theorem 1). By the assumption above, L(k-NPBFA)

4

is closed under intersection. Hence,
⋂k

j=1 Pj,k should belong in L(k-NPBFA).

But it contradicts Theorem 1, since
⋂k

j=1 Pj,k = Jk. 2

Theorem 6. L(k-DPBFA) is not closed under union for any k ≥ 2.

Proof. One can easy observe that L(k-DPBFA) is closed under complemen-
tation. If L(k-DPBFA) were closed under union, then it should be closed
also under intersection (because of De Morgan’s laws), but this contradicts
Theorem 5. 2

Theorem 7. L(k-NPBFA) is not closed under iteration for any k ≥ 2.

Proof. Clearly, the language L = {albl|l ≥ 0} can be recognized by a 2-
DPBFA A. Suppose to the contrary that there would be a k-NPBFA B
for some k with the set Q of states recognizing L∗. Let us consider a word
w ∈ L∗ of the form w = u1u2 . . . uk, where ui = ambm . . . ambm = (ambm)d for
1 ≤ i ≤ k,

d = 2m(2(k − 1)(2km + 1))k−1, (2)

and m = |Q| + 1. Let us choose any accepting computation α of B on
w. Clearly, there is an index j such that no blind head enters $ while the
read head traverses the j-th substring uj during α, since B has only k − 1
blind heads but w has k ui’s. Now mark each substring am of uj having the
following property: No blind head of B traverses more than 2(k−1)(2km+1)
input tape cells while the read head of B traverses (during α) the marked
substring am. The number of all unmarked substrings am of uj is at most d/2,
since k − 1 blind heads cannot traverse altogether more than (k − 1)|w$| =
(k − 1)(2kmd + 1) < (2(k − 1)(2km + 1))d/2 input tape cells during α over
the unmarked substrings am of uj. Thus, the number of marked strings am

of uj is at least d/2.
Let h0(t) [let hi(t)] be the position of the read [of the i-th blind] head of

B at the step t of α for 1 ≤ i ≤ k−1. For each marked substring am of uj, let
us choose any two steps t1 < t2 of α such that the read head of B still scans
that marked substring am at t1 and also at t2, h0(t1) < h0(t2), and moreover,
B is in the same state at these two steps t1 and t2. (Since m = |Q| + 1,
see above, there are such t1, t2.) Clearly, 1 ≤ h0(t2) − h0(t1) ≤ m − 1
and 0 ≤ hi(t2) − hi(t1) ≤ 2(k − 1)(2km + 1) − 1 for 1 ≤ i ≤ k − 1. This
means together with (2) that there are two marked substrings am of uj -
one with chosen two steps τ1 < τ2 and the second one with chosen two

5

steps τ ′1 < τ ′2 such that 1 ≤ h0(τ2) − h0(τ1) = h0(τ
′
2) − h0(τ

′
1) ≤ m − 1

and 0 ≤ hi(τ2) − hi(τ1) = hi(τ
′
2) − hi(τ

′
1) ≤ 2(k − 1)(2km + 1) − 1 for

1 ≤ i ≤ k − 1. Now let us modify the input w ∈ L∗ mentioned above as
follows. Replace the marked substring am with the chosen two steps τ1 and
τ2 by the string am−(h0(τ2)−h0(τ1)), and similarly, replace the marked substring
am with the chosen two steps τ ′1 and τ ′2 by the string am+(h0(τ ′2)−h0(τ ′1)). The
resulting string denote by w′. Clearly, w′ /∈ L∗, but w′ is accepted by B via
the accepting computation α′ obtained from α by deleting the computation
corresponding to the steps τ1 +1, τ1 +2 . . . , τ2, and inserting to α (between τ ′2
and τ ′2 + 1) the computation corresponding to the steps τ ′1 + 1, τ ′1 + 2, . . . , τ ′2.
2

Let

L1 = {b0j1l#x|x ∈ {0, 1}∗, 1 ≤ j ≤ |x|, b ∈ {0, 1},
l ≥ 1, (|x| − j + 1)-st bit of x is b}.

Lemma 1. L1 can be recognized by a 2-DPBFA A.

Proof. First, A stores the bit b in its finite memory. Then, while the read
head of A traverses 0j, the blind head of A moves two times faster, and
after the read head enters the leftmost symbol 1 (between b and #), both
heads moves one input tape cell per one step until the blind head enters the
endmarker $. Clearly, at this time the read head scans the (|x| − j + 1)-st
symbol of x and thus, A can compare it to the stored value b. Hence, A can
recognize L1. 2

Lemma 2. Reverse of L1 cannot be recognized by any k-DPBFA for any k.

Proof. Suppose to the contrary that reverse of L1 can be recognized by a
k-DPBFA B for some k. Let Q denote the set of states of B. Choose any
positive integer m such that

|Q|(2m + 3)k−1 < 2m. (3)

Let us consider the language

Srev = {y#1m−10b|y ∈ {0, 1}m, b ∈ {0, 1}, the leftmost bit of y is b}.
B has to accept each w ∈ Srev, since Srev is a subset of reverse of L1. For
each word w ∈ Srev, let C(w) be the configuration at which the read head of

6

B enters # during the accepting computation of B on w. Since |w| = 2m+2
for each w ∈ Srev, the position of each blind head of B is between 1 and
|w| + 1 = 2m + 3 when the reading head enters # of any word w ∈ Srev.
Hence,

|{C(w)|w ∈ Srev}| ≤ |Q|(2m + 3)k−1. (4)

By (3), (4) and by the fact that 2m = |Srev|, we have that there are two
different words w = y#1m−10b and w′ = y′#1m−10b′ in Srev with C(w) =
C(w′).

Since y, y′ ∈ {0, 1}m and y 6= y′, there is an index i such that the i-th
symbol of y and the i-th symbol of y′ are different. W.l.o.g. we assume that
the i-th symbol of y is 0 and the i-th symbol of y′ is 1. Let w̄ = y#1m−i0ib
and ŵ = y′#1m−i0ib, where b = 0 = i-th symbol of y. One can easily observe
that w̄ is in reverse of L1, but ŵ is not in reverse of L1.

Let α [let α′] denote the computation of B on w [on w′] from the initial
configuration C0 to the configuration C(w) [to the configuration C(w′)], i.e.
when the reading head of B enters the symbol # of w [of w′], (see above).
Since w and w̄ have the same prefix y#, B can perform the computation α
also on w̄. By the same reason, B can perform the computation α′ also on
ŵ. Let β denote the computation of B on w̄ from the configuration C(w) to
an accepting configuration Cacc; there is such computation, since B has to
accept w̄ in reverse of L1, (see above). Since w̄ and ŵ have the same suffix
#1m−i0i, B can perform the computation β also on ŵ. Thus, by joining
the computations α′ and β, (recall C(w) = C(w′), see above), we get an
accepting computation of B on ŵ, - a contradiction, since ŵ is not in reverse
of L1, (see above). Hence, B cannot accept reverse of L1. 2

Theorem 8. L(k-DPBFA) is not closed under reversal for any k ≥ 2.

Proof. The proof follows from Lemmas 1 and 2. 2

3.3 NSPACE(log n)- Complete Problems

The following interesting question is mentioned in [6]: Is there a language
that is complete for NSPACE(log n) that can be accepted by a partially blind

7

multihead-NFA? It was shown in [7] that

L2 = {x#w1#w2# . . . #wk| there exist indices i1 < i2 < · · · < ir

such that x = wi1wi2 . . . wir}

is complete for NSPACE(log n). Moreover, it was proved in [6] that the
language L2 cannot be accepted by any partially blind 2-NFA. We prove
here the following more general result.

Theorem 9. The language L2 cannot be accepted by any k-NPBFA for any
k ≥ 1.

Proof. Assume to the contrary that there is a k-NPBFA A accepting L2 for
some k ≥ 1. Let Q denote the set of states of A. Choose any positive integer
n such that

|Q|(2n + 2)k−1 < 2n. (5)

Consider the language Sn = {w|w = v#v, v ∈ {0, 1}n}. Since A accepts
L2, and clearly, Sn ⊆ L2, then A has to accept also each w ∈ Sn. For each
w ∈ Sn choose any accepting computation of A on w, and let C(w) be the
configuration at which the read head of A enters # during that accepting
computation. Since |w| = 2n + 1 for each w ∈ Sn, then |{C(w)|w ∈ Sn}| ≤
|Q|(2n + 2)k−1 < 2n = |Sn|, by (5). Thus, there are two different words
w = v#v and w′ = v′#v′ in Sn with C(w) = C(w′). It means that A has
to accept also w̄ = v#v′ since A can behave by the same way on w and on
w̄ during the computation from the initial configuration to the configuration
C(w); note that during such computation the read head traverses in both
cases the same string v#. Similarly, A can behave by the same way on w′

and on w̄ during the computation from the configuration C(w′) = C(w) to
an accepting configuration; note that during such computation the read head
traverses in both cases the same string #v′. But w̄ /∈ L2, since clearly, v 6= v′.
Hence, A cannot accept L2 - a contradiction. 2

3.4 Power of Endmarker

In this section, we consider k-DPBFA without endmarker. This model is
very similar to k-DPBFA mentioned above with the exception that the input
is not augmented with the endmarker. Thus, we assume in such a case

8

that acceptance is by accepting state with all heads falling off the input
tape. More particularly, an input w is accepted by a k-DPBFA M without
enmarker, if there is an computation of M on w from the initial configuration
(1, 1, . . . , 1, q0) to an accepting configuration (n+1, n+1, . . . , n+1, f), where
n = |w|, q0 is the start state and f is an accepting state. Similarly, we can
consider also the nondeterministic version of the model without enmarker.

It was shown in [6] that partially blind k-NFAs with endmarker are equiv-
alent to partially blind k-NFAs without endmarker for every k ≥ 1. Here we
prove that partially blind k-DFAs with endmarker are more powerful than
partially blind k-DFAs without endmarker for every k ≥ 4. To do so we need
the following two Lemmas.

Let

L3 = {x#y|x, y ∈ {0, 1}∗, j = d|x#y|/5e, |x| ≥ j, |y| ≥ j,

j-th bit of x is j-th bit of y}.

Lemma 3. L3 can be recognized by a 4-DPBFA A with the endmarker.

Proof. The read head of A can find the j-th bit of x as follows. While the
read head of A traverses x, the first blind head of A moves five times faster
until it reaches the end marker $ - at this time the read head scans the j-th
bit of x, and A stores it in its finite memory. During this process the second
blind head of A moves by the same way as the read head and the third blind
head of A does not move. Thus, when the read head scans the j-th bit of x,
the difference between the position of the second and the third blind head
is exactly j − 1. Then the second blind head moves to the end marker $
and the third blind head moves by the same way as the second blind head.
Hence, when the second blind head enters $, then the distance of the third
blind head from $ is j − 1. When the second blind head enters $, the read
head moves just after #. Next, the read head and the third blind head move
by the same way until the third blind head enters $. At this time the read
head scans the j-th bit of y, and thus, A can compare it to the stored j-th
bit of x, (see above). Hence, A can recognize L3. 2

Lemma 4. L3 cannot be recognized by any k-DPBFA without the end-
marker for any k.

Proof. Suppose to the contrary that L3 can be recognized by a k-DPBFA
B without enmarker for some k. Let Q denote the set of states of B. Choose

9

any positive integer m such that

|Q|(5m + 2)k−1 < 2m. (6)

For each z ∈ {0, 1}m let us construct a word w ∈ L3 of the form w =
0mz#v3m, where v is the leftmost bit of z. Thus, j = d|0mz#v3m|/5e=d(5m+
1)/5e = m + 1, and hence w = 0mz#v3m ∈ L3. For each constructed word
w, let C(w) be the configuration at which the read head of B enters #
during the accepting computation of B on w. Since |w| = 5m + 1 for each
constructed word w, then the position of each blind head of B is between 1
and |w| + 1 = 5m + 2 when the reading head enters # of any constructed
word w. Hence,

|{C(w)|w is constructed for some z ∈ {0, 1}m}| ≤ |Q|(5m + 2)k−1. (7)

By (6), (7) and by the fact that 2m = |{0, 1}m|, we have that there are two
different constructed words w = 0mz#v3m and w′ = 0mz′#v′3m in L3 with
C(w) = C(w′). Since z, z′ ∈ {0, 1}m and z 6= z′, there is an index i such
that the i-th symbol of z and the i-th symbol of z′ are different. W.l.o.g.
we assume that the i-th symbol of z is 0 and the i-th symbol of z′ is 1.
Let w̄ = 0mz#0h and ŵ = 0mz′#0h, where m + i = d|0mz#0h|/5e for some
h. One can easily observe (using the fact that m + 1 ≤ m + i ≤ 2m) that
3m ≤ h ≤ 8m− 1. Thus, w̄ ∈ L3 (since (m + i)-th symbol of the word 0mz
and of the word 0h is 0), but ŵ /∈ L3 (since (m + i)-th symbol of the word
0mz′ is 1). Moreover, |w′| = |w| ≤ |w̄| = |ŵ|, since 3m ≤ h, see above.

Let α [let α′] denote the computation of B on w [on w′] from the initial
configuration C0 to the configuration C(w) [to the configuration C(w′)], i.e.
when the read head of B enters the symbol # of w [of w′], (see above).
Since w and w̄ have the same prefix 0mz#, and the read head of B traverses
that prefix during α, and |w| ≤ |w̄|, (see above), then B can perform the
computation α also on w̄. Similarly, B can perform the computation α′ also
on ŵ. Let β denote the computation of B on w̄ from the configuration C(w)
to an accepting configuration Cacc; there is such computation, since B has to
accept w̄ ∈ L3, (see above). Since w̄ and ŵ have the same suffix #0h, B can
perform the computation β also on ŵ. Thus, by joining the computations α′

and β, (recall C(w) = C(w′), see above), we get an accepting computation
of B on ŵ, - a contradiction, since ŵ /∈ L3, (see above). Hence, B cannot
accept L3. 2

10

Theorem 10. Partially blind k-DFAs with endmarker are more powerful
than partially blind k-DFAs without endmarker for every k ≥ 4.

Proof. The proof follows from Lemmas 3 and 4. 2

References

[1] Baker, B., Book, R.: Reversal-bounded multipushdown machines. Jour-
nal of Computer and System Sciences, 8(1974), 315-332.

[2] Greibach, S.: Remarks on the complexity of nondeterministic counter
languages, Theoretical Computer Science, 1(1976), 269-288.

[3] Harrison, M., Ibarra, O.: Multi-tape and multi-heads pushdown au-
tomata. Information and Control, 13(1968), 433-470.

[4] Hopcroft, J., Ullman, J.: Introduction to Automata, Formal Languages
and Theory of Computation, Addision-Wesley, Inc. Reading, MA (1979).

[5] Ibarra, O.: Reversal -bounded counter machines and their decision prob-
lems, Journal of the ACM, 25(1), (1978).

[6] Ibarra, O., Ravikumar, B.: On partially blind multihead finite automata,
Theoretical Computer Science, 365(1), (2006), 190-199.

[7] Jenner, B.: Knapsack problems for NL, Information Processing Letters,
54(3), (1995), 169-174.

[8] Sudborough, I.: A note on tape-bounded complexity clases and linear
contex-free languages, Journal of the ACM, 22(4), (1975), 499-500.

[9] Yao, A., Rivest, R.: k+1 heads are better than k, Journal of the ACM,
25(2), (1978), 337-340.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

