Electronic Colloquium on Computational Complexity, Report No. 109 (2011)

Efficient Fully Homomorphic Encryption from (Standard) LWE

Zvika Brakerski* Vinod Vaikuntanathan®

Abstract

We present a fully homomorphic encryption scheme that is based solely on the (standard)
learning with errors (LWE) assumption. Applying known results on LWE, the security of our
scheme is based on the worst-case hardness of “short vector problems” on arbitrary lattices.

Our construction improves on previous works in two aspects:

1. We show that “somewhat homomorphic” encryption can be based on LWE, using a new re-
linearization technique. In contrast, all previous schemes relied on complexity assumptions
related to ideals in various rings.

2. We deviate from the “squashing paradigm” used in all previous works. We introduce a
new dimension-modulus reduction technique, which shortens the ciphertexts and reduces
the decryption complexity of our scheme, without introducing additional assumptions.

Our scheme has very short ciphertexts and we therefore use it to construct an asymptotically
efficient LWE-based single-server private information retrieval (PIR) protocol. The communi-
cation complexity of our protocol (in the public-key model) is k - polylog(k) + log |DB| bits per
single-bit query (here, k is a security parameter).

*Weizmann Institute of Science. Email: zvika.brakerski@weizmann.ac.il. The author’s research was supported
by ISF grant 710267, BSF grant 710613, and NSF contracts CCF-1018064 and CCF-0729011.
TUniversity of Toronto. Email: vinodv@cs.toronto.edu.

ISSN 1433-8092

1 Introduction

Fully-homomorphic encryption is one of the holy grails of modern cryptography. In a nutshell, a
fully homomorphic encryption scheme is an encryption scheme that allows evaluation of arbitrar-
ily complex programs on encrypted data. The problem was suggested by Rivest, Adleman and
Dertouzos [RAD78] back in 1978, yet the first plausible candidate came thirty years later with
Gentry’s breakthrough work in 2009 [Gen09b, Gen10] (although, there has been partial progress in
the meanwhile [GM82, Pai99, BGN05, IP07]).

Gentry’s work showed for the first time that fully homomorphic encryption can be based on cryp-
tographic assumptions. However, his solution involved new and relatively untested cryptographic
assumptions. Our work aims to put fully homomorphic encryption on standard, well-studied cryp-
tographic assumptions.

The main building block in Gentry’s construction (a so-called “somewhat” homomorphic en-
cryption scheme) was based on the (worst-case, quantum) hardness of problems on ideal lattices. !
Although lattices have become standard fare in cryptography and lattice problems have been rela-
tively well-studied, ideal lattices are a special breed that we know relatively little about. Ideals are
a natural mathematical object to use to build fully homomorphic encryption in that they natively
support both addition and multiplication (whereas lattices are closed under addition only). Indeed,
all subsequent constructions of fully homomorphic encryption [SV10, DGHV10, BV11] relied on
ideals in various rings in an explicit way. Our first contribution is the construction of a “somewhat”
homomorphic encryption scheme whose security relies solely on the (worst-case, classical) hardness
of standard problems on arbitrary (not necessarily ideal) lattices.

Secondly, in order to achieve full homomorphism, Gentry had to go through a so-called “squash-
ing step” which forced him to make an additional very strong hardness assumption — namely, the
hardness of the (average-case) sparse subset-sum problem. As if by a strange law of nature, all the
subsequent solutions encountered the same difficulty as Gentry did in going from a “somewhat”
to a fully homomorphic encryption, and they all countered this difficulty by relying on the same
sparse subset-sum assumption. This additional assumption was considered to be the main caveat
of Gentry’s solution and removing it has been, perhaps, the main open problem in the design of
fully homomorphic encryption schemes. Our second contribution is to remove the necessity of this
additional assumption.

Thus, in a nutshell, we construct a fully homomorphic encryption scheme whose security is based
solely on the classical hardness of solving standard lattice problems in the worst-case.? Specifically,
out scheme is based on the learning with errors (LWE) assumption that is known to be at least
as hard as solving hard problems in general lattices. Thus our solution does not rely on lattices
directly and is fairly natural to understand and implement.

To achieve our goals, we deviate from two paradigms that ruled the design of (a handful of)
candidate fully homomorphic encryption schemes [Gen09b, SV10, DGHV10, BV11]:

1. We introduce the re-linearization technique, and show how to use it to obtain a somewhat
homomorphic encryption that does not require hardness assumptions on ideals.

'Roughly speaking, ideal lattices correspond to a geometric embedding of an ideal in a number field. See [LPR10]
for a precise definition.

2Strictly speaking, under this assumption, our scheme can evaluate polynomial-size circuits with a-priori bounded
(but arbitrary) depth. A fully homomorphic encryption scheme independent of the circuit depth can be obtained by
making an additional “circular security” assumption. See Section 3.

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.

Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is
a desirable property which we use, in conjunction with other techniques, to achieve very efficient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations®
bootstrappable).* Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some z in the ring). Observe right
off the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI — m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c1 and c¢g be encryptions of m; and my respectively,

are already quite hard to come by (even without requiring that they are

cicg = (m1 4+ zI)(ma + yl) = mima + (m1y + mox + xzyl)I = mymg + 21

When decrypting, the ideal is annihilated and the product mims survives. Thus, c;cs is indeed an
encryption of mimao, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a different
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s € Zq is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coefficients of s are computationally indistinguishable from uniformly random elements in Z,.
Mathematically,

{ai, <al-, S> + 61}5;)11}7(”) é {ai, Uz}fzdly(n))

3 All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

where a; € ZZ and u; € Zy are uniformly random, and the “noise” e; is sampled from a noise distri-
bution that outputs numbers much smaller than ¢ (an example is a discrete Gaussian distribution
over Zg with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable effort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.> The
LWE assumption also turns out to be particularly amenable to the construction of simple, efficient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABBI10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m € {0, 1} using secret key s € Zy, we choose a random
vector a € Z; and a “noise” e and output the ciphertext

¢ = (a,b={(a,s)+2e+m) € Zy x Ly

The key observation in decryption is that the two “masks” — namely, the secret mask (a,s) and
the “even mask” 2e — do not interfere with each other.® That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask (a,s) and subtracts it from b, resulting in 2e + m (mod ¢). Since e < ¢, then 2e +m
(mod q) = 2e +m. Removing the even mask is now easy — simply compute 2e + m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a,b), consider
the symbolic linear function fap : Zy — Zg defined as:

n

fap(x) =b—(a,x) (modgq)=>b-) ali] - x[i €7,
i=1
where x = (x[1],...,x[n]) denotes the variables, and (a, b) forms the public coefficients of the linear
equation. Clearly, decryption of the ciphertext (a,b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).%

®The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus g).
For smaller errors, as we will encounter in our scheme, there are better — but not significantly better — algorithms.
In particular, if the error is a 1/2”6 fraction of the modulus ¢, the best known algorithm runs in time approx. on' e

5We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as ¢ is odd (since in that case 2 is a unit in Z,).

"Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret
mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

Homomorphic addition and multiplication can now be described in terms of this function f.
Adding two ciphertexts corresponds to the addition of two linear functions, which is again another
linear function. In particular, fiata’pi)(X) = fap(X) + f(ap)(x) is the linear function correspond-
ing to the “homomorphically added” 01phertext (a+a’',b+). Similarly, multiplying two such
ciphertexts corresponds to a symbolic multiplication of these linear equations

fan) (%) farpy(x) = (b= alix[i])- (o = a'lijx[i
= ho+ Z h; - x[i] + Z hij - x[i]x[j] ,

which results in a degree-2 polynomial in the variables x = (x[1],...,x[n]), with coefficients h; ;
that can be computed from (a,b) and (a’,b’) by opening parenthesis of the expression above.
Decryption, as before, involves evaluating this quadratic expression on the secret key s (and then
reducing modulo 2). We now run into a serious problem — the decryption algorithm has to know
all the coefficients of this quadratic polynomial, which means that the size of the ciphertext just
went up from n + 1 elements to (roughly) n?/2.

This is where our re-linearization technique comes into play. Re-linearization is a way to reduce
the size of the ciphertext back down to n + 1. The main idea is the following: imagine that we
publish “encryptions” of all the linear and quadratic terms in the secret key s, namely all the
numbers s[i] as well as s[i|s[j], under a new secret key t. Thus, these ciphertexts (for the quadratic
terms) look like (a; j, b; ;) where

bij = (aij,t) + 2e;; + sli] - s[j] = (ai, t) + si] - s[5] .7

Now, the sum ho + > h; - s[i] + Y h; j - s[i|s[j] can be written (approximately) as

ho + > hi(bi — (ay, t +Zh,] i — (@i, b)),

which, lo and behold, is a linear function in t! The bottom-line is that multiplying the two linear
functions f(ap) and f(a) and then re-linearizing the resulting expression results in a linear function
(with n+1 coefficients), whose evaluation on the new secret key t results in the product of the two
original messages (upon reducing modulo 2). The resulting ciphertext is simply the coefficients of
this linear function, of which there are at most n + 1. This ciphertext will decrypt to m - m’ using
the secret key t.

In this semi-formal description, we ignored an important detail which has to do with the fact
that the coefficients h; j are potentially large. Thus, even though (b;; — (a;;,t)) ~ s[i]s[j], it may
be the case that h;; - (b;; — (a;j,t)) % hsj - s[i|s[j]. This is handled by considering the binary
representation of h;;, namely h;; = Zyi%‘ﬂ 27 - h;jr. If, for each value of 7, we had a pair
(amﬁ, bi,j,ﬂ') such that

bijr = (Qijr,t) +2e . +27s[i] - s[j] = (a; -, t) +27s]i] - s[j] ,
then indeed

[log q] [log q]
hij - sli Z hijr27slils[] ~ Y b (bijr — (aijrt)
=0
9 Actually, calling these “encryptions” is inaccurate: s[i] -s[j] € Zq is not a single bit and therefore the “ciphertext”

cannot be decrypted. However, we feel that thinking of these as encryptions may benefit the reader’s intuition.

since h; j» € {0,1}. This increases the number of pairs we need to post by a factor of (|loggq|+ 1),
which is polynomial.

This process allows us to do one multiplication without increasing the size of the ciphertext,
and obtain an encryption of the product under a new secret key. But why stop at two keys s and t?
Posting a “chain” of L secret keys (together with encryptions of quadratic terms of one secret key
using the next secret key) allows us to perform up to L levels of multiplications without blowing
up the ciphertext size. It is possible to achieve multiplicative depth L = elogn (which corresponds
to a degree D = n® polynomial) for an arbitrary constant ¢ < 1 under reasonable assumptions,
but beyond that, the growth of the error in the ciphertext kicks in, and destroys the ciphertext.
Handling this requires us to use the machinery of bootstrapping, which we explain in the next
section.

In conclusion, the above technique allows us to remove the need for “ideal assumptions” and
obtain somewhat homomorphic encryption from LWE. This scheme will be a building block towards
our full construction and is formally presented in Section 4.1.

1.2 Dimension-Modulus Reduction: Fully Homomorphic Encryption Without
Squashing

As explained above, the “bootstrapping” method for achieving full homomorphism requires a C-
homomorphic scheme whose decryption circuit resides in C. All prior somewhat homomorphic
schemes fell short in this category and failed to achieve this requirement in a natural way. Thus
Gentry, followed by all other previous schemes, resorted to “squashing”: a method for reducing
the decryption complexity at the expense of making an additional and fairly strong assumption,
namely the sparse subset sum assumption.

We show how to “upgrade” our somewhat homomorphic scheme (explained in Section 1.1) into
a scheme that enjoys the same amount of homomorphism but has a much smaller decryption circuit.
All of this, without making any additional assumption (beyond LWE)!

Our starting point is the somewhat homomorphic scheme from Section 1.1. Recall that a
ciphertext in that scheme is of the form (a,b = (a,s) + 2e +m) € Zy x Z,, and decryption is done
by computing (b — (a,s) mod ¢) (mod 2). One can verify that this computation, presented as a
polynomial in the bits of s, has degree at least max(n, log ¢), which is more than the maximal degree
D that our scheme can homomorphically evaluate. The bottom line is that decryption complexity
is governed by (n,logq) which are too big for our homomorphism capabilities.

Our dimension-modulus reduction idea enbales us to take a ciphertext with parameters (n,log q)
as above, and convert it into a ciphertext of the same message, but with parameters (k,log p) which
are much smaller than (n,logq). To give a hint as to the magnitude of improvement, we typically
set k to be of size the security parameter and p = poly(k). We can then set n = k¢ for essentially
any constant ¢, and ¢ = 2"°. We will thus be able to homomorphically evaluate functions of degree
roughly D = n® = k%€ and we can choose ¢ to be large enough so that this is sufficient to evaluate
the (k,logp) decryption circuit.

To understand dimension-modulus reduction technically, we go back to re-linearization. We
showed above that, posting proper public parameters, one can convert a ciphertext (a,b = (a,s) +
2e + m), that corresponds to a secret key s, into a ciphertext (a’,b’ = (a’,t) + 2¢/ + m) that
corresponds to a secret key t.19 The crucial observation is that s and t need not have the same

1071 the previous section, we applied re-linearization to a quadratic function of s, while here we apply it to the

dimension n. Specifically, if we chose t to be of dimension k, the procedure still works. This brings
us down from (n,logq) to (k,logq), which is a big step but still not sufficient.

Having the above observation in mind, we wonder if we can take t to have not only low dimension
but also small modulus p, thus completing the transition from (n,logq) to (k,logp). This is indeed
possible using some additional ideas, where the underlying intuition is that Z, can “approximate”
Z4 by simple scaling, up to a small error.

The public parameters for the transition from s to t will be (a; -, b; ;) € Z]; X Ly, where

biﬂ- = <ai77,t> + e+ \‘p A S[Z]“ A1
q

Namely, we scale 27 - s[i] € Z, into an element in Z, by multiplying by p/q and rounding. The
rounding incurs an additional error of magnitude at most 1/2. It follows that
27 sl = = (bir — (air,t)),

which enables converting a linear equation in s into a linear equation in t. The result of dimension-
modulus reduction, therefore, is a ciphertext (a,b) € Z]; X Zy such that b— (a,t) = m + 2é. For
security, we need to assume the hardness of LWE with parameters k,p. We can show that in the
parameter range we use, this assumption is as hard as the one used for the somewhat homomorphic
scheme.?

In conclusion, dimension-modulus reduction allows us to achieve a bootstrappable scheme, based
on the LWE assumption alone. We refer the reader to Section 4 for the formal presentation and full
analysis of our entire solution. Specifically, dimension-modulus reduction is used for the scheme in
Section 4.2.

As a nice byproduct of this technique, the ciphertexts of the resulting fully homomorphic scheme
become very short! They now consist of (k+ 1)logp = O(klog k) bits. This is a desirable property
which is also helpful in achieving efficient private information retrieval protocols (see below).

1.3 Near-Optimal Private Information Retrieval

In (single-server) private information retrieval (PIR) protocols, a very large database is maintained
by a sender (the sender is also sometimes called the server, or the database). A receiver wishes
to obtain a specific entry in the database, without revealing any information about the entry
to the server. Typically, we consider databases that are exponential in the security parameter
and hence we wish that the receiver’s running time and communication complexity are polylog-
arithmic in the size of the database N (at least log N bits are required to specify an entry in
the database). The first polylogarithmic candidate protocol was presented by Cachin, Micali and
Stadler [CMS99] and additional polylograithmic protocols were introduced by Lipmaa [Lip05] and
by Gentry and Ramzan [GRO05]. Of which, the latter achieves the best communication complexity

ciphertext (a,b) that corresponds to a linear function of s. This only makes things easier.

1A subtle technical point refers to the use of an error term e, instead of 2e as we did for re-linearization. The
reason is roughly that % -2 is non-integer. Therfore we “divide by 2” before performing the dimension-reduction and
“multiply back” by 2 after.

2For the informed reader we mention that while k,p are smaller than n,q and therefore seem to imply lesser
security, we are able to use much higher relative noise in our k,p scheme since it needs not support homomorphism.
Hence the two assumptions are of roughly the same hardness.

of O(log®> M (N)).13 The latter two protocols achieve constant amortized communication com-
plexity when retrieving large consecutive blocks of data. See a survey in [OS07] for more details on
these schemes.

Fully homomorphic, or even somewhat homomorphic, encryption is known to imply polylog-
arithmic PIR protocols.* Most trivially, the receiver can encrypt the index it wants to query,
and the database will use that to homomorphically evaluate the database access function, thus
retrieving an encryption of the answer and sending it to the receiver. The total communication
complexity of this protocol is the sum of lengths of the public key, encryption of the index and
output ciphertext. However, the public key is sent only once, it is independent of the database and
the query, and it can be used for many queries. Therefore it is customary to analyze such schemes
in the public key model where sending the public key does not count towards the communication
complexity. Gentry [Gen09a] proposes to use his somewhat homomorphic scheme towards this end,
which requires O(log3 N) bit communication.'®> We show how, using our somewhat homomorphic
scheme, in addition to new ideas, we can bring down communication complexity to a near optimal
log N - polyloglog N (one cannot do better than log V). To obtain the best parameters, one needs
to assume 222(*)_hardness of polynomial-factor approximation for short vector problems in arbitrary
dimension k lattices, which is supported by current knowledge. Details follow.

A major obstacle in the naive use of somewhat homomorphic encryption for PIR is that ho-
momorphism is obtained with respect to the boolean representation of the evaluated function.
Therefore, the receiver needs to encrypt the index to the database in a bit-by-bit manner. The
query is then composed of log N ciphertexts, which necessitate at least log? N bits of communica-
tion. As a first improvement, we notice that the index needs not be encrypted under the somewhat
homomorphic scheme. Rather, we can encrypt using any symmetric encryption scheme. The
database will receive, an encrypted symmetric key (under the homomorphic scheme), which will
enable it to convert symmetric ciphertexts into homomorphic ciphertexts without additional com-
munication. The encrypted secret key can be sent as a part of the public key as it is independent
of the query. This, of course, requires that our somewhat homomorphic scheme can homomorphi-
cally evaluate the decryption circuit of the symmetric scheme. Fully homomorphic schemes will
certainly be adequate for this purpose, but known somewhat homomorphic schemes are also suf-
ficient (depending on the symmetric scheme to be used). Using the most communication efficient
symmetric scheme, we bring down the query complexity to O(log N). As for the sender’s response,
our dimension-modulus reduction technique guarantees very short ciphertexts (essentially as short
as non-homomorphic LWE based schemes). This translates into log N - polyloglog N bits per ci-
phertext, and the communication complexity of our protocol follows. We remark that in terms of
retrieving large blocks of consecutive data, one can slightly reduce the overhead to O(log N) bits
of communication for every bit of retrieved data. We leave it as an open problem to bring the
amortized communication down to a constant. See Section 5 for the full details.

Prior to this work, it was not at all known how to achieve even polylogarithmic PIR under
the LWE assumption. We stress that even if the size of the public key does count towards the

131t is hard to compare the performance of different PIR protocols due to the multitude of parameters. To make
things easier to grasp, we compare the protocols on equal grounds: We assume that the database size and the
adversary’s running time are exponential in the security parameter and assume the maximal possible hardness of
the underlying assumption against known attacks. We also assume that each query retrieves a single bit. We will
explicitly mention special properties of individual protocols that are not captured by this comparison.

14To be precise, one needs sub-exponentially secure such schemes.

15Gentry does not provide a detailed analysis of this scheme, the above is based on our analysis of its performance.

communication complexity, our protocol still has polylogarithmic communication.

1.4 Other Related Work

Aside from Gentry’s scheme (and a variant thereof by Smart and Vercauteren [SV10] and an
optimization by Stehle and Steinfeld [SS10]), there are two other fully homomorphic encryption
schemes [DGHV10, BV11]. The innovation in both these schemes is the construction of a new
somewhat homomorphic encryption scheme. Both these works then invoke Gentry’s squashing and
bootstrapping transformation to convert it to a fully homomorphic scheme, and thus the security of
both these schemes relies on the sparse subset-sum assumption (plus other assumptions). The first
of these schemes is due to van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10]. Their scheme
works over the integers and relies on a new assumption which, roughly speaking, states that finding
the greatest common divisor of many “noisy” multiples of a number is computationally hard. They
cannot, however, reduce their assumption to worst-case hardness. The second is a recent work of
Brakerski and Vaikuntanathan [BV11], who construct a somewhat homomorphic encryption scheme
based on the ring LWE problem [LPR10] whose security can be reduced to the worst-case hardness
of problems on ideal lattices.

The efficiency of implementing Gentry’s scheme also gained much attention. Smart and Ver-
cauteren [SV10], as well as Gentry and Halevi [GH11b] conduct a study on reducing the complexity
of implementing the scheme.

In a recent independent work, Gentry and Halevi [GH11a] showed how the sparse subset sum
assumption can be replaced by either the (decisional) Diffie-Hellman assumption or an ideal lattice
assumption, by representing the decryption circuit as an arithmetic circuit with only one level of
(high fan-in) multiplications.

1.5 Paper Organization

Some preliminaries and notation are described in Section 2. We formally define somewhat and fully
homomorphic encryption and present the bootstrapping theorem in Section 3. The main technical
section of this paper is Section 4, where our scheme is presented and fully analyzed. Lastly, our
private information retrieval protocol is presented in Section 5.

2 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x £ D is used to denote
the fact that x is chosen from the distribution D. When we say x &S , we simply mean that x
is chosen from the uniform distribution over S. Unless explicitly mentioned, all logarithms are to
base 2.

In this work, we utilize “noise” distributions over integers. The only property of these distri-
butions we use is their magnitude. Hence, we define a B-bounded distribution to be a distribution
over the integers where the magnitude of a sample is bounded with high probability. A definition
follows.

Definition 2.1 (B-bounded distributions). A distribution ensemble {xn }nen, supported over the
integers, is called B-bounded if ~
Pr [le| > B] < 279%™

$
e<—Xn

We denote scalars in plain (e.g.) and vectors in bold lowercase (e.g. v), and matrices in bold
uppercase (e.g. A). The £; norm of a vector is denoted by ||v||,. Inner product is denoted by (v, u),
recall that (v,u) = v’ - u. Let v be an n dimensional vector. For all i = 1,...,n, the i element
in v is denoted v[i]. We use the convention that v[0] = 1.

We use the following variant of the leftover hash lemma [ILL89].

Lemma 2.1 (matrix-vector leftover hash lemma). Let k € N, n € N, ¢ € N, and m > nlogq+ 2k.
Let A & Zg"™" be a uniformly random matriz, let r & {0,1}™ and let y & Zy- Then,

A((A,ATr), (Ay)) <27F

where A(A, B) denotes the statistical distance between the distributions A and B.

2.1 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and g > 2, a vector s € Zy, and a probability distribution x on Zj,

let As,, be the distribution obtained by choosing a vector a & Zq uniformly at random and a noise

term e < x, and outputting (a, (a,s) +¢) € Ly X Zq. A formal definition follows.

Definition 2.2 (LWE). For an integer ¢ = q(n) and an error distribution x = x(n) over Zg, the
learning with errors problem L\WE,, ,, 4 is defined as follows: Given m independent samples from
As (for somes € ZZ}, output s with noticeable probability.

The (average-case) decision variant of the LWE problem, denoted DLWE,, 1, 4 v, is to distinguish

(with non-negligible advantage) m samples chosen according to As, (for uniformly random s & Zy),
Jrom m samples chosen according to the uniform distribution over Zy xZ,. We denote by DLWE,, ;
the variant where the adversary gets oracle access to As y, and is not a-priori bounded in the number
of samples.

For cryptographic applications we are primarily interested in the average case decision problem
DLWE, where s ¢ Zy. There are known quantum [Reg05] and classical [Pei09] reductions between
DLWE, 1 4, and approximating short vector problems in lattices. Specifically, these reductions take
X to be (discretized versions of) the Gaussian distribution, which is B-bounded for an appropriate
B. Since the exact distribution y does not matter for our results, we state a corollary of the results
of [Reg05, Pei09] in terms of the bound on the distribution.

Corollary 2.2 ([Reg05, Pei09]). Let ¢ = q(n) € N be a product of co-prime numbers q = [¢; such
that for all i, ¢; = poly(n), and let B > n. Then there exists an efficiently sampleable B-bounded
distribution x such that if there is an efficient algorithm that solves the (average-case) DLWE,, 4
problem. Then:

o There is a quantum algorithm that solves SIVPé(n\/ﬁ-q/B) and gapSVPé(n\/ﬁq/B) on any n-
dimensional lattice, and runs in time poly(n).

o There is a classical algorithm that solves the (-to-y decisional shortest vector problem gapSVP,
where v = O(ny/n - q/B), and ¢ = O(qy/n), on any n-dimensional lattice, and runs in time
poly(n).

We refer the reader to [Reg05, Pei09] for the formal definition of these lattice problems, as they
have no direct connection to this work. We only note here that the best known algorithms for these
problems run in time nearly exponential in the dimension n [AKS01, MV10]. More generally, the
best algorithms that approximate these problems to within a factor of 2¥ run in time 20(n/k),

2.2 Symmetric Encryption

A symmetric encryption scheme SYM = (SYM.Keygen, SYM.Enc,SYM.Dec), over message space
M = { M }xen, is a triple of PPT algorithms as follows. We always denote the security parameter
by k.

e Key generation. The algorithm sk«-SYM.Keygen(1%) takes a unary representation of the
security parameter and outputs symmetric encryption/decryption key sk.

e Encryption. The algorithm c<~SYM.Encg; (1) takes the symmetric key sk and a message
1 € M, and outputs a ciphertext c.

e Decryption. The algorithm p*<-SYM.Decg(c) takes the symmetric key sk and a ciphertext
¢ and outputs a message u* € M.

Correctness and security against chosen plaintext attacks (IND-CPA security) are defined as
follows.

Definition 2.3. A symmetric scheme SYM is correct if for all p and all sk<SYM.Keygen(1%),
Pr[SYM.Decg(SYM.Encgy (1) # p] = negl(x) ,

where the probability is over the coins of SYM.Keygen, SYM.Enc.

Definition 2.4. A symmetric scheme SYM is (t,€)-IND-CPA secure if for any adversary A that
runs in time t it holds that

Pr[ASYMEncai() (15) = 1] — Pr[ASYM-Encar(0)(17) — 1)) < ¢ |

where the probability is over sk<—SYM.Keygen(1¥), the coins of SYM.Enc and the coins of the
adversary A.

Namely, no adversary can distinguish between an oracle that encrypts messages of its choice
and an oracle that only returns encryptions of 0 (where 0 is some arbitrary element in the message
space).

3 Homomorphic Encryption: Definitions and Tools

In this section we discuss the definition of homomorphic encryption and its properties as well as
some related subjects. We start by defining homomorphic and fully homomorphic encryption in
Section 3.1. Then, in Section 3.2 we discuss Gentry’s bootstrapping theorem.

We note that there are a number of ways to define homomorphic encryption and to describe
the bootstrapping theorem. We chose the definitions that best fit the constructions and we urge
even the knowledgeable reader to go over them so as to avoid confusion in interpreting our results.

10

3.1 Homomorphic Encryption — Definitions

We now define homomorphic encryption and its desired properties. Throughout this section (and
this work) we use £ to indicate the security parameter. In addition, all schemes in this paper
encrypt bit-by-bit and therefore our definitions only refer to this case. The generalization to an
arbitrary message space is immediate.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen, HE.Enc, HE.Dec, HE.Eval) is
a quadruple of PPT algorithms as follows.

e Key generation. The algorithm (pk, evk, sk)«HE.Keygen(1”) takes a unary representation
of the security parameter and outputs a public encryption key pk, a public evaluation key
evk and a secret decryption key sk.

e Encryption. The algorithm c<—HE.Enc, (1) takes the public key pk and a single bit message
w € {0,1} and outputs a ciphertext c.

e Decryption. The algorithm p*+HE.Decgy(c) takes the secret key sk and a ciphertext ¢ and
outputs a message pu* € {0,1}.

e Homomorphic evaluation. The algorithm cp<HE.Evalc,(f,c1,. .. ,c¢) takes the evalua-
tion key evk, a function f: {0,1}* — {0,1} and a set of £ ciphertexts ci,...,c,, and outputs
a ciphertext cy.

The representation of the function f is an important issue. Since the representation can vary
between schemes, we leave this issue outside of this syntactic definition. We remark, however,
that in this work, f will be represented by an arithmetic circuit over GF(2).

We note that while one can treat the evaluation key as a part of the public key, as has been done
in the literature so far, we feel that there is an expository value to treating it as a separate entity
and to distinguishing between the public elements that are used for encryption and those that are
used only for homomorphic evaluation.

The only security notion we consider in this chapter is semantic security, namely security w.r.t.
passive adversaries. We use its widely known formulation as IND-CPA security, defined as follows.

Definition 3.1 (CPA security). A scheme HE is IND-CPA secure if for any polynomial time
adversary A it holds that

Advepa[A] £ |Pr[A(pk, evk, HE.Ency,(0)) = 1] — Pr[A(pk, evk, HE.Enc,(0)) = 1]| = negl(x) ,
where (pk, evk, sk)<HE.Keygen(1%).

In fact, based on the best known about lattices, the schemes we present in this paper will
be secure against even stronger adversaries. In order for our reductions to make sense for such
adversaries as well, we also consider a parameterized version of CPA security. There, we allow the
adversary to run in time ¢ (which is typically super-polynomial) and succeed with probability e
(which is typically sub-polynomial).

Definition 3.2 ((t,€)-CPA security). A scheme HE is (t,€)-IND-CPA secure if for any adversary
A that runs in time t for t = t(k) it holds that

AdvepalA] £ |Pr[A(pk, evk, HE.Ency, (0)) = 1] — Pr[A(pk, evk, HE.Enc,(0)) = 1]| < € = €(k) ,
where (pk, evk, sk)<HE.Keygen(1%).

11

We move on to define the homomorphism property. Note that we do not define the “correctness”
of the scheme as a separate property, but rather (some form of) correctness will follow from our
homomorphism properties.

We start by defining C-homomorphism, which is homomorphism with respect to a specified class
C of functions. This notion is sometimes also referred to as “somewhat homomorphism”.

Definition 3.3 (C-homomorphism). Let C = {Cy}ren be a class of functions (together with their
respective representations). A scheme HE is C-homomorphic (or, homomorphic for the class C) if
for any sequence of functions f., € Cx and respective inputs py, ..., pue € {0,1} (where { = £(k)), it
holds that

Pr [HE.Decyi (HE.Evaleyi (f,c1, ..., c0)) # f(pt, - -, pe)] = negl(k) ,
where (pk, evk, sk)«HE.Keygen(1%) and c;<—HE.Encpy(1;).

We point out two important properties that the above definition does not require. First of
all, we do not require that the ciphertexts ¢; are decryptable themselves, only that they become
decryptable after homomorphic evaluation.'® Secondly, we do not require that the output of HE.Eval
can undergo additional homomorphic evaluation.!”

Before we define full homomorphism, let us define the notion of compaciness.

Definition 3.4 (compactness). A homomorphic scheme HE is compact if there exists a polynomial
s = s(k) such that the output length of HE.Eval(---) is at most s bits long (regardless of f or the
number of inputs).

Note that a C-homomorphic scheme is not necessarily compact.
We give the minimal definition of fully homomorphic encryption, which suffices for most appli-
cations.

Definition 3.5 (fully homomorphic encryption). A scheme HE is fully homomorphic if it is both
compact and homomorphic for the class of all arithmetic circuits over GF(2).

As in the definition of C homomorphism, one can require that the outputs of HE.Eval can again
be used as inputs for homomorphic evaluation (“multi-hop homomorphism”). Indeed, all known
schemes have this additional property. However, due to the complexity of the formal definition in
this case, we refrain from describing a formal definition.

An important relaxation of fully homomorphic encryption is the following.

Definition 3.6 (leveled fully homomorphic encryption). A leveled fully homomorphic encryp-
tion scheme is a homomorphic scheme where the HE.Keygen gets an additional input 1* (now
(pk, evk, sk)«HE.Keygen(1%,1%)) and the resulting scheme is homomorphic for all depth-L binary
arithmetic circuits. The bound s(k) on the ciphertext length must remain independent of L.

In most cases, the only parameter of the scheme that becomes dependent on L is the bit-length
of the evaluation key evk.

16 Jumping ahead, while this may seem strange at first, this notion of somewhat homomorphism is all that is really
required in order to bootstrap into full homomorphism and it also makes our schemes easier to describe. Lastly, note
that one can always perform a “blank” homomorphic operation and then decrypt, so functionality is not hurt.

'"This is termed “l1-hop homomorphism” in [GHV10a].

12

3.2 Gentry’s Bootstrapping Technique

In this section we formally define the notion of a bootstrappable encryption scheme and present
Gentry’s bootstrapping theorem [Gen09b, Gen(09a] which implies that a bootstrappable scheme can
be converted into a fully homomorphic one.

Definition 3.7 (bootstrappable encryption scheme). Let HE be C-homomorphic, and Let faqq and
fmuit be the the augmented decryption functions of the scheme defined as
faiy?(s) = HE.Decs(c1) XOR HE.Decy(c2) and f212(s) = HE.Decs(c1) AND HE.Decy(ca) .

a mult

Then & is bootstrappable if
{facé;iQ’ r(r:11u7|(;:2 c1,C2 g C

Namely, the scheme can homomorphically evaluate figq and fmuit-

We describe two variants of Gentry’s bootstrapping theorem. The first implies leveled fully
homomorphic encryption but requires no additional assumption; where the second makes an ad-
ditional (weak) circular security assumption and achieves the stronger (non-leveled) variant of
Definition 3.5.

The first variant follows.

Theorem 3.1 ([Gen09b, Gen09al). Let HE be a bootstrappable scheme, then there exists a leveled
fully homomorphic encryption scheme as per Definition 3.6.

Specifically, the leveled homomorphic scheme is such that only the length of the evaluation key
depends on the level L. All other parameters of the scheme are distributed identically regardless
of the value of L.

For the second variant, we need to define circular security.

Definition 3.8 (weak circular security). A public key encryption scheme (Gen, Enc, Dec) is weakly
circular secure if it is IND-CPA secure even for an adversary with auxiliary information containing
encryptions of all secret key bits: {Encyy(skli])}.

Namely, no polynomial time adversary can distinguish an encryption of 0 from an encryption
of 1 even given the additional information.
We can now state the second theorem.

Theorem 3.2 ([Gen09b, Gen09al). Let HE be a bootstrappable scheme that is also weakly circular
secure. Then there is a fully homomorphic encryption scheme as per Definition 3.5.

Finally, we want to make a statement regarding the ciphertext length of a bootstrapped scheme.
The following is implicit in [Gen09b, Gen09a).

Lemma 3.3. If a scheme FH is obtained from applying either Theorem 3.1 or Theorem 3.2 to a
bootstrappable scheme HE, then both FH.Enc and FH.Eval produce ciphertexts of the same length as
HE.Eval (regardless of the length of the ciphertext produced by HE.Enc).

13

4 The New Fully Homomorphic Encryption Scheme

In this section, we present our fully homomorphic encryption scheme and analyze its security and
performance. We present our scheme in a gradual manner. First, in Section 4.1 we present an LWE-
based somewhat homomorphic scheme, SH, that will serve as building block for our construction
(that scheme by itself is not sufficient to achieve full homomorphism). The main technique used here
is re-linearization. Our bootstrappable scheme, BTS, which utilizes dimension-modulus reduction,
is presented in Section 4.2. We then turn to analyze the properties of BTS. In Section 4.3 we prove
the security of the scheme based on LWE and discuss the worst case hardness that is implied by
known reductions. In Section 4.4 we analyze the homomorphic properties of SH and BTS which
enables us to prove (in Section 4.5) that the bootstrapping theorem is indeed applicable to BTS, and
obtain a fully homomorphic scheme based on LWE. We then discuss the parameters and efficiency
of our scheme.

4.1 The Scheme SH: A Somewhat Homomorphic Encryption Scheme

We present a somewhat homomorphic public-key encryption scheme, based on our re-linearization
technique, whose message space is GF(2).'® Let x € N be the security parameter. The scheme is
parameterized by a dimension n € N, a positive integer m € N, an odd modulus ¢ € N (note that
q needs not be prime) and a noise distribution x over Zg, all of which are inherited from the LWE
assumption we use. An additional parameter of the scheme is a number L € N which is an upper
bound on the maximal multiplicative depth that the scheme can homomorphically evaluate.

During the exposition of the scheme, we invite the reader to keep the following range of pa-
rameters in mind: the dimension n is polynomial in the security parameter x, m > nlogq + 2k is
a polynomial in n, the modulus is an odd number ¢ € [2",2 - 2"°) is sub-exponential in n (where
e € (0,1) is some constant), x is some noise distribution that produces small samples (say, of
magnitude at most n) in Z,, and the depth bound is L ~ elogn.

e Key generation SH.Keygen(1”): For key generation, sample L + 1 vectors s, ...,S, & Zq, and
compute, for all £ € [L], 0 <i < j <n,and 7 € {0,...,|logq]}, the value

Yoijr = <a€,i,j,r s begjri=(asijr,se) +2 epijr+27 s 1] 'SK—l[j]> €Ly XLy, (1)

where ag; ; & Ly €tijr & X (recall that, according to our notational convention, sy_{[0] = 1).
We define ¥ £ {03 jr}eij- to be the set of all these values.!® At this point, it may not yet be
clear what the purpose of the 27 factors is; indeed, this will be explained later when we explain
homomorphic multiplication.

The key-generation algorithm proceeds to choose a uniformly random matrix A & Zy*™ and a
vector e <& x™, and compute b:=Asg + 2e.

It then outputs the secret key sk = sy, the evaluation key evk = W, and the public key
pk = (A,b).?0

181t is quite straightforward to generalize the scheme to work over a message space GF(t), where t is relatively
prime to ¢. Since we mostly care about the binary case, we choose not to present this generalization.

YA knowledgeable reader may notice that the above is similar to encryptions of 27 - s¢_1[i] - s¢—1[j] (mod q) via
an LWE-based scheme, except this “ciphertext” is not decryptable since the “message” is not a single bit value.

29The public key pk is essentially identical to the public key in Regev’s scheme.

14

e Encryption SH.Encp(1): Recall that pk = (A,b). To encrypt a message p € GF(2), sample a
vector r <~ {0,1}™ and set (just like in Regev’s scheme)

vi=ATr and w:=br + 1 .

The output ciphertext contains the pair (v, w), in addition to a “level tag” which is used during
homomorphic evaluation and indicates the “multiplicative depth” where the ciphertext has been
generating. For freshly encrypted ciphertext, therefore, the level tag is zero. Formally, the
encryption algorithm outputs c:=((v,w), 0).

e Homomorphic evaluation SH.Evalei(f, c1,...,¢) where f : {0,1} — {0,1}: We require that
f is represented by a binary arithmetic circuit with '+’ gates of arbitrary fan-in and 'x’ gates
with fan-in 2. We further require that the circuit is layered, namely that it is composed of
homogenous layers of either all '+’ gates or all "x’ gates (it is easy to see that any arithmetic
circuit can be converted to this form). Lastly, we require that the multiplicative depth of the
circuit (the total number of ‘x* layers) is exactly L. 2

We homomorphically evaluate the circuit f gate by gate. Namely, we will show how to perform
homomorphic addition (of arbitrarily many ciphertexts) and homomorphic multiplication (of
two ciphertexts). Combining the two, we will be able to evaluate any such function f.

Ciphertext structure during evaluation. During the homomorphic evaluation, we will
generate ciphertexts of the form ¢ = ((v,w), £), where the tag ¢ indicates the multiplicative level
at which the ciphertext has been generated (hence fresh ciphertexts are tagged with 0). The
requirement that f is layered will make sure that throughout the homomorphic evaluation all
inputs to a gate have the same tag. In addition, we will keep the invariant that the output of
each gate evaluation ¢ = ((v,w),¥), is such that

w—(v,s¢) =p+2-e (modq), (2)

where p is the correct plaintext output of the gate, and e is a noise term that depends on
the gate’s input ciphertexts. Note that it always holds that ¢ < L due to the bound on the
multiplicative depth, and that the output of the homomorphic evaluation of the entire circuit is
expected to have £ = L

Homomorphic evaluation of gates:

— Addition gates. Homomorphic evaluation of a 4+’ gate on inputs cy,...,c:, where ¢; =
((vi,w;),£), is performed by outputting

Cadd = ((Vadds Wadd), ¢ ((Z Vi, ZM) ;)
Informally, one can see that

Wadd — (Vadd:S¢) =) _(wi = (vi,8¢) = D (i + 2¢:) Zﬂ'z + 22@ :
A

%

21 Jumping ahead, in the analysis we will only prove correctness for a specific sub-class of these circuits.

15

where p; is the plaintext corresponding to p;. The output of the homomorphic evaluation,
thus, corresponds to the sum of the inputs, with the noise term being the sum of input noises.

— Multiplication gates. We show how to multiply ciphertexts ¢, ¢ where ¢ = ((v,w),£) and
d = ((v',w'),) (recall that multiplication gates have fan-in 2), to obtain an output ciphertext
Coult = ((Vmult, Wmutt), £ + 1). Note that the level tag increases by 1.

We first consider an n-variate symbolic polynomial over the unknown vector x:

B(%X) = Guwv),(w,v)(X) £ (W — (v, %)) - (' — (v, x)) . 3)

We symbolically open the parenthesis of this quadratic polynomial, and express it as

G(x)= > hij-x[i]-x[j]

0<i<j<n

where h; ; € Z4 are known (we can compute them from (v, w), (v/,w’) by opening parenthesis
in Eq. (3)).22

For technical reasons (related to keeping the error growth under control), we want to express
¢(-) as a polynomial with small coefficients. We consider the binary representation of h; j,
letting h; j - be the 7" bit in this representation. In other words

[logq|
hig= Y hijr-27,
7=0

for h@jﬂ— S {0, 1}.

We can express ¢ therefore as

P(x) = Z hijr - (27 x[i] - x[5]) *°
0<i<j<n
7€{0,...,|logq]}

We recall that the evaluation key evk = ¥ contains elements of the form ¢y ; ; - = (ag,m’.,, bg}i,j,T)
such that

27syli]selg] ~ betr,ijr — (A1 jr Se+1) -

The homomorphic multiplication algorithm will thus set

Vimult:= E hi,j,T ' a£+17i7j77- ’
0<i<j<n
7€{0,...,|log ¢}

and
Wenult = E hijr - bettigr

0<i<j<n
7€{0;...,[log q] }

22We once again remind the reader that because of the notational trick of setting x[0] £ 1, this expression captures
the constant term in the product, as well as all the linear terms, thus homogenizing the polynomial ¢(x).
23This can be interpreted as a polynomial with small coefficients whose variables are (27 - x[i] - x[4]).

16

The final output ciphertext will be

Cmult::((vmult, wmult)vg + 1) .

Note that the level tag is increased by one as expected. Let us now verify that our invariant
as per Eq. 2 still holds for the new ciphertext:

wmult - <VmU|t7 SZ+1> = Z h’i,j,T : (b£+17i7j77- - <ae+17i7j77—’ S€+1>)
0<i<j<n
7€{0,...,|log |}
= Do g 27 sili] - seli] + 2 higir - eovnigir
0<i<j<n
7€{0,...,[log ¢]}
= dls)+ > 2-hijr- e
0<i<j<n
7€{0,...,[logq]}
= (w—(v;s0) (W = (V,s))+ D> 2:hijr-emige
0<i<j<n
7€{0,...,[log q] }
= (n+2e)(p +2€)+ Z 2-hijr-eoriige
0<i<j<n
7€{0,...,|log q|}

e l,L/J// + 2 l,Le/ "‘ ,LL/G + 266/ "‘ Z hiyjﬂ' . 6[_’_111'7]‘77— . (4)
0<i<j<n
7€{0,...,[log q]}

Indeed, we get the plaintext output pu’ in addition to a noise term that is inherited from the
input ciphertexts and from the evaluation key.

e Decryption SH.Dec, (¢): To decrypt a ciphertext ¢ = ((v,w), L) (recall that we are only required
to decrypt ciphertexts that are output by SH.Eval(---) and those will always have level tag L),
compute

(w—(v,sz) (modg)) (mod2). (5)

4.2 The Scheme BTS: A Bootstrappable Scheme

We now utilize the dimension-modulus reduction technique to present the scheme BTS, which uses
SH as building block and inherits its homomorphic properties. However, BTS has much shorter
ciphertexts and lower decryption complexity, which will enable us to apply the bootstrapping
theorem to obtain full homomorphism.

Our bootstrappable scheme is parameterized by (n,m, ¢, x, L), which are the parameters for SH,
and additional parameters (k, p, ¥) which are the “smaller” parameters. n,q € N are referred to as
the “long” dimension and modulus respectively, while k, p are the “short” dimension and modulus.
X, X are the long and short noise distributions, over Z,; and Z,,, respectively. The parameter m € N
is used towards public key generation. The parameter L is an upper bound on the multiplicative
depth of the evaluated function.

17

While we discuss parameter values below, we encourage the reader to consider the following
(non-optimal, but easier to understand) settings as a running example: k = s, n = k*, ¢ ~ 2\/’7,
L =1/3logn = 4/3logk, p = (n%logq) - poly(k) = poly(k), m = O(nlogq). The distributions x, ¥
can be thought of as being n- and k-bounded, respectively.

e Key generation BTS.Keygen(17): Run SH.Keygen(1%) to obtain the secret key sy, evaluation
key ¥ and public key (A, b) of SH.

Recall that s7, € Z7', (A, b) € ZI'™ x ZI", and ¥ € (Z x Z,)"+1)*(logal+1)-L,

Proceed by sampling the “short” secret key § & Z’; and computing additional parameters

for the evaluation key: For all i € [n], 7 € {0, ..., [logq|}, sample &; - & Z';, éir & X, and
compute

bori=(ar,8) i |2 (27 sl (mod).

Set 1[%,71: (éz‘,r, IA?m) € Zl{; X L, and

This is very similar to the generation of ¥ in the scheme SH, but now 1@77 “encodes” scaled
linear terms, rather than quadratic terms.

Finally, output the secret key sk = §, evaluation key evk = (W, \il) and public key pk = (A, b).
Note that the public key is identical to that of SH.

e Encryption BTS.Enc,;(p): Use the same encryption algorithm as SH. To encrypt a bit
p € {0,1}, compute c<~SH.Enc(a p)(1) and output c as the ciphertext.

e Homomorphic evaluation BTS.Evalek(f,c1,...,¢), where f : {0,1}' — {0,1}: Recall that
evk = (U, \il) To perform homomorphic evaluation, we will use the homomorphic evaluation
function of SH. We thus require that f is represented by a binary arithmetic circuit which is
a legal input for SH.Eval.

The first step in the homomorphic evaluation is computing
cp«SH.Evaly(f,c1,...,¢) .

This results in a ciphertext of the form ¢y = ((v,w), L) € Zy X Zq x {L}.

Next, we reduce the dimension and modulus of ¢y to k, p as follows. Consider the following
function from Z" into the rationals modulo p

a+1

60 2 00,00 2 2 (150 (= (vx)) (mod)

Rearranging, one can find ho, ..., h, € Z, such that

Let h;; be the 7 bit of h;, for all 7 € {0, ..., [loggq|}. Then

n |logq]

=33 b (Do)

i=0 7=0

Using the parameters in \i/, we create a new ciphertext ¢ = (v, w) € Z]; X Zy, by setting

n |logq]

23")" hir-a;; (modp) €Z;
=0 7=0
n |logq]

W o= 2-2 Z h@T-IA)i,T (mod p) € Z, .

i=0 7=0

<>
Il

The output of BTS.Eval is the new ciphertext ¢ € Z’; X Zyp. Note that the bit-length of ¢ is
(k+1)logp.
Recall the invariant we enforce on the structure of ciphertexts of SH (see Eq. 2). We show

that a similar invariant holds for ¢: Namely, that if ¢y is such that w — (v,sp) = pu + 2e

(mod ¢), then
W—(V,8) =p+2¢ (modp),

where € is proportional to %e (an appropriately scaled version of e) plus some additional noise.

To see the above, recall that (p + 1)/2 is the inverse of 2 modulo p, and notice that?*
n |logq]
p+1 A oa
7(Z Z hZT' (17'_<ai,7'75>> (mOdp)
=0 7=0
n [logq]
= Z > hir <e” { (27 sLm)D (mod p)
=0 7=0 q
n_[logq]
= ¢(SL) + Z Z hi,T (éi,T + d}iﬂ') (mOd p)) (6)
i=0 T=0
évél

where we define

By 2 K/’ : (zT.sLm)l - g (27 spli])

and notice that |&; | < 1/2. Since h;, € {0,1} and é; - is small, §; (defined in Eq. (6)) is
“small” as well.

24While the following sequence of derivations might seem like an indirect way to prove what we need, the way we
choose to do it will be useful later.

19

Now, letting w = (v,sr) 4+ 2e + p (mod ¢), we wish to examine ¢(s;) £ @y) (sz) more
closely, as follows.

p (qg+1
o) 2 2 (133 (0= vess)) (mod p)
p (q+1
=, U (2e + u+ Mgq) (mod p) (where M € Z)
b q+1 / /
= TM+€+Mq (mod p) (where M’ = M +e € Z)
p g+l p
==.-—pu+=-e (modp
. 2 Mty ()
p+1 p Bo,p
A N DR d
5 u+(q) sty e (mod p)
25,
+1

and notice that if p < ¢ (as is the case in our setting), |d2| < % le| + 3.
Putting together Eq. (6) and (7), we see that

+1 . . +1
o (= (9,8) = 5=t (51 +82) (8)
Multiplying by 2, we have
UA}—<\A/',§>:,M+2((51+(52) . (9)

Now defining é £ §; + d2, the invariant follows.

It is important to notice that, while not immediate from its definition, é = §; + 2 is an
integer. To see this, note that it can be represented as a difference between integers:

ptl
2

_ptl

01+ 02 = 5

(@ — (v,8))

e Decryption BTS.Decg(¢): To decrypt ¢ = (v, w) € Z]; X Zyp (recall, again, that we only need
to decrypt ciphertexts that are output by BTS.Eval), compute

phi=(w—(v,8) (modp)) (mod 2).
If indeed w — (V,8) = p+ 2é (mod p) then p* = p so long as € is small enough.

4.3 Security Analysis

In this section, we analyze the security of BTS based on LWE and then, using known connections,
based on worst case hardness of lattice problems.

The following theorem asserts the security of BTS based on two DLWE problems: One with
modulus ¢, dimension n and noise X, and one with modulus p, dimension k and noise .

20

Theorem 4.1 (security). Let n =n(k),k = k(k),q = q(k),p = p(k) and L = L(k) be functions of
the security parameter. Let x, X be some distributions over the integers, and define m £ nlogq+2k.

The scheme BTS is CPA secure under the DIWE, 4, and the DLWEy , ; assumptions. In
particular, if both the DLWE,, 4, and the DLWEy , ; problems are (t,€)-hard, then the scheme is
(t —poly(k),2(L+ 1) - (27" + €))-semantically secure.

Essentially, the view of a CPA adversary for our scheme is very similar to Regev’s scheme, with
the exception that our adversary also gets to see the evaluation key. However, the evaluation key
contains a sequence of LWE instances which, based on our assumption, are indistinguishable from
uniform. Therefore our reduction will perform a sequence of L hybrids to replace the ¥ component
of the evaluation key with a set of completely uniform elements. Then, an additional hybrid will
imply the same for {. Once this is done, we will use the known proof techniques from Regev’s
scheme and get the security of our scheme. A formal proof follows.

Proof. As explained above, we prove by a sequence of hybrids. Let A be an IND-CPA adversary
for BTS that runs in time ¢t. We consider a series of hybrids where Advy[A] denotes the success
probability of A in hybrid H.

e Hybrid H r+1: This is the identical to the IND-CPA game, where the adversary gets prop-
erly distributed keys pk, evk, generated by BTS.Keygen, and an encryption of either 0 or 1
computed using BTS.Enc. By definition,

Advy, [A] £ | Pr[A(pk, SH.Encpi(p0) = 1] — Pr[A(pk, SH.Encpi(p1) = 1]| =6 .

e Hybrid Hyi: This hybrid is identical to H L+1 in everything except the generation of 0.

In this hybrid, ¥ is not generated as prescribed, but is rather sampled uniformly. Namely,
for all ¢, 7 we set 9; - & Z’}j X Lip.

It follows that there exists an adversary B that solves the DLWEy p, ; problem in time ¢ +
poly(x) and advantage

~

DLWEk’pJA(AdV[B] > 1/2 . Advﬁg+1 [.A] - AdVH(H_1 [.A]

The adversary B will sample all vectors s, . .., sy, by himself and generate pk, ¥. Then, he will
use the LWE oracle to obtain either Ag ¢ samples which will result in properly generated ¥,

or uniform samples which will result in a uniform ¥. B will then sample a uniform b < {0,1}
and return 1 if and only if A(pk, (¥, ¥), BTS.Enc,, (b)) = b. Using simple algebra, the result
follows.

e Hybrid Hy, for ¢ € [L]: Hybrid Hy is identical to Hy,1, except for a change in the W
component of the evaluation key. Specifically, we change each of the components 1)y ; . for
all 4, j,7: Instead of computing vy ;, as prescribed (i.e., (ag; .+, (arijr Se) + 2€045r + 27 -
s¢—1[i] - se—1[j])), we sample it uniformly. Namely, we set ¢ ; - & Ly X ZLyq.

It follows that there exists an adversary By that solves the DLWE, ,, problem in time ¢ +
poly(x) and advantage

DLWE,, ¢ Adv[Be] = 1/2 - |[Advy,[A] — Advy,,, [A]] .

21

The argument is very similar to the previous hybrid: We note that at this point ¥ and
{¥xijr}tr>eij- are completely uniform and can be generated without any knowledge of
S¢+1,---,81,8. The adversary B, will sample all vectors sg, . ..,sy_1 himself, and turn to the
LWE oracle for samples in order to generate ty; ;. This will result in ¥ being identical
to Hyyy if the oracle returns Ag, samples, or ¥ being identical to Hy if the oracle returns
uniform elements. Once again, sampling a random b and checking whether A’s response is
identical to B completes the argument.

Note that in the hybrid Hy, the evaluation key evk = (U, \T/) is completely uniform, and hence
the view of the adversary is like in Regev’s scheme.

e Hybrid Hy: Hybrid Hj is identical to H; except that the vector b in the public key is
chosen uniformly at random from Zg*, rather than being computed as A -sp + 2e. Under
the DLWE,, 4 assumption, hybrids Hy and H; are indistinguishable. Namely, there exists an

adversary By that runs in time ¢ + poly(x) and whose advantage is

DLWE,, 4y Adv[Bo] = 1/2 - [Advy, [A] — Advy,[A]] -

The adversary By gets m samples from the LWE oracle and uses them to generate (A, b). If
the samples come from Ag,, then b is distributed like in H; and if they are uniform then b
is distributed as in Hy. The same testing of A as before implies the argument.

e Hybrid H,.,nq: Hybrid H,.nq is identical to Hy except that the ciphertext is chosen uniformly
at random from Z!' x Zg, rather than being computed as (AT - r,b” - r 4 p).

We now claim that
|Advp, [A] — Advy,,[All <277 .

This is due to the Leftover hash lemma (Lemma 2.1), since m > (n + 1) log q + 2k.

Note that in H,ang, all the elements of both the public key and the ciphertext are uniformly random
and independent of the message. Thus,

Advy, JA =0.

rand

Putting these together, we get that

L
AdvepalA] <2742 (DLWEk,p,,zAdv[B\] +3 DLWEn,q,XAdv[Bg]> :
/=0

and the result follows. O

Specific Parameters and Worst-Case Hardness. The parameters we require for homomor-
phism (see Theorem 4.2 below) are as follows. We require that ¢ = 2" for some € € (0,1), x is
n-bounded, p = 16nklog(2¢) and x is k-bounded. In order to achieve the best lattice reduction,
we will choose ¢ as a product of polynomially bounded co-prime numbers. Applying known results
(see Corollary 2.2), DLWE,, 4, translates into approximating short-vector problems in worst case

22

n-dimensional lattices to within a factor of O (\/ﬁ . 2”6), while DLWEy ,, ¢ translates to approximat-
ing k-dimensional lattice problems to within O (nH6 . k1'5) factor.?> These problems are essentially
incomparable as the hardness of the problem increases as the dimension increases on one hand, but
decreases as the approximation factor increases on the other. The best known algorithms solve the
first problem in time (roughly) 200" " and the second in time 20%).

The relation between n and k is determined based on the required homomorphic properties. In
this work, we only prove there there exists a constant C' such that setting n = k¢/¢ implies fully
homomorphic encryption. Given the value of C, setting e ~ 1 — %H will make the two problems
equally hard (at least based on the current state of the art).

4.4 Homomorphic Properties of SH And BTS

In this section we analyze the homomorphic properties of SH and BTS. Both schemes have es-
sentially the same homomorphic properties but BTS has the additional advantage of having low
decryption complexity (as analyzed in Section 4.5). Thus, BTS would be our main focus, and the
properties of SH will follow as a by-product of our analysis.

We start by formally defining the class of functions for which we prove homomorphism and
proceed by stating the homomorphic properties and proving them.

The Function Class Arith[L,T]. In this section we define the function class for which we prove
somewhat homomorphism of our scheme. Essentially, this is the class of arithmetic circuits over
GF(2) with bounded fan-in and bounded depth, with an additional final “collation”: a high fan-in
addition gate at the last level. We require that the circuit is structured in a canonical “layered”
manner as we describe below.

Definition 4.1. Let L = L(k),T = T(k) be functions of the security parameter. The class
Arith[L, T is the class of arithmetic circuits over GF(2), with {+, x} gates, with the following

structure. Fach circuit contains exactly 2L + 1 layers of gates (numbered 1,...,2L + 1 starting
from the input level), gates of layer i + 1 are fed only by gates of layer i. The odd layers contain
only '+’ gates and the even layers contain only X’ gates. The gates at layers 1,...,2L have fan-in

2, while the final addition gate in layer 2L + 1 is allowed to have fan-in T.

We note that Arith[L, T| conforms with the requirements on the evaluated function imposed by
SH.Eval and BTS.Eval. Indeed, the multiplicative depth of any circuit in Arith[L, T is exactly L,
and hence, homomorphic evaluation is well defined on any such function.

To motivate the choice of this function class, we first note that any arithmetic circuit of fan-in
2 and depth D can be trivially converted into a circuit in Arith[D,1].26 This will be useful for
the purpose of bootstrapping. Jumping ahead, the collation gate will be useful for constructing
a private information retrieval protocol, where we will need to evaluate polynomials with a very
large number of monomials and fairly low degree. The collation gate will thus be used for the final
aggregation of monomials.

2%We do not mention the specific lattice problem or the specific type of reduction (quantum vs. classical) since, as
one can observe from Corollary 2.2, the approximation factor we get is essentially the same for all problems, and the
state of the art is roughly the same as well.

260ne way to do this is to separate each level of the circuit into two levels — an addition level and a multiplication
level — and finally, adding a dummy fan-in-1 addition gate at the top. This gives us a 2D + 1 depth circuit with
alternating addition and multiplication levels, or, in other words, the transformed circuit belongs to Arith[D, 1].

23

Our goal is now to prove that with the appropriate choice of parameters, SH and BTS are Arith[L, T']-
homomorphic.

Theorem 4.2. Let n = n(k) > 5 be any polynomial, ¢ > 2™ > 3 for some € € (0,1) be odd, x be any
n-bounded distribution, and m = (n+1)logq+2k. Let k = K, p = 16nklog(2q) (odd) and x be any
k-bounded distribution. Then SH and BTS are both Arith|L = Q(elogn), T = ,/q]-homomorphic.

Not surprisingly, the homomorphism class depends only on n and not on k. This is because,
recalling the definition of BTS.Eval, the homomorphism property is inherited from SH.Eval. We note
that it is possible to further generalize the class of circuits that we can homomorphically evaluate
(for example, circuits with high multiplicative depth but low multiplicative degree), however since
this is not required for our results, and since the proof will use the exact same tools, we choose not
to further complicate the theorem statement and proof.

To prove the theorem, we introduce a sequence of lemmas as follows. Recall that the encryption
algorithms of both schemes are identical, and that BTS.Eval first calls SH.Eval on all its inputs. We
first analyze the growth of the noise in the execution of SH.Eval in Lemma 4.3 (which will imply
the theorem for SH), and then, in Lemma 4.4, we complete the noise calculation of BTS.Eval, which
will complete the proof of the theorem.

To track the growth of the noise, we define, for any ciphertext ¢ = ((v,w),) a noise measure
n(c) € Z as follows. We let e € Z be the smallest integer (in absolute value) such that

pt2e=w—(v,sq) (modgq),

and define 7(c) = u + 2e (note that n(c) is defined over the integers, and not modulo ¢). We note
that so long as |n(c)| < ¢q/2, the ciphertext is decryptable. We can now bound the error in the
execution by bounding 7(cy) of the output ciphertext.

Lemma 4.3. Let n = n(k) > 5, ¢ = q(k) > 3, x be B-bounded and L = L(k) and let f €
Arith[L,T], f : {0,1} — {0,1} (for some t = t(k)). Then for any input p1,...,u € {0,1}, if
we let (pk, evk, sk)<-SH.Keygen(1%), ¢;<~BTS.Encyi(1i) = SH.Encpi(pi) and we further let ¢y =
((vyw), L)<-SH.Evaleyk (f,c1,...,c) be the encryption of f(u1,...,ut), it holds that with all but
negligible probability

n(cp)| <T - (16nBlogq)® .

Proof. We assume that all samples of x (there are only polynomially many of them) are indeed of
magnitude at most B. This happens with all but exponentially small probability. The remainder
of the analysis is completely deterministic.

We track the growth of noise as the homomorphic evaluation proceeds.

e Fresh ciphertexts. Our starting point is level-0 ciphertexts ((v,w),0) that are generated
by the encryption algorithm. By definition of the encryption algorithm we have that

w—(v,so)=r -b+pu—rl - A-sop=p+r’ - (b—Asy)=p+2rl e (modg).
Since ‘,u—{—QrT-e{ <1+ 2nB, it follows that

In(c)] <2nB+1. (10)

24

e Homomorphic addition gates. When evaluating '+’ on ciphertexts cy,...,c; to obtain
Cadd, We just sum their (v, w) values. Therefore

1(Cadd)| < Z In(ei)| -

e Homomorphic multiplication gates. When evaluating ‘x‘ on ¢ = ((v,w),?), ¢ =
(v, w"), €) to obtain c¢muir = ((Vmult, Wmuit), £ + 1), we get that by Eq. (4)

Wmult — <Vmu|t7 S€+1> = 77(0) : 77(6,) + 2 Z hi,j,‘r C€0414.5,T (HlOd Q) .
0<i<j<n
7€{0,...,|logq|}

It follows that

(n+1)(n+2)

[n(Cmuie)| < [n(c)] - ’U(Cl)’ +92. :

-B(logg+1) .

If we define

E £ max {|n(c)], [n(c)

(n+2)v/Blog(2q)} .
then [n(cmur)| < 2E2.

Let
Ep = max {ZnB +1,(n+2) Blog(Qq)} < 2nBlogq

be an upper bound on |n(c)| of fresh ciphertexts.
Then it holds that a bound Esy on |n(c)| of the outputs of layer 2¢ (recall that the even layers
contain multiplication gates) is obtained by

Eay < 2(2E5-1))* .

and therefore, recursively, : .
Ear, < (8Eo)? < (16nBlogq)®” .

And after the final collation gate it holds that
n(cp)| < T (16nBlogq)®” . O

We now similarly define 7(¢) for ¢ = (v,w) € Z]; X Zy that encrypts p. We let é € Z be the
smallest integer (in absolute value) such that

A+ 2é =w—(v,8) (modp),

and define 7)(¢) £ p + 2é (note that, as before, 7 is defined over the integers, and not modulo p).
So long as |7(¢)| < p/2, BTS.Dec will decrypt ¢ correctly. In the next lemma, we bound |7(¢)| of
the output of BTS.Eval.

25

Lemma 4.4. Let n = n(k) > 5, ¢ = q(k) > 3, x be B-bounded and L = L(k). Let p = p(k),
k = k(k) and x be B-bounded. Consider a homomorphic evaluation ¢+BTS.Evaleyr(f,c1, -5 ct)
and the terms 01,02 defined in Eq. (6) and (7), respectively. Let ¢y € Zy x Zg X {L} be the
intermediate value returned by the call to SH.Eval. Then with all but negligible probability

51+ 82| < 5 Inleg)] +2nBlog(2q)

Proof. We assume that all samples from y are indeed of magnitude at most B. This happens with
all but exponentially small probability.
By definition (recall that d1, d2 have been defined over the rationals), we have that

n |logq]
1) = > > hir (Eir +@i7)| < (n+1)log(20)(B +1/2) ,
i=0 7=0
and
p uw o p
ol = |21 542
_ | opt2e _p
g 2 2
< Zlnlep)l +1/2.
= 9
Adding the terms together, the result follows. O

We can now finally prove Theorem 4.2.

Proof of Theorem 4.2. Let us consider the homomorphism claim about BTS (the argument for SH
will follow as by-product): A sufficient condition for ciphertext ¢ = (v,w) to decrypt correctly is
that é < p/4. By Lemma 4.4, it is sufficient to prove that

p A b
p/4> 2 In(cs)| + 2nBlog(2q) > 2% In(cp)| +p/8 .

Thus it is sufficient to prove that
In(ep)l <aq/4.

We note that if we prove this, then it also follows that ¢y is decryptable and hence the claim about
the homomorphism of SH holds as well.
Plugging in the bound from Lemma 4.3, we get

T - (16nBlog q)2L <q/4,
and plugging in all the parameters and T' = ,/q, we need
(16n21)2" < 27/2 /4

which clearly holds for some L = Q(elogn). O

26

4.5 Bootstrapping and Full Homomorphism

We now show how to apply Gentry’s bootstrapping theorem (Theorems 3.1, 3.2) to achieve full
homomorphism. In order to do this, we first need to bound the complexity of an augmented
decryption circuit. Since our decryption is essentially a computation of inner product, we bound
the complexity of this operation.

Lemma 4.5. Let (v, W) € Z’; X Zp. There exists an arithmetic circuit with fan-in 2 gates and
O(log k + loglog p) depth, that on input § € Z’; (in binary representation) computes

(W — (v,8) (modp)) (mod2).

Proof. We let §[i](j) denote the j** bit of the binary representation of §[i| € Z,. We notice that
w—(9,8) = - Y 8§i¥[i] (modp)

k
= w—z 8[i)(7) - (27 - ¥[i]) (mod p) .

Therefore computing @w — (v, 8) (mod p) is equivalent to summing up k(1 + |logp]) + 1 numbers
in Z,, and then taking the result modulo p. The summation (over the integers) can be done in
depth O(log k +loglog p). In order to take modulo p, one needs to subtract, in parallel, all possible
multiples of p (there are at most O(klogp) options) and check if the result is in Z,. This requires
depth O(logk + loglogp) again. Then a selection tree of depth O(logk + loglogp) is used to
choose the correct result. Once this is done, outputting the least significant bit implements the
final modulo 2 operation.

The total depth is thus O(log k + log log p) as required. O

We can now apply the bootstrapping theorem to obtain a fully homomorphic scheme.

Lemma 4.6. There exists C € N such that setting n = k¢/¢ and the rest of the parameters as in
Theorem 4.2, BTS is bootstrappable as per Definition 3.7.

Proof. Lemma 4.5 guarantees that the decryption circuit is in Arith[O(log k), 1] (note that loglog p =
o(logk)), since the augmented decryption circuit just adds 1 to the depth, it follows that the aug-
mented decryption circuits are also in Arith[O(log k), 1].

Theorem 4.2, on the other hand, guarantees homomorphism for any Arith[Q(elogn), /q] func-
tion. Taking a large enough C, it will hold that Arith[O(logk), 1] C Arith[Q2(elogn),/q] and the
lemma follows. O

Finally, we conclude that there exists an LWE based fully homomorphic encryption based on
Theorem 4.1 and Lemma 4.6.

Corollary 4.7. There exists a leveled fully homomorphic encryption based on the DLWE,, ,\ and
DLWEy ¢ assumptions.

Furthermore, if BTS is weakly circular secure (see Definition 3.8), then there exists a fully
homomorphic encryption based on the same assumptions.

27

Efficiency of the Scheme. Interestingly, our scheme is comparable to non-homomorphic LWE
based schemes (e.g. Regev’s) in terms of encryption, decryption and ciphertext sizes. Namely, so
long as one doesn’t use the homomorphic properties of the scheme, she does not need to “pay” for it.
To see why this is the case, we observe that our scheme’s secret key has length klogp = O(k log k)
and the ciphertext length is (k + 1)logp = O(klog k). The decryption algorithm is essentially the
same as Regev’s. As far as encryption is concerned, it may seem more costly. The public key as
we describe it contains (n + 1)((n + 1)logq + 2k)log g bits, and encryption requires performing
operations over Z,. However, we note that one can think of sampling a public key (A, 15) where
A& Z;”Xk, b= As+2 ¢ Zy' (where m = ((k + 1)logp + 2k)). This will enable generating
short ciphertexts that will be “bootstrapped up” during the homomorphic evaluation. If such short
public key is used, then encryption also becomes comparable to Regev’s scheme.

Homomorphic evaluation is where the high price is paid. the evaluation key has size O(Ln? log? ¢+
nlog qlogp) = O(n?t2¢). Considering the fact that n = x¢/¢, this accumulates to a fairly long eval-
uation key, especially considering that in a leveled scheme, this size increases linearly with the
depth of the circuit to be evaluated. The bright side, as we mention above, is that evk only needs
to be known to the homomorphic evaluator and is not needed for encryption or decryption.

Circuit Privacy. A property that is sometimes desired in the context of fully homomorphic
encryption is circuit privacy. A scheme is circuit private if the output of a homomorphic evaluation,
reveals no information on the evaluated function (other than the output of the function on the
encrypted message). Circuit privacy for our scheme can be achieved by adding additional noise
to the ciphertext cy, right before applying dimension-modulus reduction. Similar techniques were
used in previous schemes and thus we feel that a more elaborate discussion is unnecessary here.

5 LWE-Based Private Information Retrieval

In this section, we present a single-server private information retrieval (PIR) protocol with nearly
optimal communication complexity. First, we present the definitions of PIR in Section 5.1. Then,
in Section 5.2, we show a generic construction of PIR from somewhat homomorphic encryption.
Finally, in Section 5.3, we instantiate the generic construction using our own scheme from Section 4
and analyze its parameters.

5.1 Definitions of Single Server PIR

We define single server private information retrieval in the public-key setting. In this setting, there
is a public key associated with the receiver (who holds the respective secret key). This public
key is independent of the query and of the database, and can be generated and sent (or posted)
before the interaction begins, and may be used many times. Thus, the size of the public key is not
counted towards communication complexity of the scheme. We formalize this by an efficient setup
procedure that runs before the protocol starts and generate this public key.

Letting x be the security parameter and let N € N be the database size, a PIR protocol
PIR in the public-key setting is defined by a tuple of polynomial-time computable algorithms
(PIR.Setup, PIR.Query, PIR.Response, PIR.Decode) as follows:

0. Setup. The protocol begins in an off-line setup phase that does not depend on the index to
be queried nor on the contents of the database.

28

The receiver runs the setup algorithm
(params, setupstate)+PIR.Setup(17) .

It thus obtains a public set of parameters params (the public key) that is sent to the sender,
and a secret state setupstate that is kept private.

Once the setup phase is complete, the receiver and sender can run the remainder of the
protocol an unbounded number of times.

1. Query. When the receiver wishes to receive the i** element in the database DBJ[i], it runs
(query, gstate)<«PIR.Query(1”, setupstate, i) .

The query message query is then sent to the sender and gstate is a query-specific secret
information that is kept private.

2. Answer. The sender has access to a database DB € {0,1}". Upon receiving the query
message query from the receiver, it runs the “answering” algorithm

resp«PIR.Response(17, DB, params, query) .
The response resp is then sent back to the receiver.
3. Decode. Upon receiving resp, the receiver decodes the response by running
x<PIR.Decode(1", setupstate, qstate, resp) .
The output z € {0, 1} is the output of the protocol.

We note that while in general a multi-round interactive protocol is required for each database
query, the protocols we present are of the simple form of a query message followed by a response
message. Hence, we chose to present the simple syntax above.

The communication complexity of the protocol is defined to be |query| + |resp|. Namely, the
number of bits being exchanged to transfer a single database element (excluding the setup phase).
We sometime analyze the query length and the response length separately.

Correctness and security are defined as follows.

e Correctness. For all K € N, DB € {0,1}* where N = |DB|, and i € [N], it holds that
Pr[PIR.Decode(1", setupstate, gstate, resp) # DB[i]] = negl(k) ,

where (params, setupstate)«+PIR.Setup(17), (query, gstate)«PIR.Query (1", setupstate, i) and
resp«PIR.Response(1”, DB, params, query).

e (t,e)-Privacy. For all k € N, N € N and for any adversary A running in time ¢t = ¢, y it
holds that

‘ (I‘nax. : }Pr[A(params, i, query;) = 1] — Pr[A(params, j, query;) = 1” <e(=eun),
i=(41,...,7¢),
J=(1,-0¢) €[N]*

where (params, setupstate)<PIR.Setup(1”), (query;,, gstate;,)<PIR.Query (1%, setupstate, iy)
and (query;,, gstate;,)«PIR.Query (1%, setupstate, j,), for all £ € [t].

29

We note that the definition of privacy above differs from the one usually found in literature. The
standard definition refers to vectors i, j of dimension 1. That is, only allow the adversary to see one
query to the database. A hybrid argument can show that with proper degradation in parameters,
this guarantees some security also for the case of many queries. However in the public-key setting,
where the same public key is used for all queries, this hybrid argument no longer works. Thus,
we must require that the adversary is allowed to view many query strings.?” In fact, one could
consider even stronger attacks in the public-key setting, which is outside the scope of this work.

The definition of privacy deserves some further discussion. We note that we did not define
the ranges of parameters for (¢, €) for which the protocol is considered “private”. Indeed there are
several meaningful ways to define what it means for a protocol to be private. Let us discuss two
options and provide corresponding definitions.

i. The first approach is to argue that the resources of the adversary are similar to those of an
honest server (we can think of an adversary as a “server gone bad”). Thus, in this approach the
adversary can run in polynomial time in N, x and must still not succeed with non-negligible
probability in N, k. We say that a scheme is (i)-private if it is (p(k, N), 1/p(k, N))-private
for any polynomial p(-,-).

ii. The second approach argues that the security parameter is the “real” measure for privacy.
Thus the protocol needs to be exponentially secure in the security parameter. Thus a scheme
is (i1)-private if it is (220%), 272))_private.

5.2 PIR via Somewhat Homomorphic and Symmetric Encryption

In this section we describe a generic PIR protocol that uses a somewhat homomorphic encryption
and an arbitrary symmetric encryption as building blocks. This protocol has the useful property
that the somewhat homomorphic scheme is not used to encrypt the index to the database. Rather,
we use the symmetric scheme to encrypt the index, and have the server homomorphically decrypt
it during query evaluation. Thus, the receiver’s query can be rather short.

Our PIR protocol relies on two building blocks — a semantically secure symmetric encryption
scheme SYM = (SYM.Keygen, SYM.Enc, SYM.Dec) over the message space [N], and a somewhat ho-
momorphic encryption scheme HE = (HE.Keygen, HE.Enc, HE.Dec, HE.Eval). The level of somewhat
homomorphism required for the protocol depends on the symmetric scheme being used (in partic-
ular, the decryption complexity of the symmetric scheme). We recall that in Section 4, we get a
leveled fully homomorphic scheme without relying on any circular security assumptions, this means
that it can be used together with any symmetric scheme. However, a clever selection of the sym-
metric scheme to be used can make our methodology applicable also for somewhat homomorphic
schemes, such as the scheme BTS from Section 4, even without bootstrapping.

We present a protocol PIR = (PIR.Setup, PIR.Query, PIR.Response, PIR.Decode) (as defined in
Section 5.1).

e PIR.Setup(1”): In the setup procedure, we generate a symmetric key symsk<SYM.Keygen(1*)
and keys for the somewhat homomorphic scheme (hpk, hevk, hsk)<HE.Keygen(17).

2"We feel that our definition captures the essence of an attack on a PIR protocol more than the standard one-time
definition, even in the usual setting. As we mention above, converting between the definitions incurs a linear blowup
in the adversary’s advantage so a (¢, €)-private scheme according to the old definition is only (¢, te)-private according
to ours.

30

The symmetric key is then encrypted using the homomorphic public key to create a ciphertext
Csymsk<—H E. EnChpk (symsk) .

We note that if HE is bit encryption scheme, then symsk is encrypted bit by bit.

The setup procedure then outputs the public parameters
params:=(hevk, csymsk)

and the secret state
setupstate:=(hpk, hsk, symsk) .

PIR.Query(1%, setupstate,i): To generate a query string, we just encrypt 7 using the symmetric
scheme. Recall that setupstate = (hpk, hsk, symsk), then

query«—SYM.Encgymsr (1) -
In our scheme, no additional information needs to be saved per query: gstate:=d¢.

PIR.Response(1%, DB, params, query): Upon receiving a query, a response is computed as fol-
lows. Recall that params = (hevk, ceymsi) and consider the function A defined as follows:

h(z) £ DB[SYM.Dec(z, query)) ,

namely the function h uses its input as a symmetric key to decrypt the query, and then uses
the plaintext to index the database and retrieve the appropriate value. Note that h(symsk) =
DBJi], where i is the index embedded in query.

While PIR.Response does not know symsk, it does know cgyms and thus can homomorphically
evaluate h(symsk) and set

resp<—HE.Evalpeyi (R, Coymsk) -

Note that resp should correspond to a decryptable ciphertext of DB[i].

PIR.Decode(1%, setupstate, qstate, resp): We recall that setupstate = (hpk, hsk, symsk) and
that gstate is null. To decode the answer to the query, we decrypt the ciphertext associated
with resp, outputting

b<—HE.Decys(resp) .

Correctness and privacy are easily reduced to those of the underlying primitives in the following

lemmas.

Lemma 5.1 (correctness). If our symmetric scheme SYM, and our somewhat homomorphic scheme
HE are correct and if the somewhat homomorphic scheme can evaluate the function h defined above,
then our PIR protocol is correct.

Proof. Since HE is correct with regards to homomorphic evaluation, then with all but negligible
probability b = h(symsk). Since SYM is correct, it follows that h(symsk) = DB[i] with all but
negligible probability. O

31

Lemma 5.2 (privacy). If our somewhat homomorphic scheme is (t - poly(k),€1)-CPA secure and
our symmetric scheme is (t+poly(k), e2)-CPA secure, then our PIR protocol is (t,2(e1+¢€2))-private.

Proof. We prove this by a series of hybrids (or experiments). Let A be an adversary that runs in
time t against the privacy of our protocol and has advantage e. We consider the behavior of A in
a number of hybrids Hy, Hi, Hs as defined below. We let Advy;,[A] denote the advantage of A in
hybrid H;.

e Hybrid Hjy. This is identical to the original privacy game of the scheme. By definition

Advy, (Al =€.

e Hybrid H;. We now change the game so that instead of computing csymskeHE.Enchpk(symsk)
in PIR.Setup, we will set cgymsk—HE.Encppi(0).

There exists an adversary B for the CPA-security of the somewhat homomorphic scheme that
runs in time t - poly(x) and whose advantage is

CPAAdv[B] = (1/2) - |Advy,[A] — Advg, [A]] -

It follows that
|Advy, [A] — Advy, [A]] < 2¢; .

e Hybrid H,. We now change the game so that instead of setting query,<—SYM.Encgymsi(ir)
in PIR.Query, we will set query,<—SYM.Encgy,,(0) for all £ € [1...¢].

There exists an adversary C for the CPA-security of the symmetric scheme that runs in time
t + poly(x) and whose advantage is

CPAAdv[C] = (1/2) - |Adv g, [A] — Advy,[A]l -

It follows that
|Adv g, [A] — Advg, [A]] < 2e .

However, in Hs, the view of the adversary is independent of the queried indices. Therefore

Advg,[A] =0.

It follows that € < 2(e1 + €2) as required. O

Lastly, let us analyze the communication complexity of our protocol. It follows by definition
that the query size is the length of an encryption of {0, 1}“0g N1 bits using our symmetric scheme,
and the response is the encryption of a single bit using our somewhat homomorphic scheme.

5.3 Instantiating the Components: The PIR Protocol

We show how to implement the primitives required in Section 5.2 in two different ways.

32

An Explicit LWE-Based Solution. The first idea is to use an optimized, symmetric-key LWE-
based encryption as the symmetric encryption scheme in the PIR protocol, together with our
scheme BTS as the homomorphic scheme. Specifically, using the same parameters k,p as in our
bootstrappable scheme, we get a symmetric scheme whose decryption is almost identical to that of
our bootstrappable scheme.

In particular, we apply an optimization of [PVWO08, ACPS09] to get ciphertexts of length
O(log N) + O(klogk) to encrypt log N bits of the index. Roughly speaking, the optimization is
based on two observations: first, rather than encrypting a single bit using an element of Z,,, we can
“pack in” O(logp) bits, if we set the error in the LWE instances to be correspondingly smaller (but
still a 1/poly(k) fraction of p). Secondly, observe that in a symmetric ciphertext (v, w) € Zlg X Lp,
most of the space is consumed by the vector v. The observation of [PVW08, ACPS09] is that
v can be re-used to encrypt multiple messages using different secret keys si,...,sy. Using these
optimizations, the resulting PIR protocol has query length of O(klogk + log N) bits and response
length O(klog k) for k = poly(x). The following corollary summarizes the properties of this scheme.

Corollary 5.3 ([PVWO08, ACPS09]). Let p,k,x be as in Theorem 4.2. Then there exists a
DLWEy, p, 5 -secure symmetric encryption scheme whose ciphertext length is O(klogk + £) for €-bit
messages, and whose decryption circuit has the same depth as that of BTS.Dec.

Recall the analysis of BTS from Section 4. We can prove that the function i can be evaluated
homomorphically.

Lemma 5.4. Let SYM be the scheme from Corollary 5.3, then h(x) £ DB[SYM.Dec,(query)] is
such that h € Arith[O(log k) + loglog N, N].

Proof. We implement h as follows. First, we decrypt the value of query to obtain an index . Then,
we compute the function) je(n) DB [7]-1;—;. The decryption circuit is implemented in depth O(log k)
as in Lemma 4.5. The function 1;—; is implemented using a comparison tree of depth loglog N.
Finally, a collation gate of fan-in NV is used to compute the final sum. The result follows. O

This means that we can choose n to be large enough such that h can be evaluated by BTS.

Theorem 5.5. There exists a PIR protocol with communication complexity O(klog k+log N) based
on the DLWE,, 4, and DLWEy, , ; assumptions, for n = poly(k) and the remainder of the parameters
as in Theorem 4.2.

Proof. We choose n such that L = Q(elogn) > O(log k) +loglog N and such that /g = 2m/2 > N.
This will result in n = poly(k,log N) (recall that the communication complexity depends only on
k). The result follows from Theorem 4.2 and Theorem 4.3. O

For the best currently known attacks on LWE (see [MR09, LP11, RS10]), this protocol is
(2Q(k/ polylogk) o—Q(k/ p01y1ng))—plrivaute. Thus, going back to our definitions in Section 5.1, and setting
k = k - polylog(k), we get a (ii)-private PIR scheme with a total communication complexity of
O(log N) + O(k - polylog(k)); and a (i)-private scheme with communication complexity log N -
polyloglog(N) by setting k = log N - polyloglog(N) = w(log N).

33

An Almost Optimal Solution Using Pseudorandom Functions. A second instantiation
aims to bring the (i7)-private communication complexity down to log N + & - polylog(x). This can
be done by instantiating the symmetric encryption scheme above with an optimal symmetric en-
cryption scheme with ciphertexts of length log N+ k-polylog(x). Such a scheme follows immediately
given any pseudo-random function (PRF).

If we want to base security solely on LWE, we can use the LWE-based PRF that is obtained
by applying the GGM transformation [GGMS86] to an LWE based pseudorandom generator. Note
that using such instantiation, we cannot argue that h € Arith[L,T] for reasonable L,T (since
the complexity of evaluating the PRF might be high). However, we can use our leveled fully
homomorphic scheme to support the required circuit depth of any function, and in particular the
aforementioned PRF.

The Complexity of Transmitting the Public Parameters. Finally, we note that the pa-
rameters produced in the setup phase of our protocol are of length poly(k). Thus our proto-
col can be trivially modified to work in a setting without setup, with communication complexity
log N + poly(x) (under the (ii)-private notion) and polylog(/N) (under the (i)-private notion).

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard
model. In FUROCRYPT, pages 553-572, 2010.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
595-618. Springer, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Omer Reingold, editor, TCC, volume
5444 of Lecture Notes in Computer Science, pages 474-495. Springer, 2009.

[Ajt98] Miklés Ajtai. The shortest vector problem in g is p-hard for randomized reductions
(extended abstract). In STOC, pages 10-19, 1998.

[AKS01] Miklés Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, pages 601-610, 2001.

[BGNO5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Theory of Cryptography - TCC’05, volume 3378 of Lecture Notes in Computer
Science, pages 325-341. Springer, 2005.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, 2011. To appear.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In FEUROCRYPT, pages 523-552, 2010.

34

[CMS99)

[DGHV10]

[Gen09a]

[Gen09b]

[Gen10]

[GGMS6]

[GH11a]

[GH11b]

[GHV10a]

[GHV10b)]

[GMS2]

[GPVOS]

[GROS]

[ILL89)]

Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In EUROCRYPT, pages 402-414,
1999.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, pages 24-43, 2010. Full
Version in http://eprint.iacr.org/2009/616.pdf.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169-178, 2009.

Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, pages 116-137, 2010.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-

tions. J. ACM, 33(4):792-807, 1986.

Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279, 2011. http:
//eprint.iacr.org/2011/279.

Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 129-148. Springer, 2011.

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. «hop homomorphic encryption
and rerandomizable Yao circuits. In CRYPTO, pages 155-172, 2010.

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-type cryptosys-
tem from LWE. In EUROCRYPT, pages 506-522, 2010.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, pages 365-377. ACM, 1982.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197-206.
ACM, 2008.

Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In Luis Caires, Giuseppe F. Italiano, Luis Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes
in Computer Science, pages 803-815. Springer, 2005.

Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In STOC, pages 12-24. ACM, 1989.

35

[IPO7]

[Lip05]

[LLL82]

[LP11]

[LPR10]

[MGH10]

[Mic00]

[Mic10]

[MROY]

[MV10]

[0S07]

[Paigg]

[Pei09)]

[PVWO08]

Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, T'CC, volume 4392 of Lecture Notes in Computer Science, pages
575-594. Springer, 2007.

Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume
3650 of Lecture Notes in Computer Science, pages 314-328. Springer, 2005.

A. K. Lenstra, H. W. Lenstra, and L. Lovsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515-534, 1982. 10.1007/BF01457454.

Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA, volume 6558 of Lecture Notes in
Computer Science, pages 319-339. Springer, 2011.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, pages 1-23, 2010. Draft of full version was
provided by the authors.

Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic
encryption with d-operand multiplications. In CRYPTO, pages 138—-154, 2010.

Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput., 30(6):2008-2035, 2000.

Daniele Micciancio. A first glimpse of cryptography’s holy grail. Commun. ACM,
53:96-96, March 2010.

Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum
Cryptography. Springer, 2009.

Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In Leonard J.
Schulman, editor, STOC, pages 351-358. ACM, 2010.

Rafail Ostrovsky and William E. Skeith ITI. A survey of single-database private in-
formation retrieval: Techniques and applications. In Tatsuaki Okamoto and Xiaoyun
Wang, editors, Public Key Cryptography, volume 4450 of Lecture Notes in Computer
Science, pages 393-411. Springer, 2007.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, pages 223-238, 1999.

Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333-342, 2009.

Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO, volume 5157
of Lecture Notes in Computer Science, pages 554-571. Springer, 2008.

36

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169-177. Academic Press, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84-93. ACM, 2005.

[RS10] Markus Riickert and Michael Schneider. Estimating the security of lattice-based cryp-
tosystems. Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.
org/.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki
Abe, editor, ASTACRYPT, volume 6477 of Lecture Notes in Computer Science, pages
377-394. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval, editors,
Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
420-443. Springer, 2010.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for
NCLl. In FOCS, pages 554-567, 1999.

37

ECCC ISSN 1433-8092
http://eccc.hpi-web.de

