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Abstract

We present three contributions to the understanding of QMA with multiple provers:

• We give a tight soundness analysis of the protocol of [Blier and Tapp, ICQNM ’09], yielding a
soundness gap Ω(N−2), which is the best-known soundness gap for two-prover QMA protocols
with logarithmic proof size. Maybe surprisingly, our improvement is achieved without the use
of an instance with a constant soundness gap (i.e., without using a “PCP”); this is unlike
the previously best-known soundness gap of Ω(N−3−ε) given by [Beigi, QIC ’10], which was
achieved using a (balanced) 2-out-of-4 instance with constant soundness gap.

• We give a tight soundness analysis of the protocol of [Chen and Drucker, ArXiV ’10], thereby
improving their result from a “monolithic” protocol where Θ(

√
N) provers are needed in order

to have any soundness gap, to a protocol with a smooth trade-off between the number of
provers κ and a soundness gap Ω(κ2N−1), as long as κ ∈ Ω(logN). (And, when κ ∈ Θ(

√
N),

we recover the original parameters of Chen and Drucker.) Further, we explain why even
our tight analysis cannot give any soundness gap for the “κ ∈ O(1) regime”, implying that
new protocols are needed for any “sublinear” constant-prover LOCC QMA protocol with an
inverse-polynomial soundness gap.

• We make partial progress towards an open question of [Aaronson et al., ToC ’09] about what
kinds of NP-complete problems are amenable to “sublinear” multiple-prover QMA protocols,
by observing that a large class of such examples can easily be derived from results already in
the PCP literature — namely, at least the languages recognized by a non-deterministic RAMs
in quasilinear time. We also take the opportunity to give generic lemmas that allow for such
results to be stated in a more general (and unified) way.
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1 Introduction

The class QMA is the natural quantum analogue of NP (and MA): with the help of a quantum
proof (given by the all-powerful “Merlin”), a quantum polynomial-time verifier (“Arthur”) attempts
to decide whether an input string x is in a given language L or not; this class was first studied by
Knill [Kni96], Kitaev [Kit99], and Watrous [Wat00]. For more details, see the survey of Aharonov and
Naveh [AN02].

Kobayashi et al. [KMY03] first introduced and studied the class QMA(κ), where Arthur receives
κ ∈ [2, poly(N)] quantum proofs that are promised to be unentangled. While multiple proofs in the
classical case do not increase the power of the class (i.e., “NP(κ) = NP” and “MA(κ) = MA”), there
is some evidence that multiple unentangled proofs in the quantum case are in fact more powerful that
one (as currently conjectured): for example, Liu et al. [LCV07] have proposed a problem, pure state
N -representability, that is known to lie in QMA(2) but is not known to lie in QMA; also, several works
[BT09, Bei10, ABD+09, CD10] have proposed multi-prover QMA protocols for certain NP languages
whose (soundness and proof length) parameters are not known to be achievable with only one prover.
(See Table 1 for a summary of such results.)

Harrow and Montanaro [HM10] recently answered several important open problems regarding the
class QMA(κ), by proving that amplification within QMA(κ) is possible and that QMA(poly(N)) =
QMA(2); the “collapse” is achieved by giving an analysis of a product test, which allows a verifier to
use the unentanglement promise of only two registers to ensure that states within a single register are
close to a separable state.

Brandão et al. [BaCJ10, Corollary 4] prove (among other things) that two-prover QMA protocols
where the verifier is restricted to LOCC measurements only can be simulated by a single prover QMA
protocol, incurring only in a quadratic increase in total proof length. In particular, for example, this
implies that a two-prover QMA protocol for 3SAT with an LOCC verifier and total proof length of
o(N) is unlikely to exist (for, otherwise, 3SAT could be solved in deterministic subexponential time).

Particularly interesting is the gap between the “lower bound” of Brandão et al. [BaCJ10] and
the “upper bound” results that are known for multi-prover QMA protocols for certain NP languages.
Specifically, Aaronson et al. [ABD+09] give a Θ̃(

√
N)-prover QMA protocol for 3SAT, with perfect

completeness and constant soundness gap, where each prover sends Θ(logN) qubits; two improve-
ments, in different directions, on this protocol are known:

• Reducing the number of provers. Harrow and Montanaro [HM10], through their product test,
reduce the number of provers of [ABD+09] to only two, thereby obtaining a two-prover QMA
protocol for 3SAT, with perfect completeness and constant soundness gap, where each prover
sends Θ̃(

√
N) qubits.

• Avoiding use of the swap test (and any entangling measurement). Chen and Drucker [CD10]
simplify the verifier of [ABD+09] by simply not using the swap test, thereby making the verifier
perform only LOCC (in fact, Bell) measurements; along the way, they also manage to greatly
simplify the soundness analysis too. (Also, but less relevant: they (i) use a coloring problem as
a starting point instead of a “structured” SAT instance, and (ii) they lose perfect completeness.)

However, no result that improves on both directions is known; such a result, in light of the lower bound
of Brandão et al. [BaCJ10], would be a tight upper bound (under plausible hardness assumptions).
In this work, we are interested in studying this gap, and therefore address the following question:

Question 1. Does there exist a two-prover QMA protocol for 3SAT, with a constant soundness gap
and

√
npolylog(n) total number of qubits, where the verifier is only allowed to perform LOCC mea-

surements?
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paper language PCP? provers qubits
provers c c− s verifier test

[BT09] 2CSP(N,M, 3) no 2 Θ(logN) 1 Ω(N−6) SWAP , Bell

[Bei10] (2, 4)SAT∗(N) yes 2 Θ(logN) 3
4 +

√
2(N−1)

6N1.5 Ω(N−3−ε) SWAP , Bell

[ABD+09] (2, 4)SAT∗(N) yes Θ(
√
N) Θ(logN) 1 Ω(1) SWAP , Bell

[CD10] 2CSP(N,M,O(1)) yes Θ(
√
N) Θ(logN) 1− e−Ω(

√
N) Ω(1) Bell

[HM10] (2, 4)SAT∗(N) yes 2 Θ̃(
√
N) 1 Ω(1) SWAP , Bell

this work 2CSP(N,M,O(1)) no 2 Θ(logN) 1 Ω(N−2) SWAP , Bell

this work 2CSP(N,M,O(1)) yes κ Θ(logN) 1− e−Ω(κ) Ω(κ2N−1) Bell

Table 1: A summary of the known multi-prover QMA protocols for languages in NP. The language
2CSP(N,M,K) consists of satisfiable 2CSP instances on N vertices, with M (edge) constraints and
an alphabet size of K; the language (2, 4)SAT∗(N) consists of satisfiable 2-out-of-4 balanced SAT
instances on N variables. See Section 2 for formal definitions of these languages.

1.1 Our Contributions

The goal of this research was (and still is) to answer, in the positive, Question 1. Unfortunately, we
have not succeeded yet. Nonetheless, along the way we have collected observations that we believe to
be of interest, as well as technical contributions to existing works.

Specifically,

• We address an open question of Aaronson et al. [ABD+09] about what kinds of NP-complete
problems are amenable to “sublinear” multiple-prover QMA protocols, by observing that a large
class of such examples can easily be derived from results already in the PCP literature. We also
take the opportunity to give generic lemmas that allow for such results to be stated in a more
general (and unified) way.

• We give a tight soundness analysis of the protocol of Chen and Drucker [CD10], thereby im-
proving their result from a “monolithic” protocol where Θ(

√
N) provers are needed in order to

have any soundness gap, to a protocol with a smooth trade-off between the number of provers κ
and a soundness gap Ω(κ2N−1), as long as κ ∈ Ω(logN). (And, when κ ∈ Θ(

√
N), we recover

the original parameters of [CD10].) Further, we explain why even our tight analysis cannot give
any soundness gap for the “κ ∈ O(1) regime”, implying that new protocols are needed for any
“sublinear” constant-prover LOCC QMA protocol with an inverse-polynomial soundness gap.

• We give a tight soundness analysis of the protocol of Blier and Tapp [BT09], yielding a sound-
ness gap Ω(N−2), which is the best-known soundness gap for two-prover QMA protocols with
logarithmic proof size. Maybe surprisingly, our improvement is achieved without the use of an
instance with a constant soundness gap (i.e., without using a “PCP”); this is unlike the previ-
ously best-known soundness gap of Ω(N−3−ε) given by Beigi [Bei10], which was achieved using
a (balanced) 2-out-of-4 instance with constant soundness gap.

We now discuss each of the above contributions in some more detail, while all the details are left
to subsequent sections. At the end of this section we also briefly discuss our ideas about possible
approaches (as well as unlikely approaches) for progress towards answering Question 1.
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1.1.1 Languages with sublinear quantum proofs

The main theorem of Aaronson et al. [ABD+09] is:

Theorem 1.1 ([ABD+09, Theorem 1]). Let ϕ be a satisfiable 3SAT instance with N variables and M
clauses (and M ≥ N). Then one can prove satisfiability of ϕ, with perfect completeness and constant
soundness, using Θ̃(

√
M) unentangled quantum proofs, each with Θ(logN) qubits.

What is surprising about the result is that, for M ∈ O(N), the total number of qubits sent by all the
provers to the verifier is sublinear ; instead, the best known proof length in the case of only one prover
(i.e., in the case of QMA) is linear (and we believe one cannot do better, by the Exponential-Time
Hypothesis).

Aaronson et al. [ABD+09] thus raised the following question:

Question 2. For which NP-complete problems, other than 3SAT, an analogue of Theorem 1.1 holds?

Clearly, an analogue of Theorem 1.1 holds for any language L that can be reduced to 3SAT
with only a polylogarithmic blow-up in instance size. (Note that the computational efficiency of the
reduction itself is irrelevant here.) However, can we say more? For example, can we say something
about languages for which no such reduction to 3SAT is known?

We make the observation the existing PCP literature already yields a large class of languages for
which an analogue of Theorem 1.1 does hold:

Claim 1.2 (Sublinear Multiple-Prover Quantum Proofs). Let L be any language that can be recognized
in non-deterministic quasilinear time by a random-access machine. Let x be an instance in L of size
N . Then one can prove that x is in L, with perfect completeness and constant soundness, using
Θ̃(
√
N) unentangled quantum proofs, each with O(logN) qubits.

The starting point of Aaronson et al. [ABD+09] was the existence of a reduction from 3SAT to
2CSP with constant soundness gap implied by combining the results on short PCPs by Ben-Sasson and
Sudan [BSS08] and on gap amplification by Dinur [Din07]. We simply observe that a similar reduction
holds for any language that can be recognized in non-deterministic quasilinear time by a multi-tape
Turing machine (a class of languages which, by a result of Gurevich and Shelah [GS89], happens
to equal the class of languages recognized in non-deterministic quasilinear time by random-access
machines — which are easier to understand).

In fact, we make a much more general observation:

Claim 1.3 (Sublinear Multiple-Prover Quantum Proofs for NTIME Languages). Let t : N→ N be any
proper complexity function and let NTIMERAM(t) be the class of languages solvable in non-deterministic
t(n)-time by a random-access machine (RAM). For any language L ∈ NTIMERAM(t), it is possible to
prove membership in L, with perfect completeness and constant soundness, using Θ̃

(√
t(n)

)
unentan-

gled quantum proofs, each with O
(

log t(n)
)

qubits.1

Again, the proof is simply the observation that any language L ∈ NTIMERAM(t) can be reduced
to a 2CSP with constant soundness gap with tpolylog(t) vertices and edges and a constant-size color
alphabet, and then the protocol of Aaronson et al. [ABD+09] can be applied to obtain the claimed
parameters.

We also take the opportunity to clearly state the “size-efficient” reduction from NTIMERAM(t) to
2CSP with constant soundness, because the reduction not only generalizes the result of Aaronson et al.
[ABD+09] to all of NTIMERAM, but also generalizes all the other results in multi-prover QMA protocols
(namely, [CD10], [Bei10], and [BT09]), because they too are all based on 2CSP (or languages that can

1Of course, if t is superpolynomial, we should consider verifiers that are allowed to run in time poly(t(n)).
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be efficiently reduced to form 2CSP). For example, we state in this general form our improvements to
[CD10] (in Claim 1.6) and to [BT09] (in Claim 1.8).

For details, see Section 3.

1.1.2 Technical improvements to [CD10]

Aaronson et al. [ABD+09] raised the question of whether it is possible to construct a (multi-prover)
QMA protocol with constant soundness gap and sublinear proof size for an NP-complete language, but
using no entangled measurements. Chen and Drucker [CD10] gave a positive answer:

Theorem 1.4 ([CD10]). Let ϕ be a satisfiable 3SAT instance with N variables and M clauses (and
M ≥ N). Then one can prove satisfiability of ϕ, with almost-perfect completeness and constant
soundness, using Θ̃(

√
M) unentangled quantum proofs, each with Θ(logM) qubits, and by only making

LOCC (in fact, Bell) measurements.

The analysis of [CD10] does not give a smooth tradeoff between the number of provers and sound-
ness, because their proof only shows a soundness gap when the number of provers is Θ̃(

√
M). We give

a tight analysis of their protocol that yields a soundness gap for a number of provers κ ∈ Ω(logN):

Claim 1.5 (Improved soundness for [CD10]). Let ϕ be a satisfiable 3SAT instance with N variables
and M clauses (and M ≥ N). Then one can prove satisfiability of ϕ, with completeness 1−e−Ω(κ) and

soundness 1−Ω( κ2

N+κ2
), using κ unentangled quantum proofs, each with Θ(logN) qubits, and by only

making LOCC (in fact, Bell) measurements. Thus, for κ ∈ Ω(logN) and κ ∈ O(
√
N), the soundness

gap is Ω(κ2N−1). Moreover, our analysis is tight, in the sense of Remark 2.

The improvement comes from the simple observation that the second-moment argument of [CD10]
can be strengthened by using a one-sided Chebyshev inequality in place of the two-sided Chebyshev
inequality. See Section 5 for more details.

We believe that our technical improvement to [CD10] is of interest because it helps us “push the
barrier closer” to the best two-prover LOCC QMA protocols with logarithmic proof length. We believe
they exist, but we have not discovered one yet.

More generally, using our observations about “size-efficient” reductions from NTIMERAM(t) to 2CSP
instances of constant soundness gap (cf. Section 3), we obtain the immediate corollary:

Claim 1.6. Let t : N → N be any proper complexity function and let L ∈ NTIMERAM(t). Then
there exists a function t′ : N → N with t′(n) ∈ O

(
t(n)polylog(t(n))

)
such that it is possible to prove

membership in L ∩ {0, 1}n, with completeness 1 − e−Ω(κ) and soundness 1 − Ω( κ2

t(n)′+κ2 ), using w

unentangled quantum proofs, each with O
(

log t′(n)
)

qubits.

1.1.3 Technical improvements to [BT09]

The known results for two-prover QMA protocols with a polylogarithmic proof size for NP-complete
languages are the following:

• Blier and Tapp [BT09] give a protocol for instances of graph 3-coloring on N vertices and M
edges that has completeness c = 1 and soundness s = 1− Ω(N−6); and

• Beigi [Bei10] gives a protocol for constant-gap instances of (balanced) 2-out-of-4 SAT with M

clauses that has completeness c = 3
4 +

√
2

6M

√
1− 1

M and soundness s = c − Ω(M−3−ε) for every
ε > 0.

5



We give a tight (and more general) soundness analysis of the protocol of Blier and Tapp [BT09],
yielding the best known soundness gap for such protocols:

Claim 1.7 (Improved soundness for [BT09]). The protocol of Blier and Tapp [BT09] for 2CSP’s on
N vertices and M edge constraints over a K-size alphabet has soundness s = 1 − Ω(N−2), assuming
K ∈ O(1). Moreover, our analysis is tight, in the sense of Remark 3.

Note that our analysis, just like the original one of Blier and Tapp [BT09], does not assume an
instance with constant soundness gap, unlike the improvement by Beigi [Bei10] (and all other multi-
prover QMA protocols for NP-complete languages). See Section 6 for details.

More generally, we can use our observations about reducing NTIMERAM(t) languages to 2CSP
instances with a “quasilinear blowup in size” (cf. Section 3) to obtain the immediate corollary:2

Claim 1.8. Let t : N → N be any proper complexity function and let L ∈ NTIMERAM(t). Then
there exists a function t′ : N → N with t′(n) ∈ O

(
t(n)polylog(t(n))

)
such that it is possible to prove

membership in L∩{0, 1}n, with perfect completeness and soundness 1−Ω(t′(n)−2), using 2 unentangled
quantum proofs, each with O

(
log t′(n)

)
qubits.

1.1.4 On the way to a solution

We can think of two ways of answering Question 1: an “indirect” construction and a “direct” con-
struction.

Indirect construction. The first step is to construct two-prover LOCC QMA protocol for 3SAT
with Ω( 1√

Npolylog(N)
) soundness gap and logarithmic proof size; the second step is to directly amplify

the protocol to constant soundness, thereby obtaining the required parameters of proof length and
soundness. (Indeed, since LOCC QMA protocols amplify “naturally”, there is no need to use a product
test [HM10], which would have broken the LOCC property anyways, nor there is any need to invoke
additional assumptions such as the Weak Additivity Conjecture [ABD+09, Theorem 35].)

Through Claim 1.7 we have made some progress in this direction by improving the best-known
soundness gap of two-prover protocols for 3SAT with a polylogarithmic proof size to Ω(N−2). Unfor-
tunately, the protocol is not LOCC and does achieve the required soundness gap of Ω( 1√

Npolylog(N)
).

On the bright side, the protocol does not exploit the power of PCPs. We believe that an improvement
should be possible:

Conjecture 1. There exists a two-prover LOCC QMA protocol for 3SAT with Ω( 1
Npolylog(N)) soundness

gap and logarithmic proof size.

While we believe that our understanding of two-prover protocols for NP-complete languages and
logarithmic proof size is still far from complete, we also believe that an answer to Question 1 via an
indirect construction is unlikely:

Conjecture 2. There is no two-prover LOCC QMA protocol (or even a QMA protocol) for 3SAT with
ω( 1

Npolylog(N)) soundness gap and logarithmic proof size.

We are not aware of any unlikely complexity consequences if Conjecture 2 turns out to be false.
(Aaronson et al. [ABD+09, Footnote 2] did observe that if a weaker conjecture, where ω( 1

Npolylog(N))

is replaced by Ω(1), were to be true, then it would imply that QMA(2) = NEXP, which is believed to
be unlikely.)

2Specifically, the corollary directly follows from invoking Claim 3.1; in this case, we happen not to exploit the constant
soundness gap of the 2CSP instance so obtained.
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Direct construction. A protocol with the required parameters is constructed “directly” in the sense
of proposing an LOCC verifier test that acts on all the provided qubits at the same time, possibly
in a much more complicated way than just repeating a simpler verifier protocol (as in the indirect
construction).

The main difficulty, unsurprisingly, is indeed the LOCC requirement, which, in particular, forbids
us any use of the swap test across the two registers. Unfortunately, the swap test forms the basis of
almost every result on properties of multiple-prover QMA, including:

• the fact that any QMA(κ) protocol with constant soundness can be simulated by a QMA(2)
protocol with Ω(1/κ) soundness [ABD+09, Theorem 36];

• the fact that symmetric QMA(κ) with almost perfect completeness and constant soundness is
contained in QMA(κ) [ABD+09, Lemma 38];

• the fact that QMA(κ) is contained in “QMA(2
3κ)” with constant losses in completeness and

soundness [KMY03, Lemma 8];

• the protocols of [BT09], [Bei10], [ABD+09], and [HM10].

Most importantly, the swap test is at the basis of the product test of Harrow and Montanaro [HM10].
In particular, the (natural) approach that attempts to construct a “product test type result” out of
LOCC measurements (and apply it to, say, the protocol of [CD10]) runs into the risk of implying
that QMA(κ) = QMALOCC(2), which, through the result of Brandão et al. [BaCJ10], would have
the unlikely consequence of QMA(k) = QMA. Thus, any such approach must make essential “non-
black-box” use of the structure of the language at hand (e.g., that of 2-out-of-4 SAT) to avoid being
a “generic” test.

We do not have conjectures about how a direct construction might look like.

1.2 Open Problems

The basic Question 1 remains unanswered. We have proposed two concrete conjectures, Conjecture 1
and Conjecture 2; we believe that any proof or disproof of these conjectures, while it might not directly
answer Question 1, should definitely greatly contribute towards our understanding of multiple-prover
QMA protocols for NP languages.

We also take the opportunity to informally conjecture that 2CSP instances with constant soundness
gap are the “right” instances to consider for further progress, and that we only need to become better
LOCC QMA protocol designers.

2 Preliminaries

Two languages and non-deterministic time. First, we define two NP languages that we will be
working with. The first language is constraint-satisfaction problems on graphs:

Definition 2.1 (Graph Constraint Satisfaction). Let G,= (V,E) be a graph (possibly with self-loops)
and an alphabet Σ. A graph constraint-satisfaction problem is a pair C = (G, {Re}e∈E) where Re : Σ×
Σ → {0, 1} for each e ∈ E. We say that C is satisfiable if there is a labeling C : V → Σ such that
every edge predicate evaluates to 1. We say that C is δ-satisfiable if, for every possibly labeling of the
vertices, at most a δ fraction of the edge predicates evaluate to 1.

Fix positive integers N , M , and K. The class 2CSP(N,M,K) consists of satisfiable graph constraint-
satisfaction problems over K-size alphabets on graphs of N vertices and M edges.
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The second language is SAT formulae with some additional structure:

Definition 2.2 (2-Out-Of-4 SAT). The class (2, 4)SAT consists of 2-out-of-4 satisfiable 4-CNF for-
mulae. (A 4-CNF formula is 2-out-of-4 satisfiable if there is an assignment to the variables such that
for every clause in the 4-CNF exactly two of the four variables are satisfied.)

For brevity, we will denote (2, 4)SAT∗ the gap-version3 of (2, 4)SAT such that every variable appears
in Θ(1) number of clauses.

Next, we recall the definition of a proper complexity function:

Definition 2.3 (Proper Complexity Function). A monotonically increasing function f : N → N is a
proper complexity function if a multi-tape Turing machine can compute 1n 7→ 1f(n) in time and space
O(f(n)). See [Pap94, Definition 7.1] for more details.

Finally, we recall non-deterministic time complexity classes with respect to multi-tape Turing
machines and random-access machines:

Definition 2.4 (NTIMEmTM). A multi-tape Turing machine is a finite state machine attached to
multiple tapes, with one head per tape. The tapes are infinite in one direction. The machine can read
and write to each tape, moving one cell per time step. See [Pap94] for more details.

That the machine is non-deterministic means that the finite state control of the Turing machine
can non-deterministically decide its next move, such that the machine accepts if and only if there is
some non-deterministic choice that allows it to accept.

For a proper complexity function t, NTIMEmTM(t) denotes the class of languages that can be rec-
ognized by a t-time non-deterministic multi-tape Turing machine.

Definition 2.5 (NTIMERAM). A random-access machine (RAM) is a list of commands that includes a
finite number of control registers as well as an unbounded number of indexable registers. Each register
holds an integer. Commands include addition, multiplication (with a log-cost penalty), branching on
register contents, and indexing the registers with the contents of other registers. See [GS89] for more
details.

That the machine is non-deterministic means that the finite list of commands of the random-access
machine allow non-deterministic branching to its next move, such that the machine accepts if and only
if there is some non-deterministic choice that allows it to accept.

For a proper complexity function t, NTIMERAM(t) denotes the class of languages that can be rec-
ognized by a t-time non-deterministic random-access machine.

Information theory. First, we recall the classical information-theoretic notion of statistical distance
between two probability distributions [NC00, Sec. 9.1]:

Definition 2.6 (Statistical Distance). Let P and Q be two probability distributions over the same
finite set S. The statistical distance between P and Q, denoted |P −Q|1, is defined as the quantity

1

2

∑
s∈S

∣∣P (s)−Q(s)
∣∣ .

Next, we recall its quantum analogue of trace distance [NC00, Sec. 9.2.1]:

3That is, the problem of distinguishing 4-CNF formulas that are perfectly 2-out-of-4 satisfiable versus those that are
only 1− Ω(1) 2-out-of-4 satisfiable
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Definition 2.7 (Trace Distance). The trace distance between two quantum states ρ and σ, denoted
|ρ− σ|Tr, is defined as the quantity:

1

2
Tr

(√
(ρ− σ)†(ρ− σ)

)
.

If ρ and σ commute, then they can be simultaneously diagonalized, and the trace distance between
ρ and σ reduces to the statistical distance between the two probability distributions induced by the
two sets of eigenvalues of ρ and σ.

If ρ and σ are two pure states |φ〉〈φ| and |ψ〉〈ψ|, then the trace distance between |φ〉〈φ| and |ψ〉〈ψ|
simplifies [NC00, Sec. 9.2.3] to the quantity

√
1− | 〈φ|ψ〉 |2.

Also, we recall that, given a projective measurement (i.e., a Hermitian operator) M , if P and Q
are the probability distributions describing the outcomes obtained when measuring M on |φ〉 and |ψ〉
respectively, then |P −Q|1 ≤ ||φ〉〈φ| − |ψ〉〈ψ||Tr. For convenience, we will denote by dstrM (|φ〉) the
distribution P , and simply dstr(|φ〉) when M is assumed to be a full computational basis measurement.

Swap test. Buhrman et al. [BCWdW01] introduced the swap-test on two quantum states ρ and σ,
given by the following quantum circuit:

|0〉 H • H NM



 b

|ρ〉
SWAP|σ〉

Essentially, the swap-test measures the overlap between two quantum states, because

Pr
[
b = 0

]
=

1 + Tr(ρσ)

2
,

i.e., if ρ = σ, then the swap-test always yields the outcome 0, if instead ρ 6= σ, then the probability of
measuring 0 is directly proportional to the overlap between ρ and σ. In particular, if one wishes to use
the swap test in order to check whether two quantum states are equal or not, then the probability of
discovering that they are in fact not equal (i.e., the test “rejects”) is equal to (1−Tr(ρσ))/2. Note that
if ρ and σ are two pure states |φ〉〈φ| and |ψ〉〈ψ|, then the probability above is equal to (1−| 〈φ|ψ〉 |2)/2;
for convenience, we denote this probability by REJ

(
Swap(|φ〉, |ψ〉)

)
.

If the probability that the swap test rejects two quantum states is bounded above, then the
statistical distance between the two probability distributions arising when measuring the two quantum
states (in any basis) is also bounded above:

Lemma 2.1. Let |φ〉 and |ψ〉 be quantum states and δ a number in [0, 1]. If REJ
(
Swap(|φ〉, |ψ〉)

)
≤ δ,

then |dstr(|φ〉)− dstr(|ψ〉)|1 ≤
√

2δ.

Proof. Recall that REJ
(
Swap(|φ〉, |ψ〉)

)
= 1

2 −
|〈φ|ψ〉|2

2 , so that

|dstr(|φ〉)− dstr(|ψ〉)|1 ≤ ||φ〉〈φ| − |ψ〉〈ψ||Tr =
√

1− | 〈φ|ψ〉 |2 ≤
√

2δ .

Quantum Fourier transform. Finally, we recall the quantum Fourier transform:

Definition 2.8 (Quantum Fourier Transform). Let Hn be an n-dimensional Hilbert space with or-
thonormal basis {|0〉, . . . , |n− 1〉}. The n-dimensional quantum Fourier transform, denoted Fn, is the
linear operator whose action on the basis vector |j〉, j ∈ {0, 1 . . . , n− 1}, is given by

|j〉 7→ 1√
n
·
n−1∑
k=0

e2π
√
−1(jkN−1)|k〉 .
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We recall that Fn is a unitary operator. Also, we will denote by |0Fn〉 the image of |0〉 under Fn,
and it satisfies the following equation:

|0Fn〉=
|0〉+ |1〉+ · · ·+ |n− 1〉√

n
.

For more details on the quantum Fourier transform, see [NC00, Ch. 5].

Quantum proofs. In an κ-prover QMA protocol, the BQP verifier (Arthur) receives a classical
input x ∈ {0, 1}∗ together with κ quantum proofs |Ψ(1)〉, . . . , |Ψ(κ)〉 sent by the κ provers (Merlins);
the provers (and thus the quantum proofs they send) are promised to be unentangled. The verifier
will then decide whether to accept x or not, based on all the quantum proofs he received.

Definition 2.9 (Multi-Prover QMA). Fix a set of admissible Hermitian operators M (i.e., each
M ∈ M satisfies 0 � M � I), polynomially-bounded functions κ, ` : N → N, and arbitrary functions
s, c : N→ [0, 1].

A language L ⊆ {0, 1}∗ is in QMAM` (κ, c, s) if there exists a polynomial-time quantum algorithm
VL restricted to performing measurements from M such that, for all inputs x ∈ {0, 1}n, the following
conditions hold:

• Completeness: If x ∈ L, there exist κ(n) quantum proofs |Ψ(1)〉, . . . , |Ψ(κ(n))〉, each a state of at
most `(n) qubits, such that VL accepts with probability at least c(n) on input |x〉|Ψ(1)〉 · · · |Ψ(κ(n))〉;
and

• Soundness: If x 6∈ L, for every κ(n) quantum proofs |Ψ(1)〉, . . . , |Ψ(κ(n))〉, each a state of at most
`(n) qubits, VL rejects with probability at least s(n) on input |x〉|Ψ(1)〉 · · · |Ψ(κ(n))〉.

The class QMA`(κ, c, s) is defined to be the class QMAM` (κ, c, s) where M is the set of all Hermitian
operators. The class QMA(κ, c, s) is defined to be the class QMApoly(·)(κ, c, s). The class QMA(κ) is
defined to be the class QMA(κ, 2/3, 2/3).

Note that any set of admissible Hermitian operators M induces a set of binary measurements,
where each M ∈ M means “accept” and I −M means “reject”. For example, if we let M = Bell
is the set of Bell measurements (non-adaptive, unentangled measurements), M = LOCC is the set of
LOCC measurements (adaptive, unentangled measurements), and M = SEP is the set of separable
admissible Hermitian operators (which includes the swap test and product test).

3 Quasilinear PCPs

In this section, we show how a few simple observations suffice to generalize the known positive results on
multi-prover QMA protocols for NP languages (i.e., [BT09], [Bei10], [ABD+09], [CD10], and [HM10]).
Doing so allows us to exhibit a large class of problems that qualify as positive examples to Question 2
raised by Aaronson et al. [ABD+09].

The main observation is the fact that “short” PCPs exist not only for 3SAT but, more generally,
for every NTIME language:

Claim 3.1 (Quasilinear PCPs for NTIME Languages). Let t : N→ N be any proper complexity function
and let L be a language in NTIMERAM(t). Then, there exist
• a size function SL : N→ N with SL(n) ∈ t(n)polylog(t(n)),
• a density function DL : N→ N with DL(n) ∈ t(n)polylog(t(n)),
• a color constant KL ∈ N,
• a reduction complexity function CL : N→ N with CL ∈ poly(t(n)),
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• a CL-time reduction RL : {0, 1}∗ → {0, 1}∗ from L to 2CSP,
• a gap constant ηL ∈ (0, 1), and
• a regularity constant dL ∈ N,

such that, for every instance x ∈ {0, 1}n, the following properties hold:
• Efficiency: RL(x) is a 2CSP(N,M,K) instance with N = SL(n), M = DL(n), and K = KL;
• Completeness: if x ∈ L, then RL(x) ∈ 2CSP(N,M,K);
• Soundness: if x 6∈ L, then RL(x) is (1− ηL)-satisfiable; and
• Regularity: RL(x) is dL-regular (with self-loops).

The claim is simply a statement about the short PCPs that are obtained by combing the works of
Ben-Sasson and Sudan [BSS08] and Dinur [Din07], together with some simple observations about the
generality of their results.

Proof. Ben-Sasson and Sudan proved [BSS08, Theorem 2.2] that

NTIMEmTM(t(n)) ⊆ PCP1, 1
2

[
log
(
t(n)polylog(t(n))

)
, polylog

(
t(n)

)]
.

In order to construct “short” PCPs for 3SAT, Dinur:

(i) observes [Din07, Lemma 8.3] that the result of Ben-Sasson and Sudan implies that 3SAT can be
reduced to 2CSP instances that satisfy all the properties of the claim, with the exception that
the soundness gap is is only 1/polylog(n); and

(ii) then she applies her main technical result of gap amplification [Din07, Theorem 1.5] to bring
the soundness gap to a constant η.

Then, (i) and (ii) together easily imply “short” PCPs for 3SAT [Din07, Theorem 8.1].
We note that Dinur’s first observation, (i), only relies on the fact that 3SAT ∈ NTIMEmTM(t(n))

for some t(n) ∈ npolylog(n), and a similar observation can be made for a general language L ∈
NTIMEmTM(t(n)), which, again combined with her gap amplification result, yields the claim for lan-
guages in NTIMEmTM(t(n)).

We choose to not state the claim for languages in NTIMEmTM(t(n)), because it is not as illuminat-
ing; it seems quite tedious (and difficult) to check whether a given language L can be recognized in non-
deterministic t(n)-time by some multi-tape Turing machine. Instead, we observe that, by using a result
of Gurevich and Shelah [GS89, Theorem 2], which implies that NTIMERAM(t) ⊆ NTIMEmTM(t′(n)) for
some t′(n) ∈ t(n)polylog(t(n)), we obtain the claim as stated;4 this way, the task of checking whether
a given language is in L is in NTIMERAM(t) is much simpler: one only needs to write “pseudocode”
for the non-deterministic verifier, and prove that it halts in time t(n).

Remark 1 (Other Non-Deterministic Models of Computation). On the one hand, the deterministic
time complexity of different models of computation is not always “tightly related”. For example, it
is believed that a deterministic multi-tape Turing machine cannot simulate a generic deterministic
t-time random-access machine in time tpolylog(t). Similar beliefs (and sometimes proofs) exist be-
tween supposedly “weak” models of computation (such as Turing machines) and “strong” models of
computation (such as random-access machines).

On the other hand, surprisingly, the situation is quite different for non-deterministic models of
computation, where, instead, it turns out that their time complexities are tightly related. For example,
the result of [GS89] shows that, “up to polylogarithmic factors”, NTIMERAM(t) = NTIMEmTM(t). In
the same paper, similar results are shown for other models, such as Kolmogorov-Uspensky machines

4The result of Gurevich and Shelah [GS89, Theorem 2] in fact states that NTIMERAM(n) ⊆ NTIMEmTM(npolylog(n)),
but the proof can easily be extended to show that NTIMERAM(t) ⊆ NTIMEmTM(t′(n)) for some t′(n) ∈ t(n)polylog(t(n)).
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and Schönhage machines. In other words, the class NTIME(t), unlike TIME(t), is quite robust (again,
up to polylogarithmic factors) to a choice of model of computation, so that Claim 3.1 could indeed be
stated relative to many other models of computation.

However, we believe the result is most useful when stated relative to random-access machines,
because they are closest to our notion of a computer, and we can easily test our intuition about
whether a given language L can be put in NTIME(t) for some t.

The 2CSP instance guaranteed by Claim 3.1 is already a “nice” instance for which multiple-prover
QMA results have been proved. For example, a 2CSP instance is the starting point of Blier and Tapp
[BT09] and Chen and Drucker [CD10], so that we obtain generic results for both protocols.5 See
Claim 1.8 and Claim 1.5 for generic statements (of our improvement) of both results.

Other works, instead, such as [ABD+09] and [Bei10] “process the 2CSP instance further”, in
order to give it additional structure (that is exploited in their protocols). Thus, these additional
processings also inherit the more general reduction guaranteed by Claim 3.1 for all of the languages
in NTIMERAM(t):

Corollary 1 (Constant-Gap Boolean Formulae for NTIME Languages). Let t : N→ N be any proper
complexity function and let L be a language in NTIMERAM(t). Then,

(i) 3SAT Formulae: there exist

– a size function SL : N→ N with SL(n) ∈ t(n)polylog(t(n)),
– a density function DL : N→ N with DL(n) ∈ t(n)polylog(t(n)),
– a reduction complexity function CL : N→ N with CL ∈ poly(t(n)),
– a CL-time reduction RL : {0, 1}∗ → {0, 1}∗ from L to 3SAT, and
– a gap constant ηL ∈ (0, 1),

such that, for ever instance x ∈ {0, 1}n, the following properties hold:

– Efficiency: RL(x) is a 3SAT instance with N = SL(n) variables and M = DL(n) clauses;
– Completeness: if x ∈ L, then RL(x) ∈ 3SAT; and
– Soundness: if x 6∈ L, then RL(x) is (1− ηL)-satisfiable.

(ii) (2, 4)SAT∗ Formulae: there exist

– a size function SL : N→ N with SL(n) ∈ t(n)polylog(t(n)),
– a density function DL : N→ N with DL(n) ∈ t(n)polylog(t(n)),
– a reduction complexity function CL : N→ N with CL ∈ poly(t(n)),
– a CL-time reduction RL : {0, 1}∗ → {0, 1}∗ from L to (2, 4)SAT, and
– a gap constant ηL ∈ (0, 1),
– a balance constant bL ∈ N,

such that, for ever instance x ∈ {0, 1}n, the following properties hold:

– Efficiency: RL(x) is a 3SAT instance with N = SL(n) variables and M = DL(n) clauses;
– Completeness: if x ∈ L, then RL(x) ∈ 3SAT;
– Soundness: if x 6∈ L, then RL(x) is (1− ηL)-satisfiable;
– Balance: each variable of RL(x) appears in at most dL clauses.

Of course, one could add more items to the above corollary, other than 3SAT and (2, 4)SAT, if
other languages that can be efficiently reduced to from 2CSP are found to be useful. We chose to
mention only 3SAT because of its general importance and (2, 4)SAT∗ because it was successfully used
by [ABD+09] and [Bei10].

5Blier and Tapp, though, do not exploit the constant soundness gap, so simply start from the classical NP-complete
problem of graph 3-colorability.
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The proof of the corollary was party sketched, in the particular case of t(n) = n in [ABD+09,
Lemma 12]. We give here the more general proof:

Proof. To obtain (i), we argue as follows. To prove the first item, it suffices to convert the instance
guaranteed by Claim 3.1, which is a 2CSP instance over a constant-size alphabet, into a 3SAT instance,
in a way that preserves perfect completeness and degrades the soundness gap by at most a constant
factor.

First, consider a 2CSP instance over a constant-size alphabet. Observe that we can transform
this into a CSP over a binary alphabet by allowing constraints to restrict multiple variables. As the
original alphabet was of constant-size, this only increase the arity, number of variables, and number
of constraints in the CSP by a constant factor. Further, the soundness gap is preserved.

So consider now a constraint C in the CSP over variables ~x. By the Cook-Levin Theorem, there
exist a 3SAT formula ϕC and additional variables ~y such that C(~x) if and only if there exists ~y such
that ϕC(~x, ~y). Observe that the size of ϕC is at most some constant g, because the original CSP is
over a constant-size alphabet and has arity 2. Define the output of this reduction to be the 3SAT
formula ϕ :=

∧
C ϕC .

We now analyze the properties of ϕ. First, observe that the number of clauses in ϕ is at most g times
the number of constraints in the original CSP, and the number of variables is also a constant-factor
more than the number of variables in the original CSP. Further, if the original CSP was satisfiable,
then so must be ϕC , so perfect completeness is preserved. To analyze soundness, suppose that the
original CSP was at most δ satisfiable. Then, in any assignment to ϕ, at least (1 − δ) · E clauses
must be unsatisfied, where E is the number of constraints in the original CSP. At there are at most
gE clauses in ϕ, this means that ϕ can have at most 1 − 1−δ

g satisfied clauses. Thus, there is still a
constant soundness gap.

To obtain (ii), we first invoke (i) so to obtain a reduction to 3SAT, and then follow the outline of
Aaronson et al. [ABD+09, Lemma 12]. Specifically, the instance output by the reduction guaranteed
by (i) can first be further modified using a reduction of Papadimitriou and Yannakakis [PY91] from
3SAT to 3SAT that makes each variable appear in at most bL = 29 (in fact, exactly) clauses (and
this reduction preserves the constant soundness gap); then, we apply a reduction of Khanna et al.
[KSTW01] (that preserves both the constant soundness gap and the balanced property of the formula)
from 3SAT to (2, 4)SAT. The reason that the outline of Aaronson et al. [ABD+09, Lemma 12] also
works in the general case considered in this corollary is that the number of variables and clauses
increases only a by a constant through these two additional reductions.

4 Graph States

Let G = (V,E) be a graph with N vertices and M edges, and let Σ be a finite color alphabet of size
K. The graph G and the color alphabet Σ will be fixed throughout the rest of the paper.

We say that a quantum state |Ψ〉 is a graph state (for G and Σ) if it is a quantum state over a
Hilbert space H = (H2)⊗ logN ⊗ (H2)⊗ logK . Thus, any graph state |Ψ〉 can be written as

|Ψ〉=

N−1∑
v=0

αv|v〉
K−1∑
j=0

βv,j |j〉 ,

where
∑N−1

v=0 |αv|2 = 1 and
∑K−1

j=0 |βv,j |2 for each v ∈ {0, . . . , N − 1} and j ∈ {0, . . . ,K − 1}. (Note
that the definition of a graph state is independent of the edge set E.)

We believe that developing strong tools for graph-state property testing is essential for making
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improvement towards better multi-prover QMA protocols.6 As a first move in that direction, we give
in the next subsection two lemmas for graph states, which were implicitly used in both [BT09] and
[CD10] with very different parameters, and present them in a generic form. After that, we summarize
the tests for graph states that have been used in previous protocols.

4.1 Two Lemmas on Graph States

Let us first introduce some simple notation: given any graph state |Ψ〉,

• for c ∈ (0, 1], Rc(|Ψ〉) is the subset of V consisting of those vertices v for which |αv|2 < c;

• for c ∈ (0, 1], Sc(|Ψ〉) is equal to V −Rc(|Ψ〉);

• for j = 0, . . . ,K − 1, pj(|Ψ〉) is equal to the probability of measuring j in the color register of
the quantum state (IN × FK)|Ψ〉; and

• for j = 0, . . . ,K − 1, |γ(j)〉 =
∑N−1

v=0 γv(j)|v〉 is the reduced quantum state obtained when we
measure j in the color register of (IN ⊗ FK)|Ψ〉.

First, we prove that, as long as a color j has a large-enough probability of being measured in
the color register of (IN × FK)|Ψ〉, if a vertex v has small amplitude then it will also have a small
amplitude in the reduced state conditioned on measuring j.

Lemma 4.1 (modified [CD10, Lemma 3], which was implicit in [BT09, Lemma 3.7]). Fix a vertex
v ∈ {0, . . . , N − 1}, a color j ∈ {0, . . . ,K − 1}, and two positive numbers c1 and c2. Then:(

pj
(
|Ψ〉
)
≥ 1

c2
and |αv|2 <

1

c1N

)
−→

(
|γv(j)|2 <

c2

c1N

)
.

Proof. Let |X〉 be the quantum state obtained from |Ψ〉 after performing the quantum Fourier trans-
form on the color register of |Ψ〉, i.e.,

|X〉= (IN ⊗ FK)|Ψ〉

= (IN ⊗ FK)
N−1∑
v=0

αv|v〉
K−1∑
j=0

βv,j |j〉

=

N−1∑
v=0

αv|v〉
K−1∑
j=0

βv,j
1√
K

K∑
k=0

e
2π
√
−1jk
K |k〉

=
1√
K

K∑
k=0

N−1∑
v=0

αv

K−1∑
j=0

βv,je
2π
√
−1jk
K

 |v〉
 |k〉 .

For each v ∈ {0, . . . , n}, let Pv,j(|Ψ〉) be the probability that the color register of |X〉 is measured j

and the vertex register is measured v. Recalling that |γ(j)〉=
∑N−1

v=0 γv(j)|v〉 is the reduced quantum
state when outcome j occurs, we have that

Pv,j(|Ψ〉) = pj(|Ψ〉) · |γv(j)|2 .

6For example, we believe that a two-prover QMALOCC protocol for 2CSP(N, Õ(N), O(1)) with Ω(1/N) soundness gap
and polylogarithmic proof length exists (cf. Conjecture 1), but we do not know of one yet. Our improved soundness
analysis of [CD10] almost achieves that, and it seems that a somewhat smarter LOCC verifier should suffice. Developing
a theory of graph-state property testing should shed some light on how to design such a verifier.

14



On the other hand, it is also the case that

Pv,j(|Ψ〉) =

∣∣∣∣∣∣ αv√K
K−1∑
j=0

βv,je
2π
√
−1jk
K

∣∣∣∣∣∣
2

=
|αv|2

K
·

∣∣∣∣∣∣
K−1∑
j=0

βv,je
2π
√
−1jk
K

∣∣∣∣∣∣
2

≤ |αv|
2

K
·K

K−1∑
j=0

∣∣∣βv,je 2π
√
−1jk
K

∣∣∣2 (by Cauchy-Schwarz)

= |αv|2 .

We deduce that pj(|Ψ〉) · |γv(j)|2 ≤ |αv|2 or, equivalently, that

|γv(j)|2 ≤
|αv|2

pj(|Ψ〉)
.

By assumption, the probability of measuring j in the color register of |X〉 = (IN ⊗ FK)|Ψ〉, which is
pj
(
|Ψ〉
)
, is at least 1

c2
. Also by assumption, |αv|2 < 1

c1N
. Therefore,

|γv(j)|2 ≤
|αv|2

pj(|Ψ〉)
<

c2

c1N
,

as desired.

Next, we prove that if a quantum state has at least one amplitude that is “far” from uniform, then
the probability of measuring any given outcome in the Fourier basis can be upper bounded.

Lemma 4.2. Let |γ〉=
∑N−1

w=0 γw|v〉 be a quantum state. For every v ∈ {0, . . . , N − 1}, the probability
of measuring v in the (only) register of FN |γ〉 is at most

1− 1

4

(
N−1∑
w=0

∣∣∣∣|γw|2 − 1

N

∣∣∣∣
)2

.

Proof. The probability of measuring v in the (only) register of FN |γ〉 is given by∣∣〈γ|F−1
N |v〉

∣∣2 .

Observe that

∣∣dstr(|γ〉)− dstr
(
F−1
N |v〉

)∣∣
1

=
1

2

N−1∑
w=0

∣∣∣∣∣∣|γw|2 −
∣∣∣∣∣e

2π
√
−1wv
N

√
N

∣∣∣∣∣
2
∣∣∣∣∣∣ =

1

2

N−1∑
w=0

∣∣∣∣|γw|2 − 1

N

∣∣∣∣ .
Recalling that |dstr(|φ〉)− dstr(|ψ〉)|1 ≤

√
1− | 〈φ|ψ〉 |2, we obtain that

∣∣〈γ|F−1
N |v〉

∣∣2 ≤ 1− 1

4

(
N−1∑
w=0

∣∣∣∣|γw|2 − 1

N

∣∣∣∣
)2

,

as desired.
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4.2 Summary of Tests for Graph States

We give a brief summary and description of the tests that have been used successfully in protocols
with graph states. The first one is the swap test, which checks whether two states are close to each
other:

Swap
(
|Ψ〉, |Φ〉

)
≡

1. Perform the swap test on the two quantum (graph) states |ψ〉 and |φ〉.
2. Accept if and only if the swap test accepts.

See Section 2 for properties of the swap test. Another test that is often useful is the uniformity test:

Unif
(
|Ψ〉
)
≡

1. Compute |Φ〉= (FN ⊗ FK)|Ψ〉.
2. Measure the vertex and color register of |Φ〉 in the computational basis to get outcome

(v, j).
3. If j = 0 but v 6= 0, then reject.
4. Accept.

A variant of the above test is the conditional uniformity test: for any z ∈ [0,K],

CondUnifz
(
|Ψ(1)〉, . . . , |Ψ(κ)〉

)
≡

1. For i = 1, . . . , κ, compute |Φ(i)〉= (FN ⊗ FK)|Ψ(i)〉.
2. For i = 1, . . . , κ, measure the vertex and color register of |Φ(i)〉 in the computational basis

to get outcome (vi, ji).
3. If z < |{i ∈ {1, . . . , κ} : ji = 0}|, then reject.
4. For i = 1, . . . , κ, if ji = 0 but vi 6= 0, then reject.
5. Accept.

Intuitively, the conditional uniformity test also makes sure that a significant fraction of the graph
states are such that, when their color register is measured in the Fourier basis, the color 0 has a
not too small probability of occurring. Finally, the consistency test with respect to a given 2CSP
instance C = (G, {Re}e∈E) is:

ConsC
(
|Ψ(1)〉, . . . , |Ψ(κ)〉

)
≡

1. For i = 1, . . . , κ, measure the graph state |Ψ(i)〉 in the standard basis to get outcome (vi, ji).
2. If there exist distinct i, i′ ∈ {1, . . . , κ} such that vi = vi′ but ji 6= ji′ , then reject.
3. If there exist distinct i, i′ ∈ {1, . . . , κ} such that (vi, vi′) ∈ E but R(vi,vi′ )

(ji, ji′) = 0, reject.
4. Accept.

Throughout, we will denote by REJ(·) the rejection probability of a given test; e.g., REJ
(
Swap

(
|Ψ〉, |Φ〉

))
denotes the rejection probability of the swap test on the two quantum states |Ψ〉 and |Φ〉.

5 An Improvement on the Soundness Analysis of [CD10]

In this section, we give the details for our tight soundness analysis of the two-prover QMA protocol of
Chen and Drucker [CD10]. Specifically, we prove:

Claim (1.5, restated). The κ-prover QMA protocol for 2CSP(N,M,K) given by Algorithm 1 has

completeness 1 − e−Ω(κ) and soundness 1 − Ω
(

κ2

N+κ2

)
, assuming K ∈ O(1); thus, for κ ∈ Ω(logN)

and κ ∈ O(
√
N), the soundness gap is Ω(κ2N−1). Moreover, the analysis of the soundness of the

protocol cannot be improved, in the sense of Remark 2.
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The claim improves the status quo by giving a smooth trade-off between the number of provers
κ and the soundness gap as a function of κ, whereas the soundness analysis of [CD10] only gave a
soundness gap for κ ∈ Θ(

√
N).

Algorithm 1: Verifier of [CD10]

inputs: a 2CSP(N,M,K) instance C = (G, {Re}e∈E)

proofs: κ unentangled graph states |Ψ(1)〉, . . . , |Ψ(κ)〉

verifier: draw r ∈ {1, 2} at random, and perform the r-th test below:
1. CondUnif 99

100
κ

(
|Ψ(1)〉, . . . , |Ψ(κ)〉

)
2. ConsC

(
|Ψ(1)〉, . . . , |Ψ(κ)〉

)

Remark 2 (“Tightness” of Our Analysis). Consider a 2CSP(N,M,K) instance C = (G, {Re}e∈E);
suppose that C is not satisfiable, and suppose also that C has constant soundness gap η. Hence, for
any coloring C : V → Σ, at least η|E| of the edge constraints {Re}e∈E are not satisfied. So fix any
coloring C.

Now suppose that the κ graph states |Ψ(1)〉, . . . , |Ψ(κ)〉 given to the verifier are all equal and indeed
are a uniform superposition of all vertices with a unique color determined by C. If so, the test
ConsC

(
|Ψ(1)〉, . . . , |Ψ(κ)〉

)
rejects with probability O(κ

2

N ) by the Birthday Problem (indeed, we only
have κ2 chances to see a particular edge in the constraint graph, and a constrained edge is seen with
only probability Θ(N−1) because the graph is sparse). Thus, our analysis is “tight” in the sense that
the assumptions we made could indeed really be the case, so one cannot hope to exhibit an even better
soundness analysis that proves a soundness gap of ω(κ2/N).

Furthermore, if instead C is satisfiable (and the verifier receives uniform and equal κ graph states
|Ψ(1)〉, . . . , |Ψ(κ)〉 with a satisfying coloring), then completeness would be only 1− e−Θ(κ) (due to the
imperfect completeness of the conditional uniformity test). Thus, we are forced to take κ ∈ Ω(logN)
in order for there to be any inverse-polynomial soundness gap. (In other words, the protocol of [CD10]
has no soundness gap in the “constant regime” κ ∈ O(1); to breach the constant regime, it seems
that one would have to strengthen the verifier with additional LOCC measurements to increase the
soundness gap, or, at the very least, to endow the protocol with perfect completeness.)

We now proceed to the proof of Claim 1.5, which follows closely the proof of Chen and Drucker
[CD10]. Throughout, we use notation for graph states, which was introduced in Section 4.

Observe that the completeness in Claim 1.5 follows exactly as in the analysis of Chen and Drucker.
Thus, it remains to examine the soundness. Chen and Drucker [CD10, Lemma 3] gave sufficient
conditions for an arbitrary graph state |Ψ〉 to be accepted by the uniformity test Unif(|Ψ〉) with
constant probability. We first show how to use the generic lemmas of Section 4 to prove the same
result (and these same lemmas are used with very different parameters in our soundness analysis of
the protocol of Blier and Tapp [BT09] in Section 6).

Lemma 5.1. Fix ε ∈ [0, 1]. If p0(|Ψ〉) ≥ 1
4K and

∣∣∣R 1
8KN

(
|Ψ〉
)∣∣∣ ≥ εN , then REJ

(
Unif

(
|Ψ〉
))
≤ 1− ε2

16 .

Proof. For each v ∈ R 1
8KN

(
|Ψ〉
)
, by invoking Lemma 4.1 with j, v, c1 = 4K, and c2 = 8K, we get

that |γv(j)|2 < 1
2N . In particular, we deduce that

N−1∑
w=0

∣∣∣∣|γw|2 − 1

N

∣∣∣∣ ≥ ∑
w∈R 1

8KN
(|Ψ〉)

∣∣∣∣|γw|2 − 1

N

∣∣∣∣ ≥ ∣∣∣R 1
8KN

(|Ψ〉)
∣∣∣ · 1

2N
≥ εN · 1

2N
=
ε

2
.
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Next, by invoking Lemma 4.2 with |γ〉 = |γ(j)〉, we get that the probability of measuring v in the
(only) register of FN |γ(j)〉 is at most

1− 1

4

(
N−1∑
w=0

∣∣∣∣|γw|2 − 1

N

∣∣∣∣
)2

.

We deduce that the probability of measuring v in the (only) register of FN |γ(j)〉 is at most 1− ε2

16 , as
desired.

After establishing results of the above form, Chen and Drucker setup the hypothesis for the fol-
lowing lemma, which is analogous to their Lemma 4. We only repeat the hypothesis, and give our
improvements. See [CD10] for how this fits into their overall proof strategy.

Lemma 5.2 (modified [CD10, Lemma 4]). Let G = (V,E) be a d-regular graph (possibly with self-
loops) with N vertices, M edges, and d > 1. Let C = (G, {Re}e) be a 2CSP on the graph G with color
alphabet Σ, and suppose that C is (1 − η)-unsatisfiable. Let D1, . . . , Dκ be independent distributions
on V × Σ, where (vi, ci) denotes the output of Di.

Suppose that for each i ∈ {1, . . . , κ} there exists Si ⊆ V with |Si| ≥ (1 − ε)N such that vi is

uniformly distributed over Si, and ε < η/20. Then, there is a probability of at most 1 − Ωε,d(
κ2

N+κ2
)

such that: either e = (vi, vj) is an edge of G and Re(ci, cj) = 0, or vi = vj and ci 6= cj.

Proof. We follow the proof of Chen and Drucker [CD10]. For i, j ∈ {1, . . . , κ}, define Vi,j to be an
indicator for the event that e = (vi, vj) is an edge of G and either Re(ci, cj) = 0, or vi = vj and ci 6= cj .
Denote V =

∑κ−1
i=1

∑κ
j=i+1 Vi,j . Observe that the result follows from bounding Pr[V = 0]. To bound

this probability, we use Cantelli’s inequality (also known as the one-sided Chebyschev inequality, cf

[Ros84]): for a random variable X and a > 0, Pr[X ≤ E[X] − a] ≤ Var(X)
Var(X)+a2

. Thus, taking X = V

and a = E(V ), and using the fact that V is a non-negative random variable, we have

Pr[V = 0] ≤ Var(V )

Var(V ) + E[V ]2
= 1− 1

Var(V )
E[V ]2

+ 1
.

The result will then follow from an upper bound on Var(V ) and a lower bound on E[V ]2.
We now invoke the following facts from the analysis of [CD10]:

(i) E[Vi,j ] ≥ ε/N , and

(ii) Var(V ) = Oε,d(κ
2/N + κ3/N2).

Hence, the upper bound for Var(V ) is already given. As for the lower bound on E[V ]2: by linearity
of expectation and (i) above, we see that E[V ] =

(
κ
2

)
E[Vi,j ] = Ωε(κ

2/N); thus, E[V ]2 ≥ Ωε(κ
4/N2).

Therefore,
Var(V )

E[V ]2
≤ Oε,d

(
κ2/N + κ3/N2

κ4/N2

)
≤ Oε,d

(
N + κ

κ2

)
.

Combining with the above, we conclude that

Pr
[
V = 0

]
≤ 1− 1

Var(V )
E[V ]2

+ 1
≤ 1− 1

Oε,d
(
N+κ
κ2

)
+ 1
≤ 1− Ωε,d

(
κ2

N + κ2

)
,

where the big-O and big-Ω notation hide constants depending on ε and d.
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6 An Improvement on the Soundness Analysis of [BT09]

In this section, we give the details for our tight soundness analysis of the two-prover QMA protocol of
Blier and Tapp [BT09]. Specifically, we prove:

Claim (1.7, restated). The two-prover QMA protocol for 2CSP(N,M,K) given in Algorithm 2 has
(perfect completeness and) soundness 1−Ω(N−2), assuming K ∈ O(1). Moreover, the analysis of the
soundness of the protocol cannot be improved, in the sense of Remark 3.

The claim improves the status quo for two-prover QMA protocols with polylogarithmic proof length
in three ways:

(i) Previously, the best known soundness gap was Ω(N−3−ε), for every ε > 0, proved by Beigi
[Bei10];

(ii) The result of Beigi [Bei10] did not enjoy perfect completeness; and

(iii) Our result does not exploit the power of PCPs, unlike the result of Beigi [Bei10].7

Algorithm 2: Verifier of [BT09]

inputs: a 2CSP(N,M,K) instance C = (G, {Re}e∈E)

proofs: two unentangled graph states |Ψ(1)〉 and |Ψ(2)〉

verifier: draw r ∈ {1, 2, 3} at random, and perform the r-th test below:
1. Swap

(
|Ψ(1)〉, |Ψ(2)〉

)
2. ConsC

(
|Ψ(1)〉, |Ψ(2)〉

)
3. Unif

(
|Ψ(1)〉

)
∧ Unif

(
|Ψ(2)〉

)

Remark 3 (“Tightness” of Our Analysis). Consider a 2CSP(N,M,K) instance C = (G, {Re}e∈E);
suppose that C is not satisfiable, and suppose further that there exists a coloring of the vertices
C : V → Σ for which there exists exactly one edge (ṽ, w̃) ∈ E such that R(ṽ,w̃)(C(ṽ), C(w̃)) = 0.8

Now suppose that the two graph states |Ψ(1)〉 and |Ψ(2)〉 given to the verifier are equal and that
they indeed are a uniform superposition of all vertices, colored with C. If so, both the first test (i.e.,
the swap test) and the third test (i.e., the two uniformity tests) accept with probability 1; however,
the second test (i.e., the consistency test) accepts with probability that is exactly 1−N−2.

In other words, our analysis is “tight” in the sense that the assumptions we made could indeed
really be the case, thus implying that one cannot hope to exhibit an even better soundness analysis
that proves a soundness of 1− ω(N−2).

We now proceed to the proof of Claim 1.7, which we tackle in several lemmas, whose overall struc-
ture follows the approach taken by [BT09]. Throughout, we use notation for graph states introduced
in Section 4. Also, given a 2CSP instance C, ColConsC

(
|Ψ(1)〉, |Ψ(2)〉

)
denotes only the color consis-

tency subtest of the test ConsC
(
|Ψ(1)〉, |Ψ(2)〉

)
and EdgeConsC

(
|Ψ(1)〉, |Ψ(2)〉

)
denotes only the edge

consistency subtest of the test ConsC
(
|Ψ(1)〉, |Ψ(2)〉

)
.

First, we show that, as long as two graph states |Ψ(1)〉 and |Ψ(2)〉 are “close enough” and the
colors of the vertices are “consistent enough”, then a definite color can be chosen for vertices with

7And, unlike the results of [ABD+09] and [CD10].
8At most a constant number of unsatisfiable edges would also suffice.
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large enough amplitude. (Indeed, if vertices with large enough amplitude were to be colored very
inconsistently, then we would be able to catch them, through the second test.)

Lemma 6.1 (modified [BT09, Lemma 3.4]). Fix any 2CSP instance C. Define

δ =
1

2 · 16002K4N2
and µ =

1

16002K4N2
.

Suppose that:

(i) REJ
(
Swap

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ δ, and

(ii) REJ
(
ColConsC

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ µ.

Then, for every vertex v ∈ S 1
8N

(
|Ψ(1)〉

)
, there exists a (unique) j ∈ {0, . . . ,K − 1} such that |β(1)

v,j |2 ≥
100K−1

100K . (And, similarly, for every vertex v ∈ S 1
8N

(
|Ψ(2)〉

)
, there exists a (unique) j ∈ {0, . . . ,K − 1}

such that |β(2)
v,j |2 ≥

100K−1
100K .)

Proof. First, if such a j exists, it is unique, because 100K−1
100K > 1

2 . Next suppose for the sake of

contradiction that there exists some vertex ṽ ∈ S 1
8N

(
|Ψ(1)〉

)
for which there is no such j, so that there

exist distinct j1, j2 ∈ {0, . . . ,K − 1} such that |β(1)
ṽ,j1
|2, |β(1)

ṽ,j2
|2 > 1

100K2 .9 Then, the probability that

the color-consistency test rejects the two graph states |Ψ(1)〉 and |Ψ(2)〉, is

N−1∑
v=0

K−1∑
j=0

∑
j′ 6=j

∣∣∣α(1)
v β

(1)
v,j

∣∣∣2 · ∣∣∣α(2)
v β

(2)
v,j′

∣∣∣2
≥

N−1∑
v=0

K−1∑
j=0

∑
j′ 6=j

∣∣∣α(1)
v β

(1)
v,j

∣∣∣2 · (∣∣∣α(1)
v β

(1)
v,j′

∣∣∣2 −√2δ

)
(by Lemma 2.1)

≥
∑

v∈S 1
8N

(|Ψ(1)〉)

K−1∑
j=0

∑
j′ 6=j

∣∣∣β(1)
v,j

∣∣∣2
8N

·


∣∣∣β(1)
v,j′

∣∣∣2
8N

−
√

2δ



≥
K−1∑
j=0

∑
j′ 6=j

∣∣∣β(1)
ṽ,j

∣∣∣2
8N

·


∣∣∣β(1)
ṽ,j′

∣∣∣2
8N

−
√

2δ


≥

∣∣∣β(1)
ṽ,j1

∣∣∣2
8N

·


∣∣∣β(1)
ṽ,j2

∣∣∣2
8N

−
√

2δ


>

1

800K2N
·
(

1

800K2N
−
√

2δ

)
≥ 1

800K2N
·

(
1

800K2N
−
√

2 · 1

2 · 16002K4N2

)
≥ 1

16002K4N2
,

9Indeed, from |β(1)
ṽ,0|

2, . . . , |β(1)
ṽ,K−1|

2 < 100K−1
100K

and
∑K−1
j=0 |β

(1)
ṽ,j |

2 = 1, we deduce that there exists some j1 ∈ {0, . . . ,K−
1} such that |β(1)

ṽ,j1
|2 ≥ 1

K
and, from |β(1)

ṽ,0|
2, . . . , |β(1)

ṽ,K−1|
2 < 100K−1

100K
and

∑
j 6=j1 |β

(1)
ṽ,j |

2 > 1
100K

, we deduce that there

exists some j2 ∈ {0, . . . ,K − 1} − {j1} such that |β(1)
ṽ,j2
|2 ≥ 1

100K(K−1)
> 1

100K2 . Overall, |β(1)
ṽ,j1
|2, |β(1)

ṽ,j2
|2 > 1

100K2 .
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which contradicts the assumption that REJ
(
ColConsC

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ µ. An analogous argument

holds for |Ψ(2)〉.

Next, we show that, under the same assumptions as Lemma 6.1, the probability of measuring j in
the color register of (IN ⊗ FK)|Ψ(1)〉 is at least 1

4K for every color j ∈ {0, . . . ,K − 1}.

Lemma 6.2 (modified [BT09, Lemma 3.5]). Fix any 2CSP instance C. Define

δ =
1

2 · 16002K4N2
and µ =

1

16002K4N2
.

Suppose that:

(i) REJ
(
Swap

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ δ, and

(ii) REJ
(
ColConsC

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ µ.

Then, pj
(
|Ψ(1)〉

)
≥ 1

4K for every j ∈ {0, . . . ,K − 1}. (And, similarly, pj
(
|Ψ(2)〉

)
≥ 1

4K for every
j ∈ {0, . . . ,K − 1}.)

Proof. Suppose that the vertex register of the graph state |Ψ(1)〉 is measured and that the outcome
is some vertex v ∈ {0, . . . , N − 1}. If v ∈ S 1

8N

(
|Ψ(1)〉

)
, from Lemma 6.1 we deduce that there

exists a (unique) color j̃ ∈ {0, . . . ,K − 1} such that |β(1)

v,j̃
|2 ≥ 100K−1

100K ; in particular, we also deduce

that
∑

j 6=j̃ |β
(1)
v,j |2 <

1
100K . Therefore, (conditioned on getting outcome v in the vertex register) the

probability of measuring j in the color register of (IN ⊗ FK)|Ψ(1)〉 is

1

K

∣∣∣∣∣∣
K−1∑
j=1

β
(1)
v,j e

2π
√
−1jv
K

∣∣∣∣∣∣
2

≥ 1

K

∣∣∣∣∣∣
∣∣∣β(1)

v,j̃
e

2π
√
−1jv
K

∣∣∣−
∣∣∣∣∣∣
∑
j 6=j̃

β
(1)
v,j e

2π
√
−1jv
K

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ 1

K

∣∣∣∣∣∣∣
∣∣∣β(1)

v,j̃
e

2π
√
−1jv
K

∣∣∣−√√√√K
∑
j 6=j̃

∣∣∣β(1)
v,j e

2π
√
−1jv
K

∣∣∣2
∣∣∣∣∣∣∣
2

(by Cauchy-Schwarz)

=
1

K

∣∣∣∣∣∣∣
∣∣∣β(1)

v,j̃

∣∣∣−√√√√K
∑
j 6=j̃

∣∣∣β(1)
v,j

∣∣∣2
∣∣∣∣∣∣∣
2

≥ 1

K

∣∣∣∣∣
√

100K − 1

100K
−
√
K

1

100K

∣∣∣∣∣
2

≥ 1

K

(
1− 1

100K
+

1

100
− 1

5
· 100K − 1

100K

)
=

4

5K
.

Now observe that S 1
8N

(
|Ψ(1)〉

)
cannot be empty, for otherwise

∑N−1
v=0 |α

(1)
v |2 < N · 1

8N < 1. Hence, there

is at least one vertex ṽ in S 1
8N

(|Ψ(1)〉). Thus, the probability of measuring j (with no conditioning) in
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the color register of (IN ⊗ FK)|Ψ(1)〉 is

pj
(
|Ψ(1)〉

)
=

N−1∑
v=0

∣∣∣α(1)
v

∣∣∣2 1

K

∣∣∣∣∣∣
K−1∑
j=1

β
(1)
v,j e

2π
√
−1jv
K

∣∣∣∣∣∣
2

≥
∑

v∈S 1
8N

(|Ψ(1)〉)

∣∣∣α(1)
v

∣∣∣2 1

K

∣∣∣∣∣∣
K−1∑
j=1

β
(1)
v,j e

2π
√
−1jv
K

∣∣∣∣∣∣
2

≥ 4

5K

∑
v∈S 1

8N
(|Ψ(1)〉)

∣∣∣α(1)
v

∣∣∣2

≥ 4

5K

(
1− (N − 1) · 1

8N

)
≥ 4

5K
· 7

8

≥ 1

4K
,

as desired. An analogous argument holds for |Ψ(2)〉.

Next we prove that, under the same assumptions of Lemma 6.1 and Lemma 6.2, if we further
require that the uniform test does not reject with high probability, then we can be sure that all the
vertices have a somewhat large amplitude.

Lemma 6.3 (modified [BT09, Lemma 3.7]). Fix any 2CSP instance C. Define

δ =
1

2 · 16002K4N2
and µ =

1

16002K4N2
and ν =

1

64KN2
.

Suppose that:

(i) REJ
(
Swap

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ δ,

(ii) REJ
(
ColConsC

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ µ, and

(iii) REJ
(
Unif

(
|Ψ(1)〉

))
≤ ν.

Then, V (G) = S 1
8KN

(
|Ψ(1)〉

)
. (And, similarly, V (G) = S 1

8KN

(
|Ψ(2)〉

)
under the alternative assumption

REJ
(
Unif

(
|Ψ(2)〉

))
≤ ν instead.)

Proof. Recall that:

• pj
(
|Ψ(1)〉

)
is the probability of measuring j in the color register of (IN ⊗ FK)|Ψ(1)〉, and

• |γ(j)(1)〉 =
∑N−1

v=0 γv(j)
(1)|v〉 is the reduced quantum state obtained when we measure j in the

color register of (IN ⊗ FK)|Ψ(1)〉.

By invoking Lemma 4.2 with |γ〉 = |γ(j)(1)〉, the probability of measuring v in the vertex register of
FN |γ(j)(1)〉 is at most

1− 1

4

(
N−1∑
w=0

∣∣∣∣∣∣∣γw(j)(1)
∣∣∣2 − 1

N

∣∣∣∣
)2

.
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Also, by Lemma 6.2, pj
(
|Ψ(1)〉

)
≥ 1

4K for every j ∈ {0, . . . ,K − 1}.
Suppose now by way of contradiction that there exists some vertex ṽ ∈ R 1

8KN

(
|Ψ(1)〉

)
, so that

|α(1)
v |2 < 1

8KN . We can now invoke Lemma 4.1 with c1 = 4K and c2 = 8K to get that |γṽ(j)(1)|2 < 1
2N .

Therefore,

N−1∑
w=0

∣∣∣∣∣∣∣γw(j)(1)
∣∣∣2 − 1

N

∣∣∣∣ ≥ ∣∣∣∣∣∣∣γṽ(j)(1)
∣∣∣2 − 1

N

∣∣∣∣ > 1

2N
,

and we obtain that the probability of measuring v in the vertex register of FN |γ(j)(1)〉 is less than
1− 1

16N2 . Thus, the probability of measuring j in the color register but not measuring v in the vertex

register of (FN ⊗ FK)|Ψ(1)〉 is greater than

1

4K
· 1

16N2
=

1

64KN2
= ν .

Taking j = 0 and v = 0, this contradicts the assumption that REJ
(
Unif

(
|Ψ(1)〉

))
≤ ν. An analogous

argument holds for |Ψ(2)〉.

Finally, we can now lower bound the soundness of the protocol:

Lemma 6.4. Define

δ =
1

2 · 16002K4N2
and µ =

1

16002K4N2
and ν =

1

64KN2
and ξ =

(100K − 1)2

2 · 8002K4N2
.

and

s =
1

3
min {δ , µ , ν , ξ} .

Then the overall probability of rejecting an unsatisfiable graph G is greater than s.

Proof. If any of

(i) REJ
(
Swap

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ δ,

(ii) REJ
(
ColConsC

(
|Ψ(1)〉, |Ψ(2)〉

))
≤ µ, and

(iii) REJ
(
Unif

(
|Ψ(1)〉

))
≤ ν and REJ

(
Unif

(
|Ψ(2)〉

))
≤ ν

does not hold, then we are done. So suppose that (i)–(iii) hold. Define a coloring C : V (G) → Σ of
the graph G by the rule

C(v) := arg max
j∈{0,...,K−1}

∣∣∣β(1)
v,j

∣∣∣2 ,

for every vertex v. By Lemma 6.1, the coloring C is well-defined (i.e., is unique).
Let U(G) ⊆ E(G) be the set of unsatisfied edges in G by the coloring C. Since G is unsatisfiable,

|U(G)| ≥ 1. Therefore, REJ
(
EdgeConsC

(
|Ψ(1)〉, |Ψ(2)〉

))
, which is the probability that the edge-
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consistency subtest rejects |Ψ(1)〉 and |Ψ(2)〉, is∑
(v,w)∈U(G)

∣∣∣α(1)
v β

(1)
v,C(v)

∣∣∣2 · ∣∣∣α(2)
w β

(2)
w,C(w)

∣∣∣2
≥

∑
(v,w)∈U(G)

(
1

8KN
· 100K − 1

100K

)
·
(

1

8KN
· 100K − 1

100K

)

= |U(G)| · (100K − 1)2

8002K4N2

≥ 1 · (100K − 1)2

8002K4N2

>s .

This concludes the proof of the lemma, as well as the proof of Claim 1.7.
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