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Abstract

In this paper we put forward a conjecture: an instantiation of the Sliding Scale Conjecture
of Bellare, Goldwasser, Lund and Russell to projection games. We refer to this conjecture
as the Projection Games Conjecture.

We further suggest the research agenda of establishing new hardness of approximation
results based on the conjecture. We pursue this line of research by establishing a tight
NP-hardness result for the Set-Cover problem. Specifically, we show that under the
projection games conjecture (in fact, under a quantitative version of the conjecture that is
only slightly beyond the reach of current techniques), it is NP-hard to approximate Set-
Cover on instances of size N to within (1 − α) lnN for arbitrarily small α > 0. We do
this by modifying Feige’s reduction that gives a (1 − α) lnN inapproximability under the
assumption NP ̸⊆ DTIME(NO(log logN)).

1 Introduction

1.1 Projection Games and The Projection Games Conjecture

Most of the NP-hardness of approximation results known today (e.g., all of the results in
H̊astad’s paper [H̊as01]) are based on a PCP Theorem for projection games (also known as
Label-Cover). The input to a projection game consists of: (i) a graph G = (A,B,E); (ii)
finite alphabets ΣA, ΣB; (iii) constraints (also called projections) πe : ΣA → ΣB for every edge
e ∈ E. The goal is to find assignments to the vertices φA : A → ΣA, φB : B → ΣB that
satisfy as many of the edges as possible. We say that an edge e = (a, b) ∈ E is satisfied, if the
projection constraint holds, i.e., πe(φA(a)) = φB(b). We denote the size of a projection game by
n = |A|+ |B|+ |E|. A PCP Theorem for projection games with soundness error ε and alphabet
size k (where ε and k may depend on n) states the following:

Given a projection game with alphabets of size k, it is NP-hard to distinguish between
the case where all edges can be satisfied and the case where at most ε fraction of the
edges can be satisfied.

We can refine this statement by saying that there is a reduction from (exact) Sat to projection
games, and the reduction maps instances of Sat of size n to projection games of size N =
n1+o(1)poly(1/ε). Such PCPs are referred to as “almost-linear size PCP” because of the exponent
of n, although for small ε the blow-up may be super-linear. The refined version gives sharp time
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lower bounds for projection games based on the exponential time hypothesis, namely assuming
that exact Sat requires 2Ω(n) time.

The state of the art today for PCP Theorems for projection games is the following:

Theorem 1 ([MR10]). There exists c > 0, such that for every ε ≥ 1/nc, an almost-linear size
PCP Theorem for projection games with soundness error ε and alphabet size exp(1/ε) holds.

The 1/nc is tight, as ε that is lower than polynomially small in n requires super-logarithmic
randomness, and hence a super-polynomial construction, not permitting NP-hardness. The
exp(1/ε) is not tight. It can be shown that |Σ| ≥ 1/ε, and we conjecture that an alphabet size
of poly(1/ε) could be achieved:

Conjecture 1 (Projection games conjecture, PGC). There exists c > 0, such that for every
ε ≥ 1/nc, an almost-linear size PCP Theorem with soundness error ε and alphabet size poly(1/ε)
holds.

In fact, in almost all applications, one wishes the alphabet size to be at most polynomial in
n, and so Theorem 1 is useful only when ε ≥ 1/(log n)β for some constant β > 0.

The conjecture is consistent with existing approximation algorithms for projection games,
giving 1/ε = O( 3

√
nk) (see [CHK09]; note that their formulation is slightly different than ours

– they have a vertex per vertex and a possible assignment to it in our formulation).
If one replaces the NP-hardness in a projection game PCP with intractability under the

assumption NP ̸⊆ DTIME(nΘ(log(1/ε))), then Conjecture 1 follows from the Parallel Repetition
Theorem of Raz [Raz98].

We remark that the projection games conjecture is in fact the Sliding Scale Conjecture of
Bellare, Goldwasser, Lund and Russell [BGLR93] instantiated for projection games. By “slid-
ing scale” we refer to the idea that the error can be decreased as we increase the alphabet size.
Bellare et al conjectured that polynomially small error could be achieved simultaneously with
polynomial alphabet, even for two queries. They did not formulate their conjecture for projec-
tion games – the importance of projection games was not fully recognized when they published
their work in 1993.

We believe that the projection games conjecture provides a stable foundation on which many
new hardness of approximation results can be based. Several concrete results we think should
be achievable (but require further ideas) are: tight low order terms for the NP-hardness of
approximation of the problems appearing in H̊astad’s paper, such as 3Lin and 3Sat [H̊as01];
tight lower bound for approximating Clique assuming the exponential time hypothesis [H̊as99,
Kho01]; and nα NP-hardness of approximation for the Shortest-Vector-Problem (SVP)
in lattices [Kho05]. In this paper, we show a tight NP-hardness of approximation (1− α) lnn
for Set-Cover.

In all the aforementioned examples, the existing reductions have super-polynomial blow-up,
not only in order to achieve low error for a projection game, but also to facilitate the reduction.
For instance, H̊astad’s reductions use the long code on top of a projection game. For low error
ε, the long code incurs a large blow-up 2(1/ε)

O(1)
. Basing the results on the PGC, would require

reductions that do not resort to large blow-ups.

1.2 The Potential Influence of The PGC

The area of hardness of approximation already benefited greatly from the introduction of another
conjecture: the unique games conjecture (UGC) by Khot [Kho02]. The UGC provides a basis
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on which researchers can prove (conditionally) new hardness results. The projection games
conjecture has a similar flavor. One major difference is that while we do not know of any
reduction from SAT to unique games (in the parameters setting considered by the UGC) with
less than doubly-exponential blow-up, we do know a super-polynomial reduction from SAT to
projection games (in the parameters setting considered by the PGC) - by the parallel repetition
theorem [Raz98]. This fact means several things for the potential influence of the PGC. On the
positive side, we have much better evidence that the PGC is true than we have that the UGC is
true. Hence, we have much more assurance that results proved conditioned on the PGC indeed
hold. On the negative side, one could claim that the PGC is not likely to revolutionize the area
of hardness of approximation the way the UGC did: While the UGC allows hardness results
that could not be conceived before, the PGC only gives rise to hardness results that could have
been based on the assumption NP ̸⊆ DTIME(nΘ(logn)). As a reply, we wish to stress two
points:

• Super-polynomial reductions yield weak lower bounds. Suppose that there is a reduction
from Sat instances of size n to instances of size N = na of some other problem Π. If
the exponential time hypothesis holds and Sat requires time 2Ω(n), then Π requires time
2Ω(N1/a).

The best reduction for projection games known today gives a = 1 + o(1) [MR10], and

hence a nearly-exponential lower bound 2Ω(N1−o(1)). A super-polynomial reduction with

a = Θ(log n) gives a much weaker, strictly sub-exponential, lower bound of 2Ω(2
√

logN ).

• The PGC is likely to be proved in the foreseeable future. While it may seem that all
we do is replace one plausible assumption (NP ̸⊆ DTIME(nΘ(logn))) with another (the
PGC), the two assumptions are, in fact, quite different qualitatively. The PGC is likely
to be proved in the foreseeable future, while proving that NP ̸⊆ DTIME(nΘ(logn)), even
assuming P ̸= NP, is an open problem unlikely to be solved any time soon.

One can argue that the PGC was already known to experts in the area to be an interesting
open problem. However, we do not know of any “official” posing of a conjecture (the author
did define it in a mini-course she taught at Princeton in 2009). Moreover, to the best of our
knowledge, the next logical step, that of proving hardness results based on the conjecture, was
not taken. The purpose of the current paper is to fix these two deficiencies.

1.3 Set-Cover

In this paper we demonstrate one application of the projection games conjecture to the NP-
hardness of approximating Set-Cover. In fact, the quantitative version of the conjecture that
we need is much weaker than the full conjecture, and it is the one that is just outside the
reach of current techniques, requiring soundness error c/ log4 n for sufficiently small constant
c > 0. Feige already showed a tight inapproximability result for Set-Cover, but under the
assumption NP ̸⊆ DTIME(NO(log logN)) [Fei98].

The definition of Set-Cover is as follows:

Definition 2 (Set-Cover). The input to Set-Cover consists of a universe U , |U | = n and
subsets S1, . . . Sm ⊆ U ,

∪m
j=1 Sj = U , m ≤ poly(n). The goal is to find as few sets Si1 , . . . , Sik

as possible that cover U , i.e.,
∪k

j=1 Sij = U .
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The greedy algorithm is a lnn-approximation for Set-Cover. Feige showed that this is
where the threshold for Set-Cover lies, i.e., that Set-Cover cannot be approximated better
than lnn, assuming NP ̸⊆ DTIME(nO(lg lgn)) [Fei98]. The untraditional assumption (stronger
than P ̸= NP) comes from the use of the parallel repetition theorem. Parallel repetition is
used by Feige not only to ensure very low error 1/(log n)O(1), but also for its unique structure.
We show that one can do without the structure that comes with parallel repetition, and in fact,
any projection game PCP with poly-logarithmically small error suffices. We prove the following
theorem by adapting Feige’s ideas to the general projection games framework:

Theorem 3. For every 0 < α < 1, there is c = c(α), such that if the projection games conjecture
(even without almost-linear size) holds with error ε = c

lg4 n
, then it is NP-hard to approximate

Set-Cover better than (1− α) lnn.

2 Preliminaries

For a set S and a natural number ℓ we denote by
(
S
ℓ

)
the family of all sets of ℓ elements from S.

We assume without loss of generality that the projection game in Conjecture 1 is bi-regular,
i.e., all the A vertices have the same degree, which we call the A-degree, and all the B vertices
have the same degree, which we call the B-degree. We note that any projection game can
be converted to bi-regular using a technique developed in [MR10] (“right degree reduction –
switching sides – right degree reduction”), and the cost in the soundness error and graph size
are swallowed in the parameters stated in Conjecture 1.

3 The New Component

Feige uses the structure obtained from parallel repetition to achieve a projection game in which
the soundness guarantee is that very few B vertices have any two of their neighbors agree on a
value for them:

Definition 4 (Total disagreement). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ). Let
φA : A → ΣA be an assignment to the A vertices. We say that the A vertices totally disagree
on a vertex b ∈ B if there are no two neighbors a1, a2 ∈ A of b, e1 = (a1, b), e2 = (a2, b) ∈ E,
for which

πe1(φA(a1)) = πe2(φA(a2)).

Definition 5 (Agreement soundness). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ)
for deciding membership in a language L. We say that G has agreement soundness error ε, if
for inputs x /∈ L, for any assignment φA : A → ΣA, the A vertices are in total disagreement on
at least 1− ε fraction of the b ∈ B.

Feige used parallel repetition to achieve agreement soundness. We show a different way to
achieve agreement soundness. Our construction centers around the following combinatorial
construction:

Lemma 3.1 (Combinatorial construction). For every n, 0 < ε < 1, for infinitely many D,
there is an explicit construction of a regular graph H = (U, V,E) with |V | = n, V -degree D,
and |U | ≤ nO(1) that satisfies the following. For every partition U1, . . . , Ul of U into sets, such
that |Ui| ≤ ε |U | for i = 1, . . . , l, the fraction of vertices v ∈ V with more than one neighbor in
a single set Ui, is at most εD2.
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Note that the combinatorial property could be achieved by a randomized construction, or
by a construction that has a V vertex per every possible set of D neighbors in U . However,
the first construction is randomized and the second – too wasteful with a size of ≈ |U |D. The
lemma can therefore be thought of as a derandomization of the randomized/full constructions.

Proof. (of Lemma 3.1) Associate U with a space Fm where F is a finite field of size |F| = D,
and m is a natural number. Let V be the set of all lines in Fm. Hence, |V | =

(|U |
2

)
/
(|F|
2

)
. We

connect a line v ∈ V with a point u ∈ U if u lies in v.
Let us show this construction satisfies the desired property. Fix a partition U1, . . . , Ul of U

into tiny sets, |Ui| ≤ ε |U | for i = 1, . . . , l. For every 1 ≤ i ≤ l, the number of V lines that have
at least two neighbors in Ui is at most

(|Ui|
2

)
. Thus the total number of V vertices with more

than one neighbor in a single Ui is at most

l∑
i=1

(
|Ui|
2

)
≤

l∑
i=1

|Ui|2

2

≤ max {|Ui| | 1 ≤ i ≤ l} ·
l∑

i=1

|Ui|
2

≤ ε |U | · |U |
2

≤ ε |F|2 |V | .

We show how to take a projection game with standard soundness and convert it to a projection
game with total disagreement soundness, by combining it with the graph from Lemma 3.1.

Lemma 3.2. Let D ≥ 2, ε > 0. From a projection game with soundness error ε2D2, we
can construct a projection game with agreement soundness error 2εD2 and B-degree D. The
transformation preserves the alphabets of the game. The size is raised to a constant factor.

Proof. Let G = (G = (A,B,E),ΣA,ΣB,Φ) be the original projection game. Assume that the
B-degree is |U |, and we use U to enumerate the neighbors of a B vertex, i.e., there is a function
E← : B × U → A that given a vertex b ∈ B and u ∈ U , gives us the A vertex which is the u
neighbor of b.

Let H = (U, V,EH) be the graph from Lemma 3.1. We create a new projection game
(G = (A,B×V,E′),ΣA,ΣB,Φ

′). The intended assignment to every vertex a ∈ A is the same as
its assignment in the original game. The intended assignment to a vertex ⟨b, v⟩ ∈ B × V is the
same as the assignment to b in the original game. We put an edge e′ = (a, ⟨b, v⟩) if E←(b, u) = a
and e = (u, v) ∈ EH . We define πe′ ≡ πe.

If there is an assignment to the original game that satisfies c fraction of its edges, then the
corresponding assignment to the new game satisfies c fraction of its edges.

Suppose there is an assignment for the new game φA : A → ΣA in which more than 2εD2

fraction of the vertices in B × V do not have total disagreement.
Let us say that b ∈ B is “good” if for more than εD2 of the vertices in {b}×V the A vertices

do not totally disagree. Note that the fraction of good b ∈ B is at least εD2.
Focus on a good b ∈ B. Consider the partition of U into |ΣB| sets, where the set corresponding

to σ ∈ ΣB is:
Uσ = {u ∈ U | a = E←(b, u) ∧ e = (a, b) ∧ πe(φA(a)) = σ} .
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By the property of H, there must be σ ∈ ΣA such that |Uσ| > ε |U |. We call σ the “champion”
for b.

We define an assignment φB : B → ΣB that assigns good b’s their champions, and other
b’s arbitrary values. The fraction of edges that φA, φB satisfy in the original game is at least
ε2D2.

Next we consider a variant of projection games that is relevant for the reduction to Set-
Cover. In this variant the prover is allowed to assign each vertex ℓ values, and an agreement
is interpreted as agreement on one of the assignments in the list:

Definition 6 (List agreement). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ). Let
ℓ ≥ 1. Let φ̂A : A →

(
ΣA
ℓ

)
be an assignment that assigns each A vertex l alphabet symbols. We

say that the A vertices totally disagree on a vertex b ∈ B if there are no two neighbors a1, a2 ∈ A
of b, e1 = (a1, b), e2 = (a2, b) ∈ E, for which there exist σ1 ∈ φ̂A(a1), σ2 ∈ φ̂A(a2), such that

πe1(σ1) = πe2(σ2).

Definition 7 (List agreement soundness). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ)
for deciding membership in a language L. We say that G has agreement soundness error (ℓ, ε),
if for inputs x /∈ L, for any assignment φ̂A : A →

(
ΣA
ℓ

)
, the A vertices are in total disagreement

on at least 1− ε fraction of the b ∈ B.

If a projection game has low error ε, then even when the prover is allowed to assign each A
vertex ℓ values, the game is still sound. This is argued in the next corollary:

Lemma 3.3 (Projection game with list agreement soundness). Let ℓ ≥ 1, 0 < ε′ < 1. A
projection game with agreement soundness error ε′ has agreement soundness error (ℓ, ε′ℓ2).

Proof. Assume on way of contradiction that the projection game has an assignment φ̂A : A →(
ΣA
ℓ

)
such that on more than ε′ℓ2 fraction of the B vertices, the A vertices do not totally disagree.

Define an assignment φA : A → ΣA by assigning every vertex a ∈ A a symbol picked uniformly
at random from the ℓ symbols in φ̂A(a). If a vertex b ∈ B has two neighbors a1, a2 ∈ A that
agree on b under the list assignment φ̂A, then the probability that they agree on b under the
assignment φA is at least 1/ℓ2. Thus, under φA, the expected fraction of the B vertices that
have at least two neighbors that agree on them, is more than ε′. In particular, there exists
an assignment to the A vertices, such that more than ε′ fraction of the B vertices have two
neighbors that agree on them. This contradicts the agreement soundness of the game.

By applying Lemma 3.2 and then Lemma 3.3 on the game from Conjecture 1, we get:

Corollary 3.4. Assuming Conjecture 1, for any ℓ ≥ 1, for infinitely many D, for any ε ≥
1/nc, given a projection game with alphabet size poly(1/ε) and B-degree D, it is NP-hard to
distinguish between the case where all edges can be satisfied, and the case where the agreement
soundness error is (ℓ, 2Dℓ2

√
ε).

4 Following Feige’s Reduction

In the remainder, we will show how to use Corollary 3.4 to obtain the desired hardness result
for Set-Cover. The reduction is along the lines of Feige’s original reduction.

For the reduction we rely on a combinatorial construction of a universe together with parti-
tions of it. Each partition covers the universe, but any cover than takes at most one set out of
each partition, is necessarily large:
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Lemma 4.1 (Partition system, [NSS95]). For natural numbers m, D, for α ≤ 2/D, there is
an explicit construction of a universe U , |U | ≤ poly(DlogD, logm) and partitions P1, . . . ,Pm of
U into D sets that satisfy the following: there is no cover of U with ℓ = D ln |U | (1 − α) sets
Si1 , . . . , Siℓ, 1 ≤ i1 < · · · < iℓ ≤ m, such that set Sij belongs to partition Pij .

To see why ℓ = D ln |U | (1−α) is to be expected (this later determines the hardness factor we
get), think of the following randomized construction: each element in U corresponds to a vector
in [D]m, specifying for each of the m partitions, to which of its D sets it belongs. Consider a
uniformly random choice of such a vector. Fix any Si1 , . . . , Siℓ . The probability that a random
element is not covered by Si1 , . . . , Siℓ is (1−1/D)ℓ ≈ e−ℓ/D. When ℓ = D ln |U | (1−α), we have
e−ℓ/D ≥ 1/ |U |, and we expect one of the |U | elements in U not to be covered by Si1 , . . . , Siℓ .

We now describe the reduction from a projection game G as in Corollary 3.4, to a Set-Cover
instance SCG .

Apply Lemma 4.1 for m = |ΣB| and D which is the B-degree of the projection game. Let
U be the universe, and Pσ1 , . . . ,Pσm be the partitions of U . We index the partitions by ΣB

symbols σ1, . . . , σm. The elements of the Set-Cover instance are B × U .
For every vertex a ∈ A and an assignment σ ∈ ΣA to a we have a set Sa,σ in the Set-Cover

instance. The intuition is that whether we take Sa,σ to the cover would correspond to assigning
σ to a. The set Sa,σ is a union of subsets, one for every edge e = (a, b) touching a. Suppose e
is the i’th edge coming into b (1 ≤ i ≤ D), then the subset associated with e is the i’th subset
of the partition Pφe(σ). Note that if we have an assignment to the A vertices, such that all of
b’s neighbors agree on one value for b, then the D subsets corresponding to those neighbors and
their assignments form a partition that covers b’s universe. On the other hand, if one uses only
sets that correspond to totally disagreeing assignments to the neighbors, then by the definition
of the partitions, covering U requires ≈ ln |U | times more sets.

Claim 4.2. The following hold:

• Completeness: If all the edges in G can be satisfied, then SCG has a set cover of size |A|.

• Soundness: Let ℓ
.
= D ln |U | (1 − α) be as in Lemma 4.1. If G has agreement soundness

(ℓ, α), then every set cover of SCG is of size more than |A| ln |U | (1− 2α).

Proof. Completeness follows from taking the set cover corresponding to each of the A vertices
and its satisfying assignment.

Let us prove soundness. Assume on way of contradiction that there is a set cover C of SCG
of size at most |A| ln |U | (1− 2α). For every a ∈ A let sa be the number of sets in C of the form
Sa,·. For every b ∈ B let sb be the number of sets in C that participate in covering {b} × U .
Then, denoting the A-degree of G by DA,∑

b∈B
sb =

∑
a∈A

sa = |A| ln |U |DA(1− 2α) = |B| ln |U |D(1− 2α).

In other words, on average over the b ∈ B, the universe {b} × U is covered by D ln |U | (1− 2α)
sets. Therefore, by Markov’s inequality, the fraction of b ∈ B whose universe {b}×U is covered
by at most D ln |U | (1−α) sets is at least α. By Lemma 4.1 and our construction, for such b ∈ B,
there are two edges e1 = (a1, b), e2 = (a2, b) ∈ E with Sa1,σ1 , Sa2,σ2 ∈ C where πe1(σ1) = πe2(σ2).

We define an assignment φ̂A : A →
(
ΣA
ℓ

)
to the A vertices as follows. For every a ∈ A pick

ℓ different symbols σ ∈ ΣA from those with Sa,σ ∈ C (add arbitrary symbols if there are not
enough). As we showed, for at least α fraction of the b ∈ B, the A vertices will not totally
disagree.
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Fix a constant 0 < α < 1. The inapproximability ratio we get for Set-Cover from Claim 4.2
is (1−2α) ln |U |, assuming agreement soundness (ℓ, α). The latter is obtained from Corollary 3.4
for ε = c/ log4 n for a certain constant c = c(α). Let N = |U | |B| be the number of elements

in SCG . We take |U | = Θ(|B|1/α) (we might need to duplicate elements for that), so ln |N | =
(1+α) ln |U |, and the inapproximability ratio is at least (1− 3α) lnN . Note that the reduction
is polynomial in n. This proves Theorem 3.

5 Open Problems

The inapproximability result we showed for Set-Cover is not tight with respect to the low
order terms. It is interesting to prove an NP-hardness result that is tight assuming only the
projection games conjecture. We remark that Slav́ık showed that the greedy algorithm actually
obtains an approximation to within lnn− ln lnn+O(1) [Sla96].

As we discussed in the introduction, we believe that many more hardness of approximation
results could be proved based on the projection games conjecture. Two concrete open problems
are to prove results for Clique and SVP. In an ongoing research we attempt to prove optimal
low order terms for 3Lin and other problems from H̊astad’s paper [H̊as01].
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