
Computational Bottlenecks for Evolvability

Varun Kanade∗

SEAS, Harvard University
vkanade@fas.harvard.edu

August 7, 2011

Abstract

Valiant (2007) proposed a computational model for evolution and suggested that evolvability
be studied in the framework of computational learning theory. Feldman (2008) showed that
Valiant’s evolution model is equivalent to the correlational statistical query (CSQ) learning
model, which is a restricted setting of the statistical query (SQ) model. Evolvability in Valiant’s
model has been shown to be quite restricted; Valiant observed that the class of parities is
not evolvable even under the uniform distribution. Subsequently, Feldman (2008, 2011) showed
that in a distribution-independent sense, linear separators and decision-lists are not even weakly
evolvable, and that the class of conjunctions is not evolvable. All these results are based on
information-theoretic arguments.

In this paper, we show that computational bottlenecks for evolvability in Valiant’s model
exist, even when information-theoretic bottlenecks are absent. In particular, assuming that
polynomial size circuits are not PAC learnable, we construct a concept class that is not efficiently
evolvable; in contrast, when unbounded computation is allowed this concept class can be evolved
in an information-theoretically efficient manner.

∗This work is supported in part by grants NSF-CCF-04-27129 and NSF-CCF-09-64401

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 114 (2011)

1 Introduction

Darwin’s theory of evolution proposed that complex life forms evolved from simpler ones. However,
the actual process of evolution and also the nature of complexity that can arise is not well under-
stood. The two central aspects of Darwin’s theory are 1) creation of variation due to mutations,
and 2) natural selection among the variants (survival of the fittest). The genome of an organism
contains code for proteins and also encodes rules governing their regulation. An example of a
function encoded in the genome could be a circuit that decides the level of enzyme activity based
on environmental conditions, e.g. temperature, water content, availability of sugar, oxygen supply
etc. The main question of interest is, how complex can such circuits be, given that they must have
evolved through mutation and natural selection?

Valiant [Val09] proposed a computational model for evolution and suggested that the above
question be studied in the framework of computational learning theory. In his evolution model,
an organism is defined to be a representation of a boolean function. The process of evolution
takes place in a number of generations, where the representation at each generation is a randomly
chosen fit mutation of the representation from the previous generation. Valiant’s model defines a
mutator as an efficient randomized Turing machine that produces a list of mutations of a given
representation, and selection is defined based on empirical performance of the mutations that
occurred. Roughly speaking, the number of mutations produced in a given generation and the
number of examples used to evaluate empirical performance correspond to the population size.
In order for evolution to be plausible, population size and the number of generations should be
polynomially bounded. However, the computational constraint in the model is the requirement
that the mutator be (polynomial time) efficient. The focus of this paper is to show that this
restriction affects the notion of what is evolvable.

In subsequent work, Feldman [Fel08, Fel09b] showed that evolvability in Valiant’s model is
equivalent to correlational statistical query (CSQ) learning [BF02], a restriction of the SQ learning
model [Kea98]. Feldman [Fel09b, Fel09a] also showed that under a class of non-linear performance
measures (such as `2 loss; Valiant’s model only uses 0-1 loss), evolvability is equivalent to SQ
learning.

Concept classes known to be evolvable in Valiant’s model are quite limited. Valiant showed that
monotone conjunctions are evolvable under the uniform distribution. Feldman [Fel09b] showed that
the class of singletons can be evolved distribution-independently. Kanade, Valiant and Vaughan
[KVV10] showed that the class of homogeneous hyperplanes is evolvable under radially symmetric
and product normal distributions.

On the other hand, strong limitations on evolvability have been shown. Valiant [Val09] ob-
served that since evolvability is a restricted form of statistical query learning, the class of par-
ities is not evolvable even under the uniform distribution. Feldman [Fel08] showed that in a
distribution-independent sense, linear separators and decision trees are not even weakly evolvable.
Recently, Feldman[Fel11] showed that even the class of conjunctions is not evolvable distribution-
independently. However, all of the above results are unconditional and use information-theoretic ar-
guments. A natural question that arises is, is evolution constrained purely by information-theoretic
bottlenecks, or do computational bottlenecks exist?

In this paper, we formalize the above question and prove that there are indeed computational
limitations to evolution. Roughly speaking, the size of the population and the number of generations
correspond to information-theoretic aspects of evolution and the mutation algorithm corresponds
to the computational aspect. An informal statement of our main result is:

Theorem 1. There exists a concept class C and a distribution D over X = {−1, 1}n such

2

that C is not evolvable (in computationally bounded manner) under D, unless polynomial size
circuits can be PAC-learned. On the contrary, when allowed unbounded computation C can be
evolved (information-theoretically) efficiently, i.e. in polynomially many generations and with a
polynomially-bounded population size. Furthermore, such a concept class exists even when D is the
uniform distribution over X = {−1, 1}n.

To prove this theorem, we use Feldman’s result showing the equivalence between evolvability
and CSQ learning. A CSQ algorithm has access to an oracle, which for any function φ, returns the
correlation of φ with the target concept c, Ex∼D[φ(x)c(x)], up to some inverse polynomial tolerance
τ . We construct a concept class C and a distribution D, such that there exists a (computationally
inefficient) CSQ algorithm that learns C by making q queries of tolerance τ , where q, τ−1 are
polynomially bounded. We also show that a computationally efficient CSQ algorithm for C would
imply an algorithm for PAC-learning polynomial size circuits.

Related Work: In the PAC learning model [Val84], it is known that the main difficulty for learning
is computational, as empirical risk minimization (ERM) on a small sample suffices for the purpose
of learning. However, ERM is intractable for almost all concept classes of interest. In the case
of proper learning, i.e. when the output hypothesis is required to be in C, learning even simple
concept classes such as 2-term DNF formulas is known to be hard unless NP = RP. In the case of
improper learning, under standard cryptographic assumptions various concept class are shown to
be hard to PAC-learn (see for example [GGM86, KV94, Kha93]).

In the statistical query (SQ) learning model, an efficient learning algorithm must make polyno-
mially many queries and the tolerance parameter must be at least some inverse polynomial. In this
setting, Kearns [Kea98] showed that the class of parities is not learnable. Blum et al. [BFJ+94]
showed that DNFs and decision trees are not efficiently learnable in the SQ model. Recently,
Feldman, Lee and Servedio [FLS11] have shown that low-depth monotone formulas are also not
efficiently SQ learnable. As in the case of evolvability, all these lower bounds are information-
theoretic. Thus, even in the SQ learning model, one might ask the question whether computational
bottlenecks exist when information theoretic ones don’t? Our results also imply a separation be-
tween computationally bounded SQ learning from purely statistically efficient SQ learning.

Organization: In section 2, we briefly describe various learning models - PAC learning, SQ/CSQ
learning and evolution. Section 2.3 contains formal definitions of computationally bounded and
unbounded evolution. Section 3 contains the proof our main result. Section 4 concludes with a
brief discussion of open problems.

2 Learning Models

In this paper, we use {−1, 1}n to denote the boolean cube in n dimensions, and a boolean function
has range {−1, 1}. If X is an instance space, a concept class C is subset of boolean functions over
X.

2.1 PAC Learning

Valiant [Val84] introduced the PAC framework to formalize the study of machine learning. Let
X = {−1, 1}n, D be a distribution over X and C be a concept class over X. For a concept c ∈ C,
an example oracle EX(c,D) when queried, outputs an example (x, c(x)) where x is chosen randomly
according to distribution D. Below, we give a definition of distribution-specific weak PAC learning.

3

Definition 1 (Weak-PAC Learning [KV94]). A concept class C is weakly PAC-learnable with
respect to distribution D, if there exists a learning algorithm L, that for every δ > 0, and for every
target concept c ∈ C, with access to oracle EX(c,D) outputs h, such that with probability at least
1− δ,

errD(h, c) = Pr
x∼D

[c(x) 6= h(x)] ≤ 1/2− 1/q(n)

for some polynomial q(n). Furthermore, the running time of L is polynomial in n, 1/δ and h can
be evaluated in polynomial time.

Our main result is based on the assumption that the class of polynomial-size circuits is not
weakly learnable under the uniform distribution; this statement is true if the existence of one-way
functions is assumed (cf. [GGM86, ABX08]). Let CKTnp(n) denote the class of circuits with n inputs
and of size p(n). We use the following assumption:

Assumption 1. There exists a polynomial p such that CKTnp(n) is not weakly PAC learnable under
the uniform distribution.

2.2 SQ and CSQ Learning

The statistical query (SQ) model of learning was introduced by Kearns [Kea98] in the context of
noise-tolerant learning. An SQ algorithm has access to a STAT(c,D) oracle, instead of EX(c,D).
A query to the STAT oracle is of the form (ψ, τ) where ψ : X ×{−1, 1} → [−1, 1] is a polynomially
evaluatable function and τ is a tolerance parameter. The STAT oracle returns a value v, such that
|v − Ex∼D[ψ(x, c(x))]| ≤ τ . An SQ algorithm is said to be efficient if it runs in polynomial time
and makes queries with tolerance parameter τ that is at least some inverse polynomial.

The correlational statistical query (CSQ) model (see [BF02, Fel08]) is a restriction of the SQ
model where the algorithm is only allowed to query the correlation of any function φ with the
target function. Formally, a CSQ(c,D) oracle on receiving a query (φ, τ), outputs a value v such
that |v−Ex∼D[φ(x)c(x)]| ≤ τ . The function φ : X → [−1, 1] must be polynomially evaluatable and
τ must be at least some inverse polynomial.

As in the case of PAC-learning, an SQ or CSQ algorithm is required to output a hypothesis h,
that with high probability satisfies errD(h, c) ≤ ε.

2.3 Evolvability

In this section, we briefly describe Valiant’s evolution model [Val09] and formally define the notion
of computationally bounded and unbounded evolution. For further details, the reader is referred to
[Val09, Fel08, Fel09b]. Let X = {−1, 1}n, D be a distribution over X and C be a concept class over
X. Let R be a representation class of boolean functions from X → {−1, 1}. For a target function
c ∈ C, we define the performance of a boolean function r with respect to D as,

Perfc,D(r) = Ex∼D[c(x)r(x)]

An evolutionary algorithm starts with some r0 ∈ R and at each round i, starting from ri−1
determines the possible mutations of ri−1 and selects one of the mutations as ri, the representation
for the next round. Formally, for some polynomial p(·, ·), a p-bounded evolutionary algorithm
E = (R,Neigh, µ, t, s) is defined by the following components:

• R is the representation class. Each r ∈ R represents a boolean function, |r| ≤ p(n, 1/ε) and
for any x ∈ X, r(x) can be evaluated in polynomial time.

4

• Neigh(r, ε) ⊆ R is the (possibly randomized) neighborhood function that specifies the list of
possible mutations of r. It must be the case that r ∈ Neigh(r, ε) and that |Neigh(r, ε)| ≤
p(n, 1/ε).

• The function µ(r, r′, ε) specifies for each r ∈ R, r′ ∈ Neigh(r, ε), the probability that r mutates
into r′. For each r′ ∈ Neigh(r, ε), µ(r, r′, ε) ≥ 1/p(n, 1/ε).

• The function t(r, ε) ≥ 1/p(n, 1/ε) is the tolerance function and is used to classify mutations
as beneficial, neutral or deleterious.

• Finally, s(r, ε) ≤ p(n, 1/ε) is the sample size, the number of examples used to evaluate the
empirical performance of each r′ in Neigh(r, ε).

We say that a p-bounded evolutionary algorithm E is information-theoretically efficient. In
addition, if the functions Neigh, µ, t and s can be evaluated in polynomial time. we say that E is
computationally efficient.

We define a single round of the evolutionary process. Starting from ri−1, ri = M(ri−1, ε; c,D, E)
is selected randomly from Neigh(ri−1, ε) as follows:

• Generate Neigh(ri−1, ε) and draw a sample of size s(ri−1, ε) to compute the empirical perfor-
mance for each r ∈ Neigh(ri−1, ε); denote this by v(r).

• Define Bene = {r | r ∈ Neigh(ri−1, ε), v(r) ≥ v(ri−1) + t(ri−1, ε)} and Neut = {r | r ∈
Neigh(ri−1, ε), |v(r)−v(ri−1)| ≤ t(ri−1, ε)}. Observe that Neut 6= ∅, since ri−1 ∈ Neigh(ri−1, ε).

• If Bene 6= ∅, choose r randomly from Bene according to relative probability µ(ri−1, r, ε) as ri.
Else, choose r randomly from Neut according to relative probability µ(ri−1, r, ε) as ri.

Definition 2 (Evolvability [Val09]). For a concept class C, distribution D, we say that C is
evolvable under D using representation class R, if for some polynomial p(·, ·), there exists a p-
bounded evolutionary algorithm E = (R,Neigh, µ, t, s) that for every c ∈ C, r0 ∈ R, ε > 0, for
some g = poly(n, 1/ε), with probability at least 1 − ε outputs a sequence r0, r1, . . . , rg, where ri =
M(ri−1, ε; c,D, E) for all i, and Perfc,D(rg) ≥ 1− ε. Furthermore,

• If E is computationally efficient, we say that C is computationally efficiently evolvable under
D.

• If E is not computationally efficient, but is information-theoretically efficient, we say that C
is evolvable under D with unbounded computation.

Feldman[Fel08] showed that a CSQ algorithm for learning C can be converted to an evolutionary
algorithm. Theorem 2 is a restatement of the main theorem of [Fel08].

Theorem 2. [Fel08] Suppose A is a CSQ algorithm for learning C under distribution D, such
that A makes q queries each of tolerance τ . Furthermore, for each query φ assume that |φ| is
polynomially bounded, φ is polynomially evaluatable and that τ−1 is polynomially bounded. Then,

• There exists an information-theoretically efficient evolutionary algorithm E that evolves C
under D with unbounded computation.

• If in addition, A runs in polynomial time, then E is also computationally-efficient. Thus E
computationally efficiently evolves C under D.

5

3 Computational Hardness for Evolution

In this section, we prove our main result that shows that computational bottlenecks exist for
evolvability, even when information-theoretic ones don’t. Let X = {−1, 1}n and let D be a fixed
distribution over X. Let C be a concept class over X such that log |C| = poly(n). In the rest of
this section, we assume that ε is fixed, and that 1/ε is bounded by some polynomial in n.

We define notation used in the rest of this section. LetM = (16/ε2) log |C| and letm = (n+1)M ,
thus m = O(poly(n)). Let s ∈ {−1, 1}m be a string of length m; s can be interpreted as a sample,
S = 〈(xi, yi)〉Mi=1, where xi ∈ X and yi ∈ {−1, 1}. Let ERM be the empirical risk minimizer, a
Turing machine, that when given s ∈ {−1, 1}m as input, constructs sample S and outputs some
h ∈ C that is consistent with S. If no such h exists, it outputs ⊥. The ERM Turing machine is not
required to run in polynomial time; however, it always halts. Assume that one such ERM machine
is fixed ahead of time.

We define the notion of a string s being useful for a concept c ∈ C.

Definition 3. We say that a string s ∈ {−1, 1}m is useful for a concept c ∈ C, if s when interpreted
as a sample S = 〈(xi, yi)〉Mi=1 satisfies yi = c(xi) for all i, and ERM with s as input, outputs a
hypothesis h ∈ C that satisfies,

errD(h, c) = Pr
x∼D

[h(x) 6= c(x)] ≤ ε

Fix a concept c ∈ C. Then it is easy to see that there exist strings s ∈ {−1, 1}m that are
useful for c; for example, let S = 〈(xi, yi)〉Mi=1 be a random sample drawn from EX(c,D). If
M = (16/ε2) log |C| by the Chernoff-Hoefdding bound, with probability at least 1/2, for every
h ∈ C,

| Pr
x∼D

[c(x) 6= h(x)]− (1/M)
M∑
i=1

I(c(xi) 6= h(xi))| ≤ ε,

where I is the indicator function. This immediately implies that if h is consistent with S, then
errD(h, c) ≤ ε. Of course, since c ∈ C there always exists at least one h ∈ C that is consistent with
S. Let S be encoded as a string s ∈ {−1, 1}m, then s is useful for c.

Let m be as defined above and define n′ = m+n. Let X ′ = {−1, 1}n′ . For any k, let eki denote
a string of length k which is −1 everywhere except in position i where it is 1. Let (−1)k be a string
of length k consisting of all −1s. For any strings x, x̃, xx̃ denotes their concatenation. Recall that
D is a fixed distribution over X, we define a distribution D′ over X ′ as follows:

1. D′(emi (−1)n) = 1/2m for i = 1, . . .m.

2. D′((−1)mx) = D(x)/2 for all x ∈ Xn.

3. D′(x′) = 0 elsewhere.

Next, we define a concept class C ′ over X ′ as follows.

C ′ = {(s, c) | c ∈ C, s ∈ {−1, 1}m such that s is useful for c}

Let c′ = (s, c), then c′ : X ′ → {−1, 1} is defined as:

1. c′(emi (−1)n) = si for i = 1, . . . ,m.

2. c′((−1)mx) = c(x), where x ∈ X.

6

3. c′(x′) = 1 elsewhere.

We show that there exists an algorithm that learns C ′ under D′ in the CSQ model. The
algorithm is not computationally efficient, but makes only polynomially many queries, each with
inverse polynomial tolerance to the CSQ oracle.

Proposition 1. There exists an algorithm A that CSQ learns C ′ with respect to distribution D′,
and furthermore,

1. A makes m queries to the CSQ oracle, each with tolerance 1/3m.

2. A need not be computationally efficient.

Proof. Suppose c′ = (s, c) is the target concept in C ′.
Define φi : X ′ → [−1, 1] such that φi(e

m
i (−1)n) = 1 and φi(x

′) = 0 otherwise. Then,
Ex∼D′ [φi(x)c′(x)] = si/2m. When τ = 1/3m, a CSQ (φi, τ) reveals whether si = 1 or si = −1.
Thus, using m CSQs A recovers the string s. Now A simply runs ERM on s to get h : X → {−1, 1}
such that errD(h, c) ≤ ε.
A defines h′ : X ′ → {−1, 1} as follows: h′(emi (−1)n) = si, h

′((−1)mx) = h(x) for x ∈ X.
Clearly, errD′(h

′, c′) ≤ ε.

Next, we show that the existence of a polynomial time algorithm for learning C ′ under D′ in
the CSQ model, implies the existence of an efficient PAC-learning algorithm for C under D.

Proposition 2. If there exists an efficient (polytime) algorithm B that CSQ learns concept class
C ′ with respect to D′, then C is PAC learnable under D.

Proof. Suppose that B is an efficient algorithm for learning C ′ under D′ in the CSQ model. We
construct an algorithm that PAC-learns C under distribution D.

First, draw M examples from EX(c,D) and encode them as a string s ∈ {−1, 1}m. By Chernoff-
Hoeffding bounds, with probability at least 1/2, s is useful for c. Assume that this is the case,
allowing the algorithm to fail with probability 1/2 so far. We know that (s, c) ∈ C ′ since s is useful
for c. We show that we can simulate a CSQ oracle for (s, c) under distribution D′.

Let ψ : X ′ → [−1, 1] be a polynomially evaluatable function. Then,

Ex′∼D′ [ψ(x′)c′(x)] =
1

2m

m∑
i=1

ψ(emi (−1)n)si +
1

2
Ex∼D[ψ((−1)mx)c(x)].

Since we have access to ψ and s, the first term in the above expression can be computed exactly.
With probability at least 1 − δ, the second term can be estimated to accuracy τ , by drawing a
sample of size O(1

τ2
log(1/δ)) and computing the empirical estimate. If B makes q queries, by

choosing δ = 1/4q, we can ensure that with probability at least 1/4 all the queries are answered
correctly.

Suppose B outputs a hypothesis h′ : {−1, 1}n′ → {−1, 1} such that errD′(h, c
′) ≤ ε. Then,

define h : X → {−1, 1}, where h(x) = h′((−1)mx); it is easy to see that errD(h, c) ≤ 2ε. Also, the
algorithm succeeds with probability at least 1/4. To get the algorithm to succeed with probability
1− δ, this can be repeated O(log(1/δ)) times.

If C is the class CKTnp(n), log |C| is bounded by some polynomial in n. Proposition 1 and 2
together with Theorem 2 immediately imply our main result.

7

Theorem 3. If Assumption 1 is true, then there exists a distribution family D = 〈Dn〉n≥0 over
〈Xn = {−1, 1}n〉n≥0 and a concept class family C = 〈Cn〉n≥0 such that

1. C is evolvable under D by an information-theoretically efficient algorithm with unbounded
computation.

2. C is not computationally efficiently evolvable under D.

3.1 Uniform Distribution

In this section, we show that Theorem 3 can be extended to the case where the distribution Dn

is the uniform distribution over Xn = {−1, 1}n. To avoid excessive notation, we will drop the
subscript n in the rest of this section. Let U denote the uniform distribution over X and let C be
a concept class over X.

Let N : X → {0, . . . , 2n−1} be a bijective map, where N(x) = i, if x is the binary representation
of i with each 0 replaced by a −1. Note that given x, N(x) can be evaluated easily in polynomial
time. We define a concept class C ′ over X = {−1, 1}n related to concept class C. As defined earlier
M = 16 log |C|/ε2, m = (n+ 1)M . Recall that for c in C, we say that s ∈ {−1, 1}m is useful for c,
if ERM with input s outputs an accurate hypothesis. (Here, ERM is successful with respect to the
uniform distribution U .) Thus, define C ′,

C ′ = {(s, c) | c ∈ C, s ∈ {−1, 1}m is useful for c}

A concept c′ = (s, c) ∈ C ′ is defined as:

1. c′(x) = si if 2n−2(i− 1)/m < N(x) ≤ 2n−2i/m for i = 1, . . . ,m.

2. c′(x) = c(x) otherwise.

Thus, for each bit si of the string s, 1/(4m) mass of the uniform distribution U , is used to store
the bit si. Thus, a CSQ algorithm is able to recover bit si easily.

Proposition 3. There exists a CSQ algorithm A which learns C ′ under U , and furthermore,

1. A makes m queries, each of tolerance 1/5m.

2. A need not be computationally efficient.

Proof. Let c′ = (s, c) be the target concept. Define φi : X → [−1, 1] as: φi(x) = 1 for 2n−2(i −
1)/m < N(x) ≤ 2n−2i/m and φi(x) = 0 otherwise. Note that since N is polynomially evaluatable,
so is φi. Then,

Ex∼U [φi(x)c′(x)] =
si

4m

Thus, the string s can be recovered by making m queries, each of tolerance 1/5m. Let h : X →
{−1, 1} be the hypothesis returned by ERM on s. Then define h′ : X → {−1, 1}, where h′(x) = si
if 2n−2(i− 1)/m < N(x) ≤ 2n−2i/m and h′(x) = h(x) otherwise. Clearly, errU (h′, c′) ≤ ε.

It is also easy to see that a polynomial time algorithm for learning C ′ under U would imply a
weak-PAC learning algorithm for C under U .

Proposition 4. If there exists a polynomial-time algorithm B that CSQ-learns C ′ with respect to
U , then C can be weakly PAC-learned under U

8

Proof. We construct an algorithm that learns weak PAC-learns C using B. Let c ∈ C be the target
concept. Draw a sample S = 〈(xi, yi)〉Mi=1 of size M using EX(c, U) and let s ∈ {−1, 1}m be the
encoding corresponding to S. By the Chernoff-Hoeffding bound, with probability at least 1/2, s is
useful for c. Suppose that this is the case allowing the algorithm to fail with probability 1/2, so
that c′ = (s, c) ∈ C ′.

Let ψ : X → [−1, 1] be a polynomially evaluatable function. Note that an example oracle
EX(c′, U) can be easily simulated using EX(c, U) as follows: Draw (x, y) ∼ EX(c, U), if 2n−2(i −
1)/m < N(x) ≤ 2n−2i/m for some i, replace (x, y) by (x, si). A CSQ(c′, U) oracle is easily simulated
using EX(c′, U) by drawing a sample and returning the empirical estimate. Let h′ : X → {−1, 1}
be the hypothesis output by B. Note that errU (h, c′) ≤ ε implies that errU (h, c) ≤ 1/4 + ε, since
except on 1/4th fraction of the instance space, c = c′.

Thus, Theorem 3 holds even when Dn is the uniform distribution over X = {−1, 1}n.

4 Conclusion and Future Work

Prior to our work, the known bottlenecks for evolution in Valiant’s model were information-
theoretic. The question whether evolution is constrained due to computational bottlenecks or
merely because of information-theoretic ones is an interesting one. We have shown that computa-
tional bottlenecks exist for evolution, even when information-theoretic ones don’t.

The concept class that we construct to prove our result is not very natural. Thus, the main open
question is to find a more natural class with the same property. We observe that the search space for
such a class is quite limited, since even conjunctions are not evolvable due to information-theoretic
bottlenecks in a distribution-independent sense.

With respect to fixed distributions, Feldman [Fel08] showed that evolvability is equivalent to SQ
learning. It is an interesting question to find a natural concept class that is information-theoretically
efficiently learnable in the SQ model with unbounded computation, but is not computationally
efficiently SQ learnable (under plausible hardness assumptions). Even in the SQ model, the search
space for such a class is limited; decision-lists can be efficiently learned, while decision-trees and
DNFs are not learnable for information-theoretic reasons. In the case of monotone concept classes,
O’Donnell and Servedio [OS07] have shown that monotone decision trees can be learned for any
constant ε in the SQ model1. On the other hand Feldman, Lee and Servedio [FLS11] have shown
that depth-3 monotone formulas are not strongly learnable and depth-4 monotone formulate are
not even weakly learnable2, both based on information-theoretic arguments.

Acknowledgments

The question considered in this paper was suggested by Leslie Valiant. I would like to thank Salil
Vadhan and Leslie Valiant for helpful discussions.

References

[ABX08] B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-
case assumptions. In Proceedings of the 49th Annual IEEE symposium on Foundations
of computer science, 2008.

1Although not explicitly stated in their paper, their algorithm is an SQ algorithm.
2The precise statements of their result is that depth-4 monotone circuits cannot be SQ-learned to a certain

1/2 + o(1) accuracy. All monotone concept classes can be learned to accuracy 1/2 + Θ(logn)/
√
n [OW09].

9

[BF02] N. H. Bshouty and V. Feldman. On using extended statistical queries to avoid member-
ship queries. Journal of Machine Learning Research, 2:359–395, 2002.

[BFJ+94] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning
dnf and characterizing statistical query learning using fourier analysis. In Proceedings of
the twenty-sixth annual ACM symposium on Theory of computing, 1994.

[Fel08] V. Feldman. Evolvability from learning algorithms. In Proceedings of ACM STOC 40,
2008.

[Fel09a] V. Feldman. A complete characterization of statistical query learning with applications
to evolvability. In Proceedings of the IEEE Symposium on Foundation of Computer
Science, 2009.

[Fel09b] V. Feldman. Robustness of evolvability. In COLT 22, 2009.

[Fel11] V. Feldman. Distribution-independent evolvability of linear threshold functions. In
COLT, 2011.

[FLS11] V. Feldman, H. Lee, and R. A. Servedio. Lower bounds and hardness amplification for
learning shallow monotone formulas. In COLT, 2011.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. JACM, 45(6):983–
1006, 1998.

[Kha93] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, 1993.

[KV94] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM, 41(1):67–95, 1994.

[KVV10] V. Kanade, L. G. Valiant, and J. W. Vaughan. Evolution with drifting targets. In COLT,
2010.

[OS07] R. O’Donnell and R. A. Servedio. Learning monotone decision trees in polynomial time.
SIAM J. Computing, 37(3):827–844, 2007.

[OW09] R. O’Donnell and K. Wimmer. Kkl, kruskal-katona, and monotone nets. In Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science, 2009.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[Val09] L. G. Valiant. Evolvability. Journal of the ACM, 56(1):1–21, 2009.

10

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

