
Learning Hurdles for Sleeping Experts

Varun Kanade∗

SEAS, Harvard University
vkanade@fas.harvard.edu

Thomas Steinke†

SEAS, Harvard University
tsteinke@fas.harvard.edu

August 7, 2011

Abstract

We study the online decision problem where the set of available actions varies over time, also
called the sleeping experts problem. We consider the setting where the performance comparison
is made with respect to the best ordering of actions in hindsight. In this paper, both the
payoff function and the availability of actions is adversarial. Kleinberg et al. (2008) gave a
computationally efficient no-regret algorithm in the setting where payoffs are stochastic. Kanade
et al. (2009) gave an efficient no-regret algorithm in the setting where action availability is
stochastic.

However, the question of whether there exists a computationally efficient no-regret algorithm
in the adversarial setting was posed as an open problem by Kleinberg et al. (2008). We
show that such an algorithm would imply an algorithm for PAC learning DNF, a long standing
important open problem. We also show that a related problem, the gambling problem, posed
as an open problem by Abernethy (2010) is related to agnostically learning halfspaces, albeit
under restricted distributions.

∗This work was supported in part by grants NSF-CCF-04-27129 and NSF-CCF-09-64401
†This work was supported in part by the Lord Rutherford Memorial Research Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 115 (2011)

1 Introduction

In online decision problems, a decision-maker must choose one of n possible actions, in each of the
total T rounds. The decision-maker receives a payoff in the range [0, 1]. In the full information or
expert setting, at the end of each round, the decision-maker sees the payoff corresponding to each
of the possible actions. In the bandit setting, she only observes the reward of the action that she
chose. The goal of the decision maker is to maximize her total payoff across T rounds, or as is
common in the non-stochastic setting, to minimize her regret with respect to a class of strategies.
The regret of the decision-maker is defined as the difference between the payoff she would have
received by following the best strategy in hindsight from the class and the payoff that she actually
received.

In this paper, we focus on the so-called sleeping experts problem. In this problem, the set of
actions available to the decision-maker at round t is a subset St of n possible actions. The class of
strategies we compare against is the set of rankings over the n total actions. Each ranking induces
a simple strategy for the online decision problem: pick the highest-ranked available action. As
a motivating example, consider the problem of choosing an advertisement to display alongside a
search query. Of all the ads that match the particular keyword, only a subset might be actually
available for displaying because of budget, geographical or other constraints. In this case, we would
like the decision-making algorithm to compare well against the best (in hindsight) hypothetical
ranking on the ads.

Our work focuses on the fully non-stochastic setting, where both the set of available actions
and their payoffs are decided by an adversary1. In this paper, we consider the case of an oblivious
adversary, i.e. one that does not observe the actual (random) choices made by the decision-maker.
Since, our results show computational difficulties in designing efficient no-regret algorithms, they
are equally applicable to the more challenging case of an adaptive adversary. An algorithm that
selects an action at at time step t is efficient, if it makes its choice (possibly using history) in
time that is polynomial in n. An algorithm is said to be a no-regret algorithm if its regret is
O(poly(n)T 1−δ) for some constant δ > 0. An informal statement of our main result is:

Theorem 1. If there exists a computationally efficient no-regret algorithm for the sleeping experts
problem (with respect to ranking strategies), then the class of polynomial size DNFs is PAC-learnable
under arbitrary distributions.

In contrast to the above result, if computational efficiency is not a concern, it is easy to see
that the Hedge algorithm [FS95] achieves regret O(

√
n log(n)T), by treating each of the n! rankings

as an expert. This observation was made by Kleinberg et al. [KNMS08]. Kleinberg et al. also
show that when the class of online algorithms is restricted to those that select actions by sampling
over rankings and without observing the set of available actions St, there is no efficient no-regret
algorithm unless RP = NP. However, this is a severe restriction and whether there exists an
efficient no-regret algorithm without such restrictions was posed by Kleinberg et al. as an open
question. Our result shows that such an algorithm would imply PAC-learning DNFs under arbitrary
distributions, a long standing important open problem. In fact, the best known algorithm for PAC-
learning DNFs takes time 2Õ(n1/3).

1No-regret algorithms are known for the case when either the payoffs or action availabilities are stochastic; these
are discussed in the related works section.

2

We also study a related problem, the gambling problem. In this problem, each round t is a game
between two out of a total of n players2. On each round, the decision-maker must place a wager on
one of the two players, and receives a payoff of 1 or 0 depending on the actual outcome. As in the
sleeping experts problem, the decision-maker competes with the class of all possible rankings over
the n players. Clearly, this problem is a special case of the sleeping experts problem, where the
number of available actions on each round is exactly 2. Abernethy [Abe10] observed that there exists
an efficient algorithm that achieves regret O(n

√
T), essentially by learning the outcomes between

every possible pair of players. However, the Hedge algorithm (which is computationally inefficient
because it keeps track of all n! rankings) gives a regret bound of O(

√
n log(n)T). Abernethy

[Abe10] posed as an open question whether there exists an efficient algorithm that achieves a regret
better than O(n

√
T). We show that this problem is related to agnostically learning halfspaces,

although in a very restricted setting. However, an algorithm that achieves regret O(n1−δ√T) for
the gambling problem, would result in an agnostic halfspace learning algorithm that has sample
complexity O(n2−2δ), in this setting. We show that proper agnostic learning even in this restricted
setting is hard unless RP = NP. Also, most existing techniques for improper agnostic learning
of halfspaces output thresholds of polynomial functions and hence are unlikely to achieve sample
complexity O(n2−2δ).

Our contributions: The proof of our main result follows from the fact that online agnostic learn-
ing of disjunctions reduces to the sleeping experts problem. As far as we are aware, computational
hardness assumptions have not been used to show lower bounds on regret in experts/bandits prob-
lems. Lower bounds in the literature are usually based on information theoretic arguments (such
as predicting coin tosses). In the sleeping experts setting, the information-theoretic lower bound of
Ω(
√
n log(n)T) can indeed be achieved if computational efficiency is not a concern.

The set of available experts may be thought of as context information at each time step, and
hence allows for encoding learning problems (in our case agnostic learning of disjunctions). We
believe that such techniques may be applicable to other contextual experts/bandits problems.
When not in the contextual experts/bandits setting, it is often possible to compete against a
class of exponentially many experts (cf. [CBL06] Chap. 5).

Related Work: The most relevant related work to ours is that of Kleinberg et al. [KNMS08]
and Kanade et al. [KMB09]. Kleinberg et al. showed that in the setting where payoffs are
stochastic (i.e. are drawn from a fixed distribution on each round and independently for each
action) and action availability is adversarial, there exists an efficient no-regret algorithm that is
essentially information-theoretically optimal. Kanade et al. gave an efficient no-regret algorithm in
the setting when the payoffs are set by an oblivious adversary, but the action availability is decided
stochastically, i.e. a subset S ⊆ [n] of available actions is drawn according to a fixed distribution
at each time step. In contrast, our results in this paper show that an adversarial coupling between
action availability and payoffs makes the problem much harder.

In earlier literature, different versions of the sleeping experts problems have been considered by
Freund et al. [FSSW97] and Blum and Mansour [BM07]. Our results are not applicable to their
settings, and in fact computationally efficient no-regret algorithms are known in those settings.

Organization. In section 2, we formally define the sleeping experts problem and the gambling
problem. Section 3 provides the relevant definitions of batch and online agnostic learning. Section
4 contains the main reduction showing that the sleeping experts problem is at least as hard as

2This is not necessarily a tournament, i.e. it is not necessary for every player to play against every other player.

3

PAC learning DNF. Section 5 discusses the gambling problem in more detail and its relation to the
problem of agnostically learning halfspaces.

2 Setting and Notation

Let A = {a1, . . . , an} be the set of actions. Let T be the total number of time steps for the online
decision problem. In the sleeping experts setting, at time step t, a subset St ⊆ A of actions is
available, from which the decision-maker picks an action at ∈ St. Let pt : St → [0, 1] be the payoff
function, and for any action a, let pt(a) denote the payoff associated with action a at time step t.
At the end of round t, the entire payoff function pt is revealed to the decision-maker. The total
payoff of the decision-maker across T rounds is simply:

PDM =

T∑
t=1

pt(at)

When choosing an action at ∈ St, at time step T , the decision-maker may use the history to guide
her choice. If the adversary cannot see any of the choices of the decision-maker we say that the
adversary is oblivious. An adaptive adversary can see the past choices of the decision-maker and
may then decide the payoff function and action availability. In this paper, we only consider the
oblivious adversarial setting, since the hardness of designing no-regret algorithms against oblivious
adversaries also applies in the case of (stronger) adaptive adversaries. Also, we only consider the
full information setting, since the bandit setting is strictly harder.

The set of strategies that the decision-maker has to compete against is defined by the set of
rankings over the actions. Let ΣA denote the set of all possible n! rankings over the n total actions.
Given a particular ranking σ ∈ ΣA, the strategy is to play the highest ranked available action
according to σ. For subset S ⊆ A of available actions, let σ(S) ∈ A denote the action in S which
is ranked highest according to σ. Thus, the payoff obtained by playing according to strategy σ is:

Pσ =

T∑
t=1

pt(σ(St))

The quantity of interest is the regret of the decision-maker with respect to the class of strategies
defined by rankings. The regret is defined as the difference between the payoff that would have
been attained by playing according to the best ranking strategy in hindsight and the actual payoff
received by the decision maker. Thus,

RegretDM = max
σ∈ΣA

Pσ − PDM

We say that the algorithm is no-regret, if by playing according to this algorithm the decision-maker
can achieve regret O(p(n)T 1−δ), where p(n) is a polynomial in n and δ ∈ (0, 1/2]. Furthermore, we
say that such an algorithm is computationally efficient, if at each time step t, given the set St of
available actions (and possibly using history), it selects an action at ∈ St in time polynomial in n.

2.1 Gambling Problem

In this section we describe a related problem, the gambling problem, which was posed as an open
question by Abernethy [Abe10]. We use the notation described above in the context of the sleeping

4

experts problem. Here, at each round the subset St of available actions is of size 2. Thus, alter-
natively one may think of this as predicting an outcome of a game between two players (actions).
The payoff function is defined as 1 for choosing the winner and 0 for choosing the loser. We assume
that the actual outcomes of the games are decided by an oblivious adversary. As in the sleeping
experts problem, the goal of the decision maker is to minimize regret with respect to the class of
ranking strategies.

As observed by Abernethy [Abe10], it is easy to show that there is an algorithm that achieves
O(n
√
T) regret that is also computationally efficient. This algorithm essentially learns to predict

the winner for games between players ai and aj for each pair of players; suppose ai and aj play
each other for Tij rounds, then it is easy to achieve O(

√
Tij) regret on those rounds by using Hedge.

Thus, the total regret is ∑
i,j

O(
√
Tij) = O(n

√
T).

However, by keeping track of every ranking over the players (actions) as a different expert and using
Hedge, it is possible to achieve O(

√
n log(n)T) regret; this algorithm is computationally inefficient.

Abernethy posed the following open question: Does there exist a computationally efficient algorithm
that has regret o(n

√
T)? In section 5, we show that any algorithm that achieves O(n1−δ√T) regret

is likely to lead to interesting new techniques for agnostically learning halfspaces, albeit under very
restricted distributions.

3 Agnostic Learning

In this section, we define online and batch agnostic learning. Let X be an instance space and n be
a parameter than captures the representation size of X (e.g. X = {0, 1}n or X = Rn).

Online Agnostic Learning. The definition of online agnostic learning used here is slightly
different to those previously used in the literature (cf. Ben-David et al. [BDPSS09]), but is
essentially equivalent. Our definition simplifies the presentation of our results.

An online agnostic learning algorithm observes examples one at a time; at time step t it sees
example xt, makes a prediction ŷt ∈ {0, 1} (possibly using history) and then observes yt. Let
s = 〈(xt, yt)〉Tt=1 be a sequence of length T , where xt ∈ X and yt ∈ {0, 1}. We consider the
oblivious adversarial setting, where the sequence s may be fixed by an adversary but is fixed ahead
of time, i.e. without observing the past predictions made by the online learning algorithm. We
define error of an online agnostic learning algorithm A with respect to a sequence s = 〈(xt, yt)〉Tt=1

as:

errs(A) =
1

T

T∑
t=1

I(ŷt 6= yt)

where I is the indicator function. For any boolean function f : X → {0, 1} we can define error of
f with respect to the sequence s = 〈(xt, yt)〉Tt=1 as,

errs(f) =
1

T

T∑
t=1

I(f(xt) 6= yt).

5

For a concept class C of boolean functions over X, online agnostic learnability of C is defined as3:

Definition 2 (Online Agnostic Learning). We say that a concept class C over X is online ag-
nostically learnable if there exists an online agnostic learning algorithm A, that for all T , for all
example sequences s = 〈(xt, yt)〉Tt=1, makes predictions ŷ1, . . . , ŷT such that,

errs(A) ≤ min
f∈C

errs(f) +O(p(n)/T ζ)

for some polynomial p(n) and ζ ∈ (0, 1/2]. Furthermore, the running time of A at each time step
must be polynomial in n. We say that A has regret bound O(p(n)/T ζ).

Batch Agnostic Learning. We also give a definition of (batch) agnostic learning (cf. Haussler
[Hau92], Kearns, Schapire and Sellie [KSS94]). For a distribution D over X×{0, 1} and any boolean
function f : X → {0, 1} define,

errD(f) = Pr
(x,y)∼D

[f(x) 6= y]

Definition 3 ((Batch) Agnostic Learning [KSS94]). We say that a concept class C is (batch)
agnostically learnable, if there exists an efficient algorithm that for every ε, δ > 0 and for every
distribution D over X ×{0, 1}, with access to a random example oracle from D, with probability at
least 1− δ outputs a hypothesis h such that,

errD(h) ≤ min
f∈C

errD(f) + ε

The running time of the algorithm is polynomial in n, 1/ε, 1/δ and h is polynomially evaluatable.
The sample complexity of the algorithm is the number of times it queries the example oracle.

It is well-known that batch learning is no harder than online learning. Theorem 4 follows more
or less directly from [Lit89, CBCG04], but we provide a proof in Appendix A for completeness.
Roughly speaking after an online to batch conversion, the sample complexity of the resulting batch
algorithm is the number of time steps required to make the regret O(ε).

Theorem 4. If a concept class C is online agnostically learnable with regret bound O(p(n)/T ζ)
then it is (batch) agnostically learnable. Furthermore the sample complexity for (batch) agnostic
learning is O((p(n)/ε)1/ζ) +O(1/ε4 + log2(1/δ) + (1/ζε2) log(n/εδ)).

4 Sleeping Experts Problem

In this section, we show that the sleeping experts problem is at least as hard as online agnostic
learning of disjunctions. Theorem 4 implies that the class of disjunctions is also (batch) agnostically
learnable. It is known that agnostic learning of disjunctions implies PAC learning of DNF (cf.
[KSS94, KKM09])4, hence proving Theorem 1.

3The definition assumes that the online algorithm is deterministic; one may instead also allow a randomized
algorithm that achieves low regret with high probability over its random choices. But, the guarantee must hold with
respect to all sequences.

4Actually, agnostically learning conjunctions implies PAC learning DNF, but because of the duality between
conjunctions and disjunctions an agnostic learning algorithm for learning disjunctions also implies an algorithm for
learning conjunctions.

6

Algorithm. Online Agnostic Learning DISJ

For t = 1, . . . , T ,

1. L receives xt. Define St = {⊥} ∪ {Oi | xti = 1} ∪ {Zi | xti = 0}.

2. Give St as the set of available actions to Alg. Let Alg choose at.

3. If at = ⊥, then set ŷt = 0, else set ŷt = 1.

4. Observe yt. Define pt(⊥) = 1− yt and pt(a) = yt for all other actions a ∈ St \ {⊥}.
Return pt as the payoff function to Alg.

Figure 1: Algorithm for online agnostically learning DISJ.

Recall that in the sleeping experts setting we consider, the action availability and payoff func-
tions are set by an oblivious adversary. First, we define the notation used in this section. Let
X = {0, 1}n and let DISJ denote the class of disjunctions over X. Let x = x1 · · ·xn ∈ X; for each
bit xi we define two actions Oi (corresponding to xi = 1) and Zi (corresponding to xi = 0). We
define an additional action ⊥. Thus, the set of actions is A = {⊥, O1, Z1, . . . , Oi, Zi, . . . , On, Zn}.

Suppose there exists an algorithm Alg for the sleeping experts problem, that achieves regret
O(p(n)T 1−δ) for some polynomial p(n) and δ ∈ (0, 1/2]. We use Alg to construct an online learning
algorithm L (see Fig. 1) for online agnostic learning DISJ that has average regret O(p(n)/T δ). The
instance xt is used to define the set of available actions at round t and the label yt to define the
payoffs.

Proposition 5. Suppose there exists an efficient algorithm for the sleeping experts problem with
regret O(p(n)T 1−δ), then there exists an efficient online agnostic algorithm for learning disjunctions
with average regret O(p(n)/T δ).

The proof of Proposition 5 follows immediately from Lemma 6.

Lemma 6. Let s = 〈(xt, yt)〉Tt=1 be any sequence of examples from X×{0, 1}. Let A = {⊥, O1, Z1, . . . , On, Zn},
ΣA be the set of rankings over A and let St and pt be as defined in Fig. 1.Then

min
f∈DISJ

errs(f) +
1

T
max
σ∈ΣA

Pσ = 1

where Pσ is the payoff achieved by playing the sleeping experts problem according to ranking strategy
σ.

Proof. Let σ be a ranking over the set of actions A = {⊥, O1, Z1, . . . , On, Zn}. For any two actions
a1, a2 ∈ A, define a1 ≺σ a2 to mean that a1 is ranked higher by σ than a2. For a ranking σ define
a disjunction fσ as:

fσ =
∨

i:Oi≺σ⊥
xi ∨

∨
i:Zi≺σ⊥

x̄i

If for some i, both Oi ≺σ ⊥ and Zi ≺σ ⊥, then fσ ≡ 1. Note that several permutations may map
to the same disjunction, since only which Oi and Zi are ranked above ⊥ is important, not their

7

Algorithm. Online Agnostic Learning HHS2

For t = 1, . . . , T,

1. L receives example xt. Suppose i, j are such that xi = 1, xj = −1 and xk = 0 for
k 6= i, j. Define St = {i, j}.

2. Give St as the set of available actions (players) to Alg.

3. If Alg chooses i, set ŷt = 1; else if Alg chooses j, set ŷt = 0.

4. Observe yt. Define pt(i) = yt and pt(j) = 1 − yt. Return pt as the payoff function
to Alg.

Figure 2: Algorithm Halfspace-Learner (under X2)

ranking relative to each other. We show that,

errs(fσ) +
1

T
Pσ = 1 (1)

Consider some vector xt = {0, 1}n and let St ⊆ A be the corresponding subset of available actions
(see Fig. 1). Then, note that fσ(xt) = 0 if and only if σ(St) = ⊥. If the true label is yt = 1, fσ
suffers error 1− fσ(xt) and σ(St) receives payoff fσ(xt). If the true label is yt = 0, then fσ suffers
error fσ(xt) and σ(St) receives payoff 1− fσ(xt). Summing over (xt, yt) in the sequence s, we get
(1). But, this also completes the proof of the lemma, since for every disjunction g there exists a
ranking π such that g = fπ.

5 Gambling Problem

In this section, we consider the gambling problem (Section 2.1) posed by Abernethy [Abe10]. We
show that this problem is related to that of agnostically learning halfspaces under a restricted
distribution.

Let X2 ⊆ {−1, 0, 1}n such that for every x ∈ X2, there is exactly one i such that xi = 1, exactly
one j such that xj = −1 and for the remaining positions k 6= i, j, xk = 0. Let HHS2 be the class of
homogeneous halfspaces with a positive margin over X2. Thus,

HHS2 = {w | w ∈ Rn,∀x ∈ X2,w · x 6= 0}

For w ∈ HHS2, the halfspace is defined by the boolean function I(w · x ≥ 0). We show that a
no-regret algorithm for the gambling problem immediately implies online agnostic learnability of
HHS2. Figure 2 gives an algorithm, L, for online agnostically learning HHS2, using an algorithm
Alg for the gambling problem. Define the set of actions (players) to be A = {1, . . . , n}, where n is
the length of vectors in X2.

Proposition 7. Suppose that there exists an algorithm for the gambling problem with regret O(n1−δ√T),
then there exists an algorithm for online agnostic learning HHS2 with regret O(n1−δ/

√
T).

The proof of Proposition 7 follows immediately from Lemma 8.

8

Lemma 8. Let s = 〈(xt, yt)〉Tt=1 be the sequence of examples with (xt, yt) ∈ X2 × {0, 1}, let A =
{1, . . . , n} and St and pt be the set of available actions and payoffs as defined in Figure 2. Then,

min
f∈HHS2

errs(f) +
1

T
max
σ∈ΣA

Pσ = 1

where ΣA is the set of rankings over the set of A and Pσ is the payoff received by playing according
to σ on each round.

Proof. For any ranking σ, define wσ in HHS2 as follows: wσ
i = n− pos(σ, i), where pos(σ, i) is the

position of i according ranking σ, i.e. the highest ranked element has position 1 and so on. For
any x ∈ X2, let xi = 1, xj = −1, then I(wσ · x ≥ 0) = 1 if and only if σ ranks i higher than j, i.e.
pos(σ, i) < pos(σ, j). Thus it holds that,

errs(w
σ) +

1

T
Pσ = 1 (2)

Conversely, it is easy to see that any function h ∈ HHS2 induces a ranking on the n actions as
follows: Since h has positive margin over X2 for i 6= j, hi 6= hj . Thus, let π be the ranking over
A = {1, . . . , n}, that is in descending order according to hi. Then for every x ∈ X2, I(h · x ≥ 0) =
I(wπ · x ≥ 0). This observation together with eq. (2) completes the proof of the lemma.

5.1 Batch Agnostic Learning Halfspaces

In this section, we briefly discuss the implications of an algorithm for the gambling problem with
regret O(n1−δ√T) for any constant δ. First, using Proposition 7 and Theorem 4 we immediately
get the following result.

Proposition 9. If there exists an efficient algorithm for the gambling problem with regret O(n1−δ√T)
for some constant δ, then there exists an algorithm that agnostically learns halfspaces under any
distribution over X2 × {0, 1} using O(n2−2δ) examples for any constant ε > 0.

Observe that |X2| = O(n2) and, as such, agnostic learning any concept class over instance space
X2 is trivial. A simple algorithm is the following: Draw a sample S of size O(n2) from D, and define
a hypothesis h as follows: If x is appears in the sample k times, h(x) is the median of the observed
labels, else h(x) is randomly 1 or 0. Indeed, the trivial algorithm for the gambling problem that
achieves O(n

√
T) mentioned in Section 2.1 and observed by Abernethy [Abe10] would reduce to

this algorithm.
However, the above algorithm is essentially memorizing the data and not learning. To achieve

meaningful learning, the size of the output hypothesis and also the number of examples observed
should be o(n2). The VC-dimension of the class of halfspaces is only n, thus purely statistically
it would suffice to take a sample of size O(n) and perform empirical risk minimization. However,
we show that proper agnostic learning of HHS2 (i.e. the output hypothesis is also from HHS2) is
computationally intractable unless RP = NP. In order to show this we need the following theorem;
this hardness of approximation result follows from standard techniques, however, for completeness,
a proof is provided in Appendix B.

Theorem 10. Let G be the set of directed graphs G = (V,E), such that if F is the smallest feedback
arc set 5, then |F | = Θ(|E|). For instances of G ∈ G it is NP-hard to find a feedback arc set F ′ such

5For a directed graph G = (V,E), a feedback arc set is a set F ⊂ E such that (V,E\F) has no directed cycles.

9

that |F ′| ≤ (1 + Cf)|F | where F is the optimal (smallest) feedback arc set and Cf is a universal
constant.

Using the above theorem we are able to prove the following result.

Proposition 11. Let X2 be the instance space and HHS2 be the class of homogeneous halfspaces with
non-zero margin over X2. HHS2 is not proper-agnostically learnable under arbitrary distributions
over X2 × {0, 1} unless RP = NP.

Proof. Let G = (V,E) be a directed graph such that |V | = n. For every e = (i, j) ∈ E, let xe be
such that xei = 1, xej = −1 and xek = 0 for k 6= i, j; let ye = 1 be the label of xe. Also, define
x̄e = −xe and let ȳe = 0 be the label. Define DS to be the distribution over X2 × {0, 1} that is
uniform over the set

S = {(xe, 1) | e ∈ E} ∪ {(x̄e, 0) | e ∈ E}

Let F be the smallest feedback arc-set of G. Note that the graph G′ = (V,E \ F) admits a
topological ordering; let σ be this ordering. Let wσ be a halfspace defined by σ, as in the proof of
Lemma 8. Then, wσ ·xe ≥ 0 (also wσ · x̄e < 0) for all e ∈ E \F , and wσ ·xe < 0 (also wσ · x̄e ≥ 0)
for all edges in F . Thus errDS (wσ) = |F |/|E| = opt, which is a constant for G ∈ G.

Next, we show that using any h ∈ HHS2, we can construct a feedback arc set F ′ ⊆ E such
that |F ′| = errDS (h)|E|. Let π be the order (this is unique because of homogeneity and margin
assumptions) on the vertices of V sorted according to hi in descending order. Define F ′ = {(i, j) ∈
E | j appears before i in π}. Then it is easy to see that errDS (h) = |F ′|/|E|.

Let ε be a constant such that opt + ε ≤ (1 + Cf)opt. Thus, no polynomial time algorithm can
output an h ∈ HHS2 with error opt + ε unless RP = NP.

Remark. With some more effort the non-zero margin assumption on the output hypothesis h may
be removed. If for some subset V ′ ⊆ V , hi is the same for every i ∈ V ′, then let G′ = (V ′, E′) be
the induced subgraph. Any hypothesis on the set {(xe, ye) | e ∈ E′} ∪ {(x̄e, ȳe) | e ∈ E′} has error
exactly 1/2. However, since it is relatively straightforward to find 2-optimal feedback arc set for
any graph, this is not a problem.

Of course, the above proof does not rule out an improper agnostic learning algorithm that uses
O(n2−δ) examples. However, the current known techniques for agnostically learning halfspaces use
thresholds of polynomials (cf. Kalai et al. [KKMS05], Shalev-Shwartz et al. [SSSS10]) or other
kernel functions. These techniques typically have sample complexity nf(1/ε). Thus, progress on an
efficient algorithm for the gambling problem would most likely lead to interesting techniques for
the more general problem of agnostically learning halfspaces.

Acknowledgments

We would like to thank Adam Kalai, Tal Moran, Justin Thaler, Jonathan Ullman, Salil Vadhan,
and Leslie Valiant for helpful discussions.

References

[Abe10] J. Abernethy. Can we learn to gamble efficiently? (open problem). In COLT, 2010.

10

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45:501–555, May 1998.

[BDPSS09] S. Ben-David, D. Pál, and S. Shalev-Shwartz. Agnostic online learning. In COLT,
2009.

[BM07] A. Blum and Y. Mansour. From external to internal regret. Journal of Machine
Learning Research, 8:1307–1324, 2007.

[CBCG04] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-
line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057,
2004.

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge Univer-
sity Press, 2006.

[FS95] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the second European conference on
computational learning theory, 1995.

[FSSW97] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and combining
predictors that specialize. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, 1997.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and
Co., New York, NY, USA, 1979.

[H̊as01] J. H̊astad. Some optimal inapproximability results. J. ACM, 48:798–859, July 2001.

[Hau92] D. Haussler. Decision theoretic generalizations of the pac model for neural net and
other learning applications. Information and Computation, 100:78–150, 1992.

[KKM09] A. T. Kalai, V. Kanade, and Y. Mansour. Reliable agnostic learning. In COLT, 2009.

[KKMS05] A. T. Kalai, A. R. Klivans, Y. Mansour, and R. A. Servedio. Agnostically learning
halfspaces. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, 2005.

[KMB09] V. Kanade, B. McMahan, and B. Bryan. Sleeping experts and bandits with stochastic
action availability and adversarial rewards. In Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, pages 272–279, 2009.

[KNMS08] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret bounds for sleeping experts
and bandits. Machine learning, pages 1–28, 2008.

[KSS94] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning.
Machine Learning, 17(2-3):115–141, 1994.

[Lit89] N. Littlestone. From on-line to batch learning. In Proceedings of the second annual
workshop on computational learning theory, 1989.

11

[SSSS10] S. Shalev-Shwartz, O. Shamir, and K. Sridharan. Learning kernel-based halfspaces with
the zero-one loss. In Proceedings of the 23rd Annual Conference on Learning Theory,
2010.

12

A On-line to Batch Learning

We prove Theorem 4 using the following lemma.

Lemma 12. Let A be an online agnostic learning algorithm for a concept class C over X with regret
bound O(p(n)/T ζ). We run A for T steps on s = 〈(xt, yt)〉Tt=1. At each step A can be interpreted
as a hypothesis Ht

s which computes ŷt = Ht
s(x

t).

Then we can choose T = O (p(n)/ε)1/ζ +O
(
1/ε4 + log2(1/δ)

)
such that the following holds.

Let D be a distribution over X × {0, 1}. Take a sequence s = 〈(xt, yt)〉Tt=1 of T examples from
D. Let 〈Ht〉Tt=1 be the hypotheses produced by A running on s. Then, with probability 1 − δ over
the choice of s, there exists t∗ such that errD(Ht∗

s) ≤ minf∈C errD(f) + ε.

Lemma 12 allows us to convert an online agnostic learning algorithm into a hypothesis, which
we can use for (batch) agnostic learning.

Proof. Let Qts =
∑

t′≤t err(Ht′
s). Then, clearly, 〈Qts〉Tt=1 is a submartingale. Moreover, induction on

T gives

Es[errs(A)] = Es

[
1

T

T∑
t=1

I(Ht
s(x

t) 6= yt)

]
= Es

[
1

T

T∑
t=1

errD(Ht
s)

]
= Es

[
QTs
T

]
. (3)

We will now use standard bounds to show that (i) the expectation (3) is close to (or better than)
the optimal error and that (ii) QTs is close to its expectation with high probability. It follows that
at least one hypothesis Ht∗

s must have error close to (or better than) an optimal concept.
(i) We have

Es[errs(A)] ≤ Es[min
f∈C

errs(f)] +O(p(n)/T ζ) ≤ min
f∈C

errD(f) +O(p(n)/T ζ). (4)

The first inequality follows from A being an online agnostic learning algorithm. The second in-
equality follows from the fact that Es[minf∈C errs(f)] ≤ minf∈C Es[errs(f)].

(ii) Noting that Qts ≤ Qt+1
s ≤ Qts + 1, Azuma’s inequality gives

Pr
s

[
QTs ≥ E[QTs] + T 1−α] ≤ exp

(
−T 1−2α/2

)
. (5)

Combining (3), (4), and (5), we have

Pr
s

[
1

T

T∑
t=1

errD(Ht
s) ≥ min

f∈C
errD(f) + T−α +O(p(n)/T ζ)

]
≤ exp

(
−T 1−2α/2

)
.

So we can choose α = 1/4 and

T = max
{

(2/ε)4, O(2p(n)/ε)1/ζ , (2 log(1/δ))2
}

to ensure that, with probability 1− δ,

T
min
t=1

errD(Ht
s) ≤

1

T

T∑
t=1

errD(Ht
s) ≤ min

f∈C
errD(f) + ε.

13

Proof of Theorem 4. Let A be an online agnostic learning algorithm for a concept class C over
X with regret bound O(p(n)/T ζ). Fix ε, δ > 0 and a distribution D over X × {0, 1}. Choose

T = O (p(n)/ε)1/ζ + O
(
1/ε4 + log2(1/δ)

)
as in Lemma 12. We sample s = 〈(xt, yt)〉Tt=1 from D

and run A on s. Now we have a sequence of hypotheses 〈Ht〉Tt=1. With probability 1 − δ/2 over
the choice of s, at least one hypothesis Ht∗

s satisfies errD(Ht∗) ≤ minf∈C errD(f) + ε/2. All that
remains is to identify one such hypothesis.

Take T ′ samples s′ = 〈(xt′ , yt′)〉T ′t′=1 from D. By the Chernoff bound, for any f : X → {0, 1},

Pr
s′

[|errs′(f)− errD(f)| ≥ ε/2] ≤ 2e−T
′ε2/16.

Let T ′ = (16/ε2) log(4T/δ). Then

Pr
s′

[
∀t |errs′(H

t
s)− errD(Ht

s)| < ε/2
]
≥ 1− δ/2.

So we can estimate the accuracy of each hypothesis and identify a good one. Thus we take T + T ′

samples and, with probability 1− δ, we can find a good hypothesis.

B Hardness of Approximation for Feedback Arc Set

We use the following version of the PCP theorem as the basis of our proof.

Theorem 13 ([ALM+98], [H̊as01] Theorem 2.24). Let L be a language in NP and x be a string.
There is a universal constant c < 1 such that, we can in time polynomial in |x| construct a 3CNF
formula φx,L such that if x ∈ L then φx,L is satisfiable while if x /∈ L, φx,L is at most c-satisfiable.
Furthermore, each variable appears exactly 5 times.

We show that the reduction of ‘sparse’ 3SAT to vertex cover produces sparse graphs with
linear-sized minimal covers.

Lemma 14. Let φ be a 3CNF formula with n variables and m clauses, in which each variable
appears at most d ≥ 2 times. Then there exists a simple undirected graph Gφ with 2n+ 3m vertices
and n+ 6m edges such that

(i) if φ has an assignment of variables that satisfies m − k clauses, then Gφ has a vertex cover
of size n+ 2m+ k, and

(ii) if Gφ has a vertex cover of size n + 2m + k, then φ has an assignment that satisfies at least
m− kbd/2c clauses.

Moreover, the graph Gφ and the correspondence between assignments and vertex covers can be
computed in uniform polynomial time in n and m.

Proof. This reduction comes from [GJ79] Theorem 3.3. Let φ be a 3CNF formula. For each
variable xi create two vertices vxi and vxi and an edge (vxi , vxi) between them. For each clause
ci = x∗i1 ∨ x

∗
i2
∨ x∗i3 (where x∗ik is either xik or xik for 1 ≤ k ≤ 3), create three vertices vci,1, vci,2,

and vci,3 and make them a triangle with edges (vci,1, vci,2), (vci,2, vci,3), and (vci,3, vci,1). Then, for
1 ≤ k ≤ 3, connect vci,k to vx∗ik

. Figure 3 gives an example of this reduction.

14

Figure 3: Vertex cover instance corresponding to 3CNF (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) with an
optimal vertex cover corresponding to x1 = x2 = x3 = 1 highlighted.

(i) Let x be an assignment to the variables of φ that satisfies m−k clauses. The corresponding
vertex cover is as follows. Firstly, for each variable xi, if xi is true, include vxi in the vertex cover;
otherwise include vxi . For each unsatisfied clause ci include vci,1, vci,2, and vci,3. For each satisfied
clause ci = x∗i1 ∨ x

∗
i2
∨ x∗i3 , choose 1 ≤ k ≤ 3 such that x∗ik is true and include vci,k′ for k′ 6= k.

Clearly this covers all edges and has size n+ 2m+ k.
(ii) Let S be a vertex cover of Gφ of size n + 2m + k. For each variable xi either vxi ∈ S

or vxi ∈ S, as the edge (vxi , vxi) must be covered. Likewise, for each clause ci, two of vci,1, vci,2,
and vci,3 must be in S, as the triangle {(vci,1, vci,2), (vci,2, vci,3), (vci,3, vci,1)} must be covered. This
accounts for n+ 2m elements of S. So we identify k “extra” elements.

We can assume that all extra elements are of the form vci,k: Suppose instead that vxi , vxi ∈ S.
Since xi and xi appear at most d times, we can choose one—say, x∗i—that appears at most bd/2c
times. We remove vx∗i from S and insert all vci,k where x∗ik = xi. Clearly all the edges that vx∗i
covered are now covered by the newly inserted vertices—that is, we moved the vertex cover to the
other end of each edge covered by vx∗i . This process grows the number of extra elements by a factor
of at most bd/2c, so |S| ≤ n+ 2m+ kbd/2c.

The assignment is computed as follows. If vxi ∈ S, then xi is set to true. Otherwise, if vxi ∈ S,
then xi is set to false. Each extra element of S corresponds to an unsatisfied clause, so at most
kbd/2c clauses are unsatisfied.

Now we can prove that feedback arc set is inapproximable.

Proposition 15. Vertex cover is inapproximable, even for graphs with a number of edges linear in
the number of vertices and minimal vertex covers linear in the number of vertices. Formally, there
exist universal constants c1, c2 > 0, and ε > 0 such that the following holds. Consider graphs G
with n vertices and m edges, where m = c1n. Moreover, either (i) G has a vertex cover of size c2m
or (ii) no vertex cover of size (1 + ε)c2m. If there exists a polynomial-time algorithm for deciding
which of (i) or (ii) holds, then NP = P.

Proof. This follows from Theorem 13 and Lemma 14. Firstly, Theorem 13 shows that to prove
that NP = P it suffices to distinguish in polynomial time satisfiable 3CNF formulas with 5n = 3m,
where n is the number of variables, m is the number of clauses, and each variable appears at most
d = 5 times, from ones where at most cm clauses can be satisfied, where c < 1 is a universal
constant. Secondly, Lemma 14 shows that such 3CNF formulas can be converted into graphs with

15

n′ = 2n+ 3m = 7n vertices and m′ = n+ 6m = 11n = (11/7)n′ edges. Satisfiable 3CNF formulas
become graphs with vertex covers of size n+ 2m = (13/33)m′.

Conversely, suppose that S is a vertex cover of size (1 + ε)(13/33)m′. By Lemma 14 part (ii),
this translates into an assignment satisfying at least m−ε(13/33)m′b5/2c = (1−(26/5)ε)m clauses.
So, if 1− (26/5)ε > c, then at least cm clauses are satisfied.

Proof of Theorem 10. We prove this by a reduction from vertex cover. Proposition 15 then gives
the inapproximabililty result. Let G be a simple undirected graph with n vertices and m edges.
Define a directed graph G′ with 2n vertices and n + 2m edges as follows. For each vertex v of G,
create two vertices v′ and v′′ in G′ and an edge (v′, v′′) from v′ to v′′. For each undirected edge
(u, v) in G create two edges (u′′, v′) and (v′′, u′) in G′.

Note that any path in G′ must alternate between edges of the form (u′′, v′) and edges of the
form (v′, v′′). In particular, any cycle in G′ must include the edges (u′, u′′), (u′′, v′), and (v′, v′′),
for some edge (u, v) in G. Consequently, if S is a vertex cover of G, then S′ = {(v′, v′′) : v ∈ S} is
a feedback arc set of G′.

Let S′ be a feedback arc set of G′. We may assume that S′ only contains edges of the form
(v′, v′′): If (u′′, v′) ∈ S, then replace it with (v′, v′′); note that any cycle passing through (u′′, v′)
must also pass through (v′, v′′). Then S = {v : (v′, v′′) ∈ S′} is a vertex cover of G: Otherwise
suppose that (u, v) is an uncovered edge of G. Then (u′′, v′), (v′, v′′), (v′′, u′), and (u′, u′′) are a
cycle in G′ that does not intersect S′.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

