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New separation between s(f) and bs(f)

Andris Ambainis* Xiaoming Sun'

Abstract

In this note we give a new separation between sensitivity and block

sensitivity of Boolean functions: bs(f) = 2s(f)? — s(f).

1 Introduction

Sensitivity and block sensitivity are two commonly used complexity mea-
sures for Boolean functions. Both complexity measures were originally intro-
duced for studying the time complexity of CRAW-PRAM’s [3, 4, 8]. Block
sensitivity is polynomially related to a number of other complexity mea-
sures, including the decision-tree complexity, the certificate complexity, the
polynomial degree, and the quantum query complexity, etc. (An excellent
survey on these complexity measures and relations between them is [2].)

A longstanding open problem is the relation between the two measures.
From the definitions of sensitivity and block sensitivity, it immediately fol-
lows that s(f) < bs(f) where s(f) and bs(f) denote the sensitivity and
the block sensitivity of a Boolean function f. Nisan and Szegedy [9] con-
jectured that the sensitivity complexity is also polynomially related to the
block sensitivity complexity:

Conjecture 1. For every Boolean function f, bs(f) < s(f)°W).

This conjecture is still widely open and the best separation so far is
quadratic. Rubinstein [6] constructed a Boolean function f with bs(f) =
35(f)? and Virza [10] improved this to bs(f) = 3s(f)? + 3s(f).

In this paper, we improve this result by constructing a function f with
bs(f) = 25(f)? - Ls(f).

More background and discussion about Conjecture 1 can be found on
Aaronson’s blog [1] and Hatami et al. [5] survey paper.
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2 Technical preliminaries

Sensitivity complexity was first introduced by Cook, Dwork and Reischuk [3,
4] (under the name critical complexity) for studying the time complexity of
CRAW-PRAM’s. Let f : {0,1}" — {0,1} be a Boolean function. For an
input x € {0,1}", 2@ denotes the input obtained by flipping the i-th bit of
z. f71(1) = {z|f(z) = 1}, F71(0) = {a|f(x) = 0}.

Definition 1. /3, 4] The sensitivity complexity of f on input x is defined
as s(f,z) = [{i|f(z) # f(zD)}|. The O-sensitivity and 1-sensitivity of the
function f is defined as

so(f) = max s(f,z), s1(f)= max s(f, z).

zef~1(0) zef~1(1)
The sensitivity is defined as s(f) = max{so(f),s1(f)}.

Nisan [8] introduced the concept of block sensitivity and proved tight
bounds for computing f on a CREW-PRAM in terms of block sensitivity.

Definition 2. [8]/ The block sensitivity of f on input z is the maximum
number b such that there are pairwise disjoint subsets By, ..., By of [n] for
which f(z) # f(zB)), here B is the input obtained by flipping all the
bits x; that j € B;. We call each B; a block. The 0-block sensitivity and
1-block sensitivity of the function f is defined as

bso(f) = L bs(f,x), bsi(f) = LA bs(f, ).

The block sensitivity is defined as bs(f) = max{bso(f),bs1(f)}.

3 Previous constructions

Rubinstein’s construction In [6] Rubinstein constructed the following
composed function f : {0, 1}*™* — {0,1}:

2m

f(xlla LIRS ame,Qm) — \/ g(xi,la LRI Ii,?m)a
i=1

where the function g : {0,1}2™ — {0,1} is defined as follows:
g(ylu e 7y2m) =1 EI.] € [m]aij—l = Y25 = 17and Yk = 0 (vk ¢ {2]_172]})

It is not hard to see that for the function f, s(f) = 2m and bs(f) = 2m?,
so bs(f) = 4s(/)".



Virza’s construction Recently Virza [10] slightly improved this separation
by constructing a new function f : {0, 1}(2’”“)2 —{0,1}:
2m+1
f(iUn, cee 7$2m+1,2m+1) = \/ g(fb’i,l, cee a$i,2m+1)a
i=1
where the function g : {0,1}?™+1 — {0,1} is defined as follows:

g(yl, - ,y2m+1) =1 & (3] S [m] Y2j—1 = Y25 = 1 and Vk ¢ {2] — 1,2j} Y = 0)
or (Yam+41 =1 and Vj #2m+1 y; =0)

It can be verified that s(f) = 2m + 1 and bs(f) = (2m + 1)(m + 1), so
bs(f) = 55(f)? + 35(f).

Rubinstein’s and Virza’s constructions both use the same strategy, con-
structing the function f by composing OR (on the top level) with a function
g (on the bottom level). In this paper, we systematically explore the power
of this strategy.

In the next section, we characterize the sensitivity and the block sensi-
tivity of functions obtained by such composition. In Section 5, we improve
the constant c in the separation s(f) = ¢ bs(f) from % to Z. In Section 6,
we show that s(f) = (2 + o(1))bs?(f) is optimal for functions obtained by
composing OR with a function g for which sg(g) = 1.

4 Separations between s(f) and bs(f) for composed
functions

We consider functions f obtained by composing OR with a function g.

n

F@in, . znm) =\ 9(@i, . Tim), (1)

i=1
We have

Lemma 1. (a) so(f) =n-so(g);

(b) s1(f) = s1(9)-
(c) bso(f) =n-bso(g);

Proof: Part (a): Let x = (x1,..., ) be the input on which g(x1,...,zy)
achieves the maximum O-sensitivity so(g). Then, g(x) = 0 but there exist
so(g) distinct ji, ..., jg(g) € [m] for which g(zU0) =1 (1 € [s0(g)])-

We consider the input y = (y11, . - ., Ynm) for the function f obtained by
replicating « n times: y1; = y2; = ... = yYn; = ;. Then, f(y) = 0 but
F(y90) = 1 for any i € [n], 1 € [so(g)]. Thus, so(f) = - so(g):



Conversely, assume that f(y11,-..,Ynm) achieves sensitivity so(f) on an
input ¥y = (Y11,-.-,Ynm)- Then, there exists ¢ € [n] such that there are at
least % sensitive variables among y;1,...,¥im. We take the input x =
(21,...,2p) for g defined by z; = y;;. Then, g(z) = 0 and g(2)) = 1
for all variables j such that y;; is sensitive for g on the input y. Hence,
so(g) > ),

Part (b): For s1(f) > s1(g), let © = (21, ...,zy) be the input on which
g achieves the maximal 1-sensitivity and let 2’ = (z,...,],) be any input
with g(z') = 0. We define y = (y11,---,Ynm) by y1: = z; and yo; = ... =
Yni = @} (i € [m]). Then, f(y) = g(z) = 1 and f(y)) = g(2V)) = 0 for
all variables j such that z; is sensitive for g on the input x. Hence, the
sensitivity of f on y is at least the sensitivity of g on z.

For s1(f) < s1(g), we assume that f(y) achieves the maximum sensitiv-
ity si1(f) on an input y = (Y11, .-,Ynm). Then, it must be the case that
9(Yi1, - -, yim) = 1 for exactly one i. Moreover, if i # i, then f(y@)) =1
and f is not sensitive to changing y, ;.

Let 21 = Yi1, - - -, Tm = Yim. Then, f(y(#)) = 0 if and only if g(z?)) = 0.
Hence, the sensitivity of f on the input y is equal to the sensitivity of g on
the input x. This means that s;(g) > s1(f).

The proof of part (c) is similar to the proof of part (a).

5 a %-separation

Theorem 1. For any m € N, there is a Boolean function f on (4k +
2)(3k + 2) variables, such that s(f) = 3k +2, bs(f) = (3k +2)(2k + 1), thus

bs(7) = 35(7)7  ds(5).
Proof: Suppose n = 2(2k + 1) here. Define g : {0,1}" — {0, 1} as follows:
9gy1,...,yn) =1 & Fj €2k +1] (x satisfies pattern F;),
where pattern P; (j =1,...,2k + 1) is defined as
Pj: w91 =295 =1, and Vi € [m], x2j42; = 0, 22j_2i—1 = x2j—2; = 0.

Here the index of z, is modular n. We use the notation x ~ P to represent
x satisfies pattern P.

Proposition 1. si1(g) = 3k + 2, so(g) =1, and bsp(g) =n/2 =2k + 1.

Proof of Proposition 1. For any x € g~'(1), by definition there exists j €
[2k + 1], such that = ~ P;. The bits in pattern P; form a certificate of x,
and it contains all the possible sensitive bits of z. Thus s(f,z) < 2 + 3k.
On the other hand f(110...0) =1, and s(f,110...0) = 3k 4 2. Therefore,
s1(f) = 3k + 2.



Since f(0...0) = 0, £(110...0) = £(00110...0) = --- = £(0...011) =
1, so bs(f,0...0) > n/2 = 2k + 1, thus bso(f) > 2k + 1. This is already
enough for our purpose, but for completeness we will show bso(f) < 2k +
1. For any € g~'(0), suppose bs(g,r) = b and By, ..., B, be minimal
pairwise disjoint blocks so that g(z(P)) = 1 (i € [b]). By the definition of
g, for each B; there exists a j € [2k + 1], (%) ~ P;. Since By, ..., By are
pairwise disjoint, it is easy to see that different B; corresponds to different
P;. Therefore, b < 2k + 1.

Next we show that so(g) = 1. Suppose there exists z € {0,1}", g(z) =0
and so(g,2) > 2, i.e. Ji#4 € [n], g(#®) = g(z()) = 1, by the definition
of g, there are j,j’ € [2k + 1], 2D ~ P; and 2(*) ~ Pjr. Since i # i’ and
g(z) = 0, it is easy to see that j # j'. We claim that for any y ~ P; and
any z ~ Pj, the Hamming distance between y and z h(y, z) > 3. But it is
clear that h(z®, 2(")) < 2, contradiction.

W.lo.g. we assume j < j', consider the value of j/ — j, there are two
cases:

1. If j/—5 < k: let’s consider the three coordinates 25—1, 25 and 25/, since
y ~ P;, by definition y9;—1 = 1, y2; = 1, and yoj5r = yjyo(j—j) = 0.
On the other hand z ~ Py, s0 295 = 1, 2251 = 29j_o(j7—jy—1 = 0, and
29j = Zoj1_g(ji—j) = 0. Hence h(y, z) > 3.

2. If 5/ — 7 > k: we consider the three coordinates 27,25’ — 1 and 25 in
this case. Since y ~ Pj, s0 y2; = 1, y25-1 = Y2j-2(n/2+j—j)—1 = 0,
and Yojs = Y2j_2(nj2+j—j) = 0, here we use the property that the
index is modular n. z ~ Pj implies that zp;_1 = 295 = 1, and
295 = Zoj1_(ji—j) = 0. Therefore, h(y, z) > 3.

This complete the proof of Proposition 1. U
Theorem 1 follows by applying Lemma 1 with n = 3m+2 to the function
g of Proposition 1. [J

6 The optimality of 2/3 example

We claim that the 2/3 example is essentially optimal, as long as we consider
functions g with so(g) = 1.

Theorem 2. Assume that we have a function g with so(g) = 1 and bso(g) =
k. Then, si(g) > 3551

Given such function g, we can obtain the biggest separation when we
use Lemma 1 with n = s1(g). Then, so(f) =n = s1(9), s1(f) = s1(g) and

bs0() = bsa(g) = 1) -k < sa(9) (3 +1).



Proof: Without the loss of generality, we can assume that the maximum sen-
sitivity is achieved on the all-0 input which we denote by 0. Let By, ..., Bg
be the sensitive blocks. We assume that each B; is minimal (i.e., f is not
sensitive to changing variables in any B’ C B;).

Since so(g) = 1, g must have the following structure: g(z) = 1 iff x
belongs to one of several subcubes S; defined in a following way:

Si:{(l‘l,...,l‘]\[)|1}i1 :...:mil :O,acjl :...:x‘jm :1}, (2)

with any two inputs (z1,...,zn), (y1,...,yn) belonging to different S;’s
differing in at least 3 variables.

The inputs 0B all belong to different S;’s, since 0B ¢ Sy, 0B e S
would imply 0 € S; and g(0) = 1. We assume that 080 € Sy, ..., 0Bx) € .
We can assume that there is no other subcubes S;. (Otherwise, we can
replace g by ¢/, ¢'(v) = 1 if z € UF_|S;.) For a subcube (2), we denote
Li={i,...;u} Ji={j1,-- s Jm}-

Since 0B ¢ S;, we must have J; C B;. Moreover, we also have
g(0B)) = 0 for any B’ C B;. Hence 05) ¢ S; for any such B’. This
means that J; = B;.

If s9(g) =1, then any « € S; and y € S}, © # j must differ in at least 3
variables. This means that

|(Ii N Jj) @] (Jl ﬂ[j)| > 3.

Hence,

k(k—1
1,117

This means that, for some i,

k—1
Zuim‘]j‘ 23T

J

Since J; = Bj and blocks B; are disjoint, this means that |I;| > 3%.
For an input x € S;, changing any variable in [; results in an input
y ¢ S;. Hence, z € S; is sensitive to all j € I; and s1(g) > 3%.

7 Conclusion and Discussion

We have improved the best separation between the sensitivity and the block
sensitivity from bs(f) = $s(f)? + 3s(f) to bs(f) = 2s(f)* — 3s(f).

The obvious open question is whether further improvements are possible,
using the same strategy of composing OR with a cleverly chosen function g.
If such improvements are possible, they must use functions g with sg(g) > 1
(because of Theorem 2).
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