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Abstract

We prove that for an arbitrarily small constant ε > 0, assuming NP 6⊆DTIME(2logO(1/ε) n),
the preprocessing versions of the closest vector problem and the nearest codeword problem
are hard to approximate within a factor better than 2log1−ε n. This improves upon the previous
hardness factor of (log n)δ for some δ > 0 due to [AKKV05].

1 Introduction

Given an integer lattice B and a target vector t in Zm, the CLOSEST VECTOR PROBLEM (CVP)
asks for the vector in B nearest to t under the lp norm. All p ≥ 1 are interesting although, p = 2
case has received the most attention. An integer lattice is a set of vectors {∑n

i=1 αibi | αi ∈ Z},
where b1, b2, . . . , bn ∈ Zm is a set of linearly independent vectors, called the basis of the lattice.
An important variation of CVP is the pre-processing version of the problem where the lattice B is
known in advance and the algorithm is allowed arbitrary pre-processing on B before the input t
is revealed. This is known as the CLOSEST VECTOR PROBLEM WITH PRE-PROCESSING (CVPP). A
related problem is the NEAREST CODEWORD PROBLEM (NCP) where the input is a generator ma-
trix C of a linear code over F2 and a target vector t. The goal is to find the codeword nearest to t in
Hamming distance. Again, if C is known in advance and arbitrary pre-computation is allowed on
it, the problem is known as the NEAREST CODEWORD PROBLEM WITH PRE-PROCESSING (NCPP).

Pre-processing problems arise in cryptography and coding theory where, typically, a publicly
known lattice (or a linear error-correcting code) is being used to transmit messages across a faulty
channel. The decrypting or decoding of the received word is equivalent to solving an instance of
CVP for the lattice being used in the protocol. The basis of the lattice being known beforehand, it
becomes imperative to understand if the performance of the decoding algorithm can be improved,
or if the security of the cryptographic protocol can be compromised (see [FM04, Reg04] for more
details).

Potentially, this pre-computated information could make CVPP easier than CVP. Indeed, using
the so-called Korkine-Zolotarev basis, Lagarias et al. [LLS90] constructed an O(n1.5) factor approx-
imation algorithm for CVPP, which is significantly better than the best known almost-exponential
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2O(n log log n/ log n) approximation factor known for CVP, see [MV10, Sch87]. This n1.5 factor was im-
proved to n by Regev [Reg04], and subsequently to O(

√
n/ log n) by Aharonov and Regev [AR05].

As for the inapproximability of CVP, it was proved by Dinur et al. [DKRS03] that it is NP-hard to
approximate to a factor within nc/ log log n for some constant c > 0. This improved an earlier result
of [ABSS97] showing that it is quasi-NP hard to approximate to a factor within 2log1−εn for any
constant ε > 0. Obtaining inapproximability results for CVPP has been a more challenging task:
Feige and Micciancio [FM04] proved a 5/3− ε factor NP-hardness for NCPP for any constant ε > 0.
This was improved to 3− ε by Regev [Reg04]. These authors observed that a factor C hardness
for NCPP implies a factor C1/p hardness for CVPP under the `p norm for any 1 ≤ p < ∞. Also,
hardness results in the `∞ case can be obtained by using the norm-embedding technique due to
Regev and Rosen [RR06].

The inapproximability results were improved in [AKKV05] who proved a factor C NP-hardness
for CVPP and NCPP for any constant C. [AKKV05] showed how their result can be extended to
a hardness of (log n)δ for some δ > 0 under the assumption that NP 6⊆ DTIME(2poly(log n)). They
also give another reduction which achieves a hardness factor of (log n)1−ε for NCPP for any ε > 0.
This latter reduction is under a certain unproved hypothesis about a pre-processing version of the
PCP Theorem. 1

1.1 Main Result and Overview

The following is the main theorem of this paper.

Theorem 1.1 (Main Theorem). Unless NP ⊆ DTIME(2logO(1/ε) n), NCPP and CVPP are hard to
approximate to a factor within 2log1−εn for an arbitrarily small constant ε > 0.

This improves on the previous hardness factor of (log n)δ for some δ > 0 due to [AKKV05] and
essentially matches the almost polynomial factor inapproximability of Dinur et al. [DKRS03] for
CVP. We emphasize that unlike the case of CVP where the best approximation algorithm achieves
a factor of 2n log log n/ log n, the best approximation algorithm for CVPP achieves an approximation
factor of O(

√
n/ log n).

Overview of the proof. We will show a hardness factor of 2log1−ε n for the MINIMUM WEIGHT

SOLUTION PROBLEM WITH PRE-PROCESSING (MWSPP). The input to this problem consists of a
set of fixed linear forms described by B f ∈ Fl×N

2 , a set of variable linear forms Bv ∈ Fl′×N
2 and

a target vector t ∈ Fl
2. The goal is to find a solution x ∈ FN

2 to the system B f x = t, which
minimizes the Hamming weight of the vector Bvx. We allow arbitrary pre-processing on all parts
of the input except the vector t. It is easy to check that MWSPP is a reformulation of NCPP.
Henceforth, we focus on the MWSPP problem. See Section 2.1 for preliminaries and definitions
and the equivalence of MWSPP with NCPP.

Our reduction builds on the second reduction of [AKKV05] to MWSPP. The authors in [AKKV05]
make a certain hypothesis about the pre-processing version of the PCP Theorem. This hypothesis

1The authors claim to have a proof, but do not include it in the paper.
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leads to the hardness of approximation of a pre-processing version of the LABEL COVER problem.
Recall that an instance of LABEL COVER is given by a bipartite graph G = (V, W, E, [R], [S]) and
for each edge e = (v, w) ∈ V ×W, a function πe : [R] 7→ [S]. A labeling to the graph consists of an
assignment A : V 7→ [R], W 7→ [S]. An edge e = (v, w) is said to be satisfied by an assignment A if
πe(A(v)) = A(w). The value of an instance is the maximum fraction of edges that can be satisfied
by any labeling.

It is a consequence of the PCP Theorem [AS98, ALM+98] and Raz’s Parallel Repetition Theorem
[Raz98] that for every constant R, given an instance of LABEL COVER it is NP-hard to distinguish
whether the value of the instance is 1 or at most R−γ for some absolute constant γ > 0. The authors
in [AKKV05] show that a similar hardness holds for the LCPP problem under their hypothesis. In
the LCPP problem, the label set [R] for each vertex v ∈ V comes with a partition, and an allowable
set from the partition. The vertices in V are required to be assigned labels from their respective
allowable sets. Pre-processing is allowed on all parts of the LCPP instance except for (the choice
of) the allowable set for each vertex v ∈ V.

The reduction of [AKKV05] from LCPP to MWSPP uses constructions of LABEL COVER with
an additional property called smoothness. An instance of LCPP is called δ-smooth if any two
labels i 6= i′ of v ∈ V map to different labels of w ∈ W with probability at least 1− δ over the
choice of neighbors w of v. The smoothness property was introduced in [Kho02] and has been
used for several hardness of approximation reductions [FGRW09, GRSW10, KS11]. The hardness
factor achieved by the the reduction from LCPP to MWSPP is bounded by 1/δ and 1/s where
δ is the smoothness parameter and s is the soundness of the LCPP instance. The reduction of
[AKKV05] fails to give a hardness factor better than (log n)1−ε for MWSPP (even assuming their
hypothesis) because they use constructions of LABEL COVER which require size nΩ(1/δ) to ensure
δ-smoothness. To get a better hardness factor using this reduction, we require instances of LCPP
with very good smoothness and soundness simultaneously (relative to the size of the instance).

Our main technical contribution is to construct instances of HYPER-GRAPH LABEL COVER WITH

PRE-PROCESSING (HLCPP) with very good soundness and smoothness. We achieve this using the
low degree test [AS03, RS97], which is guaranteed to work even for very small success probability,
and combine it with the sum check protocol [LFKN92], which is used to reduce the number of
queries. The HLCPP problem we consider is a labeling problem similar to LCPP which differs
from the latter as follows.

• The vertex set is multi-layered.

• The constraints are given by hyper-edges rather than edges. A hyper-edge contains sev-
eral edges and the constraint associated with a hyper-edge is a boolean AND of constraints
associated to all its edges.

• The constraints associated to edges are not many-to-one (projection) constraints as in LCPP
but the more general many-to-many constraints.

We give an outline of our reduction and the analysis below.
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Our reduction and analysis. We will start with an instance of Fq-QUADRATIC CONSTRAINT

SATISFACTION PROBLEM (Fq-QCSP) for q = 2r. The instance consists of k homogeneous degree 2
polynomial equations over Fq with n variables, where k = poly(n). Each equation is of the form
p(z1, . . . , zn) = v, and further, depends on at most 3 variables. It can be shown that deciding if
there is an assignment which satisfies all the equation is NP-hard (see Theorem 2.3), even when
the l.h.s. of these equations (p’s) are available for pre-processing. We denote the pre-processing
version by Fq-QCSPP. Our first step is to boost soundness, i.e., to reduce the fraction of satisfied
equations by any assignment, while keeping the number of variables small. This is done by com-
bining an instance of Fq-QCSPP with an appropriate Reed-Muller code over q. We will eventually

set q = nlogO(1/ε) n. This allows us to construct an Fq-QCSPP instance where it is hard to distinguish
between perfectly satisfiable instances and those where any assignment satisfies at most k/q frac-
tion of the polynomial equations. An important feature of this reduction is that the variable set
remains the same, so the number of variables is n, number of equations is q and the soundness is
k/q (which is essentailly same as 1/q). This quantitative setting of parameters is crucial for our
result as the number of variables becomes negligible compared to the number of equations, and
the reciprocal of the soundness. The details of this reduction appear in Section 2.2.

Each equation can now depend on almost all of the n variables and the next task is to deal with this.
This is done by reducing checking an assignment for such a system of polynomial equations to the
task to constructing a PCP which makes O(log n) queries and has soundness 1/qe for some small
constant e > 0. This is achieved by combining the low degree test and the sum check protocol and
is the technical heart of the PCP construction.

First, the variables are identified with {0, 1}log n and embedded as a subcube of Fm
q where m def

=
log n. With this mapping, any assignment can be thought of as a function from {0, 1}m to Fq and
can be encoded as a polynomial over Fm

q of degree at most m. In this setting, if the equation was
∑i,j∈[n] c(i, j)zizj = v = ∑α,β∈{0,1}m c(α, β)z(α)z(β); z, c can be thought of as polynomials of degree
at most m and 2m respectively. The Arora-Sudan points-vs-lines low degree test can be employed
to ensure that z corresponds to a small list of degree m polynomials (assignments). This test is
able to list-decode an assignment with success probability as low as 1/qe for some small constant
e > 0.

Once an assignment for the variables can be decoded, the task of verifying the polynomial equa-
tions ∑α,β∈{0,1}m c(α, β)z(α)z(β) = c is equivalent to performing a weighted sum check over the
sub-cube {0, 1}m. We use the sum-check protocol of [LFKN92] to verify that the decoded assign-
ment satisfies the equations. It can be shown that the soundness of the combined low degree test
and the sum check protocol is at most 1/q f for a small constant f > 0.

The result is a PCP with 2m + 2 = O(log n) layers where the first 2m layers correspond to the sum
check protocol while the last two layers correspond to the lines and the points table respectively.
Only the values to be assigned to the first table by the prover will depend on the r.h.s. of the
Fq-QCSPP instance. Further, the use of low degree polynomials in encoding the assignments
implicitly gives our PCP smoothness properties which are used in the final reduction. While the
preliminaries of the low degree test and the sum check protocol appear in Sections 2.3 and 2.4
respectively, the PCP construction appears in Section 3.1.
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This view of the PCP naturally leads us to constructing an HLCPP instance which is the starting
point of the reduction to MWSPP and appears in Section 3.2. Finally, the reduction from HLCPP
to MWSPP is similar to the reduction of [AKKV05] from LCPP to MWSPP. This appears in Sec-
tion 3. For the reduction to work, we define a notion of smoothness for HLCPP which is similar
to the one for LCPP and we also need that the hyper-edges of the graph satisfy a uniformity
condition which is inherited from the PCP construction.

The main differences in our reduction compared to the reduction of [AKKV05] are the following:

• As mentioned earlier, the constraints in the HLCPP graph are many-to-many constraints
rather than many-to-one constraints. However, the earlier reduction to MWSPP still goes
through in a relatively straightforward manner.

• We manage to construct an instance of HLCPP where the smoothness and soundness are
both at most 1/q f for some absolute constant f > 0 and the size of the instance is qO(m).
Here m = log n where n is the number of variables in the original Fq-QCSPP instance. It is
not clear that such constructions are possible if we stick to the LCPP problem. The hardness
factor can be made essentially as large as q1/m and we set q to be very large compared to
m to get a good hardness factor relative to the size of the instance. Specifically, we set q =

nlogO(1/ε) n.

2 Preliminaries

In this section we state the problems we will consider and state basic results which will be useful
in the construction of our PCP and the reduction.

2.1 Problem Definitions and Basic Results

We first define the quadratic CSP problem and its pre-processing version that will be a starting
point of our reduction.

Definition 2.1. Fq-QUADRATIC CSP (Fq-QCSP): A Fq-QCSP instance Q def
=
(
{pj}m

j=1, {cj}m
j=1

)
consists of a set of polynomial constraints over variables {z1, z2, . . . , zn}. Each equation is of the form

pj(z1, z2, . . . , zn) = cj,

where pj is a homogeneous polynomial of degree 2, and cj ∈ Fq. The goal is to find an assignment to the
variables {z1, z2, . . . , zn} each taking a value in Fq which satisfies as many constraints as possible. Let
OPT(Q) denote the maximum, over assignments to the variables of Q, of the fraction of equations satisfied.

Definition 2.2. Fq-QUADRATIC CSP WITH PRE-PROCESSING (Fq-QCSPP): Given a Fq-QCSP in-
stance

Q def
=
(
{pj}m

j=1, {cj}m
j=1

)
over variables {z1, z2, . . . , zn} taking values in Fq, the Fq-QCSPP problem allows arbitrary pre-processing
on the polynomials {pj}m

j=1 before the inputs {cj}m
j=1 are revealed.
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The following theorem can be proved in a similar manner as Theorem 4.2 in [AKKV05]. We in-
clude a proof in Section A.1.

Theorem 2.3. Fq-QCSPP is NP-complete for all q = 2r.

Next we define the problem that we prove is hard to approximate and show that it is equivalent
to the nearest codeword problem with pre-processing.

Definition 2.4. MINIMUM WEIGHT SOLUTION PROBLEM WITH PRE-PROCESSING (MWSPP): The
input to this problem consists of a set of fixed linear forms described by B f ∈ Fl×N

2 , a set of variable linear
forms Bv ∈ Fl′×N

2 and a target vector t ∈ Fl
2. The goal is to find a solution x ∈ FN

2 to the system B f x = t,
which minimizes the Hamming weight of the vector Bvx. We allow arbitrary pre-processing on all parts of
the input except the vector t.

Definition 2.5. NEAREST CODEWORD PROBLEM WITH AND WITHOUT PRE-PROCESSING: An in-
stance of NCP is denoted by (C, t) where C ∈ Fn×k

2 , t ∈ Fn
2 . The goal is to find a solution x ∈ Fk

2
which minimizes the Hamming distance between Cx and t. In the pre-processing version, NCPP, we allow
arbitrary pre-processing on all parts of the input except the vector t.

We note that MWSP is actually same as the NCP problem in disguise, though we find it conve-
nient to think of it as a separate problem. To see the equivalence with NCP, let x0 be a fixed vector

such that B f x0 = t, let w = Bvx0 and consider the code C def
= {Bvx | x s.t. B f x = 0}. Then

min
x:B f x=0

δ(w, Bvx) = min
x:B f (x+x0)=t

δ(Bvx0, Bvx) = min
x:B f x=t

wt(Bvx).

Here δ(·, ·) measures the Hamming distance and wt(·) denotes the Hamming weight of a string.

Finally we note that proving the hardness for NCPP implies the hardness for CVPP.

Theorem 2.6. [FM04] Let 1 ≤ p < ∞. If NCPP (MWSPP) is hard to approximate to factor f then
CVPP, under the lp norm, is hard to approximate to factor f 1/p.

2.2 Boosting Soundness through Codes

The following lemma shows how to boost soundness of the Fq-QCSPP instance although it in-
creases the number of variables per equation. The proof of this lemma employs Reed-Muller codes
and appears in Section A.2.

Lemma 2.7. Let Q be an instance of Fq-QCSPP over n variables and k = poly(n) equations, for any
q = 2r. There is an instance P of Fq-QCSPP over the same set of variables and q equations such that:

• If OPT(Q) = 1 then OPT(P) = 1 and

• if OPT(Q) < 1 then OPT(P) ≤ k/q.

In our reduction q would be nlogO(1/ε) n and, hence, q� k.
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2.3 Low Degree Test

Now we move on to developing tools necessary for keeping the number of queries in our PCP
small. The first step in this is the Low Degree Test. In this section we recall the basics, the test and
state the Arora-Sudan theorem which will be used.

An affine line in Fm
q is parametrized by (a, b) ∈ (Fm

q \{0})×Fm
q such that La,b

def
= {ax + b : x ∈ Fq}.

Sometimes, we will drop the subscript if it is clear from the context. In what follows, if it helps,

one can think of m def
= log n and d def

= m as will be the case in our reduction. For a polynomial

g : Fm
q 7→ Fq of degree d and a line L def

= La,b, let g|L be the restriction of g defined as g|L(x) def
=

g(ax + b) for x ∈ Fq. For two polynomials g, h we denote g ≡ h if they are identical.

Definition 2.8 (Low Degree Test). The Low Degree Test takes as input the value table of a function
f : Fm

q 7→ Fq and for every (affine) line L of Fm
q , the coefficients of a degree d polynomial gL.

The goal is to check that f is a degree d polynomial. The intention is that gL is the restriction of f to the line
L.

The test proceeds as follows:

1. Pick a random point x ∈ Fm
q and a random line L containing x.

2. Test that gL(x) = f (x).

The following theorem can be inferred from Theorem 1 and Lemma 14 in [AS03].

Theorem 2.9 (Soundness of Low Degree Test). There are absolute constants 0 < c1, c2 < 1 such that

for δ
def
= 1/qc1 , l def

= qc2 , if f : Fm
q 7→ Fq passes the Low Degree Test (Definition 2.8) with probability p,

then there are l degree d polynomials f 1, f 2, . . . , f l such that :

Pr
L,x

[
gL(x) = f (x) & ∃ j ∈ {1, 2, . . . , l} : gL ≡ f j|L

]
≥ p− δ.

In words, whenever the low degree test accepts, except with probability δ, the test picks a line L such that
gL corresponds to the restriction of one of the polynomials f 1, f 2, . . . , f l to L.

We assume here that d� q (in our application, d ≤ O(log q)).

2.4 Sum Check Protocol

We will also need the sum check protocol for our PCP. We start with some definition, state the
test and the main theorem establishing the soundness of it. Think of M = 2m and, hence, FM

q =
Fm

q × Fm
q in the discussion below. Also one can think of d = 4m. We first need a notion of partial

sums of polynomials.
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Definition 2.10 (Partial Sums). Let g : FM
q 7→ Fq be a degree d polynomial. For every 0 ≤ j ≤ M− 1

and every a1, a2, . . . , aj ∈ Fq we define the partial sum ga1,a2,...,aj as a polynomial from Fq 7→ Fq as follows:

ga1,a2,...,aj(z)
def
= ∑

bj+2,...,bM∈{0,1}
g(a1, a2, . . . , aj, z, bj+2, . . . , bM).

When j = 0 we denote the polynomial as g∅. When j = M− 1, the summation is just g(a1, . . . , aM−1, z).
Note that all the polynomials so defined are of degree at most d.

Definition 2.11 (Sum Check Protocol). The Sum Check Protocol takes as input a value table for a
function g : FM

q 7→ Fq, a target sum c ∈ Fq and for every 0 ≤ j ≤ M− 1 and every a1, a2, . . . , aj ∈ Fq,
the coefficients of a degree d polynomial pa1,a2,...,aj . The goal is to check whether ∑

z∈{0,1}M

g(z) = c. The

intention is that g is a degree d polynomial and pa1,a2,...,aj correspond to partial sums of g as in Definition

2.10. The test proceeds by picking x def
= (a1, a2, . . . , aM) ∈ FM

q uniformly at random and accepts if and
only if all of the following tests pass.

1. p∅(0) + p∅(1) = c.

2. For all 1 ≤ j ≤ M− 1, pa1,a2,...,aj−1(aj) = pa1,a2,...,aj(0) + pa1,a2,...,aj(1).

3. pa1,a2,...,aM−1(aM) = g(x).

The following theorem will be used in our reduction. The proof appears in Section A.3.

Theorem 2.12 (Soundness of Sum Check Protocol). [LFKN92] Let g1, g2, . . . , gl : FM
q 7→ Fq be de-

gree d polynomials and g : FM
q 7→ Fq an arbitrary function. Suppose for every 1 ≤ j ≤ l, ∑

z∈{0,1}M

gj(z) 6=

c. For x ∈ FM
q , let P(x) be the event that the Sum Check Protocol (Definition 2.11) accepts on inputs g, c

and pa1,a2,...,aj . Here x is the choice of randomness in the Sum Check Protocol.

Then

Pr
x∈FM

q

[
P(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)

]
≤ Mdl/q

In words, the probability that the Sum Check Protocol accepts when g is consistent with one of g1, g2, . . . , gl

is at most Mdl/q where g1, g2, . . . , gl are degree d polynomials whose sum is not the required value.
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3 The Reduction

The following is the main theorem about the reduction and implies Theorem 1.1 via Theorem 2.6.

Theorem 3.1. Unless NP ⊆ DTIME(2logO(1/ε) n), MWSPP is hard to approximate to factor 2log1−εn for
an arbitrary small constant ε > 0.

Towards the proof of this theorem, we will give a reduction from Fq-QCSPP to MWSPP. The
reduction proceeds in three steps:

• Reduction from Fq-QCSPP to a PCP with low query complexity (Section 3.1).

• Construction of an HLCPP instance from the PCP (Section 3.2).

• Reduction from HLCPP to MWSPP (Section 3.3).

Finally, we will complete the proof in Section 3.4 where the choice of parameters is made.

3.1 Smooth PCP with Low Query Complexity

Note that the Fq-QCSPP instance given by Lemma 2.7 has almost all the variables appearing in
every equation. For the reduction to MWSPP we require a PCP where every query depends on a
few variables. We will also crucially need a smoothness property from the PCP similar to the one
described for LCPP in Section 1.1. To this end, we use the Low Degree Test of [AS03] and the Sum
Check Protocol of [LFKN92], similarly as in [KP06].

3.1.1 Describing the PCP

Let P be the instance of Fq-QCSPP given by Lemma 2.7 over variables {z1, . . . , zn}. Let m def
= log n.

Here we assume that n is a power of 2. We think of the variables of P as being embedded into
{0, 1}m within Fm

q . Henceforth, we will refer to the variables by their corresponding points in
{0, 1}m. Thus, an assignment A : {0, 1}m 7→ Fq to the variables can be extended to a degree m
polynomial f : Fm

q 7→ Fq such that f is consistent with A on {0, 1}m.

Let the equations be E1, . . . , Eq where each equation is of the form

Ei ≡ Pi(z1, . . . , zn) = Ci ≡ ∑
s,t∈[n]

ci(s, t)zszt = Ci ≡ ∑
α,β∈{0,1}m

ci(α, β)zαzβ = Ci.

For an assignment A to {zα}α∈{0,1}m , let fA denote the degree m polynomial encoding A. Now,
checking whether an equation Ei ∈ P is satisfied by A amounts to checking

∑
α,β∈{0,1}m

ci(α, β) fA(α) fA(β) = Ci.

Note that ci(α, β) can be thought of as a degree 2m polynomial over F2m
q and is a part of the pre-

processing.
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The PCP we will construct expects the following tables:

1. Points Table: The value of a function f : Fm
q 7→ Fq at every point in Fm

q . The intention is that
f is a degree m polynomial which encodes a satisfying assignment to P within {0, 1}m, i.e.,
for a satisfying assignment A, f (α) = fA(α) for all α ∈ {0, 1}m. The size of this table is qm.

2. Lines Table: The coefficients of a degree m polynomial gL for every (affine) line L of Fm
q . The

intention is that gL is the restriction of f on L. The size of this table is at most q2m · (m + 1).

3. Partial Sums Table: For every equation Ei ∈ P, every 0 ≤ j ≤ 2m− 1 and every a1, a2, . . . , aj ∈
Fq, the coefficients of a degree 4m polynomial pi,a1,a2,...,aj . The intention is that pi,a1,a2,...,aj

correspond to partial sums of gi (Definition 2.10) where gi(α, β)
def
= ci(α, β) f (α) f (β) where

α
def
= (a1, . . . , am) and β

def
= (am+1, . . . , a2m). Note that gi has degree at most 4m and the size of

the j-th partial sum table is q · qj · (4m + 1).

PCP Test:

Pick equation Ei ∈ P uniformly at random. Pick α
def
= (a1, a2, . . . , am) ∈ Fm

q , β
def
= (am+1, am+2, . . . , a2m) ∈

Fm
q uniformly at random. Let L be the line passing through α and β. Read the following values

from the corresponding tables:

• f (α), f (β) ∈ Fq from the Points table.

• The polynomial gL from the Lines table.

• The polynomials pi,a1,a2,...,aj from the Partial Sums table for every 0 ≤ j ≤ 2m− 1.

Acceptance Criteria for the Test:

Accept if and only if all of the following tests pass.

1. gL(α) = f (α) and gL(β) = f (β).

2. pi,∅(0) + pi,∅(1) = Ci.

3. For all 1 ≤ j ≤ 2m− 1, pi,a1,a2,...,aj−1(aj) = pi,a1,a2,...,aj(0) + pi,a1,a2,...,aj(1).

4. pi,a1,a2,...,a2m−1(a2m) = ci(α, β) f (α) f (β).

Note that we allow arbitrary pre-processing on everything except {Ci}m
i=1.
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3.1.2 Completeness and Soundness of the PCP

We prove the following theorem here:

Theorem 3.2 (Low Degree and Sum Check). Let P be a Fq-QCSPP instance. Then

1. If OPT(P) = 1, then the PCP Test succeeds with probability 1.

2. If OPT(P) ≤ k/q and k < qc for a small enough c, then the test succeeds above with probability at
most 1/qe for some constant e > 0.

The proof of the theorem follows from the following two lemmas.

Lemma 3.3 (Completeness). If there exists an assignment A to {z1, . . . , zn} such that OPT(P) = 1,
i.e., E1, . . . , Eq are all satisfied, then there is an assignment to all the tables such that the test accepts with
probability 1.

Proof. We let f def
= fA, gL

def
= fA|L for all L, and for all i ∈ [q], 0 ≤ j ≤ 2m− 1, and a1, . . . , aj ∈ Fq,

pi,a1,...,aj

def
= ∑

bj+2,...,b2m∈{0,1}
hi(a1, . . . , aj, z, bj+2, . . . , b2m),

where hi(x, y) is the polynomial of degree at most 4m representing ci(x, y) fA(x) fA(y). It is clear
that the test succeeds with probability 1.

Lemma 3.4 (Soundness). There is an absolute constant e > 0 such that if OPT(P) ≤ k/q and k < qc

for a small enough c, then the PCP described above has soundness at most 1/qe.

Proof. We first observe that Step 1 of the protocol is equivalent to running a low degree test (Def-
inition 2.8) on L and α with input tables gL and f respectively. This is because the choice of β is
independent of α and uniform in Fm

q . Let 0 < c1, c2 < 1 be the constants given by Theorem 2.9.

Let f 1, f 2, . . . , f l be the list of l def
= qc2 polynomials promised by Theorem 2.9.

The following events can happen on a run of the PCP:

1. The low degree test between L and α fails. That is, gL(α) 6= f (α). In this case, the PCP does
not accept.

2. gL(β) 6= f (β). In this case, the PCP does not accept.

3. The low degree test accepts (gL(α) = f (α)) but there is no 1 ≤ i ≤ l such that gL ≡ f i|L. By

theorem 2.9, this happens with probability at most δ
def
= 1/qc1 .
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If none of the events listed above occur, then we have that gL is the restriction of f j for some
1 ≤ j ≤ l. Also, since Step 1 accepts, we must have f (α) = f j(α) and f (β) = f j(β).

Let Ei be an equation not satisfied by any f j for 1 ≤ j ≤ l. Note that Steps 2, 3 and 4 are equivalent

to running the Sum Check Protocol (Definition 2.11) on gi : F2m
q 7→ Fq defined as gi(α, β)

def
=

ci(α, β) f (α) f (β). gi has degree at most 4m. Let gj
i(α, β)

def
= ci(α, β) f j(α) f j(β). Finally, for x ∈ F2m

q ,
let Pi(x) be the event that the Sum Check Protocol accepts.

Applying Theorem 2.12,

Pr
x∈F2m

q

[
Pi(x) & ∃ j ∈ {1, . . . , l} : gi(x) = gj

i(x)
]
≤ (2m)dl/q

Thus, when none of the events in the list occur, the PCP accepts with probability at most (2m) ·
(4m) · l/q conditioned on choosing Ei. Note that every f j may satisfy at most k of the q equations.

Thus, the total probability that the PCP accepts is at most δ + (1− lk/q) ·O(m2l/q) and it is easy
to check that by our choice of parameters this is smaller than 1/qe for some absolute constant
e > 0.

3.2 PCP as Hyper-graph Label Cover

It will be useful to think of the PCP as a graph labeling problem. The labeling problem we consider
is similar to the well-known LABEL COVER problem except for the following differences:

• The graph is not bipartite but consists of several layers, with edges between consecutive
layers. In addition, there are hyper-edges which consist of several edges. The goal is to
find a labeling which satisfies the maximum fraction of hyper-edges, where the constraint
corresponding to a hyper-edge is the logical AND of the constraint corresponding to each of
its edges.

• The constraints corresponding to edges are not projection constraints as in the case of LABEL

COVER, but the more general many-to-many constraints. For an edge e = (u, v), a many-to-
many constraint is described by an ordered partition of the label set of u and the label set of
v such that the constraint is satisfied if and only if both u and v receive labels from matching
partitions. Formally, let e = (u, v) be an edge and [Ru], [Rv] be the label sets of vertices u
and v. Then the many-to-many constraint is described by a pair of maps πe : [Ru] 7→ [Re],
σe : [Rv] 7→ [Re] where [Re] is a label set associated to e. A label l to u and a label l′ to v is
said to satisfy edge e if πe(l) = σe(l′).

We now formally describe the HYPER-GRAPH LABEL COVER problem. While the term HYPER-
GRAPH LABEL COVER can be potentially used for a more general class of problems, in this paper
we restrict our attention to a very special class of graphs useful for our reduction.
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Definition 3.5. HYPER-GRAPH LABEL COVER PROBLEM

An instance G(V, E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) of HYPER-GRAPH LABEL COVER

consists of:

• A graph G(V, E). The vertices are partitioned into 2m + 2 disjoint layers, V def
= L0 ∪ L1 ∪ · · · ∪

L2m+1. The edges in E are always between a vertex in Li and a vertex in Li+1 for some i.

• Label sets [Ri] for vertices in layer Li. Furthermore, for every vertex v ∈ L0, there is a partition Sv
of [R0] and an allowable set of labels Sv ∈ Sv.

• A many-to-many constraint for every edge. Let e = (u, v) be an edge where u ∈ Li, v ∈ Li+1. The
instance contains projections πe : [Ri] 7→ [Re], σe : [Ri+1] 7→ [Re]. A labeling (l, l′) to (u, v) is said
to satisfy e if πe(l) = σe(l′).

• A set of hyper-edges E . Every hyper-edge consists of one vertex from the first 2m + 1 layers and two
vertices from the last layer, such that there is an edge between any pair of vertices in adjacent layers.
A labeling to the graph satisfies a hyper-edge if all the edges contained in it are satisfied.

The goal is to find a labeling to the vertices which satisfies the maximum fraction of hyper-edges. Vertices
in Li are required to receive a label from [Ri]. Furthermore, vertices in L0 are required to receive labels from
their allowable set.

We also define a pre-processing version of the HYPER-GRAPH LABEL COVER PROBLEM similar to
the LCPP problem of [AKKV05].

Definition 3.6. HYPER-GRAPH LABEL COVER PROBLEM WITH PRE-PROCESSING (HLCPP)

Given an instance G(V, E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) of HYPER-GRAPH LA-
BEL COVER, the HLCPP problem allows arbitrary pre-processing on all parts of the input except the
allowable sets {Sv}v∈L0 .

We will need a notion of smoothness similar to the definition of SMOOTH LABEL COVER.

Definition 3.7. (Smoothness)

We say that an HLCPP instance G(V, E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) is δ-smooth
if for every 0 ≤ i ≤ 2m, u ∈ Li, l 6= l′ ∈ [Ri] we have

Pr
e=(u,v)∈E

[
πe(l) = πe(l′)

]
≤ δ

Here v ∈ Li+1 and (πe, σe) is the many-to-many constraint associated to e.

Lastly, we will need that the hyper-edges of the graph are regular in a certain sense.
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Definition 3.8. (Uniformity)

Let G(V, E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) be an HLCPP instance. We say that
the instance is uniform if the following conditions are satisfied:

1. For every 0 ≤ i ≤ 2m + 1, every vertex in layer Li has the same number of hyper-edges passing
through it.

2. For every 0 ≤ i ≤ 2m, the following two distributions are equivalent:

• Select an edge between a vertex in layer Li and a vertex in layer Li+1 uniformly at random.

• Select a hyper-edge H ∈ E uniformly at random and then select an edge from H between a
vertex in layer Li and a vertex in layer Li+1 uniformly at random. Recall that a hyper-edge
contains exactly one edge between layers Li and Li+1 for 0 ≤ i ≤ 2m − 1 and two edges
between layers L2m and L2m+1.

We next briefly describe how the PCP described in Section 3.1 can be thought of as an HLCPP
instance.

• Layers L2m and L2m+1: These are the Lines table and the Points table respectively. There is
a vertex L in L2m corresponding to every line in Fm

q . There is a label to L for every possible
univariate degree m polynomial over Fq. Hence, the number of vertices in L2m is at most
q2m and the size of the label set for each vertex is R2m = qm+1. There is a vertex α in L2m+1
corresponding to every α ∈ Fm

q . There is a label a to α for every possible a ∈ Fq. Hence, the
size of the vertex set in L2m+1 is qm and size of the label set is R2m+1 = q.

There is an edge between L and α if the point α belongs to the line L. The constraint between
the two vertices corresponds to Step 1 of the PCP.

• LayersL0 throughL2m: These are the Partial Sums table and the Lines table respectively. For
1 ≤ j ≤ 2m− 1, there is a vertex corresponding to (i, a1, a2, . . . , aj) in Lj for every equation
Ei ∈ P and every a1, a2, . . . , aj ∈ Fq. There is a label to (i, a1, a2, . . . , aj) for every possible
univariate degree 4m polynomial over Fq. For j = 0, there is a vertex (i, ∅) corresponding to
every equation Ei ∈ P. There is a label to (i, ∅) for every univariate degree 4m polynomial
over Fq. Furthermore, there is a partition of the label set into q parts, indexed by Fq as
follows:

Pa
def
= {all polynomials p of degree at most 4m over Fq such that p(0) + p(1) = a}.

The allowable set of labels for every vertex corresponds to the part that satisfies Step 2 of
the PCP. Thus, for 0 ≤ j ≤ 2m − 1, the size of Lj is q · qj while the size the label set is
R0 = R1 = · · · = R2m−1 = q4m+1.

For 1 ≤ j ≤ 2m− 1, there is an edge between a vertex (i, a1, a2, . . . , aj−1) in Lj−1 and a vertex
(i′, a′1, a′2, . . . , a′j) in Lj if i = i′ and ak = a′k for 1 ≤ k ≤ j− 1. The corresponding constraints
are given by Step 3 of the PCP.
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There is an edge between vertex (i, a1, a2, . . . , a2m−1) in L2m−1 and vertex L in L2m if there is

an am ∈ Fq such that for α
def
= (a1, . . . , am), β

def
= (am+1, . . . , a2m), the line L passes through

α and β. The corresponding constraints are given by Step 4 of the PCP. Note that Step 4
requires the values of the function at points α and β both of which lie on line L. Thus, a label
to L specifies the values of f at α and β.

It can be checked that the constraints so defined are many-to-many constraints.2 Note that we
allow pre-processing on everything except the allowable set of labels for vertices in layer L0 as
required.

It can be seen that the HLCPP instance so constructed is 4m/q-smooth, since no two distinct
degree 4m polynomials over Fq can agree on more than 4m/q fraction of points in Fq.

We record this identification of the PCP with an HLCPP instance as the following theorem.

Theorem 3.9. There is a reduction from an Fq-QCSPP instance P over n variables to an HLCPP instance
L = G(V, E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) where m = log n, such that

1. If OPT(P) = 1, then OPT(L) = 1.

2. If OPT(P) ≤ k/q and k < qc for a small enough c, then OPT(L) ≤ 1/qe for some constant e > 0.

Furthermore, the HLCPP instance L is (4m/q)-smooth (Definition 3.7) and uniform (Definition 3.8).

3.3 Reduction to MWSPP

The reduction from HLCPP to MWSPP is very similar to the reduction from LCPP to MWSPP
described in [AKKV05].

Let G(V, E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) be an instance of HLCPP. For each
vertex v ∈ V and each label l to v we have a variable wv,l . We now describe the fixed linear forms
B f of the MWSPP instance. Below,

⊕
denotes addition over F2.

Vertex constraints:

1. ∀1 ≤ j ≤ 2m + 1, ∀v ∈ Lj,
⊕

l∈[Rj] wv,l = 1.

2. ∀v ∈ L0, ∀S ∈ Sv,

⊕
l∈S

wv,l = 1 if S = Sv and 0 otherwise. (3.1)

Notice that only the r.h.s. depends on the input (which is Sv).

2Actually, the constraint between vertices in layers L2m−1 and L2m is not many-to-many when ci(α, β) = 0 but this
happens for at most 2m/q fraction of vertices for every equation hence we can afford to ignore these vertices and any
hyper-edges containing them.
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Edge constraints:

Let e = (u, v) be an edge where u ∈ Li, v ∈ Li+1. Let πe : [Ri] 7→ [Re], σe : [Ri+1] 7→ [Re] be the
projections describing the many-to-many constraint associated to e. For every element a ∈ [Re]
we add the following fixed linear form:

⊕
l∈[Ri ]:πe(l)=a

wu,l =
⊕

l∈[Ri+1]:σe(l)=a

wv,l . (3.2)

We now describe the variable forms Bv for the MWSPP instance. Let qj be the number of vertices

in layer Lj. Let q̃ def
= ∏2m+1

j=0 qj. For every layer Lj, 0 ≤ j ≤ 2m + 1, every vertex v ∈ Lj and every

label l to v, we have the variable form wj
v,l repeated q̃/qj times. This completes the description of

the MWSPP instance. It remains to prove the completeness and the soundness of this reduction
which we do next.

3.3.1 Soundness of the MWSPP instance

Here we show that the MWSPP instance constructed has a large gap.

Theorem 3.10 (Reduction from Fq-QCSPP to MWSPP). Let h be such that 1/(m3h)3m ≥ 1/qe for
large enough m and for some fixed small constant e.

• Completeness: If P is satisfiable then the MWSPP instance constructed in Section 3.3 has a solu-
tion of weight at most (2m + 2) · q̃.

• Soundness: If P is such that OPT(P) ≤ k/q then the MWSPP instance constructed in Section
3.3 has no solution of weight less than h · (2m + 2) · q̃.

Proof. Completeness. If the Fq-QCSPP instance P is satisfiable then the HLCPP instance has a
labeling which satisfies all constraints (Theorem 3.9). For an MWSPP variable wj

v,l corresponding

to vertex v and label l to v, we let wj
v,l = 1 if v was assigned the label l and 0 otherwise. It is easy

to see that this satisfies all fixed linear forms and gives a solution of weight

2m+1

∑
j=1

∑
v∈Lj

1 · q̃/qj =
2m+1

∑
j=1

qj · q̃/qj = (2m + 2) · q̃.

Soundness. In this case we are given that OPT(P) ≤ k/q and, hence by Theorem 3.9, any labeling
to the HLCPP instance satisfies at most 1/qe fraction of the hyper-edges for some small constant
e. The number of hyper-edges in the instance are |[q] × Fm

q × Fm
q | = q2m+1. Suppose there is a

solution to the MWSPP instance of weight h · (2m + 2) · q̃ which satisfies all fixed linear forms.
We will give a (randomized) labeling to the HLCPP instance which in expectation satisfies more
than 1/(m3h)3m ≥ 1/qe fraction of the hyper-edges, contradicting Theorem 3.9.
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Let {wv,l} be a solution of weight at most h · (2m + 2) · q̃. Call a label l for v nonzero if wv,l = 1.
(Note that our variables are allowed only 0/1 values.) We know from our assumption that

2m+1

∑
j=0

∑
v,l

wv,l · q̃/qj = h · (2m + 2) · q̃.

Let nj
v denote the number of nonzero variables for the vertex v in the j-th layer. Then the above

can be written as
2m+1

∑
j=0

∑
v

nj
v/qj = h · (2m + 2).

Hence, for all j, ∑v nj
v/qj ≤ h · (2m + 2). Hence by Markov’s Inequality, for every j, the fraction of

v for which nj
v ≥ m3h is atmost h · (2m + 2)/(m3 · h) ≤ 3/m2 for large enough m. We call a label

i for a vertex v non-zero if wv,i = 1. We remove all vertices from the graph which have more than

r def
= h ·m3 non-zero labels. This removes at most 3/m2 fraction of vertices from each layer. Next,

we remove all hyper-edges containing any vertex removed in this step. To bound this number
notice that our graph has this property that number of hyper-edges per vertex of layer j is at most
q2m+1/qj (by Item 1 of the uniformity property: Definition 3.8). Since number of vertices removed
per layer is at most 3qj/m2, the number of hyper-edges removed in layer j is at most 3q2m+1/qj.
Hence, the number of hyper-edges removed overall is at most 3 · (2m+ 2)q2m+1/m2 ≤ 9/m · q2m+1

for large enough m. Thus, the total fraction of hyper-edges removed is at most 9/m which is
negligible. Thus, we have an HLCPP instance where every vertex has at most r non-zero labels
and we wish to satisfy more than 1/qe fraction of the queries.

Labeling. We define a randomized labeling for the HLCPP instance: randomly assign a nonzero
label independently for each vertex. This is possible as the sum (over F2) of the variables corre-
sponding to each v is 1 and hence not all variables for a vertex can be 0.

The next claim shows that the expected fraction of hyper-edges satisfied is at least r−3m = (h ·
m3)−3m which is larger than 1/qe by our assumption.

Claim 3.11. Conditioned on the hyper-edge not being removed, the expected fraction of hyper-edges satisfied
by the randomized labeling defined above is at least r−3m where r = hm3.

Proof of Claim. We first remove all edges e in the graph for which some pair of non-zero labels map
to the same label via the constraint associated to e. Formally, let e = (u, v) be an edge, l 6= l′ be two
non-zero labels for u and (πe, σe) be the maps describing the many-to-many constraint associated
to e. We remove the edge e if πe(l) = πe(l′). Since the instance is 4m/q-smooth (Definition 3.7),
taking a union bound over all pairs of non-zero labels implies that the fraction of edges removed
in the graph is at most 4mr2/q.

Next, we remove all hyper-edges containing any edge removed in the previous step. Using Item 2
of the uniformity property (Definition 3.8) and a union bound, it can be seen that the total fraction
of hyper-edges removed is at most 3m · 4mr2/q ≤ 12m2r2/q, which is negligible by our choice of
parameters. Thus, we have an HLCPP instance where every vertex has at most r non-zero labels
and the many-to-many constraint maps all non-zero labels to distinct labels.
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For a hyper-edge to be satisfied, its vertex in L0 should receive a label from allowable set. By
Equation (3.1), there is at least one non-zero label from this set. Thus, with probability at least 1/r,
we pick an allowed label for a hyper-edge.

For 0 ≤ j ≤ 2m, we will show that if we have assigned label l to vertex u ∈ Lj, then the probability
of assigning a consistent label to any of its neighbors in Lj+1 is at least 1/r. By a consistent label
we mean one which satisfies the constraint on the edge.

Suppose we have picked a label l for a vertex u ∈ Lj. We claim that the left side of Equation 3.2
is 1, since there is no non-zero label l′ for u such that πe(l) = πe(l′). This means that the r.h.s. is
also 1 (since the fixed linear forms are satisfied). Hence there must be a non-zero label for v which
satisfies the constraint associated with the edge e = (u, v), and this label is assigned to v with
probability at least 1/r (over the random choice of a labeling). Hence, the constraint between u
and v is satisfied with probability at least 1/r.

This shows that for a fixed hyper-edge, the probability (over the randomized labeling) it is satisfied
is at least r−(2m+3) which is the number of vertices in the hyper-edge. Thus, the expected fraction
of hyper-edges satisfied is at least r−(2m+3) ≥ r−3m. This completes the proof of the claim.

Noticing that by our choice of parameters 1/qe < r−3m, we obtain a contradiction. Hence, this
completes the soundness proof and, hence, the theorem.

3.4 Choice of Parameters and the Proof of Main Theorem

Proof of Theorem 3.1. Let Q be the Fq-QCSPP instance given by Theorem 2.3 over n variables and
k = poly(n) equations. We apply Lemma 2.7 to get an Fq-QCSPP instance over n variables and q

equations where q def
= 2(log n)(4/ε)

. We then apply the series of reductions described in Sections 3.1,
3.2 and 3.3.

Let N be the size of the MWSPP instance constructed in Section 3.3. It can be checked that N ≤
q100m, where m def

= log n for large enough m. Hence, N ≤ qlog2 n for large enough n. We need m and
h to satisfy

1/r3m = 1/r3 log n = 1/(m3h)3m ≥ 1/qe. This is true if log h ≤ log q/log2 n and log q � log n log log n and n
is let to be large enough.

We set h def
= qlog−2n. For a large enough positive integer D = 4/ε, let q be such that log q def

= logD n.
Hence, log q� log n log log n. Moreover log N ≤ logD+2 n and log h = logD−2 n. This implies that

log1−ε N = log(D+2)(1−ε) n ≤ logD−2 n = log h

Finally, N ≤ qlog2 n = 2logO(1/ε) n. Summarizing, our reduction is deterministic, the hardness factor is
2log1−ε N and takes time 2logO(1/ε) n and, hence, holds under the hypothesis NP 6⊆ DTIME(nlogO(1/ε) n).
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A Omitted Proofs

A.1 Fq-QCSPP is NP-complete

Theorem A.1. Fq-QCSPP is NP-complete for all q = 2r.

Proof. We reduce 3SAT to Fq-QCSPP . For this proof, it is convenient to view the input for 3SAT
in the following form: the input is (V, E), where V, E ∈ {0, 1}m×n and corresponds to a 3SAT
formula φ = C1 ∧ · · · ∧ Cm with variables {x1, . . . , xn}. Each row of V corresponds to a clause Ci
and Vij is 1 if and only if xj appears in Ci. Thus, each row of V has exactly three 1’s. The entry Eij
is 1 if and only if the variable xj appears as a negated literal in Ci.

Since 3SAT is in NP, for every n, there is a circuit Cn which takes as input (V, E) and an assignment
a ∈ {0, 1}n, such that, Cn(a, V, E) = 1 if a is a satisfying assignment for φ, and 0 otherwise.

Now we present the reduction, which is exactly the same as in Theorem 4.2 of [AKKV05], except
that we work over Fq rather than F2. Let (V, E) be the input corresponding to a 3SAT instance φ.
We may assume that every gate in Cn has fan-in 2 and fan-out 1. For every bit in the input (a, V, E)
to Cn, there is a variable in Fq: xi is supposed to be assigned the i-th bit of a, xij is supposed to be
assigned Vij, while x′ij is supposed to be assigned Eij.

Associated to the output of the i-th internal gate3 in Cn is a variable zi. Further, let y0 be the variable
corresponding to the output gate which outputs whether an assignment a satisfies φ or not.

The computation of any gate can be written as a quadratic polynomial (over F2) in its inputs (call
these z, z′) and output (call it z′′): z′′ = zz′ for an AND gate, z′′ = 1 + (1 + z)(1 + z′) for an OR
gate, and z′′ = 1 + z for a NOT gate.

Note that F2 is a sub-field of Fq since q = 2r is a power of 2. Thus, each element of Fq can be
naturally identified with a vector in Fr

2 such that addition in Fq corresponds to vector addition and
multiplication in Fq corresponds to taking dot products. In any such representation, the element
0 ∈ Fq corresponds to the all 0’s vector while the element 1 ∈ Fq corresponds to the all 1’s vector.
The crucial observation is that the polynomials for the AND, OR and NOT gates described above
act as co-ordinate wise AND, OR and NOT gates when the inputs and the output are elements of
Fr

2 (Fq), when all computation is done over Fq.

We write such an equation for every gate in Cn. Each equation is of degree at-most 2 and has at-
most 3 variables. Note that every such equation depends only on the description of Cn. Finally,
we add the additional set of equations y0 = 1, xij = Vij and x′ij = Eij. Hence, we get a Fq-QCSPP
instance over the set of variables

{xi : i ∈ [n]} ∪ {xij : i ∈ [m], j ∈ [n]} ∪ {x′ij : i ∈ [m], j ∈ [n]} ∪ {zi : 1 ≤ i ≤ size(Cn)} ∪ {y0}.

3A gate is said to be internal if its output is not an output of the circuit.
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Notice that Cn can be generated by a polynomial time algorithm which is given as input 1n. Hence,
this reduction is a polynomial time reduction.

We claim that this quadratic system has a solution (over Fq) if and only if φ has a satisfying so-
lution. The corresponding claim when all variables take values in F2 follows by construction.
Now note that if there is a solution over Fq then taking the last co-ordinate of the variables (when
viewed as vectors over Fr

2) is a valid solution over F2, since all gates act co-ordinate wise.

The reduction described above gives constraints which are of degree at most 2, but not homo-
geneous. This is easy to fix by introducing an auxiliary variable z0 and adding the constraint
z0z0 = 1. We then multiply all terms of degree less than 2 by z0.

This completes the proof of the lemma.

A.2 Boosting Soundness through Codes

We first need some basic definitions.

Definition A.2. Codes: A matrix C ∈ Fm×k
q is said to be a generator of the linear code {Cx : x ∈ Fk

q}
with distance 1− δ if for any x 6= y ∈ Fk

q, C(x) and C(y) agree on at most δm co-ordinates.

Fact A.3 (Reed-Muller Codes). For any q, let Fq be the field over q elements. There is a family of linear
codes with generator matrix Ck ∈ F

q×k
q with distance 1− k/q. These are the so called Reed Muller codes

over Fq, where the message is thought of as the coefficients of a degree k polynomial and the codeword the
evaluation of this polynomial on all the points in Fq.

Lemma A.4. Let Q be an instance of Fq-QCSPP over n variables and k = poly(n) equations, for any
q = 2r. There is an instance P of Fq-QCSPP over the same set of variables and q equations such that:

• If OPT(Q) = 1 then OPT(P) = 1 and

• if OPT(Q) < 1 then OPT(P) ≤ k/q.

Proof. Let R ∈ F
q×k
q be the Reed-Muller code matrix as in Fact A.3. Let p1, . . . , pk be the equations

of Q and let r ∈ Fk
q be a row of R. We add the constraint ∑k

i=1 ri pi to P which is a Fq-linear
combination of the equations in Q. Thus, P has q equations.

It is clear that any satisfying assignment to all equations of Q is also a satisfying assignment for all
equations of P. This shows that if OPT(Q) = 1 then OPT(P) = 1.

On the other hand, suppose OPT(Q) < 1 and fix any assignment A to the variables of Q. An equa-

tion ei ∈ Q is of the form pi(z1, . . . , zn) = ci. Let vA ∈ Fk
q be defined as vA

i
def
= pi(A(z1), . . . , A(zn))−
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ci. Since OPT(Q) < 1, vA 6= 0k. Thus, by the code property we have that Ck · vA is zero in at most k
co-ordinates. Notice that Ck · vA has a 0 in a co-ordinate if and only if the corresponding equation
in P is satisfied by A. Since this holds for every assignment A, the theorem follows.

A.3 Sum Check Protocol

Theorem A.5 (Soundness of Sum Check Protocol). [LFKN92] Let g1, g2, . . . , gl : FM
q 7→ Fq be degree

d polynomials and g : FM
q 7→ Fq an arbitrary function. Suppose for every 1 ≤ j ≤ l, ∑

z∈{0,1}M

gj(z) 6= c.

For x ∈ FM
q , let P(x) be the event that the Sum Check Protocol (Definition 2.11) accepts on inputs g, c

and pa1,a2,...,aj . Here x is the choice of randomness in the Sum Check Protocol.

Then

Pr
x∈FM

q

[
P(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)

]
≤ Mdl/q

In words, the probability that the Sum Check Protocol accepts when g is consistent with one of g1, g2, . . . , gl

is at most Mdl/q where g1, g2, . . . , gl are degree d polynomials whose sum is not the required value.

Proof. We will prove the theorem by induction on M.

Base Case: M=1 We consider two cases:

1. p∅ = gj
∅ for some 1 ≤ j ≤ l. In this case Step 1 fails by our assumption on gj.

2. p∅ 6= gj
∅ for all 1 ≤ j ≤ l. In this case,

Prx∈Fq

[
P(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)

]
≤ Prx∈Fq

[
g(x) = p∅(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)

]
(Since Step 3 accepts)

= Prx∈Fq

[
∃ j ∈ {1, . . . , l} : p∅(x) = gj(x)

]
≤ ld/q

The last inequality uses the fact that any two distinct degree d polynomials can agree on at
most d/q fraction of the points followed by a union bound.

Inductive Case: M = N We again consider two cases as before:

1. p∅ = gj
∅ for some 1 ≤ j ≤ l. In this case Step 1 fails by our assumption on gj.
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2. p∅ 6= gj
∅ for all 1 ≤ j ≤ l. In this case, the fraction of points a ∈ Fq such that

∑
b2,...bN∈{0,1}

gj(a, b2, . . . , bN) = p∅(a) (A.1)

for some 1 ≤ j ≤ l is at most ld/q.

Note that for a fixed a ∈ Fq, Steps 2 and 3 are equivalent to running the Sum Check Protocol
for checking

∑
b2,...bN∈{0,1}

g(a, b2, . . . , bN) = c′

where c′ def
= p∅(a). For x ∈ FN−1

q , let Pa(x) be the event that this protocol accepts.

If Equation A.1 does not hold for any 1 ≤ j ≤ l then we can use the inductive assumption to
get

Pr
x∈FN−1

q

[
Pa(x) & ∃ j ∈ {1, . . . , l} : g(a, x) = gj(a, x)

]
≤ (N − 1)dl/q

Thus, the total probability of acceptance is at most ld/q + (N − 1)dl/q ≤ Ndl/q.
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