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Abstract

We prove a lower bound on the amount of nonuniform advice needed by black-box reductions
for the Dense Model Theorem of Green, Tao, and Ziegler, and of Reingold, Trevisan, Tulsiani,
and Vadhan. The latter theorem roughly says that for every distribution D that is δ-dense in a
distribution that is ǫ′-indistinguishable from uniform, there exists a “dense model” for D, that
is, a distribution that is δ-dense in the uniform distribution and is ǫ-indistinguishable from D.
This ǫ-indistinguishability is with respect to an arbitrary small class of functions F . For the very
natural case where ǫ′ ≥ Ω(ǫδ) and ǫ ≥ δO(1), our lower bound implies that Ω

(√
(1/ǫ) log(1/δ) ·

log |F |
)

advice bits are necessary. There is only a polynomial gap between our lower bound and

the best upper bound for this case (due to Zhang), which is O
(
(1/ǫ2) log(1/δ)·log |F |

)
. Our lower

bound can be viewed as an analog of list size lower bounds for list-decoding of error-correcting
codes, but for “dense model decoding” instead.

1 Introduction

The question of whether the prime numbers contain arbitrarily long arithmetic progressions was a
long-standing and famous open problem until Green and Tao [GT08] answered the question in the
affirmative in a breakthrough paper in 2004. A key ingredient in their proof is a certain transference
principle which, very roughly, states the following. Let U denote the set of positive integers. Then
for every D ⊆ U , if there exists an R ⊆ U such that D is dense in R and R is “indistinguishable”
from U , then there exists an M ⊆ U such that M is dense in U and D is “indistinguishable” from
M . Tao and Ziegler [TZ08] proved a much more general version of the transference principle, which
has come to be known as the Dense Model Theorem (since M is a dense “model” for D).

Reingold, Trevisan, Tulsiani, and Vadhan [RTTV08] demonstrated the relevance of the Dense
Model Theorem to computer science, and they gave a new proof which is much simpler and
achieves better parameters than the proof of Green, Tao, and Ziegler. Gowers [Gow10] inde-
pendently came up with a similar proof. In addition to the original application of showing that
the primes contain arbitrarily long arithmetic progressions, the Dense Model Theorem has found
applications in differential privacy [MPRV09], pseudoentropy and leakage-resilient cryptography
[BSW03, RTTV08, DP08], and graph decompositions [RTTV08], as well as further applications in
additive combinatorics [GW11b, GW12]. Subsequent variants of the Dense Model Theorem have
found applications in cryptography [GW11a] and pseudorandomness [TTV09].

∗Computer Science Division, University of California, Berkeley. This material is based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0946797 and by the National
Science Foundation under Grant No. CCF-1017403.
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Figure 1: Relations among distributions in the Dense Model Theorem

To formally state the Dense Model Theorem, we first need some definitions. We identify {0, 1}2n

with the set of functions from {0, 1}n to {0, 1}. We use Dn to denote the set of all distributions
on {0, 1}n. The domain {0, 1}n could be replaced by any finite set of size 2n; we use the domain
{0, 1}n for concreteness.

Definition 1. We say D1 ∈ Dn is δ-dense in D2 ∈ Dn if for all x ∈ {0, 1}n, PrD1 [x] ≤ 1
δ PrD2 [x].

Definition 2. We say f ∈ {0, 1}2n
ǫ-distinguishes D1,D2 ∈ Dn if

∣∣ED1[f ] − ED2 [f ]
∣∣ > ǫ.

Definition 3. For F ⊆ {0, 1}2n
, we say D1,D2 ∈ Dn are (ǫ, F )-indistinguishable if there is no

f ∈ F that ǫ-distinguishes D1 and D2.

The following is quantitatively the best known version of the theorem, due to Zhang [Zha11]
(building on [RTTV08, BHK09]).

Theorem 1 (Dense Model Theorem). For every F ⊆ {0, 1}2n
and every D ∈ Dn, if there

exists an R ∈ Dn such that D is δ-dense in R and (R,U) are (ǫ′, F ′)-indistinguishable where
U ∈ Dn is the uniform distribution, then there exists an M ∈ Dn such that M is δ-dense in U
and (D,M) are (ǫ, F )-indistinguishable, where ǫ′ ≥ Ω(ǫδ) and F ′ consists of all linear threshold
functions with ±1 coefficients applied to O

(
(1/ǫ2) log(1/δ)

)
functions from F .

The relations among the four distributions in Theorem 1 are illustrated in Figure 1. We remark
that the theorem also holds when we allow [0, 1]-valued functions f rather than just {0, 1}-valued
functions f . The proof of [RTTV08] gives the same result but where O

(
(1/ǫ2) log(1/ǫδ)

)
functions

from F are combined to get a function from F ′. The original proof of [TZ08] achieves an F ′ which
is qualitatively simpler, namely all products of poly(1/ǫ, 1/δ) functions from F , but it only achieves
ǫ′ ≥ exp(− poly(1/ǫ, 1/δ)).1 We note that the dependence ǫ′ ≥ Ω(ǫδ) is tight in two senses.

• The Dense Model Theorem is actually false when ǫ′ > ǫδ, even if F ′ = {0, 1}2n
. See [Zha11]

for the simple argument.

• The following converse to the Dense Model Theorem holds: If there exists an M ∈ Dn such
that M is δ-dense in U and (D,M) are (ǫ, F )-indistinguishable, then there exists an R ∈ Dn

such that D is δ-dense in R and (R,U) are (ǫ′, F ′)-indistinguishable, where ǫ′ = ǫδ and F ′ = F .

To see this, note that U = δM +(1−δ)M̂ for some M̂ ∈ Dn, so we can let R = δD+(1−δ)M̂ ;
then D is δ-dense in R, and for every f ∈ {0, 1}2n

we have ER[f ]−EU [f ] = δ
(
ED[f ]−EM [f ]

)

and thus if
∣∣ER[f ] − EU [f ]

∣∣ > ǫ′ then
∣∣ED[f ] − EM [f ]

∣∣ > ǫ.

1Another proof that also achieves this is given in [RTTV08].
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The Dense Model Theorem has an undesirable feature: The class F ′ is more complex than the
class F . Thus, if we wish to conclude that D and M are indistinguishable for a class F , we need
to assume that R and U are indistinguishable for a more complex class F ′. The less complex F ′ is,
the stronger the theorem is. The reason for this loss in complexity is because the theorem is proved
using a black-box reduction. In other words, the contrapositive is proved: We assume that for every
M δ-dense in U there exists a function from F that ǫ-distinguishes D and M , and we show that
some of these functions can be plugged into the reduction to get a function that ǫ′-distinguishes R
and U . Thus the resulting function is necessarily more complex than the functions that get plugged
into the reduction. There are three notions of complexity that are interesting to address in this
context.

1. Computational complexity. If F consists of functions computed by small constant-depth
circuits (AC0), then can we let F ′ consist of functions computed by (slightly larger) constant-
depth circuits? This is not known to be true when ǫ′ ≥ Ω(ǫδ), because the reductions of
[RTTV08, Zha11] involve a linear threshold function, which cannot be computed by small
constant-depth circuits. Is it necessary that the reduction computes a linear threshold func-
tion? The original result of [TZ08] shows that this is not necessary if ǫ′ is inverse exponentially
small.

2. Query complexity. If F consists of functions computed by circuits of size s, then F ′ will need
to consist of functions computed by circuits of a larger size s′ — but how much larger? If
the reduction makes q queries to functions from F , then plugging in size-s circuits for these
functions yields a circuit of size ≥ q · s, and thus we must have s′ ≥ q · s. Hence it is desirable
to minimize q. Can we do better than q ≤ O

(
(1/ǫ2) log(1/δ)

)
as in Theorem 1?

3. Advice complexity. Suppose F consists of functions computed by uniform algorithms run-
ning in time t (that is, a single algorithm computes a sequence of functions, one for each
n = 1, 2, 3, . . . ,). Then can we let F ′ consist of functions computed by uniform algorithms
running in some (slightly larger) time t′? (Here, the distributions D,M,R,U would need
to be sequences of distributions, and a distinguisher would only be required to succeed for
infinitely many n.) The proofs of [RTTV08, Zha11] do not yield this, because the reductions
need a nonuniform advice string to provide some extra information about the nth distribution
D. How many bits of advice are needed?

Before proceeding we draw attention to the fact that, as we just alluded to, the advice strings
used by the reductions of [RTTV08, Zha11] depend on D but do not depend on R. Hence something
a little stronger than Theorem 1 actually holds: Although the statement of Theorem 1 says we need
to assume that for some R in which D is δ-dense, there is no function in F ′ that ǫ′-distinguishes
R and U , we actually only need to assume that there is no function in F ′ that simultaneously ǫ′-
distinguishes U from every R in which D is δ-dense (the quantifiers are swapped). We are interested
in proving lower bounds on the complexity of this type of black-box reduction for the Dense Model
Theorem, where the advice does not depend on R.

The query complexity was considered by Zhang [Zha11], who showed that for a certain type
of nonadaptive black-box reduction, Ω

(
(1/ǫ2) log(1/δ)

)
queries are necessary when ǫ′ ≥ Ω(ǫδ) and

ǫ ≥ δO(1), matching the upper bound of O
(
(1/ǫ2) log(1/δ)

)
for this case. In this paper we consider

the advice complexity. We show that for arbitrary black-box reductions, Ω
(√

(1/ǫ) log(1/δ) ·log |F |
)

advice bits are necessary when ǫ′ ≥ Ω(ǫδ) and ǫ ≥ δO(1), which comes close to matching the upper
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bound of O
(
(1/ǫ2) log(1/δ) · log |F |

)
for this case. Our result also holds for much more general

settings of the parameters (with some degradation in the lower bound). Proving lower bounds on
the computational complexity remains open.

Let us formally state what we mean by a black-box reduction. Recall the standard notation
[k] = {1, . . . , k}.

Definition 4. An (n, ǫ, δ, ǫ′, k, α)-reduction (for the Dense Model Theorem) is a function

Dec :
(
{0, 1}2n)k × {0, 1}α → {0, 1}2n

such that for all f1, . . . , fk ∈ {0, 1}2n
and all D ∈ Dn, if for every M ∈ Dn that is δ-dense in

the uniform distribution U ∈ Dn there exists an i ∈ [k] such that fi ǫ-distinguishes D and M ,
then there exists an advice string a ∈ {0, 1}α such that for every R ∈ Dn in which D is δ-dense,
Dec(f1, . . . , fk, a) ǫ′-distinguishes R and U .

The proofs of [RTTV08, Zha11] work by exhibiting such reductions. We now state our theorem.

Theorem 2 (Main). If there exists an (n, ǫ, δ, ǫ′, k, α)-reduction for the Dense Model Theorem,
and if w > 1 is an integer such that 2w+2 · δw/160 ≤ ǫ′, then α ≥

⌊
1

160w

√
(1/ǫ) log2(1/δ)

⌋
· log2 k −

log2 w − 1, provided 2n ≥ w log2 k
ǫδ2(ǫ′)2 , ǫ ≤ 1/64 log2(1/δ), and k ≥ 1/16ǫ4.

For the very natural case where ǫ′ ≥ Ω(ǫδ) and ǫ ≥ δO(1), the condition 2w+2 · δw/160 ≤ ǫ′ is
met provided w is a sufficiently large constant and δ is less than a sufficiently small constant,2 and
thus we get a lower bound α ≥ Ω

(√
(1/ǫ) log(1/δ) · log k

)
. Note that the three conditions at the

end of the statement of Theorem 2 are very generous.3

We point out that the black-box reductions we consider can be viewed as a kind of analog
of list-decoders for error-correcting codes. In the setting of list-decoding, the decoder is given a
received word and is required to output a list containing all the codewords that are within a certain
Hamming distance of the received word. In the setting of “dense model decoding”, the distribution
D is analogous to the correct codeword, and the decoder is only provided with some “corrupted”
information about D, namely the functions f1, . . . , fk. Note that these functions contain some
information about D, since D can be distinguished from any M δ-dense in U using one of the
fi’s. The decoder must output a list (corresponding to all possible values of the advice string
a ∈ {0, 1}α), but the goal is less ambitious than finding D itself; the list just needs to contain
a function that distinguishes U from every R in which D is δ-dense. Thus advice lower bounds
for the Dense Model Theorem are a kind of analog of list size lower bounds for list-decoding. See
Section 1.1 for previous work on list size lower bounds (as well as other previous work that is
relevant to the topic of this paper). For the case of approximate local list-decoding (also known as
hardness amplification), getting the number of advice bits from poly(1/ǫ) down to the lower bound
of Ω(log(1/ǫ)) proved to be quite a challenge [IJKW10]. In contrast, we show that in the setting
of the Dense Model Theorem, the known advice lengths are already in the right regime, namely
poly(1/ǫ).

2The statement of Theorem 2 requires δ < 2−160. This constant can be drastically improved; we chose 2−160 since
it is convenient for the proof.

3The bound 2n
≥

w log
2

k

ǫδ2(ǫ′)2
can be relaxed somewhat. We chose this bound since it is reasonable and is convenient

to state.
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Figure 2: The majority of majorities

The rest of this paper is devoted to proving Theorem 2. In Section 2 we give some intuition
for the proof, and then in Section 3 we give the formal proof. We now give a quick preview of
some of the ingredients that go into the proof. We use the probabilistic method to find a class of
functions f1, . . . , fk for which many advice strings are needed to “cover” all the distributions D that
do not have dense models. The key technical ingredients in the analysis include (1) a combinatorial
argument identifying when several distributions D cannot share the same advice string, and (2) an
analysis of a majority of majorities applied to overlapping sets of p-biased bits, where the sets form
an almost-disjoint family (see Figure 2). The latter analysis makes use of extremely tight lower
bounds on the tail probabilities of the binomial distribution, which we also prove.

1.1 Related Work

Lu, Tsai, and Wu [LTW11] proved lower bounds on the computational complexity, query complex-
ity, and advice complexity of black-box reductions for the Hardcore Lemma (which was introduced
by Impagliazzo [Imp95]). Our proof bears some similarity to their advice lower bound proof, but
it diverges significantly. Zhang [Zha11] proved tight lower bounds on the query complexity of
nonadaptive black-box reductions for the Dense Model Theorem, again with a proof somewhat
reminiscent of the corresponding argument in [LTW11].

There has been extensive work on lower bounds for black-box hardness amplification and list-
decoding of error-correcting codes. Regarding advice complexity, Guruswami and Vadhan [GV10]
and Blinovsky [Bli86] proved a tight Ω(1/ǫ2) list size lower bound for decoding arbitrary binary
error-correcting codes up to radius 1/2− ǫ. Lu, Tsai, and Wu [LTW08] proved similar advice lower
bounds for black-box hardness amplification. List size lower bounds for decoding from erasures can
be found in [Gur03, Wat11]. Regarding query complexity, Shaltiel and Viola [SV10] proved lower
bounds for nonadaptive black-box hardness amplification, matching the upper bounds known for the
XOR Lemma [Lev87, Imp95, GNW95, KS03]. Artemenko and Shaltiel [AS11] proved lower bounds
for adaptive black-box hardness amplification, which are not tight in general but are tight in some
settings. Regarding computational complexity, Shaltiel and Viola [SV10] showed that decoders for
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black-box hardness amplification must implicitly compute majority on Θ(1/ǫ) bits and hence such
decoders cannot be implemented with small constant-depth circuits when ǫ is small. Gutfreund
and Rothblum [GR08] showed that adaptive local list-decoders for binary codes must implicitly
compute majority on Θ(1/ǫ) bits to handle radius 1/2 − ǫ, under a restriction on the list size.

2 Intuition

According to Definition 4, for Dec to succeed as a reduction, it must be the case that for all
f1, . . . , fk ∈ {0, 1}2n

and all D ∈ Dn, if D has no “dense model” then there is some advice string
a such that Dec(f1, . . . , fk, a) “covers” D in a certain sense. To show that Dec needs many advice
strings in order to succeed, we find functions f1, . . . , fk ∈ {0, 1}2n

and a large family of distributions
in Dn such that

(i) each distribution in the family has no dense model (with respect to f1, . . . , fk), and

(ii) each function f ∈ {0, 1}2n
covers few of the distributions in the family.

So (i) implies that each distribution in the family needs to get covered, while (ii) implies that for
each advice string a, Dec(f1, . . . , fk, a) does not cover very many of them. Since the family is large,
many advice strings are needed. First we describe a technique for achieving (i), then we describe
a technique for achieving (ii), and then we show how to consolidate the techniques to achieve both
properties simultaneously. The only distributions D we need to consider are uniform distributions
over subsets of {0, 1}n.

Given f1, . . . , fk ∈ {0, 1}2n
, what is an example of a distribution with no dense model? Suppose

we pick any I ⊆ [k] of size 1/4ǫ and we let XI be the set of all x ∈ {0, 1}n such that fi(x) = 1 for
the majority of i ∈ I. Suppose we take DI to be the uniform distribution over XI . Then we have
Prx∼DI , i∼I [fi(x) = 1] ≥ 1/2 + 2ǫ where i ∼ I means picking i ∈ I uniformly at random. If XI is
roughly a δ/2 fraction of {0, 1}n, then every distribution M that is δ-dense in U has at least half
its mass outside of XI , on strings x where Pri∼I [fi(x) = 1] ≤ 1/2 − 2ǫ. It is possible to show that
Prx∼M, i∼I [fi(x) = 1] < Prx∼DI , i∼I [fi(x) = 1]− ǫ and thus there exists an i ∈ I (depending on M)
such that fi ǫ-distinguishes DI and M . So if |XI | ≈ (δ/2)2n then DI has no dense model. This is
the technique we use for finding distributions without dense models.

Now, what is an example of a pair of distributions such that no function can cover both simulta-
neously? If we can show that every pair of distributions in the family is like this, then we will have
achieved (ii). Because of an issue described below, we actually need to consider small collections
of distributions rather than just pairs, but for now we consider pairs. Suppose D is uniform over
some X ⊆ {0, 1}n of size roughly (δ/2)2n, and similarly D′ is uniform over some X ′ ⊆ {0, 1}n of
size roughly (δ/2)2n. If X ∩X ′ = ∅, then it can be shown that no function covers both D and D′.4

Furthermore, if |X ∩ X ′| is at most roughly ǫ′2n then this property still holds.
To consolidate the two techniques, we would like to find a large family of sets I ⊆ [k] each of

size 1/4ǫ, such that

(A) |XI | ≈ (δ/2)2n for each I in the family, and

(B) the pairwise intersections of the XI ’s (for I in the family) all have size at most roughly ǫ′2n.

4Actually, there is an issue having to do with the absolute value signs in the definition of distinguishing; this is
dealt with in the formal proof.
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This would imply that the corresponding distributions DI (for I in the family) have no dense
models, and no function would cover more than one of them, so (i) and (ii) would be achieved.

We choose the functions f1, . . . , fk ∈ {0, 1}2n
randomly in some way, and we argue that for

an appropriate family of sets I, properties (A) and (B) both hold with high probability. Property
(A) suggests that we should choose p so that the probability a majority of 1/4ǫ independent coins
each with expectation p come up 1 is exactly δ/2. Then we can set fi(x) = 1 with probability p
independently for each i ∈ [k] and each x ∈ {0, 1}n, so for each I of size 1/4ǫ, Pr[x ∈ XI ] = δ/2.
Then by concentration, |XI | ≈ (δ/2)2n with high probability over f1, . . . , fk.

If we choose f1, . . . , fk randomly in this way, how big will |XI ∩ XI′ | be, for I and I ′ in the
family? By concentration, we would have that with high probability over f1, . . . , fk, |XI ∩ XI′ | is
roughly 2n times Pr[x ∈ XI ∩ XI′ ] (which is the same for all x ∈ {0, 1}n), so we would like the
latter probability to be ≤ ǫ′. So what is the probability that the conjunction of two majorities of
p-biased bits is 1? The best case is if I ∩ I ′ = ∅, in which case the probability is exactly (δ/2)2.
There are two problems with this.

(1) We cannot get a very large family of sets I if we require them to be pairwise disjoint.

(2) This requires ǫ′ ≥ (δ/2)2. In a typical setting where ǫ′ ≥ Ω(ǫδ), this would require ǫ > δ,
which is an odd and somewhat severe restriction.

To solve problem (1), we use the natural idea to allow the sets I to be pairwise almost-disjoint,
rather than disjoint (which allows us to get a much larger family). So if |I∩I ′| is at most some value
b, how small does b have to be to ensure that the probability both majorities are 1 is not much more
than (δ/2)2? We analyze this using the following trick: If both majorities are 1, then the fraction

of coins that are 1 among I ∪ I ′ is at least q, where q = 1/2 − 2ǫb = 1/4ǫ−b
1/2ǫ ≤ |I|/2+|I′|/2−b

|I∪I′| . Using

an extremely tight characterization of the tail probabilities of the binomial distribution (which we
prove using known techniques but which we could not find in the literature), we can show that
p ≈ 1/2 −

√
ǫ log(1/δ) and the probability of getting ≥ q fraction of 1’s among the |I ∪ I ′| coins

is not much more than (δ/2)2 provided q is at least a constant factor closer to 1/2 than p is, say
q ≈ 1/2 −

√
ǫ log(1/δ)/4. Thus it suffices to have b ≈

√
ǫ log(1/δ)/8ǫ ≥ Ω

(√
(1/ǫ) log(1/δ)

)
. Since

the family of sets I needs to be in the universe [k], there exists such a family of roughly kb many
sets with pairwise intersections bounded in size by b. Since each function can cover DI for only one
I in the family, roughly kb advice strings are needed, which gives an advice lower bound of roughly
log(kb) ≥ Ω

(√
(1/ǫ) log(1/δ) · log k

)
.

Problem (2) is solved in the formal proof by considering small collections of sets from the family,
rather than pairs. The parameter w in Theorem 2 is used to determine how big these collections
should be. Then instead of requiring that the conjunction of two majorities accepts with small
probability, we need that the majority of several majorities accepts with small probability, which
explains where Figure 2 comes from.

3 Formal Proof

In Section 3.1, Section 3.2, and Section 3.3 we give preliminary lemmas, definitions, and notation.
Then in Section 3.4 we give the proof of Theorem 2.
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3.1 Binomial Distribution Tail

We let Tail(m, p, q) denote the probability that when m independent coins are flipped each with
probability p of heads, at least a q fraction of the coins are heads (in other words, the probability
the (m, p) binomial distribution is at least qm). For our proof of Theorem 2 we need extremely
tight upper and lower bounds on the value of Tail(m, p, q). Such bounds can be given in terms of
the fundamental quantity

RE(q‖p) = q log2(
q
p) + (1 − q) log2(

1−q
1−p)

which is known by a variety of names such as relative entropy, information divergence, and Kullback-
Leibler distance.5

We need the following fact, which can be seen using derivatives.

Fact 1. For all 1/4 ≤ p ≤ q ≤ 3/4, we have 2(q − p)2 ≤ RE(q‖p) ≤ 4(q − p)2.

We also need the following standard and well-known form of the Chernoff-Hoeffding bound.

Lemma 1. For all m ≥ 1 and all 0 ≤ p ≤ q ≤ 1, we have Tail(m, p, q) ≤ 2−RE(q‖p)m.

Lemma 1 is very tight, as shown by the following lemma, which we prove for completeness.

Lemma 2. For all m ≥ 1 and all 1/4 ≤ p ≤ q ≤ 1, we have Tail(m, p, q) ≥ 1
48

√
m

· 2−RE(q‖p)m.

Proof. First, assume that qm is an integer. Then lower bounding Tail(m, p, q) by the first term of
the sum, we have

2RE(q‖p)m · Tail(m, p, q) ≥ 2RE(q‖p)m ·
(

m
qm

)
pqm(1 − p)(1−q)m

= qqm(1−q)(1−q)m

pqm(1−p)(1−q)m ·
( m
qm

)
pqm(1 − p)(1−q)m

= qqm(1 − q)(1−q)m ·
( m
qm

)

≥ qqm(1 − q)(1−q)m · 1
3
√

qm · 1
qqm(1−q)(1−q)m

≥ 1
3
√

m

where the fourth line follows by Stirling approximations. Now suppose qm is not an integer, and
let q′ = ⌈qm⌉/m. Then we have Tail(m, p, q) = Tail(m, p, q′) ≥ 1

3
√

m
· 2−RE(q′‖p)m. We claim

that RE(q′‖p) − RE(q‖p) ≤ 4/m, from which it follows that 2−RE(q′‖p)m/2−RE(q‖p)m ≥ 1/16 and
thus Tail(m, p, q) ≥ 1

48
√

m
· 2−RE(q‖p)m. We now argue the claim. Since q′ ≤ q + 1/m, we have

q′ log2(
q′

p )−q log2(
q
p) ≤ (1/m) log2(

1
p)+q log2(

q+1/m
q ). We have (1/m) log2(

1
p) ≤ 2/m since p ≥ 1/4,

and we have q log2(
q+1/m

q ) ≤ q · 2/qm = 2/m. Thus q′ log2(
q′

p ) − q log2(
q
p) ≤ 4/m. Since q′ ≥ q,

we have (1 − q′) log2(
1−q′

1−p ) − (1 − q) log2(
1−q
1−p) ≤ 0. Summing gives the claim.

Although Lemma 2 is very simple and general, for our purpose we can only use it for a limited
range of parameters, namely when ǫ ≫ δ. This is because RE(q‖p) could be so close to 0 that 1

48
√

m

completely swamps 2−RE(q‖p)m, in which case Lemma 2 is not very tight. To handle the full range
of ǫ and δ, we use the following stronger lower bound for the case q = 1/2.

5RE is more often notated D or DKL, but we use RE to avoid confusion with our distributions D.
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Lemma 3. For all m ≥ 9 and all 1/4 ≤ p < 1/2, we have

Tail(m, p, 1/2) ≥ min
(

1
256 , 1

128
√

m(1/2−p)

)
· 2−RE(1/2‖p)m.

Proof. Let q = ⌈m/2⌉/m. Let h = ⌊√m/3⌋, and note that 1 ≤ h ≤ (1 − q)m. We have

2RE(q‖p)m · Tail(m, p, q) = qqm(1−q)(1−q)m

pqm(1−p)(1−q)m · ∑(1−q)m
i=0

( m
qm+i

)
pqm+i(1 − p)(1−q)m−i

= qqm(1 − q)(1−q)m · ∑(1−q)m
i=0

( m
qm+i

)( p
1−p

)i

= qqm(1 − q)(1−q)m · ∑(1−q)m
i=0

( m
qm

)( p
1−p

)i ∏i
j=1

(
1 + m−2qm−i

qm+j

)

≥ 1
3
√

qm · ∑(1−q)m
i=0

( p
1−p

)i ∏i
j=1

(
1 + m−2qm−i

qm+j

)

≥ 1
3
√

qm · ∑(1−q)m
i=0

( p
1−p

)i(
1 − 2(i+1)

m

)i

≥ 1
3
√

qm ·
(
1 − 2(h+1)

m

)h · ∑h
i=0

( p
1−p

)i

≥ 1
3
√

qm ·
(
1 − 2h(h+1)

m

)
· ∑h

i=0

( p
1−p

)i

≥ 1
6
√

qm · ∑h
i=0

( p
1−p

)i

= 1
6
√

qm · 1−( p
1−p

)h+1

1− p
1−p

≥ 1
6
√

qm · 1−e
−(1−

p
1−p

)h

1− p
1−p

where the fourth line follows by
( m
qm

)
≥ 1

3
√

qm · 1
qqm(1−q)(1−q)m which holds by Stirling approximations,

the fifth line follows by 1/2 ≤ q ≤ 1/2 + 1/2m, and the eighth line follows by the definition of h
and m ≥ 9. If (1 − p

1−p)h < 1 then the expression is at least

1
6
√

qm · 1−
(
1− 1

2
(1− p

1−p
)h

)

1− p
1−p

= h
12

√
qm ≥ 1

64 .

If (1 − p
1−p)h ≥ 1 then the expression is at least

1
6
√

qm · 1−1/e
1− p

1−p

≥ 1
10

√
qm · 1

1− p
1−p

≥ 1
10

√
qm · 1

4·(1/2−p) ≥ 1
32

√
m(1/2−p)

where the last inequality uses m ≥ 9. Thus we have shown that in either case,

Tail(m, p, 1/2) = Tail(m, p, q) ≥ min
(

1
64 , 1

32
√

m(1/2−p)

)
· 2−RE(q‖p)m.

To finish the proof, we just need to show that 2−RE(q‖p)m/2−RE(1/2‖p)m ≥ 1/4. For this, it suffices to

show that RE(q‖p)−RE(1/2‖p) ≤ 2/m. Since q ≤ 1/2+1/2m, we have q log2(
q
p)−(1/2) log2(

1/2
p ) ≤

(1/2m) log2(
1
p) + (1/2) log2(

1/2+1/2m
1/2 ). We have (1/2m) log2(

1
p) ≤ 1/m since p ≥ 1/4, and we have

(1/2) log2(
1/2+1/2m

1/2 ) ≤ (1/2) ·2/m = 1/m. Thus q log2(
q
p)−(1/2) log2(

1/2
p ) ≤ 2/m. Since q ≥ 1/2,

we have (1−q) log2(
1−q
1−p)−(1−1/2) log2(

1−1/2
1−p ) ≤ 0. Summing yields RE(q‖p)−RE(1/2‖p) ≤ 2/m.
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3.2 Combinatorial Designs

For our proof of Theorem 2 we need the existence of large families of almost-disjoint subsets of a
finite set. Such combinatorial designs have numerous applications in theoretical computer science,
one of the more famous being in the pseudorandom generator construction of Nisan and Wigderson
[NW94].

Definition 5. An (ℓ, k, s, b)-design is a family of sets I1, . . . , Iℓ ⊆ [k] all of size s such that |Ij ∩
Ij′ | ≤ b for every j 6= j′.

Lemma 4. For every k, s, b there exists an (ℓ, k, s, b)-design with ℓ ≥ kb/8, provided k ≥ 16s4.

The proof uses the probabilistic method with a simple concentration bound for the hypergeo-
metric distribution. There is nothing very novel about this lemma, but we provide a proof since
we could not find this precise version in the literature.

Proof. If b = 0 then the lemma holds trivially, so assume b ≥ 1. Let ℓ = ⌈kb/8⌉. We pick sets
I1, . . . , Iℓ independently and uniformly at random from all subsets of [k] of size s, and we argue
that with positive probability I1, . . . , Iℓ forms an (ℓ, k, s, b)-design. We claim that for every j, j′ ∈ [ℓ]
with j 6= j′, Pr

[
|Ij ∩ Ij′ | > b

]
≤ 2k−b/2. From this it follows by a union bound that

Pr
[
I1, . . . , Iℓ does not form an (ℓ, k, s, b)-design

]
≤

(ℓ
2

)
· 2k−b/2 < ℓ2 · k−b/2 ≤ 1

where the final inequality ⌈kb/8⌉ ≤ kb/4 follows by k ≥ 16 and b ≥ 1. To prove the claim,
consider any j 6= j′ and fix any particular choice of Ij . Now consider picking points i1, . . . , is ∈ [k]
independently and uniformly at random (with replacement). Since the expected number of points
that land in Ij is s2/k, a standard relative-error form of the Chernoff bound tells us that

Pri1,...,is

[
|{h : ih ∈ Ij}| > b

]
≤

(
es2

bk

)b ≤ k−b/2

using es2 ≤ k1/2 and b ≥ 1 (where e is the base of the natural logarithm). The probability
that i1, . . . , is are all distinct is at least 1 −

(s
2

)
/k ≥ 1/2 by a union bound and using k ≥ s2.

Conditioning on the event that i1, . . . , is are all distinct is equivalent to sampling Ij′ = {i1, . . . , is}
of size s uniformly at random, and probabilities increase by at most a factor of 2 conditioned on
this event. Thus Pr

[
|Ij ∩ Ij′ | > b

]
≤ 2k−b/2, as claimed.

3.3 Notational Preliminaries

The parameters n, ǫ, δ, ǫ′, k, and w are fixed as in the statement of Theorem 2, and we always
use D,M,R,U (possibly subscripted) to denote distributions in Dn, in their respective roles as in
Definition 4.

We let Maj denote the majority function on bit strings, and for even length strings we break
ties by returning 1. We let And denote the and function on bit strings. We let Majt denote the
function that takes t bit strings and returns their majorities as a length-t bit string (and similarly
for Andt). We use ◦ for function composition.

We also adhere to the following notational conventions. We use x for elements of {0, 1}n and
X for subsets of {0, 1}n. We use f for elements of {0, 1}2n

(identified with functions from {0, 1}n

to {0, 1}) and F for subsets of {0, 1}2n
. We use [k] to index functions f , and we use i for elements
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of [k] and I for subsets of [k]. We use [ℓ] to index subsets I (as in Definition 5), and we use j for
elements of [ℓ] and J for subsets of [ℓ]. Furthermore, we generally use s for the size of I, and t for
the size of J .

The following notation is with respect to fixed f1, . . . , fk ∈ {0, 1}2n
. Given I ⊆ [k] we define

• fI is the function that takes x ∈ {0, 1}n and returns the length-|I| bit string (fi(x))i∈I ;

• XI is the set of x ∈ {0, 1}n on which Maj ◦fI returns 1;

• DI is the uniform distribution over XI (and if XI = ∅ then DI is undefined).

The following notation is with respect to fixed f1, . . . , fk ∈ {0, 1}2n
and fixed I1, . . . , Iℓ ⊆ [k].

Given J ⊆ [ℓ] we define

• fIJ
is the function that takes x ∈ {0, 1}n and returns the |J |-tuple (fIj

(x))j∈J ;

• XIJ
is the set of x ∈ {0, 1}n on which Maj ◦Maj|J | ◦fIJ

returns 1.

We use ∼ to denote sampling from a distribution (for example x ∼ D), and we use the convention
that sampling from a set (for example i ∼ I) means sampling from the uniform distribution over
that set.

3.4 Proof of Theorem 2

Consider an arbitrary function

Dec :
(
{0, 1}2n)k × {0, 1}α → {0, 1}2n

.

Supposing that α <
⌊

1
160w

√
(1/ǫ) log2(1/δ)

⌋
· log2 k − log2 w − 1, we show that Dec is not an

(n, ǫ, δ, ǫ′, k, α)-reduction. We first introduce some terminology to make things concise. Given
f1, . . . , fk ∈ {0, 1}2n

, a dense model for D ∈ Dn is an M ∈ Dn that is δ-dense in the uniform
distribution U ∈ Dn and is such that for all i ∈ [k], fi does not ǫ-distinguish D and M . We say a
function f ∈ {0, 1}2n

covers D ∈ Dn if for every R ∈ Dn in which D is δ-dense, f ǫ′-distinguishes
R and U .

Thus to show that Dec is not an (n, ǫ, δ, ǫ′, k, α)-reduction, we need to find f1, . . . , fk ∈ {0, 1}2n

such that some D has no dense model but is not covered by Dec(f1, . . . , fk, a) for any advice string
a ∈ {0, 1}α.

3.4.1 Distributions Without Dense Models

The following claim is our tool for finding distributions that have no dense models.

Claim 1. For every f1, . . . , fk ∈ {0, 1}2n
and every I ⊆ [k] of size 0 < s ≤ 1/4ǫ (for some s), if

0 < |XI | ≤ (2δ/3)2n then DI has no dense model.

Proof. We only consider the case when s is odd (essentially the same argument works when s is
even). Suppose we pick i ∈ I uniformly at random. Then for each x ∈ XI we have Pri∼I [fi(x) =
1] ≥ 1/2 + 1/2s ≥ 1/2 + 2ǫ, and for each x ∈ {0, 1}n\XI we have Pri∼I [fi(x) = 1] ≤ 1/2 − 1/2s ≤
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1/2 − 2ǫ. Thus we have Prx∼DI , i∼I [fi(x) = 1] ≥ 1/2 + 2ǫ. Now consider an arbitrary M that is
δ-dense in U . We have

Prx∼M, i∼I [fi(x) = 1] ≤ Prx∼M [x 6∈ XI ] · (1/2 − 2ǫ) +
∑

x∗∈XI
Prx∼M [x = x∗] · Pri∼I [fi(x

∗) = 1]

≤
(
1 − |XI |/δ2n

)
· (1/2 − 2ǫ) +

∑
x∗∈XI

(1/δ2n) · Pri∼I [fi(x
∗) = 1]

=
(
1 − |XI |/δ2n

)
· (1/2 − 2ǫ) + (|XI |/δ2n) · Prx∼DI , i∼I [fi(x) = 1]

≤ (1/3) · (1/2 − 2ǫ) + (2/3) · Prx∼DI , i∼I [fi(x) = 1]

= Prx∼DI , i∼I [fi(x) = 1] − (1/3) ·
(
Prx∼DI , i∼I [fi(x) = 1] − (1/2 − 2ǫ)

)

≤ Prx∼DI , i∼I [fi(x) = 1] − (1/3) · 4ǫ.
Here the second line follows because Pri∼I [fi(x

∗) = 1] > 1/2 − 2ǫ holds for all x∗ ∈ XI and
thus the whole expression only gets larger by shifting probability mass from {0, 1}n\XI to XI .
Similarly, the fourth line follows because the third line is a convex combination of 1/2 − 2ǫ and
Prx∼DI , i∼I [fi(x) = 1], so the whole expression gets larger by shifting weight to the larger of the
two.

Since Prx∼DI , i∼I [fi(x) = 1] − Prx∼M, i∼I [fi(x) = 1] > ǫ, there must exist an i ∈ I such that
EDI

[fi]−EM [fi] > ǫ and thus fi ǫ-distinguishes DI and M . Hence M is not a dense model for DI .
This finishes the proof of Claim 1.

3.4.2 Distributions That Cannot Be Covered

We say a function f ∈ {0, 1}2n
positively covers D ∈ Dn if for every R ∈ Dn in which D is δ-dense,

ER[f ]−EU [f ] > ǫ′ (note the absence of absolute value signs). Observe that if f ∈ {0, 1}2n
covers D

then either f or its complement positively covers D. This is because if there existed R1, R2 ∈ Dn

in which D is δ-dense and such that ER1 [f ] < EU [f ] < ER2 [f ], then some convex combination R3

of R1 and R2 would have ER3 [f ] = EU [f ]. However, D would be δ-dense in R3 since the set of R
in which D is δ-dense is convex, so f would not cover D.

Claim 2. For every f1, . . . , fk ∈ {0, 1}2n
, every I1, . . . , Iℓ ⊆ [k] (for some ℓ), and every J ⊆ [ℓ] of

size t > 1 (for some t), if |XIJ
| ≤ (ǫ′/2)2n and |XIj

| ≥ (δ/2− ǫ′/4)2n for all j ∈ J then there is no
function that simultaneously positively covers DIj

for all j ∈ J .

Proof. Assume that |XIJ
| ≤ (ǫ′/2)2n and |XIj

| ≥ (δ/2−ǫ′/4)2n for all j ∈ J . Consider an arbitrary

f ∈ {0, 1}2n
and let X be the set of x ∈ {0, 1}n such that f(x) = 1. For τ ∈ {0, 1, . . . , t} let X(τ)

be the set of x ∈ {0, 1}n such that there are exactly τ values of j ∈ J for which x ∈ XIj
(in other

words, (Majt ◦fIJ
)(x) has Hamming weight τ). Note that XIJ

=
⋃t

τ=t′ X
(τ) where t′ = ⌈t/2⌉. Let

π = minj∈J

[
EDIj

[f ]
]
. Then for every j ∈ J we have |X ∩XIj

| ≥ π · |XIj
| ≥ π · (δ/2− ǫ′/4)2n. We

have

(t/2) ·
(
|X| + |XIJ

|
)

≥ (t/2) · |X ∩ XIJ
| + t · |X ∩ XIJ

|
≥ ∑t

τ=0 τ · |X ∩ X(τ)|
=

∑
j∈J |X ∩ XIj

|
≥ t · π · (δ/2 − ǫ′/4)2n

which implies that

|X| ≥ π · (δ − ǫ′/2)2n − |XIJ
| ≥ πδ2n − ǫ′2n = (π − ǫ′/δ) · δ2n
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since π ≤ 1 and |XIJ
| ≤ (ǫ′/2)2n. Let M be a distribution δ-dense in U that maximizes EM [f ],

and observe that
EM [f ] = min

(
|X|/δ2n, 1

)
≥ π − ǫ′/δ.

We have U = δM + (1 − δ)M̂ for some M̂ ∈ Dn. Let j ∈ J be such that EDIj
[f ] = π, and define

the distribution R = δDIj
+ (1 − δ)M̂ so that DIj

is δ-dense in R. Then we have

ER[f ] = δπ + (1 − δ) E
cM

[f ]

and
EU [f ] = δ EM [f ] + (1 − δ) E

cM
[f ] ≥ δπ − ǫ′ + (1 − δ) E

cM
[f ] = ER[f ] − ǫ′

so f does not positively cover DIj
. This finishes the proof of Claim 2.

3.4.3 Setting the Parameters

Define s = ⌊1/4ǫ⌋ and t = w and b =
⌊

1
20t

√
(1/ǫ) log2(1/δ)

⌋
. By Lemma 4 there exists an

(ℓ, k, s, b)-design I1, . . . , Iℓ with ℓ = ⌈kb/8⌉ (note that we do have k ≥ 16s4). Define p to be such
that Tail(s, p, 1/2) = δ/2.

Claim 3. 1
2

√
ǫ log2(1/δ) ≤ 1/2 − p ≤ 2

√
ǫ log2(1/δ) ≤ 1/4.

Proof. The bound 2
√

ǫ log2(1/δ) ≤ 1/4 holds by our assumption ǫ ≤ 1/64 log2(1/δ). To prove the
upper bound on 1/2 − p, define p′ = 1/2 − 2

√
ǫ log2(1/δ) ≥ 1/4. Then we have

Tail
(
s, p′, 1/2

)
≤ 2−RE(1/2‖p′)s ≤ 2−2(1/2−p′)2s = δ8ǫs ≤ δ8/5 < δ/2

by Lemma 1 and Fact 1, and where the penultimate inequality uses ǫ ≤ 1/20. Thus p ≥ p′. To
prove the lower bound on 1/2− p, assume it does not hold. Then we would have the contradiction

δ/2 ≥ min
(

1
256 , 1

128
√

s(1/2−p)

)
· 2−RE(1/2‖p)s

≥ min
(

1
256 , 1

32
√

log2(1/δ)

)
· 2−RE(1/2‖p)s

≥ δ1/2 · 2−RE(1/2‖p)s

≥ δ1/2 · 2−4(1/2−p)2s

≥ δ1/2 · 2−(1/2−p)2/ǫ

≥ δ1/2 · δ1/4

where the first line follows by Lemma 3 (note that we do have s ≥ 9), the third line follows by6

δ ≤ 2−16, and the fourth line follows by Fact 1. This finishes the proof of Claim 3.

6The existence of w in the statement of Theorem 2 actually implies δ ≤ 2−160.
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3.4.4 The Majority of Majorities

We choose f1, . . . , fk randomly by setting fi(x) = 1 with probability p independently for each i ∈ [k]
and each x ∈ {0, 1}n.

Claim 4. For every J ⊆ [ℓ] of size t and every x ∈ {0, 1}n, we have Prf1,...,fk
[x ∈ XIJ

] ≤ ǫ′/4.

Proof. Define t′ = ⌈t/2⌉. Note that if (Maj ◦Majt ◦fIJ
)(x) = 1 then there exists a subset J ′ ⊆ J of

size t′ such that (And ◦Majt
′ ◦fIJ′

)(x) = 1. Thus we have

Prf1,...,fk

[
(Maj ◦Majt ◦fIJ

)(x) = 1
]

≤ 2t · maxJ ′⊆J : |J ′|=t′ Prf1,...,fk

[
(And ◦Majt

′ ◦fIJ′
)(x) = 1

]
.

Consider an arbitrary J ′ ⊆ J of size t′. Define m =
∣∣⋃

j∈J ′ Ij

∣∣ and notice that since I1, . . . , Iℓ is an
(ℓ, k, s, b)-design, by inclusion-exclusion we have

t′s −
(t′

2

)
b ≤ m ≤ t′s. (1)

Define s′ = ⌈s/2⌉ and q = 1/2 − t′b/2s. If (And ◦Majt
′ ◦fIJ′

)(x) = 1 then for each j ∈ J ′ we have∑
i∈Ij

fi(x) ≥ s′ and so by inclusion-exclusion we have

∑
i∈S

j∈J′ Ij
fi(x) ≥

( ∑
j∈J ′

∑
i∈Ij

fi(x)
)
−

(t′

2

)
b ≥ t′s′ −

(t′

2

)
b ≥ qt′s ≥ qm.

It follows that

Prf1,...,fk

[
(And ◦Majt

′ ◦fIJ′
)(x) = 1

]
≤ Prf1,...,fk

[∑
i∈

S

j∈J′ Ij
fi(x) ≥ qm

]

= Tail(m, p, q)

≤ 2−RE(q‖p)m

=
(
2−RE(1/2‖p)s

)(m/s)·(RE(q‖p)/ RE(1/2‖p))

≤
(
δ1/10

)(m/s)·(RE(q‖p)/ RE(1/2‖p))

where the third line follows by Lemma 1 and the fifth line follows by nonnegativity of RE and

2−RE(1/2‖p)s ≤ 2−2(1/2−p)2s ≤ δǫs/2 ≤ δ1/10

which holds by Fact 1, Claim 3, and ǫ ≤ 1/20. We have

m/s ≥ t′ − (t′)2b/2s ≥ t′/2 ≥ t/4 (2)

by (1) and b ≤ s/t′ (which can be shown using the final inequality in Claim 3). We also have
t′b/2s ≤ 1

8

√
ǫ log2(1/δ) and thus q − p ≥ 3

4 (1/2 − p) by Claim 3. Hence by Fact 1 we have

RE(q‖p)/RE(1/2‖p) ≥ (q−p)2

2(1/2−p)2 ≥ ( 3
4
(1/2−p))2

2(1/2−p)2 ≥ 1/4. (3)

Using (2) and (3) we get

Prf1,...,fk

[
(And ◦Majt

′ ◦fIJ′
)(x) = 1

]
≤

(
δ1/10

)(t/4)·(1/4)
= δt/160.

We conclude that
Prf1,...,fk

[x ∈ XIJ
] ≤ 2t · δt/160 ≤ ǫ′/4.

This finishes the proof of Claim 4.
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3.4.5 Putting It All Together

For every j ∈ [ℓ] and every x ∈ {0, 1}n, we have Prf1,...,fk
[x ∈ XIj

] = Tail(s, p, 1/2) = δ/2. Standard
relative-error forms of the Chernoff bound give

Prf1,...,fk

[
|XIj

| < (δ/2 − ǫ′/4)2n
]

≤ e−2n(ǫ′)2/16δ

Prf1,...,fk

[
|XIj

| > (2δ/3)2n
]

≤ e−2nδ/54

Prf1,...,fk

[
|XIJ

| > (ǫ′/2)2n
]

≤ e−2nǫ′/12

where the latter holds for each J ⊆ [ℓ] of size t, using Claim 4. Thus by a union bound we have

Prf1,...,fk

[
(δ/2 − ǫ′/4)2n ≤ |XIj

| ≤ (2δ/3)2n for all j ∈ [ℓ] and
|XIJ

| ≤ (ǫ′/2)2n for all J ⊆ [ℓ] of size t

]

≥ 1 − ℓ · e−2n(ǫ′)2/16δ − ℓ · e−2nδ/54 −
(ℓ
t

)
· e−2nǫ′/12

> 0

since 2n ≥ t log2 k
ǫδ2(ǫ′)2

. Fix a choice of f1, . . . , fk such that the above event occurs.

For every J∗ ⊆ [ℓ] of size 2t−1, there is no a ∈ {0, 1}α such that Dec(f1, . . . , fk, a) simultaneously
covers DIj

for all j ∈ J∗, because otherwise for some J ⊆ J∗ of size t, either Dec(f1, . . . , fk, a) or
its complement would simultaneously positively cover DIj

for all j ∈ J , which would contradict
Claim 2.

Thus for each a ∈ {0, 1}α, the number of j ∈ [ℓ] such that DIj
is covered by Dec(f1, . . . , fk, a)

is at most 2t− 2. This implies that the number of j ∈ [ℓ] for which there exists an a ∈ {0, 1}α such
that Dec(f1, . . . , fk, a) covers DIj

is at most 2α ·(2t−2) < kb/8 ≤ ℓ since α ≤ (b/8) log2 k− log2 t−1.
Thus there exists a j ∈ [ℓ] such that DIj

is not covered by Dec(f1, . . . , fk, a) for any a ∈ {0, 1}α.
By Claim 1, DIj

has no dense model, so Dec is not an (n, ǫ, δ, ǫ′, k, α)-reduction. This finishes the
proof of Theorem 2.

4 Open Problems

The first open problem is to quantitatively improve our lower bound (or give an improved upper
bound) on the advice complexity of black-box reductions for the Dense Model Theorem. It is also
open to give any nontrivial lower bound on the computational complexity.

Another open problem is to give any lower bound (or improved upper bound) on the complexity
of black-box reductions for the original formulation of the Dense Model Theorem, where the advice
is allowed to depend on R.

Gentry and Wichs [GW11a] proved a lemma that is similar in spirit to the Dense Model Theo-
rem, but where the notion of D1 being δ-dense in D2 is replaced by D1 being an extension of D2,
that is, D1 is a distribution on (n+ ℓ)-bit strings whose marginal on the first n bits is D2. It would
be interesting to give lower bounds (or improved upper bounds) on the computational complexity,
query complexity, or advice complexity of black-box reductions for this lemma. Also, the proof
of Gentry and Wichs goes through the Minimax Theorem (as in [Imp95, RTTV08]); it would be
interesting to give a boosting-style proof (as in [Imp95, KS03, BHK09, TTV09, Zha11]).
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