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Abstract

The primary goal of this paper is to define and study the interactive information complexity
of functions. Let f(x, y) be a function, and suppose Alice is given x and Bob is given y.
Informally, the interactive information complexity IC(f) of f is the least amount of information
Alice and Bob need to reveal to each other to compute f . Previously, information complexity
has been defined with respect to a prior distribution on the input pairs (x, y). Our first goal is
to give a definition that is independent of the prior distribution. We show that several possible
definitions are essentially equivalent.

We establish some basic properties of the interactive information complexity IC(f). In par-
ticular, we show that IC(f) is equal to the amortized (randomized) communication complexity
of f . We also show a direct sum theorem for IC(f) and give the first general connection be-
tween information complexity and (non-amortized) communication complexity. We explore the
information complexity of two specific problems – Equality and Disjointness. We conclude with
a list of open problems and research directions.
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1 Introduction

1.1 Information theory for one-way communication

Shannon [Sha48] originally developed his information theory in order to understand the one way
data transmission problem over a channel. For noiseless channel, an important early result in infor-
mation theory is that the cost of transmitting a (random) message X over a channel is closely related
to the entropy H(X) of the message. Recall that H(X) is defined as H(X) := Ex∼X [− log2 PX(x)].
Shannon’s noiseless coding theorem, also known as Shannon’s source coding theorem states that
the cost of sending a signal distributed according to X is essentially H(X):

Theorem 1.1 (Shannons’ noiseless coding theorem). Let C(X) denote the number of bits that the
optimal lossless scheme for sending a sample distributed according to X needs to send across the
channel. Then for all X, H(X) ≤ C(X) < H(X) + 1.

As a corollary, if we demote by Cn := C(Xn) – the cost of sending n independent samples
distributed according to X, then we see that

lim
n→∞

Cn
n

= H(X). (1)

Thus the entropy approximately measures the cost of sending a single message, and exactly measures
the amortized cost of sending many independent messages from the distribution. The noiseless
coding theorem connects the communication cost of sending a message from one player to another
to the information content of the message.

An example of a more subtle one-way transmission scenario where the information-theoretic
bound is asymptotically tight is given by the Slepian-Wolf Theorem [SW73]. We give one of the
interpretations of the result here. Consider the following task: Alice is given an input A which she
needs to transmit to Bob. Bob has an input B which is correlated with A, thus giving Bob partial
information about A. Clearly this task is not harder than the task of transmitting A on its own,
thus H(A) is an upper bound on the amortized transmission cost of this task (i.e. the cost of this
task when it is repeated many times). Can the players do better? For example, in the extreme
case where A is a deterministic function A = F (B), clearly the number of bits that need to be sent
is 0. Turns out that information theory again gives the precise answer to this question:

Theorem 1.2 (Slepian-Wolf coding theorem [SW73]). The amortized communication cost of trans-
mitting the message A to a player that has prior information B is given by the conditional entropy
H(A|B) := H(AB)−H(B).

Remark 1.3. Unlike Shannon’s Theorem, Theorem 1.2 only gives the upper bound in the amortized
sense – when one needs to solve multiple copies of the transmission problem, and the number of
copies goes to infinity. In [BR10] a one-shot version of the theorem was proved – i.e. the transmission
problem is solved in ≈ H(A|B) + o(H(A|B)) bits of transmission – but the protocol solving it is
interactive, rather than a transmission protocol.

These two examples – Shannon’s Noiseless Coding Theorem and the Slepian-Wolf Theorem –
demonstrate the tight connection between the communication cost of one-way transmission prob-
lems and their inherent information costs. Information-theoretic quantities are the “right” tools
to study the transmission complexity of these problems. The goal of this paper is to develop
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the “right” information-theoretic notions for two-way interactive communication problems. Most
importantly, we develop and study the information complexity of two-party problems.

Communication complexity studies the communication cost of functions. In the two player
setting, the main question it tries to answer is: “How many bits do Alice and Bob need to transmit
to each other in order to solve a given problem.” Informally, information complexity tries to answer
the question: “How much information do Alice and Bob need to reveal to each other in order to
solve a give problem?”. While – as discussed below – information theory has been used as a tool
in the study of communication complexity, it is only recently that the information complexity of
interactive problems has been considered in its full generality. The main goal of this paper is to
work out the definition of the (two-party) interactive information complexity, and to initiate the
study of its properties.

1.2 Information tools in communication complexity

Over the past decade, information theory has been an important tool in the study of communication
complexity lower bounds, and their applications to lower bounds for data structures. Chakrabarti,
Shi, Wirth and Yao [CSWY01] were the first to define the external information cost. In [CSWY01]
information theory is used to prove a direct sum theorem for problems with one simultaneous round
of communication. Direct sum theorems (and the related direct product theorems) are theorems
giving lower bounds for the complexity of n copies of a certain problem in terms of the complexity of
one copy. In the context of communication complexity, direct sum theorems in various contexts have
been the focus of much work [FKNN95, CSWY01, Sha03, JRS03, HJMR07, BBCR10, Kla10, Jai11].

Information theoretic tools have also been useful in contexts where the problem is not merely
a repetition of multiple copies but some other aggregation function. A notable example is set
disjointness DISJn, where the players are given two subsets of {1, . . . , n} and need to determine
whether the sets are disjoint or not. If we represent the sets by their indicator strings (x1, . . . , xn)
and (y1, . . . , yn), then the disjointness function can be written as

DISJn((x1, . . . , xn), (y1, . . . , yn)) := ¬
n∨
i=1

(xi ∧ yi). (2)

Here the basic function is the conjunction in xi ∧ yi, and n copies of the conjunction are combined
by the big disjunction over all i. A linear communication lower bound for the problem is known
[KS92, Raz92]. While DISJn is not a direct sum over the (xi∧yi)’s, similar analysis can be adapted,
and information-theoretic techniques yield a linear lower bound on this problem [BYJKS04] –
we will see an extension of these techniques to information complexity in Section 7. Razborov’s
simplified proof can also be cast in this framework. The information-theoretic techniques have
recently been applied to more complicated composition functions rather than just the AND function
[JKR09, LS10, JKZ10]. Information-theoretic reasoning has also been successfully applied in the
simpler deterministic setting [DW07].

The information cost for protocols over distributions of inputs was defined implicitly in [BYJKS04]
and explicitly in [BBCR10]. It is the tool that allows one to obtain the only known direct sum
results for the general randomized communication complexity. If F is a function and R(F ) is its
randomized communication complexity, it has been shown in [BBCR10] that the randomized com-
munication complexity of n copies of F satisfies R(Fn) = Ω̃(

√
n · R(F )). In the follow-up work

[BR10] a tight relationship between the amortized distributional communication complexity of a
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function and its internal information cost has been established. We further extend this relationship
to the non-distributional randomized setting in Section 5.2.

1.3 Main contributions

Interactive information complexity

In [BYJKS04, BBCR10], the information cost ICµ(π) of executing a protocol π over an a-priori
distribution µ of inputs is defined. This immediately yields a definition of the information cost of a
function F with respect to a distribution µ: we simply look for a protocol π for F that minimizes
ICµ(π). It turns out that there is a tight connection between the distributional information cost of
F over µ and the amortized distributional communication complexity of Fn over µn [BR10].

Our first goal is to obtain a definition of the information cost of a function that does not depend
on the a-priori distribution µ. Let f be a two-party function and ρ < 1/3 be an error parameter.
Consider the following three quantities:

1. I1 = I1(f, ρ) is such that for each I > I1 there is a protocol πI that on each input computes f
except with error ≤ ρ, and for each prior distribution µ reveals at most I bits of information
about the inputs to the players. We later denote this quantity by IC (f, ρ).

2. I2 = I2(f, ρ) is such that for each I > I2 and for each prior distribution µ on inputs there
is a protocol πµ,I that computes f correctly except with probability ≤ ρ with respect to the
distribution µ, and that reveals at most I bits of information about the inputs to the players.
We later denote this quantity by ICD(f, ρ).

3. I3 = I3(f, ρ) is the amortized randomized communication complexity of f as the number of

copies goes to ∞: I3 = limn→∞
Rnρ (fn)

n . Here Rnρ (fn) denotes the communication complexity
of computing n copies of f , where the protocol is allowed to err at most a ρ-fraction of the
time on each input.

Note that the difference between I1 and I2 is in the order of quantifiers, and clearly I2 ≤ I1. We
prove that I1 = Θ(I2) (Theorem 3.5), more precisely, we show that

I2(f, ρ) ≤ I1(f, ρ) ≤ 2 · I2(f, ρ/2).

In the special case when ρ = 0 we show that I1(f, 0) = I2(f, 0) (Theorem 3.6). We then establish
the equality I3(f, ρ) = I1(f, ρ) (Theorem 6.7), showing that the information complexity in the
non-distributional case is equal to the amortized communication complexity. These equivalences
establish I1 as the “right” notion of the interactive information complexity of f , which we denote
by IC (f, ρ) := I1.

Properties of the interactive information complexity

We establish some properties of the interactive information complexity. The first one is that the
interactive information complexity is additive (Theorem 4.2). The theorem holds for tasks. A task
can be, for example, computing a function f with an error bounded by ρ. We show that if T1 and
T2 are two tasks, and T := T1 × T2 is the task comprised of performing one of copy of each of the
two tasks, then the information complexity satisfies IC(T ) = IC(T1) + IC(T2).
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Next, we establish a lower bound for the information complexity of any problem in terms
of the communication complexity of the problem. The bound is given by Theorem 5.3. For a
constant ρ the bound is of the form IC(f) = Ω(logR(f)). This is a fairly weak bound, as one may
expect IC(f) = Θ(R(f)) to hold in many cases. Nonetheless, this is the first general bound on the
information revealed by any protocol for a problem in terms of its communication complexity.

The interactive information complexity of specific functions

We consider two specific functions that have been studied extensively in the literature: the equality
function EQ(x, y) = 1x=y and the disjointness function DISJn that we discussed earlier. It turns
out that the information complexity or EQ is constant, even when one does not allow the protocol
to err at all: IC (EQ, 0) = O(1) (Proposition 3.21). This result is in sharp contrast with the fact that
the zero-error randomized communication complexity of the equality function over n-bit strings is
Ω(n).

On the other hand, the information complexity of DISJn turns out to be linear (Theorem 7.2):

IC (DISJn, 1/2− ε) = Ω(n) for all 0 < ε < 1/2.

We give two proofs for this fact. One is through a reduction to the result about the communication
complexity of disjointness, while the second one is a more direct information-theoretic proof.

Directions and open problems

Finally, in Section 8 we outline several research directions and many open problems surrounding
the interactive information complexity.

Acknowledgments
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der Razborov, Michael Saks and Avi Wigderson for the insightful conversations and comments on
earlier drafts of this paper.

2 Preliminaries

In an effort to make the paper as self-contained as possible, we provide some background on
information theory and communication complexity here. Additional details may be found in [BR10].
A more thorough treatment of the subject may be found in the textbooks on the respective subjects
[CT91, KN97]. We note that throughout the paper our protocols will make use of both public and
private randomness.

Notation. We reserve capital letters for random variables and distributions, calligraphic letters
for sets, and small letters for elements of sets. Throughout this paper, we often use the notation |b
to denote conditioning on the event B = b. Thus A|b is shorthand for A|B = b.

We use the standard notion of statistical/total variation distance between two distributions.
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Definition 2.1. Let D and F be two random variables taking values in a set S. Their statistical
distance is

|D − F | def= max
T ⊆S

(|Pr[D ∈ T ]− Pr[F ∈ T ]|) =
1

2

∑
s∈S
|Pr[D = s]− Pr[F = s]|

If |D − F | ≤ ε we shall say that D is ε-close to F . We shall also use the notation D
ε
≈ F to mean

D is ε-close to F .

2.1 Information Theory

Definition 2.2 (Entropy). The entropy of a random variable X is

H(X)
def
=
∑
x

Pr[X = x] log(1/Pr[X = x]).

The conditional entropy H(X|Y ) is defined to be Ey∈RY [H(X|Y = y)].

Fact 2.3. H(AB) = H(A) +H(B|A).

Definition 2.4 (Mutual Information). The mutual information between two random variables
A,B, denoted I(A;B) is defined to be the quantity

H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information I(A;B|C) is H(A|C)−H(A|BC).

In analogy with the fact that H(AB) = H(A) +H(B|A),

Proposition 2.5 (Chain Rule). Let C1, C2, D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

We also use the notion of divergence (also known as Kullback-Leibler distance or relative en-
tropy), which is a different way to measure the distance between two distributions:

Definition 2.6 (Divergence). The informational divergence between two distributions is

D (A||B)
def
=
∑
x

A(x) log(A(x)/B(x)).

For example, if B is the uniform distribution on {0, 1}n then D (A||B) = n−H(A).

Proposition 2.7. Let A,B,C be random variables in the same probability space. For every a in
the support of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c.
Then I(A;B|C) = Ea,c∈RA,C [D (Bac||Bc)]

Lemma 2.8.
D (P1 × P2||Q1 ×Q2) = D (P1||Q1) + D (P2||Q2) .

We will use the following two simple corollaries of the Chain Rule many times throughout the
paper:
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Proposition 2.9. Let A,B,C,D be four random variables such that I(B;D|AC) = 0. Then

I(A;B|C) ≥ I(A;B|CD).

Proof. We apply the chain rule twice:

I(A;B|CD) = I(AD;B|C)− I(D;B|C) = I(A;B|C) + I(D;B|AC)− I(D;B|C)

= I(A;B|C)− I(D;B|C) ≤ I(A;B|C).

Proposition 2.10. Let A,B,C,D be four random variables such that I(B;D|C) = 0. Then

I(A;B|C) ≤ I(A;B|CD).

Proof. Once again, we apply the chain rule twice:

I(A;B|CD) = I(AD;B|C)−I(D;B|C) = I(AD;B|C) = I(A;B|C)+I(D;B|AC) ≥ I(A;B|C).

2.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name A and B. We view a
private coins protocol for computing a function f : X ×Y → ZK as a rooted tree with the following
structure:

• Each non-leaf node is owned by A or by B.

• Each non-leaf node owned by a particular player has a set of children that are owned by the
other player. Each of these children is labeled by a binary string, in such a way that this
coding is prefix free: no child has a label that is a prefix of another child.

• Every node is associated with a function mapping X to distributions on children of the node
and a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

On input x, y, the protocol π is executed as in Figure 1.
A public coin protocol is a distribution on private coins protocols, run by first using shared

randomness to sample an index r and then running the corresponding private coin protocol πr.
Every private coin protocol is thus a public coin protocol. The protocol is called deterministic if
all distributions labeling the nodes have support size 1.

Definition 2.11. The communication cost (or communication complexity) of a public coin protocol
π, denoted CC(π), is the maximum number of bits that can be transmitted in any run of the protocol.

Definition 2.12. The number of rounds of a public coin protocol is the maximum depth of the
protocol tree πr over all choices of the public randomness.
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Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the protocol ends and outputs the value in the label of v. Otherwise, the
player owning v samples a child of v according to the distribution associated with her input
for v and sends the label to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 1: A communication protocol.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the
messages that are sent during the execution of π. We call this the transcript of the protocol. When
referring to the random variable denoting the transcript, rather than a specific transcript, we will
use the notation Π(x, y), thus π(x, y) ∈R Π(x, y). When x and y are random variables themselves,
we will denote the transcript by Π(X,Y ), or just Π. We shall use the notation π(x, y)j or πj to refer
to the j’th transmitted message in the protocol. We write π(x, y)≤j to denote the concatenation
of the public randomness in the protocol with the first j message bits that were transmitted in the
protocol. Given a transcript, or a prefix of the transcript, v, we write CC(v) to denote the number
of message bits in v (i.e. the length of the communication).

Definition 2.13 (Communication Complexity notation). For a function f : X × Y → ZK , a
distribution µ supported on X × Y, and a parameter ρ > 0, Dµ

ρ (f) denotes the communication
complexity of the cheapest deterministic protocol for computing f on inputs sampled according to
µ with error ρ. Rρ(f) denotes the cost of the best randomized public coin protocol for computing
f with error at most ρ on every input.

We should mention the following theorem due to Yao, which we will extend in this paper to
information cost:

Theorem 2.14 (Yao’s Min-Max). Rρ(f) = maxµD
µ
ρ (f).

2.3 Information + communication: the information cost of a protocol

In the sections that follow we will develop the information complexity theory for interactive com-
munication. The most basic definition is that of the information cost of a protocol. This notion is
implicit in [BYJKS04], and was explicitly defined in [BBCR10] (see also [BR10]).

Definition 2.15. The information cost of a protocol π over inputs from X × Y is given by:

ICµ(π) := I(Π;X|Y ) + I(Π;Y |X).

Intuitively, Definition 2.15 captures what the two parties learn about each other’s inputs from the
execution transcript of the protocol π. The first term captures what the second player learns about
X from Π – the mutual information between the input X and the transcript Π given the input Y .
Similarly, the second term captures what the first player learns about Y from Π.
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Note that the information of a protocol π depends on the prior distribution µ, as the mutual
information between the transcript Π and the inputs depends on the prior distribution on the
inputs. To give an extreme example, if µ is a singleton distribution, i.e. one with µ({(x, y)}) = 1
for some (x, y) ∈ X × Y, then ICµ(π) = 0 for all possible π, as no protocol can reveal anything to
the players about the inputs that the do not already know a-priori. Similarly, ICµ(π) = 0 if X = Y
and µ is supported on the diagonal {(x, x) : x ∈ X}.

As expected, one can show that the communication cost CC(π) of π is an upper bound on its
information cost over any distribution µ:

Lemma 2.16. [BR10] For any distribution µ, ICµ(π) ≤ CC(π).

On the other hand, as demonstrated by the simple examples above, the converse need not
hold. Moreover, while CC(π) is a combinatorial property that depends only on the protocol, ICµ(π)
depends on µ. One of our fist goals it to make the study of information cost independent of the
prior distribution.

3 The prior-free information complexity of a problem

Given a distribution µ on a two-player input space X×Y, a function f : X×Y → {0, 1} and an error
parameter ε, the information complexity ICµ(f, ε) is defined to be the infimum of the information
cost over all (randomized) protocols π that achieve an error of ≤ ε with respect to µ.

Remark 3.1. We state all our results for boolean functions. In fact we do not need f to be binary
or even a function. All our results hold if the goal is to implement a general relation F that accepts
inputs in X × Y and for which a protocol is said to succeed if in the end the two players reach an
acceptable pair of states. In the case of a boolean function f there is only one acceptable pair of
states in which each player outputs “the answer is f(x, y)”.

Definition 3.2.
ICµ(f, ε) := inf

π: P(x,y)∼µ[π(x,y)6=f(x,y)]≤ε
ICµ(π).

Clearly, ICµ(f, ε) is monotone non-decreasing in ε – i.e. a lower error ε requires higher infor-
mation cost. We note that the definition of ICµ(f, 0) – the zero-error information complexity also
makes sense. By Lemma 2.16, it is easy to see that the information costs are smaller than the
corresponding (distributional) communication costs.

Information-theoretic quantities, such as the mutual information between the parties’ inputs and
the protocol’s transcript only make sense with respect to a prior distribution on inputs. Nonetheless,
at least syntactically, we can factor out the distribution by taking the maximum over all possible
distributions:

Definition 3.3. The max-distributional information complexity of a function f with error ε is

ICD(f, ε) := max
µ a distribution on X × Y

ICµ(f, ε).

Note that we are justified in using a max in place of inf since the set of all possible distributions
over X × Y is compact and ICµ(f, ε) can be shown to be continuous in µ (and ε).
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It is not immediately apparent that the definition of ICD(f, ε) is an interesting one. While
it gives an upper bound on the information cost for each distribution, this upper bound may be
attained by a different protocol π = π(µ) for each distribution µ. We will show that the quantifiers
may “almost” be reversed: there is a single (randomized) protocol π that achieves a low information
cost and a low error with respect to any distribution µ. In fact, we define the prior-free information
complexity of a problem in terms of such a protocol.

Definition 3.4. The information complexity of a function f with error ε is

IC (f, ε) := inf
π is a protocol with P[π(x, y) 6= f(x, y)] ≤ ε for all (x, y)

max
µ

ICµ(π).

Clearly, IC (f, ε) ≥ ICD(f, ε). The opposite direction is our main result connecting the prior-free
information cocomplexity with the distributional information complexity:

Theorem 3.5. Let f : X ×Y → {0, 1} be any function, and ε ≥ 0 be an error parameter. For each
value of the parameter 0 < α < 1 we have

IC
(
f,
ε

α

)
≤ ICD(f, ε)

1− α

In other words, there is a protocol π such that:

1. for each (x, y) ∈ X × Y, P[π(x, y) 6= f(x, y)] ≤ ε
α , i.e. the protocol π makes an error of at

most ε/α on each input;

2. for each distribution µ on X × Y, ICµ(π) ≤ ICD(f,ε)
1−α , i.e. for every distribution the protocol π

reveals not too much information to the participants.

By selecting α = 1
2 we can ensure that both the error and the information cost increase by a

factor of at most 2.
For the zero-error case, we similarly obtain the following zero-error version of Theorem 3.5:

Theorem 3.6. Let f : X × Y → {0, 1} be any function. Then we have

IC (f, 0) = ICD(f, 0).

In other words, there is a protocol π such that:

1. for each (x, y) ∈ X × Y, π(x, y) = f(x, y), i.e. the protocol π always works correctly;

2. for each distribution µ on X × Y, ICµ(π) ≤ IC (f, 0).

3.1 Proof of Theorems 3.5 and 3.6

Proof of Theorem 3.5. We prove the theorem using a minimax argument. For the remainder of the
proof fix f and ε, and denote I := ICD(f, ε). Define the following two-player zero-sum game. Player
A will come up with a (randomized) two-party protocol π(x, y) taking inputs in X × Y. Player B
will come up with a distribution µ on inputs (x, y). Player B’s payoff is given by:

PB(π, µ) := (1− α) · ICµ(π)

I
+ α · Pµ[π(x, y) 6= f(x, y)]

ε
.
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As the game is a zero-sum game, the payoff of player A is given by PA(π, µ) := −PB(π, µ). Thus
player A comes up with a protocol for f , and player B comes up with a distribution that tries to
highlight the mistakes of π, and also make it reveal information about the inputs to the participants.
We denote the game by G. Our first goal is to show that the value of G to player B is bounded by
1.

Claim 3.7. The value VB(G) ≤ 1.

Proof. Let νB be a probability distribution representing a mixed strategy for player B. Thus νB is
a distribution on probability distributions µ over X×Y . We will actually show that VB(G) < 1 + δ
for each δ > 0. To show that VB(G) < 1 + δ it suffices to show that there is a protocol π such that
Eµ∼νB [PB(π, µ)] < 1 + δ. Let µ̄ be a distribution on X ×Y that is obtained by taking the average
of µ ∼ νB. Formally,

µ̄(x, y) := Eµ∼νBµ(x, y).

By the definition of I = IC (f, ε), we know that there is a protocol π such that Pµ̄[π(x, y) 6=
f(x, y)] ≤ ε and ICµ̄(π) < I · (1 + δ). We claim that

Eµ∼νB
[
I(X,Y )∼µ(π(X,Y );X|Y )

]
≤ I(X,Y )∼µ̄(π(X,Y );X|Y ). (3)

In other words, the average amount of information revealed by π with respect to the different
distributions µ ∼ νB is smaller or equal to the amount of information revealed with respect to µ̄ –
the concavity works in the “right” direction.

To establish (3), consider the following four random variables. Let M be a random variable
representing the distribution µ. Then M is distributed according to νB. Let X and Y be the inputs
to the two parties in π such that (X,Y ) is distributed according to µ. Finally, let Π = π(X,Y ) be
the transcript of the protocol executed on X and Y . Π is randomized even conditioned on (X,Y )
due to the public and private randomness used in the execution of the protocol. In this language,
we have:

Eµ∼νB
[
I(X,Y )∼µ(π(X,Y );X|Y )

]
= I(Π;X|YM),

and
I(X,Y )∼µ̄(π(X,Y );X|Y ) = I(Π;X|Y ).

Since the distribution of Π only depends on X and Y , we have I(Π;M |XY ) = 0. By substituting
A = X, B = Π, C = Y , and D = M into Proposition 2.9 we get

I(X; Π|Y ) ≥ I(X; Π|YM), (4)

proving (3). Similarly to (3) the following symmetric inequality is established:

Eµ∼νB
[
I(X,Y )∼µ(π(X,Y );Y |X)

]
≤ I(X,Y )∼µ̄(π(X,Y );Y |X). (5)

Together, (3) and (5) imply
Eµ∼νB [ICµ(π)] ≤ ICµ̄(π). (6)
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Using (6) we obtain

Eµ∼νB [PB(π, µ)] = Eµ∼νB

[
(1− α) · ICµ(π)

I
+ α · Pµ[π(x, y) 6= f(x, y)]

ε

]
= (1− α) ·Eµ∼νB

[
ICµ(π)

I

]
+ α · Pµ̄[π(x, y) 6= f(x, y)]

ε

≤ (1− α) · ICµ̄(π)

I
+ α · Pµ̄[π(x, y) 6= f(x, y)]

ε
< (1− α) · (1 + δ) + α · 1 ≤ 1 + δ.

This proves Claim 3.7.

By the Minimax Theorem, Claim 3.7 implies that there is a mixed strategy for player A such
that for each response by player B, the value of the game for player B is at most 1. A mixed
strategy for player A is a distribution νA on protocols. In other words,

Eπ∼νAPB(π, µ) ≤ 1, for all µ. (7)

Let π̄ be the randomized protocol obtained by publicly sampling π ∼ νA, and then applying π to the
inputs. We claim that π̄ is the protocol we are looking for. In other words, the randomized protocol
π̄ has the desired payoff properties that will translate into information cost/error properties.

Claim 3.8. For each distribution µ, PB(π̄, µ) ≤ 1.

Proof. The proof proceeds similarly to the proof of Claim 3.7. We will prove first that

I(X,Y )∼µ(π̄(X,Y );X|Y ) ≤ Eπ∼νA
[
I(X,Y )∼µ(π(X,Y );X|Y )

]
. (8)

In other words, the amount of information revealed by π̄ is bounded by the average amount of
information revealed by π that is drawn according to νA – once again, the concavity works in the
“right” direction.

To establish (8), consider the following four random variables. Let S be a “selector” random
variable, that picks the protocol π to run according to the distribution νA. Let X and Y be inputs
distributed according to µ independently of S. Finally, let Π = π(X,Y ) be the transcript of the
selected protocol executed on X and Y . We have:

Eπ∼νA
[
I(X,Y )∼µ(π(X,Y );X|Y )

]
= I(Π;X|Y S),

and
I(X,Y )∼µ(π̄(X,Y );X|Y ) = I(Π;X|Y ).

Since the protocol π is selected independently of the inputs, we have I(X;S|Y ) = 0. By substituting
A = Π, B = X, C = Y , and D = S into Proposition 2.10 we get

I(Π;X|Y ) ≤ I(Π;X|Y S), (9)

establishing (8). Similarly to (8) the following symmetric inequality is established:

I(X,Y )∼µ(π̄(X,Y );Y |X) ≤ Eπ∼νA
[
I(X,Y )∼µ(π(X,Y );Y |X)

]
. (10)

Together, (8) and (10) imply
ICµ(π̄) ≤ Eπ∼νA [ICµ(π)] . (11)

11



Finally, (11) implies that

PB(π̄, µ) = (1− α) · ICµ(π̄)

I
+ α · Pµ[π̄(x, y) 6= f(x, y)]

ε

= (1− α) · ICµ(π̄)

I
+ Eπ∼νA

[
α · Pµ[π(x, y) 6= f(x, y)]

ε

]
≤ (1− α) ·Eπ∼νA

[
ICµ(π)

I

]
+ Eπ∼νA

[
α · Pµ[π(x, y) 6= f(x, y)]

ε

]
= Eπ∼νA [PB(π, µ)] ≤ 1,

completing the proof of Claim 3.8.

To complete the proof of Theorem 3.5, we observe that the randomized protocol π̄ satisfies the
conclusions of the theorem. For each distribution µ we know that PB(π̄, µ) ≤ 1, and thus

ICµ(π̄) ≤ I

1− α
and Pµ[π̄(x, y) 6= f(x, y)] ≤ ε

α
.

The first inequality is exactly the second requirement in Theorem 3.5. We obtain the second
requirement by letting µ be the atomic distribution on {(x, y)}.

Remark 3.9. Note that the statement of Theorem 3.5 contains a gap in the following sense.
We are unable to simultaneously achieve the goals of low information and low error with the same
parameters as in the distributional setting. Instead we lose factors of 1

1−α and 1
α . It is an interesting

open problem whether this analysis is actually tight, i.e. whether IC (f, ε) = ICD(f, ε). It is quite
possible that there is, in fact, a gap between the two quantities.

Proof of Theorem 3.6. The proof is very similar to the proof of Theorem 3.5. The key difference
is that now we only deal with zero-error protocols. Denote I := ICD(f, 0). We define the following
zero-sum two player game G0. Player A will come up with a (randomized) two-party protocol
π(x, y) taking inputs in X ×Y. The protocol is required to always be correct: for any pair of inputs
(x, y), π(x, y) = f(x, y) with probability 1 with respect to the random coin tosses within π. Player
B will come up with a distribution µ on inputs (x, y). Note that the protocol π has to be correct
even on inputs outside of the support of µ. Player B’s payoff is given by:

PB(π, µ) :=
ICµ(π)

I
.

Once again, we first need to establish that the value of the game for player B is bounded by 1.

Claim 3.10. The value VB(G0) ≤ 1.

Proof. The proof is quite similar to the proof of Claim 3.7 with one minor twist: by the assumption,
for each distribution µ there is a zero-error protocol πµ whose information cost with respect to µ is
< (1 + δ) · I. The problem is that πµ only has to be zero-error on the support of µ. This problem
is easily overcome by modifying µ very slightly to ensure that it has full support.

We will actually show that VB(G) < 1 + δ for each δ > 0. Let νB be a probability distribution
representing a mixed strategy for player B. Thus νB is a distribution on probability distributions
µ over X × Y. We modify νB to select the distribution µu uniform on X × Y with probability δ/4
to obtain ν ′B. Player B’s payoff is always non-negative. Hence, if there is a strategy π for player A
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that guarantees that B’s payoff with respect to ν ′B is < 1 + δ/2, then using the same strategy will
guarantee that B’s payoff with respect to νB is < 1 + δ. Otherwise, B’s payoff with respect to ν ′B
would be at least

(1 + δ) · (1− δ/4) = 1 + 3δ/4− δ2/4 > 1 + δ/2.

Thus we need to show that there is a zero-error protocol π such that Eµ∼ν′B [ICµ(π)] < 1 + δ/2.
Let µ̄ be a distribution on X × Y that is obtained by taking the average of µ ∼ ν ′B. Formally,

µ̄(x, y) := Eµ∼νBµ(x, y).

Note that since one of the distributions in ν ′B is the uniform distribution on X × Y, µ̄ has full
support.

By the definition of I = IC (f, 0), we know that there is a protocol π that achieves zero-error
with respect to µ̄ such that ICµ̄(π) < I · (1 + δ/2). Since µ̄ has full support, π is a feasible strategy
for player A. Following the analysis in Claim 3.7 we obtain that (6) still holds here:

Eµ∼ν′B [ICµ(π)] ≤ ICµ̄(π).

Thus
Eµ∼νB [PB(π, µ)] = Eµ∼ν′B [ICµ(π)] /I ≤ ICµ̄(π)/I < 1 + δ/2,

completing the proof of Claim 3.10.

The rest of the proof of Theorem 3.6 is identical to the proof of Theorem 3.5. There is a
distribution νA of strategies for player A such that each protocol in νA is a zero-error protocol, and
for each distribution µ the expected payoff Eπ∼νA [PB(π, µ)] ≤ 1. If we let π̄ be the randomized
protocol obtained by sampling π according to νA and then running it, then exactly as in Claim 3.8
above we obtain

ICµ(π̄) ≤ Eπ∼νA [ICµ(π̄)] = I ·Eπ∼νA [PB(π, µ)] ≤ I.

3.2 External information complexity

We next turn our attention to the external information complexity of a problem. Recall that the
regular (internal) information cost of a problem is the amount of information the participating
parties have to learn about the inputs to solve the problem. By analogy, the external information
cost is the amount of information an observer necessarily has to learn when the parties perform the
computation.

We start by defining the external information cost of a protocol π.

Definition 3.11. Let π be a two-party communication protocol over inputs in X ×Y. Let µ be a
distribution over X ×Y. We denote by (X,Y ) the (random) pair of inputs given to the players that
are distributed according to µ. Let Π = Π(X,Y ) denote the random variable that is the transcript
of the protocol. Then the external information cost of π with respect to µ is given by:

ICext
µ (π) := I(XY ; Π).

We note that the external information cost is always greater or equal to the internal information
cost of a protocol:
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Proposition 3.12. For each protocol π and distribution µ,

ICext
µ (π) ≥ ICµ(π).

Moreover, the two quantities are equal if µ = µX × µY is a product distribution on X × Y.

Proof. The proposition is only true because π is a protocol: it is not hard to see that it would
fail if Π was a general random variable that is correlated with the inputs X and Y . Denote by
Π1,Π2, . . . ,ΠN the messages sent in the protocol π. We assume that Πi is sent by Alice (who holds
X) for odd i’s and by Bob for even i’s. N itself is also a random variable here.

By the chain rule, we have:

ICµ(π) = I(X; Π|Y ) + I(Y ; Π|X) =
N∑
i=1

[I(X; Πi|Π1, . . . ,Πi−1Y ) + I(Y ; Πi|Π1, . . . ,Πi−1X)] ,

and

ICext
µ (π) = I(XY ; Π) =

N∑
i=1

I(XY ; Πi|Π1, . . . ,Πi−1).

We will prove the inequality term-wise. Let i be an index. Without loss of generality assume that i
is odd, so that Πi is a message sent by Alice. This means that conditioned on prior communications
and on X, Πi is independent from Y :

I(Πi;Y |Π1, . . . ,Πi−1X) = 0. (12)

We can now write:

I(XY ; Πi|Π1, . . . ,Πi−1) = I(X; Πi|Π1, . . . ,Πi−1) + I(Y ; Πi|Π1, . . . ,Πi−1X) ≥
I(X; Πi|Π1, . . . ,Πi−1Y ) + I(Y ; Πi|Π1, . . . ,Πi−1X),

where the last inequality follows from (12) and Proposition 2.9 by taking A = X, B = Πi, C =
Π1, . . . ,Πi−1 and D = Y .

It remains to prove the converse inequality in the case when µ is a product distribution. This
direction actually holds when Π is any random variable. If µ is a product distribution, then X and
Y are independent, and thus I(X;Y ) = 0. We have

ICext
µ (π) = I(XY ; Π) = I(X; Π) + I(Y ; Π|X) ≤ I(X; Π|Y ) + I(Y ; Π|X) = ICµ(π),

where the inequality holds by Proposition 2.10 with A = Π, B = X, C = ∅, and D = Y .

We can now define the natural analogues of Definitions 3.2, 3.3, and 3.4 for external information,
starting with the distributional external information complexity.

Definition 3.13.
ICext
µ (f, ε) := inf

π: P(x,y)∼µ[π(x,y)6=f(x,y)]≤ε
ICext
µ (π).

Definition 3.14. The max-distributional external information complexity of a function f with
error ε is

ICext
D (f, ε) := max

µ a distribution on X × Y
ICext
µ (f, ε).
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Definition 3.15. The external information complexity of a function f with error ε is

ICext (f, ε) := inf
π is a protocol with P[π(x, y) 6= f(x, y)] ≤ ε for all (x, y)

max
µ

ICext
µ (π).

Proposition 3.12 implies that for all µ, ICext
µ (f, ε) ≥ ICµ(f, ε), and also ICext

D (f, ε) ≥ ICD(f, ε)
and ICext (f, ε) ≥ IC (f, ε).

Finally, the analogues of Theorems 3.5 and 3.6 for external information cost are proved in the
exact same way. We formulate the theorems here:

Theorem 3.16. Let f : X ×Y → ZK be any function, and ε ≥ 0 be an error parameter. For each
value of the parameter 0 < α < 1 we have

ICext
(
f,
ε

α

)
≤

ICext
D (f, ε)

1− α

In other words, there is a protocol π such that:

1. for each (x, y) ∈ X × Y, P[π(x, y) 6= f(x, y)] ≤ ε
α , i.e. the protocol π makes an error of at

most ε/α on each input;

2. for each distribution µ on X × Y, ICext
µ (π) ≤ ICext

D (f,ε)
1−α , i.e. for every distribution the protocol

π reveals not too much information to the observer.

Theorem 3.17. Let f : X × Y → ZK be any function. Then we have

ICext (f, 0) = ICext
D (f, 0).

In other words, there is a protocol π such that:

1. for each (x, y) ∈ X × Y, π(x, y) = f(x, y), i.e. the protocol π always works correctly;

2. for each distribution µ on X × Y, ICext
µ (π) ≤ ICext (f, 0).

The only difference between the proofs of Theorem 3.5 and of its external version 3.16 is that
equations (4) and (9) are slightly different. The external version of equation (4) is

I(XY ; Π) ≥ I(XY ; Π|M), (13)

which still follows from Proposition 2.9 with A = XY , B = Π, C = ∅, and D = M , and the fact
that I(Π;M |XY ) = 0. The external version of equation (9) is

I(Π;XY ) ≤ I(Π;XY |S), (14)

which follows from Proposition 2.10 with A = Π, B = XY , C = ∅, and D = S, and the fact that
I(XY ;S) = 0.
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3.3 The information complexity is convex in the error parameter

In this section we prove that the information complexity IC (f, ε) is convex in the error parameter
ε. Note that this function is trivially non-increasing.

Theorem 3.18. For any f , the function I(ε) := IC (f, ε) is convex on the interval ε ∈ [0, 1].

Since a convex function on an interval must be continuous, the following is an immediate
corollary of Theorem 3.18:

Corollary 3.19. For any f , the function I(ε) := IC (f, ε) is continuous on the interval ε ∈ [0, 1].

Remark 3.20. A statement analogous to Theorem 3.18, with a very similar proof, holds for the
max-distributional information complexity ICD(f, ε).

Proof of Theorem 3.18. Let 0 ≤ ε1 < ε2 ≤ 1 be two values, and let α ∈ (0, 1) be a parameter. Set
ε := α · ε1 + (1− α) · ε2. Our goal is to show that

I(ε) ≤ α · I(ε1) + (1− α) · I(ε2).

Let δ > 0 be a parameter that tends to 0. By the definition of IC (f, ε), there is a pair of protocols
π1 and π2 that attain an error of at most ε1 and ε2, respectively, on each input (x, y), and such
that for each distribution µ,

ICµ(π1) < I(ε1) + δ, and ICµ(π2) < I(ε2) + δ.

Let π be a protocol that publicly tosses a coin to select between π1 and π2 and then runs the
selected protocol. π1 is selected with probability α and π2 is selected with probability (1−α). For
each pair of inputs (x, y) we have

P[π(x, y) 6= f(x, y)] = α ·P[π1(x, y) 6= f(x, y)] + (1− α) ·P[π2(x, y) 6= f(x, y)] ≤ ε.

Following the same proof as the proof of (11) in Claim 3.8 we can obtain for each µ:

ICµ(π) ≤ α · ICµ(π1) + (1− α) · ICµ(π2) < α · I(ε1) + (1− α) · I(ε2) + δ.

This implies that I(ε) < α · I(ε1) + (1− α) · I(ε2) + δ for each δ > 0, and hence

I(ε) ≤ α · I(ε1) + (1− α) · I(ε2).

3.4 Example: the information complexity of equality

As an instructive illustration let us consider the information complexity of the equality function.
The equality function EQ : {0, 1}n × {0, 1}n → {0, 1} is given by EQ(x, y) = 1 if and only if
x = y. It is well known that the deterministic communication complexity of EQ is n+ 1, while the
randomized communication complexity if one allows error ε is bounded by O(log 1/ε) (assuming
the parties have access to public randomness).

We will demonstrate a gap between the information complexity and the communication com-
plexity of EQ. Specifically, we show that the information complexity of EQ is bounded by a
constant that is independent of the error parameter ε. Moreover, we show that the zero-error
information cost of equality is also constant. Thus there is a major gap between the deterministic
communication complexity and the zero-error information cost (linear vs. constant).
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Proposition 3.21. IC (EQ, 0) = O(1).

Discussion: Proposition 3.21, together with our other results, sheds interesting light onto the
results by Feder, Kushilevitz, Naor, and Nisan [FKNN95] on the (violation of) direct sum for ran-
domized communication complexity. [FKNN95] (and related constructions) give EQ as an example
that appears to violate direct sum for randomized communication complexity. It is not hard to
see that the randomized communication complexity of EQ with error ε, Rε(EQ) = Ω(log 1/ε). On
the other hand, the (non-trivial) algorithm from [FKNN95] shows that the amortized communi-
cation complexity of EQ, Rε(EQ

n)/n = O(1), even for relatively small n = log2 1/ε. This shows
that there is no hope for a direct sum theorem to hold if one regards the error ε as a parameter.
Combining Proposition 3.21 with the ‘≥’ direction of the general Theorem 6.7 gives an alternative
proof of this fact for any ε > 0. Thus, intuitively, the gap between the randomized and the amor-
tized communication complexity of equality for small values of ε is caused by the gap between the
randomized communication complexity (which depends on ε) and the inherent information cost of
the problem (which is constant, even in the extreme case when ε = 0). At the same time, in light
of this explanation, it is not clear whether this gap shed any light on the situation with constant
ε. We will revisit these points in the discussion of Theorem 6.7.

Proof. We present a zero-error protocol π for equality that will have low information cost with
respect to any prior distribution. Note that to prove the proposition it would have been sufficient
to produce such a protocol πµ for each given prior distribution µ, as Theorem 3.6 would guarantee
the existence of a protocol π that simultaneously has low information cost with respect to all
distributions µ. The protocol is presented on Figure 2.

A zero-error constant-information complexity protocol for EQ

1. The parties use public randomness to sample a uniformly random non-singular matrix
A ∈ Fn2 . Denote the rows of A by a1, a2, . . . , an.

2. At step i, the first player sends ai · x to the second player. If ai · x 6= ai · y, the second
player responds “not equal” and the protocol terminates with EQ(x, y) = 0.

3. If the protocol hasn’t terminated after n steps, the protocol terminates with EQ(x, y) = 1.

Figure 2: The protocol for Equality

Correctness. The protocol terminates on each input after at most n rounds. Both parties always
output the same answer. If the protocol terminates and returns 0, then there is an ai with ai · x 6=
ai · y, and thus x 6= y. If the protocol terminates and outputs 1, then Ax = Ay. Since A is always
chosen to be non-singular, this implies x = y.
Information cost. First of all, note that the protocol is essentially symmetric with respect to the
two players: at each round the two players learn whether ai ·x = ai ·y, and only continue if this is the
case. Let µ be any distributions on inputs (x, y). It suffices to show that Iµ(X;π(X,Y )|Y ) = O(1)
where (X,Y ) ∼ µ. Let R be the public randomness used by the protocol to sample the matrix
A, and let πR be the deterministic protocol that uses this randomness. We know that (see e.g.
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[BravermanRaoAmortized]) Iµ(X;π|Y ) = ER[Iµ(X;πR|Y )]. In fact, we will show that

ER[Hµ(π|Y )] = O(1),

which would suffice since ER[Iµ(X;πR|Y )] ≤ ER[Hµ(π|Y )].
Given an input y to the second player, and given the matrix A that is publicly sampled, the

possible protocol transcripts are of two kinds:

1. If x 6= y then the protocol may last anywhere from 1 to n rounds, and the transcript will
only depend on the number i of rounds. Let pi = pi(R, y, µ) denote the probability that the
protocol lasts exactly i rounds and x 6= y.

2. if x = y then the protocol lasts n rounds, and its transcript is completely determined by A
and y. Let p0 = p0(R, y, µ) denote the probability that the protocol outputs x = y.

Denote by p̄i(y, µ) := ERpi(R, y, µ). We can now calculate ER[Hµ(π|Y )]:

ER[Hµ(π|Y )] = EREy∼µy

n∑
i=0

pi(R, y, µ) log
1

pi(R, y, µ)
=

Ey∼µyER

n∑
i=0

pi(R, y, µ) log
1

pi(R, y, µ)
≤ Ey∼µy

n∑
i=0

p̄i(y, µ) log
1

p̄i(R, y, µ)
,

where the last inequality follows from the concavity of the x log(1/x) function. Next, note that for
each i ≥ 2, p̄i(y, µ) ≤ 2−i+1, since the probability over R that the protocol will last for at least
i rounds for each fixed pair x 6= y is bounded by 2−i+1. Thus for each y, and for each i ≥ 3,
p̄i(y, µ) log 1

p̄i(R,y,µ) ≤ 2−i+1 · (i− 1). In addition, it is always the case that p̄i(y, µ) log 1
p̄i(R,y,µ) ≤ 1,

and thus:

ER[Hµ(π|Y )] ≤ Ey∼µy

n∑
i=0

p̄i(y, µ) log
1

p̄i(R, y, µ)
< 3 +

∞∑
i=3

2−i+1 · (i− 1) = 4.5 = O(1).

4 The additivity of information complexity

In this section we will show that information complexity is additive. That is, the information
complexity of performing two independent tasks is the sum of the information complexities of each
individual task. This is a more general statement, though closely related, than a direct sum theorem
that states that n copies of the same task cost n times as much as one copy [BR10]. In contrast
with the information complexity, we do not know such a statement to be true for communication
complexity, and it is known to be false in other settings. See [BBCR10] for a further discussion on
direct sum problems.

We formulate the result in terms of tasks. A task is just a (possibly partial) relationR(x, y,Ox, Oy),
along with a required success criterion. HereOx andOy correspond to the outputs of the two players.
For example, if the task is to compute a function f with probability > 1−ε then R(x, y,Ox, Oy) = 1
if and only if Ox = Oy = f(x, y), and the success criterion is that R(x, y,Ox, Oy) = 1 with proba-
bility > 1− ε. Another example of a task is computing n independent copies of a function f such
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that the probability of success on each copy is > 1− ε. In this way, a task is essentially “anything
that can be solved by a communication protocol”.

The information cost of a task T (x, y) is defined similarly to the information cost of a function.
To be concrete and to avoid cumbersome notation, we assume that the inputs (x, y) belong to
U := {0, 1}n. Let M be a set of distributions on U × U . Then the information cost of T with
respect to M is defined as:

Definition 4.1. IC (T,M) := infπ succeeds at T supµ∈M ICµ(π), where the infimum is taken over
protocols that successfully perform the task T .

Let T1(x1, y1) and T2(x2, y2) be two tasks. Let T (x1, x2, y1, y2) := T1 × T2 be the task that
consists of performing T1 and T2 in parallel on two pairs of inputs. A protocol is successful at T if
it is successful at each of the two sub-tasks separately.

Next, we consider two products of sets of distributions. Let M1 be a set of distributions of
pairs (x1, y1), and let M2 be a set of distributions of pairs (x2, y2). Denote

M1 ×M2 := {µ1 × µ2 : µ1 ∈M1, µ2 ∈M2}.

We also define a bigger class of distributions which are not necessary product distributions, but
whose projections fall into the sets M1,M2:

M1 ⊗M2 := {µ : µ|(X1,Y1) ∈M1, µ|(X2,Y2) ∈M2} ⊃ M1 ×M2.

Theorem 4.2. Let T1(x1, y1) and T2(x2, y2) be two tasks, let M1 and M2 be any sets of distribu-
tions over (x1, y1) and (x2, y2), respectively, and let T := T1 × T2. Then:

IC (T,M1 ×M2) = IC (T,M1 ⊗M2) = IC (T1,M1) + IC (T2,M2).

Proof. We prove the theorem by establishing three non-strict inequalities.

IC (T,M1 ×M2) ≤ IC (T,M1 ⊗M2). This is obvious, sinceM1⊗M2 ⊃M1×M2, and thus the
sup in Definition 4.1 is taken over a larger set.

IC (T,M1 ⊗M2) ≤ IC (T1,M1) + IC (T2,M2). Let ε > 0 be an arbitrarily small parameter. Let
π1 and π2 be two protocols that succeed at tasks T1 and T2, respectively, such that

ICµ1(π1) < IC (T1,M1) + ε and ICµ2(π2) < IC (T2,M2) + ε,

for all µ1 ∈ M1 and µ2 ∈ M2. Let π be the protocol that on (the random) inputs (X1, X2),
(Y1, Y2) independently runs π1 on the pair (X1, Y1) and π2 on the pair (X2, Y2). Then clearly the
protocol π succeeds at the task T = T1 × T2. It remains to analyze π’s information cost. Let µ be
a distribution in M1 ⊗M2. We will show that

ICµ(π) < IC (T1,M1) + IC (T2,M2) + 2ε,

since ε > 0 is arbitrary, this will complete the proof. Denote µ1 := µ|(X1,Y1) ∈ M1, and µ2 :=
µ|(X2,Y2) ∈ M2. Let Π1 be the random variable denoting the transcript of π1, and similarly let Π2

denote the transcript of π2. We know that

I(X1; Π1|Y1) + I(Y1; Π1|X1) = ICµ1(π1) < IC (T1,M1) + ε,
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and similarly
I(X2; Π2|Y2) + I(Y2; Π2|X2) = ICµ2(π2) < IC (T2,M2) + ε.

Next we note that the execution of π1 only depends on the inputs X1, Y1, and the public/private
randomness pertaining to the execution of π1. This implies

I(Π1;X2|X1Y1) = I(Π1;Y2|X1Y1) = I(Π1; Π2|X1Y1) =

I(Π1;X2Y2|X1Y1) = I(Π1;Y2Π2|X1Y1) = I(Π1;X2Π2|X1Y1) = I(Π1;X2Y2Π2|X1Y1) = 0, (15)

and similar equalities hold for Π2.
By Proposition 2.9 with A = X1, B = Π1, C = Y1, D = Y2, and the fact that I(Π1;Y2|X1Y1) = 0

we get
I(Π1;X1|Y1Y2) ≤ I(Π1;X1|Y1). (16)

Similarly, by Proposition 2.9 with A = X2, B = Π2, C = Y2, D = Π1Y1, and the fact that
I(Π2; Π1Y1|X2Y2) = 0 we get

I(Π2;X2|Π1Y1Y2) ≤ I(Π2;X2|Y2). (17)

Putting these and (15) together, we obtain

I(Π;X1X2|Y1Y2) = I(Π1Π2;X1X2|Y1Y2) = I(Π1;X1X2|Y1Y2) + I(Π2;X1X2|Y1Y2Π1) =

I(Π1;X1|Y1Y2) + I(Π1;X2|X1Y1Y2) + I(Π2;X2|Y1Y2Π1) + I(Π2;X1|X2Y1Y2Π1)

by (15)︷︸︸︷
=

I(Π1;X1|Y1Y2) + I(Π2;X2|Y1Y2Π1)

by (16) and (17)︷︸︸︷
≤ I(Π1;X1|Y1) + I(Π2;X2|Y2).

Similarly, I(Π;Y1Y2|X1X2) ≤ I(Π1;Y1|X1) + I(Π2;Y2|X2). Thus

ICµ(π) = I(Π;X1X2|Y1Y2) + I(Π;Y1Y2|X1X2) ≤
I(Π1;X1|Y1) + I(Π2;X2|Y2) + I(Π1;Y1|X1) + I(Π2;Y2|X2) =

ICµ1(Π1) + ICµ2(Π2) < IC (T1,M1) + IC (T2,M2) + 2ε.

IC (T1,M1) + IC (T2,M2) ≤ IC (T,M1 ×M2). Let µ1 ∈ M1 and µ2 ∈ M2 be two distributions,
and let ε > 0 be a parameter. We will show that there are protocols π1 and π2 that succeed at
tasks T1 and T2 respectively such that

ICµ1(π1) + ICµ2(π2) < IC (T,M1 ×M2) + ε.

By the definition of IC (T,M1 ×M2), there is a protocol π that succeed at the task T1 × T2 such
that

ICµ1×µ2(π) < IC (T,M1 ×M2) + ε.

Define the protocols π1 and π2 as in Figure 3. From the definition of T = T1 × T2 it follows that
the protocols π1 and π2 succeed at T1 and T2 respectively. It remains to analyze their information
complexity.
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Protocol π1(x1, y1)

1. The parties jointly and publicly sample Y2 according to µ2|Y2 .

2. The first party privately samples X2 = X2|Y2.

3. The parties run π((x1, X2), (y1, Y2)) and output the output of the task T1.

Protocol π2(x2, y2)

1. The parties jointly and publicly sample X1 according to µ1|X1 .

2. The second party privately samples Y1 = Y1|X1.

3. The parties run π((X1, x2), (Y1, y2)) and output the output of the task T2.

Figure 3: The protocols π1 and π2

We have

ICµ1(π1) = I(π1;X1|Y1) + I(π1;Y1|X1) = I(π;X1|Y1Y2) + I(π;Y1|X1X2Y2) (18)

and
ICµ2(π2) = I(π2;X2|Y2) + I(π2;Y2|X2) = I(π;X2|X1Y1Y2) + I(π;Y1|X1X2). (19)

Putting the two equations together we get:

ICµ1(π1) + ICµ2(π2) =

I(π;X1|Y1Y2) + I(π;Y1|X1X2Y2) + I(π;X2|X1Y1Y2) + I(π;Y1|X1X2) =

I(π;X1|Y1Y2) + I(π;X2|X1Y1Y2) + I(π;Y1|X1X2) + I(π;Y1|X1X2Y2) =

I(π;X1X2|Y1Y2) + I(π;Y1Y2|X1X2) = ICµ1×µ2(π) < IC (T,M1 ×M2) + ε.

Theorem 4.2 can be now used in many different ways. Let us use it to show exact direct sum
theorems for both the information cost and the distributional information cost.

Theorem 4.3. Let f(x, y) be any function, and ρ ≥ 0 an error parameter. Let fn be the problem
of computing f on n pairs of inputs such that when one considers each coordinate separately, the
error is bounded by ρ. Then

1. ICD(fn, ρ) = n · ICD(f, ρ).

2. IC (fn, ρ) = n · IC (f, ρ).

21



Proof. We note that the proofs of the two parts are quite similar; the reader may want to only read
the proof of the second part, which is more important (and also simpler).

ICD(fn, ρ) ≥ n · ICD(f, ρ). Let µ be the distribution that realizes ICD(f, ρ). Let Tn be the task of
computing n copies of f such that the error on each copy when measured against the distribution
µ is ≤ ρ. Further, let Mn = {µn} be the set consisting of only one product distribution. Then by
the definition of µ,

ICD(f, ρ) = IC
(
M1, T 1

)
.

By Theorem 4.2 we have:

ICD(fn, ρ) ≥ IC (Mn, Tn) = IC
(
Mn−1, Tn−1

)
+ IC

(
M1, T 1

)
= . . .

= n · IC
(
M1, T 1

)
= n · ICD(f, ρ).

ICD(fn, ρ) ≤ n · ICD(f, ρ). Let µ be the distribution on n-tuples of inputs that realizes ICD(fn, ρ),
and let µi be the restriction of µ to the i-th coordinate. In other words, any protocol that fails with
probability ≤ ρ with respect to µi on the i-th coordinate must reveal at least ICD(fn, ρ) information
with respect to µ. Let Ti be the task of computing f correctly with error ≤ ρ with respect to the
distribution µi. Let T := T1 × T2 × . . .× Tn. By the definition of the task we have

IC ({µ}, T ) ≥ ICD(fn, ρ).

Let Mi := {µi} and M :=M1 ⊗M2 ⊗ . . .⊗Mn. Then µ ∈M. By Theorem 4.2 we have:

ICD(fn, ρ) ≤ IC ({µ}, T ) ≤ IC (M, T ) = IC (M1, T1) + . . .+ IC (Mn, Tn) ≤ n · ICD(fn, ρ).

IC (fn, ρ) = n · IC (f, ρ). Let Tn be the task of computing n copies of f such that the (worst case)
probability of error on each copy is ≤ ρ. LetMn be the set of all possible distributions over n-tuples
of inputs. Then, by definition

IC (f, ρ) = IC
(
M1, T 1

)
,

and
IC (fn, ρ) = IC (Mn, Tn).

Note that Mn =M1 ⊗ . . .⊗M1︸ ︷︷ ︸
n times

and Tn = T 1 × . . .× T 1︸ ︷︷ ︸
n times

, and thus by Theorem 4.2,

IC (fn, ρ) = IC (Mn, Tn) = n · IC
(
M1, T 1

)
= n · IC (f, ρ).

5 Information complexity vs. communication complexity

5.1 A new sampling lemma

In this section we prove a new sampling lemma. The lemma is then used to establish a new
connection between the information and the communication complexity of any problem. We start
with the following claim about the information divergence of distributions:
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Claim 5.1. Supposed that D (µ||ν) ≤ I. Let ε be any parameter. Then

µ
{
x : 2(I+1)/ε · ν(x) < µ(x)

}
< ε.

Proof. Recall that D (µ||ν) =
∑

x∈U µ(x) log µ(x)
ν(x) . Denote by N = {x : µ(x) < ν(x)} – the terms

that contribute a negative amount to D (µ||ν). First we observe that for all 0 < x < 1, x log x > −1,
and thus ∑

x∈N
µ(x) log

µ(x)

ν(x)
=
∑
x∈N

ν(x) · µ(x)

ν(x)
log

µ(x)

ν(x)
≥
∑
x∈N

ν(x) · (−1) > −1.

Denote by L =
{
x : 2(I+1)/ε · ν(x) < µ(x)

}
; we need to show that µ(L) < ε. For each x ∈ L we

have log µ(x)
ν(x) > (I + 1)/ε. Thus

I ≥ D (µ||ν) ≥
∑
x∈L

µ(x) log
µ(x)

ν(x)
+
∑
x∈N

µ(x) log
µ(x)

ν(x)
> µ(L) · (I + 1)/ε− 1,

implying µ(L) < ε.

We are now ready to state and prove our main sampling lemma.

Lemma 5.2. Let µ be any distribution over a universe U and let I ≥ 0 be a parameter that is
known to both A and B. Further, let νA and νB be two distributions over U such that D (µ||νA) ≤ I
and D (µ||νB) ≤ I. The players are each given a real function pA, qA, pB, qB : U → [0, 1] such
that for all x ∈ U , µ(x) = pA(x) · pB(x), νA(x) = pA(x) · qA(x), and νB(x) = pB(x) · qB(x). Let
ε > 0 be an error parameter. Then there is a sampling protocol Π = Π(pA, pB, qA, qB, I, ε) that
communicates 2O(1+I/ε) bits such that the following hold:

1. at the end of the protocol, the players output xA ∈ U and xB ∈ U , respectively;

2. there is an event E such that ¬E ⇒ xA = xB and P[E ] < ε;

3. let µ′ is the distribution of xA conditioned on ¬E, then |µ− µ′| < ε.

Proof. Firstly, Alice and Bob interpret the shared random tape as a source of points (xi, αi, βi)
uniformly distributed in U × [0, 1] × [0, 1]. Alice and Bob consider T = 2|U| ln 1/ε such points.
Their goal will be to discover the first index τ such that ατ ≤ pA(xτ ) and βτ ≤ pB(xτ ). Note
that the probability of each x to be such xτ is proportional to pA(xτ ) · pB(xτ ) = µ(xτ ). Thus the
distribution of xτ is correct.

Denote BA := {x : 28(I+1)/ε · νA(x) < µ(x)} and BB := {x : 28(I+1)/ε · νB(x) < µ(x)}. Then
by Claim 5.1, µ(BA), µ(BB) < ε/8. Next, we note that the probability that an index t satisfies
αt ≤ pA(xt) and βt ≤ pB(xt) is exactly 1/|U|. Hence the probability that τ > T (i.e. that xτ is not
among the T points considered) is bounded by

(1− 1/|U|)T < e−T/|U| = e−2 ln 1/ε = ε2 < ε/16.

Denote by A the set of indices

A := {i ≤ T : αi ≤ pA(xi) and βi ≤ 28(I+1)/ε · qA(xi)}.
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A is the set of indices that are candidates to be τ from A’s viewpoint. Similarly,

B := {i ≤ T : αi ≤ 28(I+1)/ε · qB(xi) and βi ≤ pB(xi)}.

Assuming xτ /∈ BA ∪BB, we have that τ ∈ A ∩ B, because xτ /∈ BA implies

pB(xτ )

qA(xτ )
=

µ(xτ )

νA(xτ )
≤ 28(I+1)/ε,

and thus βτ < pB(xτ ) ≤ 28(I+1)/ε · qA(xτ ), and hence τ ∈ A. In fact, τ is the first element in A∩B.
Note that for each t, P[t ∈ A] ≤ 28(I+1)/ε/|U|. Thus E[|A|] ≤ 28(I+1)/ε · 2 ln 1/ε < 29I/ε. Thus, by
Chernoff bound,

P[|A| > 210I/ε]� ε/16.

Let the event E1 := [xτ ∈ BA ∪ BB], and E2 := [τ > T or |A| > 210I/ε or |B| > 210I/ε]. Then by
union bound, setting E := E1∪E2, P[E ] < 2 ·ε/8+3 ·ε/16 < ε/2. The distribution µ′ conditioned on
on ¬(E1∪E2) satisfies |µ′−µ| < ε/2, because it is the distribution µ restricted to the set U\(BA∪BB)
(note that only the restriction by ¬E1 biases the distribution). We will show a protocol, such that
assuming the event ¬(E1 ∪ E2) the parties succeed at outputting the same correct value of xτ with
probability > 1− ε/2, thus completing the proof.

We have reduced the problem to the problem of finding and outputting the first element in
A ∩ B, where |A|, |B| ≤ 210I/ε. The communication complexity of the protocol will be 2O(1+I/ε).
We note that the protocol can be organized in such a way that only Alice needs to communicate
that many bits, while Bob communicates only O(1 + I/ε) bits.

Information-cost only sampling protocol

1. Alice computes the set A. If |A| > 210I/ε the protocol fails.

2. Bob computes the set B. If |B| > 210I/ε the protocol fails.

3. For each a ∈ A, Alice computes d = d20I/ε + log 1/ε + 2e random hash values
h1(a), . . . , hd(a), where the hash functions are evaluated using public randomness.

4. Alice sends the values {hj(ai)}ai∈A, 1≤j≤d to Bob.

5. Bob finds the first index i such that there is a b ∈ B for which hj(b) = hj(ai) for j = 1..d
(if such an i exists). Bob outputs xb and sends the index i to Alice.

6. Alice outputs xai .

Figure 4: The main sampling protocol from Lemma 5.2

First note that the number of bits communicated by Alice is bounded by 210I/ε · d = 2O(1+I/ε).
The number of bits communicated by Bob is bounded by log |A| ≤ 10I/ε. To see that the protocol
works, observe that for a ∈ A and b ∈ B such that a 6= b, the probability (over possible choises of
the hash functions) that hj(a) = hj(b) for j = 1..d is bounded by 2−d < ε

4|A|·|B| . Thus, by union
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bound, the probability that there is an a ∈ cA, b ∈ B such that a 6= b but the hashes match, is
bounded by ε/4. Assuming there are no such a and b, and there is a τ ∈ A ∩ B, the protocol is
guaranteed to find it, completing the proof.

5.2 Information vs. communication

In the language of communication complexity, Lemma 5.2 implies the following:

Theorem 5.3. Let f : X × Y → ZK be any function, and let ρ, ε > 0 be error parameters:

1. For any distribution µ, Dµ
ρ+ε(f) = 2O(1+ICµ(f,ρ)/ε2).

2. Rρ+ε(f) = 2O(1+IC(f,ρ)/ε2).

Theorem 5.3 can be used as a generic (if weak) tool to obtain unconditional lower bounds on the
information complexity of problems. For example, the fact that R1/3(DISJn) = Ω(n) immediately
implies that IC (DISJn, 1/6) = Ω(log n). In section 7 we will see that in fact IC (DISJn, 1/6) =
Ω(n).

Proof. We begin with the first part of the theorem. Let µ be any distribution. Let π be a protocol
that realizes the value Iµ := ICµ(f, ρ). In other words, π has an error rate of at most ρ and
information cost of at most Iµ with respect to µ. Denote by πxy the random variable that represents
that transcript π given the inputs (x, y), and by πx (resp. πy) the protocol conditioned on only
the input x (resp. y). We denote by πXY the transcripts where (X,Y ) are also a pair of random
variables. We know that

Iµ = I(X;πXY |Y ) + I(Y ;πXY |X) = E(x,y)∼µ[D (πxy||πx) + D (πxy||πy)].

Thus by Markov inequality, with probability at least 1 − ε/2 (with respect to µ) we will have
D (πxy||πx) ≤ 2Iµ/ε and D (πxy||πy) ≤ 2Iµ/ε. Let us now run the sampling algorithm from
Lemma 5.2. With the distribution µ in Lemma 5.2 taken to be πxy, the distribution νA taken to
be πx, the distribution νB taken to be πy, I taken to be 2Iµ/ε, and the error parameter is taken to
be ε/4.

At each node v of the protocol tree that is owned by player X let p0(v) and p1(v) = 1− p0(v)
denote the probabilities that the next bit sent by X is 0 and 1, respectively. For nodes owned by
player Y , let q0(v) and q1(v) = 1− q0(v) denote the probabilities that the next bit sent by Y is 0
and 1, respectively, as estimated by player X given the input x. For each leaf ` let pX(`) be the
product of all the values of pb(v) from the nodes that are owned by X along the path from the root
to `; let qX(`) be the product of all the values of qb(v) from the nodes that are owned by Y along
the path from the root to `. The values pY (`) and qY (`) are defined similarly. For each ` we have
P[πxy = `] = pX(`) · pY (`), P[πx = `] = pX(`) · qX(`), and P[πy = `] = pY (`) · qY (`). Thus we can
apply Lemma 5.2, to successfully obtain a sample transcript T such that the statistical distance
|T − πxy| < ε/2. T is obtained using 2O(1+Iµ/ε2) communication. Let Tout be the final output of
the transcript T , and πout be the final output of the original protocol. |T −πxy| < ε/2 implies that
P[Tout 6= πout] < ε/2.

It remains to bound the error probability of our new protocol. In other words, we need to show
that

P(x,y)∼µ,protocol randomness[Tout 6= f(x, y)] < ρ+ ε.
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The protocol above only works for pairs (x, y) where D (πxy||πx) ≤ 2Iµ/ε and D (πxy||πy) ≤ 2Iµ/ε.
Call such pairs “good”. We saw that P(x,y)∼µ[(x, y) is good] > 1− ε/2. Thus we have:

P[Tout 6= f(x, y)] ≤ P[(x, y) not good] + P[Tout 6= πout|(x, y) is good]

+ P[πout 6= f(x, y)] < ε/2 + ε/2 + ρ = ρ+ ε.

To prove the second part of the theorem recall that by Yao’s minimax theorem there is a
distribution µ such that Dµ

ρ+ε(f) = Rρ+ε(f). Since by definition ICµ(f, ρ) ≤ IC (f, ρ), we obtain

Rρ+ε(f) = Dµ
ρ+ε(f) = 2O(1+ICµ(f,ρ)/ε2) ≤ 2O(1+IC(f,ρ)/ε2).

6 Information complexity and amortized communication

6.1 Preliminaries: the distributional case

We next turn our attention to the relationship between the information cost of a problem and its
amortized communication cost – the communication cost of solving n copies of the problem as n
goes to∞. In [BR10] such a connection has been established for the distributional setting. Here we
extend the connection to the distribution-free setting. The extension is very similar to the original
proof. In addition, we formulate a more careful statement of the result. This statement may be
more useful in applications. For example, it will be useful in one of the proofs establishing the
linear lower bound on the information cost of disjointness in Section 7. We will first repeat some
definitions and theorems from prior works, before stating our main results.

Let f : X × Y → ZK be any function1. The distributional communication cost of k copies of f
has been defined in [BR10] as follows:

Definition 6.1. Let µ be a distribution on X × Y and let 0 < ρ < 1. We denote by Dµ,n
ρ (fn) the

distributional complexity of computing f on each of n independent pairs of inputs drawn from µ,
with probability of failure at most ρ on each of the inputs.

Note that trivially Dµ,n
ρ (fn) ≤ n ·Dµ

ρ (f) – this can be achieved by just running n copies of the
protocol for f independently.

Remark 6.2. In Definition 6.1 we deliberately do not require the n-copy protocol to succeed with
probability 1 − ρ on all n copies. This latter task may be qualitatively more difficult. Consider,
for example, a scenario where f and µ are such that Dµ

1/10(f)� Dµ
1/100(f). This may happen, for

example, if 90% of the input pairs are “very easy”, and thus Dµ
1/10(f) is very small, while the re-

maining 10% are “very hard”, and thus Dµ
1/100(f) is very large. Then Dµ,n

1/10(fn) as in Definition 6.1

will still be small. At the same time, computing f correctly on all n copies simultaneously (except
with probability 10%) would require one so solve a lot of “very hard” instances, and would have a
much higher communication complexity that cannot possibly be related to Dµ

1/10(f).

A version of the following theorem, giving a connection between (distributional) information
cost and amortized communication complexity was proved in [BYJKS04]. The sharper statement
presented below is from [BR10] (cf. also Theorem 4.3 above).

1As before, our results also hold for tasks and not just functions.
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Theorem 6.3. For every µ, f , ρ there exists a protocol τ computing f on inputs drawn from µ
with probability of error at most ρ on each input and communication at most Dµ,n

ρ (fn) such that

ICµ(τ) ≤ Dµ,nρ (fn)
n , and thus ICµ(f, ρ) ≤ Dµ,nρ (fn)

n .

Thus the amortized communication complexity gives an upper bound on the information cost
of the problem. For each fixed n, we do not know whether the inequality in Theorem 6.3 is tight or
not, and it probably isn’t: for n = 1 this is equivalent to the question whether ICµ(f, ρ) = Dµ

ρ (f) –
which remains open. However, in [BR10] it has been shown that in the limit the inequality is tight:

Theorem 6.4. The distributional information cost is equal to amortized communication:

ICµ(f, ρ) = lim
n→∞

Dµ,n
ρ (fn)

n
.

To prove Theorem 6.4 one needs to use a low-information protocol for one copy of f to produce
a low-amortized communication cost protocol for n copies, when n is large. The main technical
ingredient in the proof is the following protocol compression lemma:

Lemma 6.5. [BR10] Let (x, y) be inputs to an r-round communication protocol π whose (internal)
information cost is I := ICµ(π). Then for every ε > 0 there exists a protocol τ such that at the end
of the protocol, each party outputs a transcript for π. Furthermore, there is an event G with P[G] >
1−rε such that conditioned on G, the expected communication of τ is I+O(

√
rI+1)+2r log(1/ε),

and both parties output the same transcript distributed according to π(x, y).

The lemma is proved in [BR10] using an iterated correlated sampling argument. We will return
to some of the proof details in the next section. Our goal will be to establish the analogue of
Theorem 6.4 for the randomized communication complexity.

6.2 The non-distributional case

Recall that Rρ(f) is the randomized communication complexity of f with error ρ. We know, by
Yao’s minimax theorem that Rρ(f) = maxµD

µ
ρ (f). We now give a definition of the randomized

communication complexity of n copies of f . It is the distribution-free analogue of Definition 6.1.

Definition 6.6. Let 0 < ρ < 1. We denote by Rnρ (fn) the randomized communication complexity
of computing f so that on each set of n inputs the probability of failure on each of the inputs is at
most ρ.

Our main result states that the prior-free information cost of f captures precisely f ’s amortized
communication complexity:

Theorem 6.7. For ρ > 0,

IC (f, ρ) = lim
n→∞

Rnρ (fn)

n
.

Remark 6.8. We note that Theorem 6.7 does not hold when ρ = 0, i.e. when the protocol is not
allowed to err. Recall (Proposition 3.21) that IC (EQ, 0) = O(1). At the same time, it is not hard
to see that if the function EQ is on the space {0, 1}m × {0, 1}m then Rnρ (fn) = Ω(m · n) and thus
the right-hand-side in Theorem 6.7 is Ω(m). The ‘≤’ direction of Theorem 6.7 holds even for ρ = 0.
The other direction, however, requires the use of compression, such as Lemma 6.5. Such lemmas
necessarily introduce a small amount of additional error. For each fixed ρ > 0, the additional error
introduced can be made negligible, but this does not work for ρ = 0.
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The proof of Theorem 6.7 will consist of proving inequalities in two directions. We will actually
prove a slightly stronger statement in the ‘≥’ direction – showing that low information cost implies
low amortized communication complexity. Here is the precise statement that we prove:

Theorem 6.9. Let f : X × Y → {0, 1}, and let I := IC (f, ρ) then for each δ1, δ2 > 0 there is an
N = N(f, ρ, δ1, δ2) such that for each n ≥ N there is a protocol πn = πn((x1, . . . , xn), (y1, . . . , yn))
for computing n instances of f . The protocol πn will have communication complexity < n·I ·(1+δ1),
and will have error . ρ on each copy. Moreover, except with probability < δ2, the protocol errors
will behave as if the n evaluations were independent.

More precisely, let Q : {0, 1}n → {0, 1} be any monotone function. Fix the inputs (x1, . . . , xn),
(y1, . . . , yn), let (f1, . . . , fn) := (f(x1, y1), . . . , f(xn, yn)) and let (p1, . . . , pn) be the random variable
representing πn’s output. Let e = (e1, . . . , en) be the “errors vector” – ei = χpi 6=fi. Let b =
(b1, . . . , bn) be a vector of independent Bernoulli variables bi ∼ Bρ. Then

P[Q(e) = 1] ≤ P[Q(b) = 1] + δ2.

Clearly, Theorem 6.9 (applied with Q being one coordinate indicator functions) implies that
Rnρ+δ2

(fn) ≤ n · I · (1 + δ1). Taking δ1 → 0 and n→∞, for each δ2 > 0 we get:

IC (f, ρ) ≥ lim
n→∞

Rnρ+δ2
(fn)

n
.

Substituting ρ− δ2 for ρ we get:

IC (f, ρ− δ2) ≥ lim
n→∞

Rnρ (fn)

n
.

Finally, by the continuity of IC (f, ρ) in ρ (Corollary 3.19), we have IC (f, ρ) = limδ2→0 IC (f, ρ− δ2),
and thus

IC (f, ρ) ≥ lim
n→∞

Rnρ (fn)

n
,

which proves the ‘≥’ direction of Theorem 6.7. It remains to prove the ‘≤’ direction of Theorem 6.7
and Theorem 6.9.

Proof of the ‘≤’ direction of Theorem 6.7. It follows immediately from Part 2 of Theorem 4.3 that

IC (f, ρ) =
IC (fn, ρ)

n
≤
Rnρ (fn)

n
.

The second inequality holds because the amount of communication is always an upper bound on
information cost.

The proof of the other direction of Theorem 6.7, i.e. Theorem 6.9, is unfortunately fairly

complicated. It is easier to give a proof of the weaker statement that limn→∞
Rnρ (fn)

n = O(IC (f, ρ))
– if we didn’t care to prove that the constant is 1. It would be interesting to see whether this proof
can be simplified.
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Proof of Theorem 6.9. Recall that f is a function on the space X×Y . Let K be such that |X|, |Y | ≤
2K . By the continuity of IC (f, ρ), there is a δ3 > 0 such that

IC (f, ρ− δ3) < IC (f, ρ) · (1 + δ1/3).

By the definition of IC (f, ρ− δ3), there is a protocol π that on each pair of inputs succeeds except
with probability ≤ ρ− δ3, and such that for each distribution µ,

ICµ(π) ≤ IC (f, ρ) · (1 + δ1/3).

Our overall strategy will be to try and execute n copies of π in a communication-efficient way. We
claim that it is possible. Set δ4 := min(δ2, δ3)/2.

Claim 6.10. For each sufficiently large n there is a protocol πn that takes n instances of f as an
input and has the following properties:

1. For each set of inputs, the statistical distance between the output of πn and the output of πn

(i.e. an execution of n independent copies of π) is < δ4/(2n
2).

2. The expected communication cost of πn is < n · IC (f, ρ) · (1 + 2δ1/3).

3. The worst case communication cost of πn is < 100nK/δ1.

The bulk of the effort will go into proving Claim 6.10. Assuming Claim 6.10, note that the
execution of πn will be very similar to the execution of πn. In turn, the errors in the execution of πn

are dominated by n independent Bernoulli random variables Bρ−δ3 < Bρ, thus almost completing
the proof of the theorem.

The reason the proof is not complete is the additional complication stemming from πn using
< n · IC (f, ρ) · (1 + 2δ1/3) communication in expectation, while we would like an upper bound on
the worst-case communication complexity of fn. We are able to prove the theorem with n replaced
with n3 by taking n2 independent copies of πn. The following claim thus completes the proof of
the theorem.

Claim 6.11. Let Π be the protocol that runs on n3 pairs of inputs by dividing them into n2 blocks
of n pairs each and running πn on each block. Further, the protocol Π is truncated (and fails) if it
does not terminated after < n3 · IC (f, ρ) · (1 + δ1) communication. Then for each set of inputs, the
statistical distance between the output of Π and the output of πn

3
is < δ4.

Proof. Fix a set of n3 inputs. There are two sources of statistical distance between the output of
Π and the output of πn

3
: the first one is due to one of the n2 blocks being different under πn than

under πn; the second is from the probability that the protocol Π fails altogether by not terminating
in the allotted time. The probability of the first event is bounded by n2 · δ4/(2n

2) = δ4/2. It
remains to bound probability of the second event by δ4/2.

Let Ti for i = 1, . . . , n2 denote the random variable representing the amount of communication

used by the i-th copy of πn during the execution of Π. Denote T :=
∑n2

i=1 Ti. Our goal is to show
that

P
[
T ≥ n3 · IC (f, ρ) · (1 + δ1)

]
< δ4/2.

We know that Ti are i.i.d., E[Ti] < n · IC (f, ρ) · (1 + 2δ1/3) and

V ar(Ti) < E[Ti] · 100nK/δ1 < 200n2K · IC (f, ρ)/δ1.

29



Hence E[T ] < n3 · IC (f, ρ) · (1 + 2δ1/3) and V ar(T ) < 200n4K · IC (f, ρ)/δ1. Thus, by Chebyshev’s
inequality, we get

P
[
T ≥ n3 · IC (f, ρ) · (1 + δ1)

]
< P

[
T > E[T ] + n3 · IC (f, ρ) · δ1/3

]
<

200n2K · IC (f, ρ)/δ1

(n3 · IC (f, ρ) · δ1/3)2
< δ4/2,

for a sufficiently large n.

Claim 6.11 implies that for each sufficiently large n,

Rnρ (fn
3
)

n3
< IC (f, ρ) · (1 + δ1),

and, further, that the other conclusions of Theorem 6.9 hold.
It remains to prove Claim 6.10

Proof of Claim 6.10. We first give a protocol πn that satisfies the first condition and that has a
slightly lower expected communication cost of < n · IC (f, ρ) · (1 + 3δ1/5). We then show how to
modify it to satisfy the third condition without increasing the expected communication cost by too
much.

Let r be the number of rounds in the protocols π, and let α > 0 be a (small) parameter that we
will set later. We let G be the following zero-sum game. The first player M produces a distribution
µ on n-tuples of pairs of inputs. The second player T produces a (randomized) protocol τ . The
payoff for the first player is the sum

PM (µ, τ) := (1− α) · Ex,y∼µ|τ(x,y)|
n · I · (1 + δ1/2)

+
Ex,y∼µ|τ(x,y)− πn(x,y)|

δ4/(2n2)
. (20)

Here |τ(x,y)| denotes the expected communication cost of τ on inputs (x,y), and |τ(x,y)−πn(x,y)|
denotes the statistical distance between the two protocols on a given input. We first establish that
for any large enough n the value of the game is bounded by 1:

V alM (G) < 1: Let ν be any mixed strategy for player M . Denote by µ̄ the average distribution
in ν: µ̄(x,y) = Eµ∼νµ(x,y). Since the payoff function is calculated in terms of expectations over
(x,y) ∼ µ, for any τ we have:

Eµ∼νPM (µ, τ) = PM (µ̄, τ).

Thus it is enough to show that for each distribution µ there is a protocol τ such that PM (µ, τ) < 1.
Fix a distribution µ. Let µ1, . . . , µn be the projections of µ onto its n coordinates. As in the

proof of the second part of Theorem 4.2, one can see that the information revealed by the protocol
πn that applies π to each copy independently has bounded information cost:

ICµ(πn) ≤
n∑
i=1

ICµi(π) ≤ n · I · (1 + δ1/3). (21)

Furthermore, as π, the protocol πn is still an r-round protocol, independently of n. Let

ε :=
α · δ4

2n2r
.
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By Lemma 6.5 the protocol πn can be simulated by a protocol τ so that the expected communication
Ex,y∼µ|τ(x,y)| is bounded by

n · I · (1 + δ1/3) +O(
√
r · n · I · (1 + δ1/3) + 1) + 2r log(1/ε) < n · I · (1 + δ1/2),

so that the statistical distance between the execution of πn and the execution of τ is < r ·ε. Putting
the pieces together, we get

PM (µ, τ) < (1− α) · n · I · (1 + δ1/2)

n · I · (1 + δ1/2)
+

r · ε
δ4/(2n2)

= (1− α) + α = 1.

By the Minimax Theorem, there is a distribution ν on protocols τ , such that for each distribution
µ, Eτ∼ν [PM (µ, τ)] < 1. This implies that the randomized protocol πn obtained by executing a
protocol τ that is distributed according to ν also satisfies PM (µ, πn) < 1 for all µ. This is in
particular true for each singleton µ = 1(x,y). Let

α < 1− 1 + δ1/2

1 + 3δ1/5
.

Then for each (x,y), PM (1(x,y), πn) < 1 implies that the statistical distance between the output of
πn and the output of πn is bounded by

PM (1(x,y), πn) · δ4

2n2
<

δ4

2n2
.

At the same time, the expected running time of πn on (x,y) is bounded by

PM (1(x,y), πn) · n · I · (1 + δ1/2)

1− α
< n · I · (1 + 3δ1/5).

To finish the proof, it remains to show how to modify πn so that its worst-case communication cost
is bounded by 100nK/δ1. We modify πn as follows. We let it run as usual for 80nK/δ1 bits. If the
protocol πn does not terminate in this many steps, the players will use 2nK bits of communication
to completely exchange their inputs (x,y). They then finish the execution of the protocol πn using
private randomness but without communicating. They can do this since now they can simulate
each other’s internal state.

The bound on the worst-case communication cost clearly holds. To bound the expected com-
munication, note that by Markov’s inequality the probability of the protocol reaching 80nK/δ1 bits
of communication is bounded by

Expected Communication

80nK/δ1
<

2nI

80nK/δ1
=

δ1I

40K
.

Thus the additional contribution to the communication cost caused by the modification is bounded
by

δ1I

40K
· (2nK) =

δ1nI

20
.

Overall, the modified protocol has expected communication complexity of less than

n · I · (1 + 3δ1/5) +
δ1nI

20
< n · I · (1 + 2δ1/3),

thus still satisfying the second condition.

This concludes the proof of Theorem 6.9.
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7 The information complexity of disjointness

7.1 A linear lower bound, proof 1: using self-reducibility

Our goal in this section is to prove a linear lower bound on the information complexity of the
disjointness function DISJn : {0, 1}n × {0, 1}n → {0, 1} given by

DISJn((x1, . . . , xn), (y1, . . . , yn)) := ¬
n∨
i=1

(xi ∧ yi).

In our first proof, we will rely on the following classical result on the communication complexity of
DISJn:

Theorem 7.1. [KS92, Raz92] R1/6(DISJn) = Ω(n).

We do not have a general bound that would show that IC (DISJn, ρ) = Ω(R1/6(DISJn)) = Ω(n)
for some constant ρ. However, we are able to exploit the self-similar structure of the disjointness
function to prove the linear lower bound directly.

Theorem 7.2. IC (DISJn, 1/2− ε) = Ω(n) for all 0 < ε < 1/2.

Proof idea of Theorem 7.2. In the proof we combine theorems 6.9 and 7.1. By Theorem 7.1, we
know that R1/6(DISJn) = Ω(n). Let us say R1/6(DISJn) ≥ n/50 to be concrete. Suppose for
contradiction that DISJn had sublinear information cost. By repeating the protocol for disjointness
a constant number of time, we obtain that IC (DISJn, 1/100) = o(n). Next we use the fact
(Theorem 6.9) that information is equal to amortized communication to obtain a protocol πN
for N copies of disjointness on n bits each such that the probability of πN to be wrong on each
n-tuple is < 1/100. We use πN to derive a protocol for DISJn·N by first running πN (using
communication o(n ·N)), and then only focus on the n-tuples where πN returned 0 (i.e. which were
determined to be non-disjoint). We expect there to be ∼ N/100 mistakes, so we should expect
to go over fewer than N/75 n-tuples that were incorrectly classified as non-disjoint before either
terminating (and returning 1) or discovering an n-tuple that is not disjoint (and returning 0). Thus
the total communication required to solve DISJn·N would be < n · N/75 + o(n · N) < n · N/50,
contradicting Theorem 7.1.

Proof of Theorem 7.2. By Theorem 7.1 we know that there is a constant 0 < α < 1 such that

R1/6(DISJn) > αn (22)

for all sufficiently large n. Assume, for the sake of contradiction that IC (DISJn, 1/2− ε) = o(n)
for some 0 < ε < 1/2. By repeating the same protocol a constant number of times and taking the
majority we obtain IC (DISJn, γ) = o(n) for all constant γ > 0. We fix γ := α/10. Thus for a
sufficiently large n ≥ n0 we have IC (DISJn, α/10) < (α/10) · n.

Fix an n ≥ n0. We apply Theorem 6.9 to DISJn with ρ = α/10, δ1 = 1/4, and δ2 = 1/40.
There is an N0 such that for all N > N0 there is a protocol πN for computing N copies of DISJn.
πN has communication complexity < N · (α/10) · n · (1 + 1/4) = (α/8) · (N · n). The probability of
πN being wrong on each input is ≤ ρ+ δ2 < 1/8. Moreover, the stronger property in Theorem 6.9
holds. We use the protocol πN to give a very efficient protocol for DISJN ·n, which will contradict

32



The protocol Π((x1, . . . , xN ·n), (y1, . . . , yN ·n))

The players fist interpret the input as N blocks of n bits each. Denote the blocks by
(X1, . . . , XN ), (Y1, . . . , YN ).

1. The players run πN ((X1, . . . , XN ), (Y1, . . . , YN )) to obtain an output (a1, . . . , aN ).

2. Let i1, . . . , ik be the indexes where aij = 0.

3. If k ≥ αN/4, return 0 (“not disjoint”).

4. Otherwise, for each j = 1..k:

(a) Run the brute force disjointness protocol on (Xij , Yij ).

(b) If it returns 0, return 0 (“not disjoint”).

5. If none of the executions on (Xij , Yij ) returned 0, return 1 (“disjoint”).

Figure 5: The protocol Π

Theorem 7.1. The protocol Π is given on Figure 5. We next analyze the protocol’s complexity and
failure probability.
The communication complexity of Π. The first step of Π consists of an execution of πN , and
thus uses < (α/8) · (N ·n) communication. The fourth step is only executed if k < αN/4, in which
case it is executed fewer than αN/4 times to a total communication cost of < (αN/4) · (n + 1).
Thus the total communication cost of Π is bounded by

(α/8) · (N · n) + (αN/4) · (n+ 1) < (α/2) · (N · n).

The failure probability of Π. Let ((x1, . . . , xN ·n), (y1, . . . , yN ·n)) = (X1, . . . , XN ), (Y1, . . . , YN )
be an input to the protocol. We need to show that the probability that Π computes DISJN ·n
incorrectly on this input is < 1/6. There are two cases to consider.
Case 1: DISJn·N ((x1, . . . , xN ·n), (y1, . . . , yN ·n)) = 0. In this case there is a coordinate ` such that
DISJn(X`, Y`) = 0. By the property of πN we will have the first-step output a` = 0 except with
probability < 1/8. Assuming a` = 0 note that the protocol Π is guaranteed to output 0, either in
step 3 or in step 4 after considering the pair (X`, Y`). Thus the probability of an error in this case
is < 1/8 < 1/6.
Case 2: DISJn·N ((x1, . . . , xN ·n), (y1, . . . , yN ·n)) = 1. Let Q : {0, 1}N → {0, 1} be the monotone
function that returns 1 if and only if the Hamming weight of the input is at least αN/4. Let Bρ be
a Bernoulli variable with the probability of 1 being ρ = α/10. By Chernoff bound, for a sufficiently
large N ,

P[Q(Bρ, . . . , Bρ) = 1] < 1/10.

Thus by Theorem 6.9, the probability of πN making at least αN/4 errors is bounded by

P[Q(Bρ, . . . , Bρ) = 1] + δ2 < 1/8.
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Thus the probability of Π outputting 0 in step 3 is < 1/8. Note that if Π does not output 0 in step
3 it is guaranteed to output 1, since all the pairs (Xi, Yi) are disjoint. Thus the probability of error
in this case is also < 1/8 < 1/6.

We proved that R1/6(DISJN ·n) < (α/2) · (N · n) for all sufficiently large N . This contradicts
our assumption (22), and completes the proof of the theorem.

7.2 Proof 2: using information cost direct sum (sketch)

The second proof will be much shorter and does not use the communication complexity lower bound
for disjointness. Rather, it will use the information cost direct sum techniques as in Theorem 4.2. It
will resemble the proof [Raz92, BYJKS04] that disjointness has linear communication complexity,
but will work for information cost.

Let us define the task T (x, y) on two bits x, y ∈ {0, 1} of computing the AND function x ∧ y.
Let µ be the distribution on {0, 1}2 that is uniform on the set {(0, 0), (0, 1), (1, 0)}. Let µ′ be
the restriction of µ to one coordinate. In other words, µ′ is a distribution on {0, 1} such that
µ′(0) = 2/3 and µ′(1) = 1/3. Suppose, for contradiction, that there was a protocol Π for solving
disjointness on n-bit long strings with error δ and in < εn information cost, where δ and ε are very
small constants.

In particular we have ICµn(Π) < εn. Let π be the protocol obtained by restricting Π to one
coordinate as in Figure 6 (cf. [BR10]).

Protocol π(x, y)

1. The parties jointly and publicly sample a uniformly selected index J ∈ {1, . . . , n}.

2. The parties publicly sample X1, . . . , XJ−1, YJ+1, . . . , Yn according to µ′.

3. The first party privately samples XJ+1, . . . , Xn and the second party privately samples
Y1, . . . , YJ−1 conditioned on the corresponding publicly sampled variables, so that each
(Xi, Yi) is distributed according to µ.

4. The parties run Π((X1, . . . , XJ−1, x,XJ+1, . . . , Xn), (Y1, . . . , YJ−1, y, YJ+1, . . . , Yn)) and
output the output its output.

Figure 6: The protocol π(x, y), x, y ∈ {0, 1}

The proof from [BR10] (and also the proof of Theorem 4.2) shows that the information cost

ICµ(π) =
1

n
· ICµn(Π) < ε.

At the same time we note that π can be used to solve the task T (x, y). For each pair of inputs
(x, y), and for each possible randomized selections in the protocol π, we have:

T (x, y) = x∧y = Disjn((X1, . . . , XJ−1, x,XJ+1, . . . , Xn), (Y1, . . . , YJ−1, y, YJ+1, . . . , Yn)) = π(x, y),
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where the last equality holds with probability > 1− δ. We note that we measure the information
revealed by π only against the distribution µ, whereas π will perform correctly on all four possible
pairs of inputs. This is important to achieve a contradiction, since computing x ∧ y correctly on
inputs in the support of µ is trivial, as the function is identically 0 on this set.

It remains to show that a protocol that reveals almost no information over the distribution µ
cannot be computing x ∧ y correctly. This part is very similar to previous proofs of the communi-
cation lower bounds for disjointness, and we omit the details here.

8 Directions and open problems

In this section we outline some open problems surrounding the interactive information complexity.
We group these problems by topic. Some of the problems are very concrete, while others take the
form of a potential research direction.

8.1 Properties of the interactive information complexity

The first set of problems has to do with the properties of IC (f, ε), and its relationship with other
communication complexity measures. First and foremost, we would like to know whether interactive
computation can be compressed. In other words, whether the interactive information complexity
is equal to the communication complexity of any function:

Problem 1. Is it true that for all f , IC (f, ε) = Ω(R(f, ε))?

Note that we know that IC (f, ε) ≤ R(f, ε). An affirmative answer to Problem 1 would prove a
strong direct sum theorem for communication complexity. If would also mean that it is impossible
to solve problems that have high communication complexity without violating the (information-
theoretic) privacy of the participants’ inputs. A negative answer to Problem 1 would give an
example of a problem that violate the direct sum conjecture for randomized communication com-
plexity [BR10]. The only general result in the direction of Problem 1 that we have is Theorem 5.3,
and it only gives a lower bound of the form IC (f, ε/2) = Ω(logR(f, ε)) for constant ε > 0.

A less ambitious problem is compressing communication to the external information cost of the
problem:

Problem 2. Is it true that for all f , ICext (f, ε) = Ω(R(f, ε))?

As has been observed in [BBCR10], compressing a protocol to the external information cost
can be much easier than compressing to the internal information cost. While an affirmative answer
to Problem 2 would have no direct-sum implications, it would still mean that any protocol for a
distribute function f that has high communication complexity must reveal a lot of information to
an observer, and thus cannot be information-theoretically secure.

Also of interest is the relationship between IC (f, ε) and other quantities related to the com-
munication complexity of f . One notable problem here is the relationship between the quantum
communication complexity Q(f, ε) and IC (f, ε). While we know that there is an exponential gap
between R(f, ε) and Q(f, ε) [Raz99, KR11], it is not clear whether it carries over to the information
complexity.

Problem 3. What is the relationship between Q(f, ε) and IC (f, ε)? In particular are there problems
for which Q(f, ε) = O(polylog(IC (f, ε)))?
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Note that answering Problem 1 may provide an answer to Problem 3.
Another interesting problem is whether the log-rank conjecture holds for the interactive infor-

mation complexity. Such a conjecture would be easier to prove than the regular log-rank conjecture
since the information complexity is always bounded by the communication complexity:

Problem 4. Let f(x, y) be a binary function, and let Mf be the corresponding matrix. Is it true
that

IC (f, 0) = O(polylog rank(Mf ))?

More generally, for any ε, is it the case that

IC (f, ε) = O(polylog min
‖M−Mf‖∞≤ε

rank(M))?

Finally, we turn our attention to the following surprising problem. Given a truth table of a
function f and the error parameter ε, it is not clear how to compute IC (f, ε). Indeed, it is not even
clear that when viewed as a function, IC (f, ε) is computable:

Problem 5. What is the computational complexity of the problem of evaluating the information
complexity of a function f? In other words, given a truth table of f : {0, 1}n × {0, 1}n → {0, 1},
and a rational ε ≥ 0, what is the complexity of evaluating IC (f, ε)? Is this function computable?

While it is clear that successive estimates of IC (f, ε) from above can be constructed by enu-
merating all two-party protocols, it is not clear how to estimate the rate of convergence of these
estimates so as to compute IC (f, ε).

8.2 The information complexity of specific problems

To improve our understanding of the information complexity of problems we need to understand
which communication complexity techniques can be adapted to the more challenging information
setting. This may reveal additional insights about the functions in question, and also help us make
progress towards Problem 1 above. Here we mention three specific such problems. The first one
is the Gap Hamming Distance problem, that has received much attention recently, and has been
shown to have linear communication complexity [CR11, Vid11, She11]. Given two vectors x, y in
{−1,+1}n, the GHDn problem is distinguishing between the case when 〈x, y〉 >

√
n and the case

when 〈x, y〉 < −
√
n:

Problem 6. Is it true that IC (GHDn, 1/3) = Ω(n)?

The second problem is closely related to Problem 3 above. The Vector in Subspace Problem
(VSP) is the (promise) problem that yields an exponential separation between the one-way quantum
and randomized communication complexity given by Klartag and Regev [KR11]. V SPn is defined
as follows. Alice is given a unit vector u ∈ Rn, and Bob is given a subspace H ⊂ Rn of dimension
n/2 with the promise that either u ∈ H or u ∈ H⊥. Their goal is to decide which is the case.
[KR11] showed an Ω(n1/3) lower bound for this problem, we ask whether a polynomial lower bound
on the information cost of the problem holds.

Problem 7. Is it true that IC (V SPn, 1/3) = nΩ(1)?
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Finally, we turn our attention to the zero-error information cost of concrete functions. The
simplest functions to consider are 2-bit functions f : {0, 1} × {0, 1} → {0, 1}. It is not too difficult
to see that the information complexity of the two-bit exclusive-OR function is IC (XOR2, 0) = 2.
We do not know, however, the precise information complexity even for the two-bit AND function
AND2:

Problem 8. What is the value of IC (AND2, 0)?

We know that the value is in the interval (1, 2) – in fact, better estimates can be proved –
but the precise value is unknown. Note that this value would also give the precise value of the
amortized communication complexity of the two-bit AND. In addition, a solution to Problem 8
would probably shed some light on the computability of the information complexity (Problem 5).

8.3 Quantum information complexity

We next turn our attention to directions of interest. These are more open-ended than the problems
above, and are less well-posed. The first one has to do with extending interactive information
complexity into the quantum communication setting.

Problem 9. What is the correct quantum analogue of IC (f, ε)? What is its relationship with
the quantum communication complexity? Is it an interesting quantity? In particular, is it always
bounded by a constant?

We note that it is quite possible that the quantum analogue of the interactive information
complexity of boolean functions collapses to a constant due to the existence of reversible computing
in the quantum world.

8.4 Multiparty information complexity

Perhaps the most natural extension to the present work one should consider is the extension to
the communication setting with more than two players. There are several models for (randomized)
multiparty communication complexity. They can be broadly split into the number-in-hand and the
number-on-the-forehead models.

In the number-in-hand (NIH) model, each of the k players is given an input xi, and the players
need to compute a function f(x1, . . . , xk). The players may be communicating either through a
blackboard that is visible to all players, or through private messages, depending on the model. Note
that if k is constant, e.g. k = 3, then the two settings are equivalent up to a multiplicative constant.
The NIH setting is usually very similar to the two-party setting. One communication complexity
lower bound technique in this case is to partition the k players into two groups and show that a
large number of bits must be exchanged between the two groups. This brings the natural question
of extending the interactive information cost to the multiparty NIH setting:

Problem 10. What is the “right” definition of the multiparty NIH information complexity, and
what are its properties?

It is quite plausible that a straight generalization of the information cost would work. One
source of difficulty is that now there are potentially different kinds of “public” randomness – e.g.
randomness that is accessible by some but not all players.
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The number-on-the-forehead (NOF) model is notoriously more difficult. In this model there
are still k players and k inputs x1, . . . , xk, but each player i has access to all inputs but xi –
as if xi was written on her forehead. Lower bounds in this model are notoriously more difficult.
There is no straightforward reduction to the two-party case. Even the disjointness problem over [n]
with fewer than log n players proves to be a major challenge that has been resolved only recently
[CA08, LS09]. Moreover, any explicit lower bound on the multiparty communication complexity in
the NOF model with (log n)ω(1) players, would yield to superpolynomial circuit lower bounds for
the class ACC0 of bounded-depth circuits with modulo gates [Yao90, BT91, HG90]. Thus proving
lower bounds in the NOF model is a well-motivated problem.

Problem 11. Is there a way to define information complexity in the multiparty NOF model, and
what are its properties?

Note that in this model one has to be particularly careful since, at least when there is randomness-
on-the-forehead available, one can design protocols that reveal no information to the participants
except for the output of the computation.

8.5 Continuous complexity measures

Finally, we take a higher level view on the relationship between the (two-party) information com-
plexity of problems and their communication complexity. One way to look at IC (f, ε) is as a
continuous relaxation of the communication complexity R(f, ε): IC (f, ε) ≤ R(f, ε), since commu-
nication is always an upper bound of information. On the other hand, as far as we know, IC (f, ε)
may be smaller than R(f, ε). The advantage comes from the fact that when considering infor-
mation, each communication round may carry a non-integral amount of information – potentially
much smaller than 1 bit. Thus if during the execution of a protocol a bit is sent that is not very
“informative”, IC (·, ·) will measure the amount of information correctly, while the communication
complexity of sending this bit is “rounded” to cost 1. One can argue that if IC (·, ·) has nicer
properties than R(·, ·) – such as an exact direct sum theorem – it is because IC (·, ·) is non-integral
and measures the interaction between the player more accurately.

This raises the open-ended question on whether there are reasonable (and useful) continuous
“relaxations” of other classically integral complexity measures.

Problem 12. Is there a good way to define continuous relaxations of the classically integral com-
plexity measures such as circuit complexity and branching program size?

Such continuous measures, may potentially lead to lower bounds that are currently obfuscated
by the integrality of the complexity measures involved. More broadly, information-theoretic con-
siderations may inspire lower bounds in these models. For example, the derandomization technique
in [BRRY10] has been inspired by information-theoretic considerations.
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