
Algorithms for the Coin Weighing Problems with the

Presence of Noise

Nader H. Bshouty
Technion, Israel

bshouty@cs.technion.ac.il

Hanna Mazzawi
Technion, Israel

hanna@cs.technion.ac.il

Abstract

The coin weighing problem is the following: Given n
coins for which m of them are counterfeit with the
same weight. The problem is to detect the counter-
feit coins with minimal number of weighings. This
problem has many applications in compressed sens-
ing, multiple access adder channels, etc.

This problem was solved when m is unknown.
An old optimal non-adaptive polynomial time algo-
rithm of Lindstrom does O(n/ log n) weighings can
detect the counterfeit coins. In this paper we give
a non-adaptive polynomial time algorithm that does
O(n/ log n) weighings and detect the counterfeit coins
even if nc of the answers of the weighings received are
incorrect or missing for any constant c < 1.

When m is known we give an adaptive polynomial
time algorithm that does O((m log n)/ log m) weigh-
ings and detect the counterfeit coins even if mc of
the answers of the weighings received are incorrect or
missing for any constant c < 1.

We then study the problem when m is known
and the counterfeit coins have different weights.
We show that there is an optimal non-adaptive
algorithm for detecting the counterfeit coins with
O((m log n)/log m) weighing even if 11 percent of the
answers are incorrect or missing.

A simple information theoretical argument shows
that all the above algorithm are optimal.

1 Introduction

The coin weighing problems, also known as the prob-
lems of reconstructing hidden vectors, are the follow-
ing. Let v be a size n hidden vector. Suppose that
we are allowed to ask queries of the form

Q(x) = vT x,

where x ∈ {0, 1}n. Suppose that the some of the
answers received are incorrect (we call them errors).
Also assume that some of the answers received are
equal to “?”, where “?” indicates that the answer
to the query is unknown (we call these answers era-
sures). Our goal is to exactly reconstruct the hidden
vector with minimal number of queries.

We distinguish between two type of algorithms for
solving our problems. Non-adaptive algorithms are
algorithms that ask all queries in advance, before re-
ceiving any answer. On the other hand, adaptive
algorithms are algorithms that take into account the
outcome of previous queries.

We denote by coinB(n) the coin weighing problem
where the hidden vector v is a (0,1)-vector of size n.
We denote by coinB(n,m) the coin weighing problem
where the hidden vector v is a (0,1)-vector of size n
and Hamming weight that is bounded by m. Finally,
we denote by coinR(n,m) the coin weighing problem
where the hidden vector is in Rn and has at most m
non-zero entries.

The coin weighing problems were heavily studied
in the noiseless case, that is, the case where all the
answers are available and correct. For the coinB(0, 1)
weighing problem in the noiseless case, the informa-

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 124 (2011)

tion theoretic lower bound for the query complexity
of reconstructing the hidden vector is

O

(
n

log n

)
.

This problem was studied by Cantor in [8], by Soder-
berg and Shapiro in [34] by Erdös and Rényi in [18],
by Lindström in [26, 27, 28, 29] and by Cantor and
Mills in [10]. Lindström [26] and independently Can-
tor and Mills [10] showed a non-adaptive polynomial
time algorithm for the problem with query complex-
ity that matches the lower bound. Simplifications
appear in [29, 1, 5].

For the coinB(n,m) weighing problem in the noise-
less case, the information theoretic lower bound for
the query complexity is

O

(
m log n

m

log m

)
.

In [19] Grebinski and Kucherov showed a non-
constructive non-adaptive algorithm for the problem
that matches this lower bound for all m. In [5],
Bshouty gave a polynomial time adaptive algorithm
for the problem with query complexity that matches
the information theoretic lower bound.

Finally, for the coinR(n,m) in the noiseless case,
the information theoretic lower bound for the query
complexity is

O

(
m log n

log m

)
.

For this problem, in [14] Choi and Han Kim showed
a tight non-constructive non-adaptive algorithm for
reconstructing a hidden vector with non-zero entries
that are real numbers that are bounded by n−a

and nb for any constant a and b. In [6] Bshouty
and Mazzawi, removed the condition on the magni-
tudes of the non-zero numbers by giving a tight non-
constructive non-adaptive algorithm for the general
problem. They also give an almost tight polynomial
time adaptive algorithm in [7].

The coin weighing problems are combinatorial
search problems that are motivated by real-life prob-
lems. As such, it is important to study them in the
presence of noise.

For the coinB(n) weighing problem with noise, we
show the following.

Theorem 1. Let v ∈ {0, 1}n be a hidden vector.
There exists a non-adaptive reconstructing algorithm
that reconstructs v using

O

(
n

ε log n

)

queries.
This algorithm reconstructs v correctly in O(n3/2)

time when the number of errors e1 and the number

of erasures e2 are bounded by c
(

n
ε log n

) 1−ε
4

, for any
constant c < 1/2.

The proof of the above theorem relies on properties
of the fourier spectrum of function we prove. The al-
gorithm above, although fast, it cannot handle large
amount of errors. In the following theorem, we show
that one can compromise the running time to han-
dle more errors and erasures. We show a technique
that uses generating matrices of linear codes to non-
adaptively solve multiple vector reconstructing prob-
lems altogether while gaining resistance to noise in
the process.

Theorem 2. Let v ∈ {0, 1}n be a hidden vector.
There exists a non-adaptive polynomial time recon-
structing algorithm that reconstructs v using

k = O

(
n

ε log n

)

queries. This algorithm reconstructs v correctly when
the number of incorrect answers e1 and the number of
unknown answers e2 are bounded by Ω(n1−ε). More-
over, denote by (q1, q2, . . . , qk) the vector of answers,
that is, qi equals the answer to the ith query, for
i ∈ [k]. If the errors/erasures are consecutive, then,
the algorithm works correctly even if their number is
Ω(n

ε log n).

Using the same mentioned technique, we obtain the
following result for the coinB(n, m) weighing prob-
lem.

2

Theorem 3. There is a polynomial time algorithm
for reconstructing any hidden vector v ∈ {0, 1}n that
uses

O

(
m log n

ε log m

)

queries, where m is the number of non-zeros in v.
This algorithm reconstructs v correctly even in the
presence of O(m1−ε) errors or erasures.

Finally, for the coinR(n,m) weighing problem we
show the following.

Theorem 4. Let p = ω(1) be a prime number and
ε ≤ 0.22. There exists a matrix M ∈ {0, 1}k×n, where

k = O

(
m +

m log n
m

log min(m, p)

)
,

such that: For every submatrix M∗ formed by select-
ing arbitrary k(1− ε) rows of M , every m columns in
M∗ are linearly independent over Zp.

This theorem yields the existence of a non-adaptive
algorithm for the coinR(n,m) weighing problem with
O(m log n/ log m) query complexity. That is, query
complexity that matches the information theoretic
lower bound for the noiseless case. This algorithm
works correctly even if 11 percent of the answers re-
ceived are incorrect or missing.

1.1 Applications

In this subsection we introduce one application for
the coin weighing problem with noise. We introduce
the signature coding problem for the multiple access
adder channels [26, 10, 11, 23, 17, 15, 25, 3].

Consider n stations or users that transmit informa-
tion using a common channel. Each user i has a com-
ponent code Ci = {0k, xi} ⊂ {0, 1}k. The codes Ci

for i ∈ [n] are of the same length k. Each user i wants
to send one of the words yi ∈ Ci. Assume that code-
words sent through the channel by the users are bit
and block synchronized. The codeword go through
an adder that sends

Y =
n∑

i=1

yi.

through a noisy channel. We denote by Ỹ the output
of the channel. The goal is to recover all the messages
of the users using Ỹ . See Figure 1.

There are two models for this problem, the per-
manently active model where all stations are active
all the time and the partially active model where at
most m stations are active in each transmission (the
inactive stations turn off their transmitter, an action
that is equivalent to sending the zero codeword 0k).

A non-adaptive algorithm for the coinB(n) weigh-
ing problems with the presence of noise yields sig-
nature codes for noisy channels in the permanently
active model. The existence of such codes was stud-
ied in the literature [11, 17, 35, 12, 15]. In [11], Chang
and Weldon first showed a technique to reconstruct
signature codes for noisy channels. Using this tech-
nique, one can build a codes of length O(n

ε log n) for n
users, where a messages can be correctly recovered if
the error vector, Ỹ − Y , has L1 norm that is smaller
that O(n1−ε) (note that unlike what is presented in
Figure 1, in the literature the received codeword does
not include erasures. Therefore, when talking about
previous related work, always assume that the re-
ceived word Ỹ does not contain erasures, that is, the
“?” symbol). In other words, the users’ messages can
be recovered from Ỹ if

∑

i

|Ỹi − Yi| = O(n1−ε).

In [35], Wilson showed a similar technique. As in
the previous technique, using Wilson’s technique, one
can reconstruct codes of length O(n

ε log n) for n users,
where a message can be correctly recovered if the er-
ror vector, Ỹ − Y , has L1 norm that is smaller than
O(n1−ε). Moreover, the message can be recovered
correctly even if we have O(nε

ε log n) consecutive er-
rors of magnitude O(n1−ε). That is, if the error vec-
tor Ỹ − Y has only O(nε

ε log n) non-zero entries, where
these non-zero entries are consecutive and each en-
try is bounded by O(n1−ε). Additional constructions
also appear in [13, 12]. Finally, in [15], show a code
for n users of length n, where the messages can be re-
covered if the error vector has L1 norm that is smaller
than b(n/2− 1)/2c.

To our knowledge, all codes in the literature for the
multiple access decode the received message correctly

3

 Adder 1y2y ny ∑= i iyY 1 1 2 2 3 3 n n ? Y~Noise

Figure 1: Multiple access adder channel with noise

if the error vector, Ỹ − Y , has a bounded L1 norm.
Our theorem, Theorem 2, yields signature codes for
the permanently active model of length

O

(
n

ε log n

)
,

where the receiver is able to decode all the users’
messages correctly with the presence of O(n1−ε) er-
rors and erasures. That is, if the error vector has
Hamming weight (rather than the L1 norm) that is
smaller than O(n1−ε). Moreover, if the errors are
consecutive, then the message can be recovered even
when we have O(n

ε log n) errors.
Similarly, Theorem 4 yields signature codes

for the partially active model of length k =
O(m log n/ log m). The messages are recovered cor-
rectly if the Hamming weight of the error vector is
bounded by 0.11k.

2 Preliminaries

In this section, we introduce some notation, the well
known Fourier basis and some known results we use
in this paper.

We denote by R the set of real numbers. We denote
by Zp the field of integers modulo a prime p. We also
denote by N0 the set of non-negative integers. For a
constant c, we denote by [c] the set [1, 2, . . . , c]. We
denote by [c]0 the set [c] ∪ {0}.

For a matrix M , we denote by r(M) the rank of M .

An [n, k, d] linear code C over a field F is a linear
code of length n, dimension k and minimal distance d.

We now present the well known Fourier represen-
tation of functions. Let x = (x1, x2, . . . , x`) be vari-
ables. Define the following basis

B =

{
χa(x) ∆=

∏

i:ai=1

xi

∣∣∣∣∣ a ∈ {−1, 1}`

}
,

where χa : {−1, 1}` → {−1, 1}. It is known that
every function f : {−1, 1}` → R has a unique repre-
sentation of the form

f(x) =
∑

a∈{−1,1}`

f̂(a)χa(x),

where for every a ∈ {−1, 1}`, f̂(a) is a real number
and is called the Fourier coefficient of χa in f . For
a vector a ∈ {−1, 1}` we will abuse the standard
notation and denote by ||a|| the number of ones in a
(the size of the Fourier coefficient).

In the paper, we also make use of a family of ma-
trices defined in [5] that optimally solve the coinB(n)
weighing problem in the noiseless case. We sketch
their construction for convenience in Appendix A.

Finally, we make use of the following lemmas.

Lemma 5. [6] Let M ∈ {0, 1}k×m be a matrix of
rank r = r(M) < m. For a uniformly randomly cho-
sen row vector y ∈ {0, 1}m the rank of the matrix

M ′ =
(

M
y

)

4

over Zp is r with probability at most 1/2.

Lemma 6. [6] Let M ∈ {0, 1}k×m be a matrix of
rank r(M) = r < m. Suppose that every s columns
of M are linearly independent. Then, for a uniformly
randomly chosen row vector y ∈ {0, 1}m the rank of
the matrix

M ′ =
(

M
y

)

over Zp is r with probability at most max
(

1
sβ , 1

p1/2

)
.

Here β = 1
2+log 3 = 0.278943 · · · .

3 Non-constructive Algorithm

In this section, we prove Theorem 4.

Theorem 4. Let p = ω(1) be a prime number and
ε ≤ 0.22. There exists a matrix M ∈ {0, 1}k×n, where

k = O

(
m +

m log n
m

log min(m, p)

)
,

such that: For every submatrix M∗ formed by select-
ing arbitrary k(1 − ε) rows of M , every m columns
in M∗ are linearly independent over Zp.

Proof. We may assume that m = ω(1) since other-
wise if m = O(1) then k = O(m log n) and the result
follows by a simple use of the probabilistic method.
Take a randomly chosen matrix M ∈ {0, 1}k×n,
where

k = c1

(
m +

m log n
m

log min(m, p)

)
,

and c1 is a constant that will be determined later.
Look at any matrix M∗ formed by selecting arbi-
trary k∗ = (1 − ε)k rows of M . We now show that
every m columns in M∗ are linearly independent with
probability that is strictly greater than

1− 1(
k
k∗

)

Once we prove the above statement, by union bound
the result immediately follows.

Take any t = m/ log2 m columns,
M∗

i1
,M∗

i2
, . . . , M∗

it
, of M∗. Denote by M ′ the

matrix
M ′ =

[
M∗

i1 |M∗
i2 | . . . |M∗

it

]
.

Denote by M ′[j] be the first j rows of M ′. Consider
the random variable Xj ∈ {0, 1} where Xj = 1 if and
only if r(M ′[j−1]) = t or the jth row M ′(j) increases
the rank of M ′[j−1], i.e., r(M ′[j]) = r(M ′[j−1]) + 1.
Let k1 = c2k

∗, where c2 = 1 − o(1) is a positive
constant. By Lemma 5,

Pr[Xj = 0|X1, X2, . . . , Xj−1] ≤ 1/2.

The probability that M ′[k1] is of rank smaller than t
is

Pr[r(M ′[k1]) < t] = Pr[X1 + · · ·+ Xk1 ≤ t− 1]

=
∑

ξ1+···+ξk1≤t−1,

ξj∈{0,1}

Pr[X1 = ξ1, . . . , Xk1 = ξk1]

≤
∑t−1

i=0

(
k1
i

)

2k1−t+1
≤ t2t−1

(
k1
t

)

2k1
(1)

<
t2t−1

(
k1e
t

)t

2k1
<

nt

2k1
=

2
m log n

log2 m

2k1

=
1

2(1−o(1))k1
. (2)

Equation (1) follows since t = o(k1). Let A de-
note the event where there exists m/ log2 m columns
in M∗[k1] that are linearly dependent. Using (2) and
the union bound, we have

Pr[A] ≤
(
n
t

)

2(1−o(1))k1
=

1
2(1−o(1))k1

.

Note that for ε < 0.22 and c2 = 1 − o(1), we have
that

Pr[A] ≤
(
n
t

)

2(1−o(1))k1
=

1
2(1−o(1))k1

=
1

2(1−o(1))(1−ε)k
<

1
2 · 2H(ε)k

<
1

2
(

k
k∗

) . (3)

Where H(ε) is the binary entropy of ε, that is,

H(ε) = −ε log ε− (1− ε) log(1− ε).

We now analyze the probability that there exists m
columns in M∗ that are linearly dependent. We de-
note this event by B.

Pr[B] = Pr[B|A]Pr[A] + Pr[B|¬A](1−Pr[A])
≤ Pr[A] + Pr[B|¬A]. (4)

5

Given that every m/ log2 m columns in M∗[k1] are
linearly independent, that is, given ¬A, look at any
matrix M ′′ formed by selecting arbitrary m columns
of M∗. That is,

M ′′ =
[
M∗

j1 |M∗
j2 | . . . |M∗

jm

]
.

Denote by M ′′[j] be the first j rows of M ′′. For j ∈
[k∗] \ [k1], consider the random variable Yj ∈ {0, 1}
that is equal to one if and only if r(M ′′[j−1]) = m
or the row jth row, M ′′(j), increases the rank of
M ′′[j−1], that is, r(M ′′[j]) = r(M ′′[j−1]) + 1. Let
q = min(tβ , p1/2), where β = 0.2789 as defined in
Lemma 6. Using Lemma 6, the probability that M ′′

is of rank smaller than m given ¬A is,

Pr[r(M ′′) < m|¬A]
≤ Pr[Yk1 + Yk1+1 + · · ·+ Yk∗ ≤ m− 1|¬A]

≤
∑m−1

i=0

(
k∗−k1

i

)

qk∗−k1−m+1
<

2k∗−k1

qk∗−k1−m+1
(5)

=
1

q(k∗−k1)(1−o(1))−m+1
(6)

=
1

q(1−ε)(1−c2)(1−o(1))k−m+1
.

Again, in (5) we use Lemma 6. In (6) we use that
m = ω(1) and p = ω(1). Therefore, the probability
that there exists m columns in M∗ that are linearly
independent given that every m/ log2 m columns are
linearly independent in M∗[k1] is

Pr[B|¬A] ≤
(

n
m

)

q(1−ε)(1−c2)(1−o(1))k−m+1
.

Since k = c1

(
m + m log n

m

log min(m,p)

)
and

(
n
m

) ≤ 2m log ne
m ,

then, for large enough constant c1, we have that

Pr[B|¬A] ≤ 1

q
O

(
m+

m log n
m

log min(m,p)

) <
1
2k

<
1

2
(

k
k∗

) (7)

Finally, from (3), (4) and (7), we get that the prob-
ability that there exists m columns that are linearly
independent in M∗ is

Pr[B] ≤ Pr[A] + Pr[B|¬A]

<
1

2
(

k
k∗

) +
1

2
(

k
k∗

) =
1(
k
k∗

) (8)

Now, using union bound, the main result follows im-
mediately.

Corollary 1. Let ε < 0.22 be a constant, there exists
a non-adaptive algorithm for reconstructing a hidden
vector v ∈ Rn, wt(v) ≤ m, using

k = O

(
m log n

log m

)

queries. The algorithm reconstruct the hidden vec-
tor correctly when the number of errors e1 and the
number of erasures e2 is bounded by ε

2k, that is,
e1 + e2 < ε

2k.

4 Polynomial Time Algorithms

In this section, we present polynomial time algo-
rithms for the coinB(n) and the coinB(n,m) weigh-
ing problems. We start with the coinB(n) weighing
problem.

4.1 Fourier Based Algorithm

In this subsection, we show a fast algorithm for re-
constructing a (0, 1) vector using queries. We show
the following,

Theorem 1. Let v ∈ {0, 1}n be a hidden vector.
There exists a non-adaptive reconstructing algorithm
that reconstructs v using

O

(
n

ε log n

)

queries.
This algorithm reconstructs v correctly in O(n3/2)

time when the number of errors e1 and the number of

erasures e2 are bounded by Ω
((

n
ε log n

) 1−ε
4

)
.

To prove the above theorem, we start by showing
some properties of functions in R{−1,1}n

.

Lemma 7. Let f ∈ R{−1,1}n

. If f has s non-zero
values, then, there is q ∈ {−1, 1}n where ||q|| ≤
dlog se and the fourier coefficient f̂(q) is non-zero.
Recall that ||q|| denotes the number of ones in q.

6

Proof. Let

λ1 = f(a1), λ2 = f(a2), . . . , λs = f(as),

be the non-zero values of f . Suppose of the contrary
that for all q ∈ {−1, 1}n, where ||q|| ≤ dlog se, we
have f̂(q) = 0. That is,

f̂(q) = E[f · χq] (9)
= λ1χq(a1) + λ2χq(a2) + . . . + λsχq(as) = 0.

Since we have s vectors, a1, a2, . . . , as, then, there is
a vector a` where ` ∈ [s] that has t = dlog se entries
j1, j2, . . . , jt that uniquely identify it. That is,

(a`j1 , a`j2 , . . . , a`jt
) 6= (awj1 , awj2 , . . . , awjt

),

for every w ∈ [s] such that w 6= `.
Now, let h be a function in R{−1,1}t

, where

h(b) =
{

1 b = (a`j1 , a`j2 , . . . , a`jt)
0 otherwise.

For a vector a ∈ {−1, 1}n, denote by a|(j1,j2,...,jt),
the t vector where the ith entry equals aji . Denote
by a(j1,j2,...,jt) the size n vector where the ith en-
try equals ai if i ∈ {j1, j2, . . . , jt} and −1 otherwise.
From (9), we have that for every b ∈ {−1, 1}n,

s∑

i=1

λiχb(j1,j2,...,jt)(ai)

Let b1, b2, . . . , b2t be all the vectors in {b(j1,j2,...,jt)|b ∈
{−1, 1}n}. We have that

0 =
2t∑

j=1

ĥ(bj |(j1,j2,...,jt))
s∑

i=1

λiχbj (ai)

=
s∑

i=1

λi

2t∑

j=1

ĥ(bj |(j1,j2,...,jt))χbj (ai)

=
s∑

i=1

λih(ai|(j1,j2,...,jt))

= λ`.

Contradiction, since λ` is a non-zero value.

Corollary 2. Let f ∈ R{−1,1}n

be a hidden func-
tion. Suppose f has at most s non-zero values. The
function f can be uniquely identified given f̂(q) for
all q ∈ {−1, 1}n where ||q|| ≤ dlog se+ 1.

Proof. Suppose of the contrary that we have f1, f2 ∈
R{−1,1}n

where f1 and f2 have at most s non-zero
values each and f̂1(q) = f̂2(q) for all q ∈ {−1, 1}n

where ||q|| ≤ dlog se+1. Define f = f1− f2. Clearly,
f has at most 2s non-zero values. Moreover, we have
f̂(q) = 0 for all q ∈ {−1, 1}n where ||q|| ≤ dlog se +
1 = dlog 2se. By Lemma 7, this is a contradiction.

Lemma 8. Let f ∈ R{−1,1}n

be a hidden function.
Suppose f has at most s non-zero values. There
is an O

(
s2n

∑2 log s+1
i=0

(
n
i

))
time algorithm that re-

construct f from the fourier coefficients f̂(q) for all
q ∈ {−1, 1}n where ||q|| ≤ 2dlog se+ 1.

Proof. before giving the algorithm, we start by giving
some notation. Given a function f(x1, x2, . . . , xn) ∈
R{−1,1}n

, denote by f |xi1=σ1,xi2=σ2,...,xir =σr the func-
tion f when fixing xij to σj for all j ∈ [r].

We start with the subroutine Find Non Zero,
presented in Figure 2. This subroutine finds at least
one vector a ∈ {−1, 1}n for which f(a) 6= 0.

The subroutine is recursive. Each recursive call
gets a non-zero function f ′ of the following form

f ′ = f |xi1=σ1,xi2=σ2,...,xit=σt ,

where σ1, σ2, . . . , σt ∈ {−1, 1} and i1, . . . , it ∈ [n].
Here t is called the depth of the recursive call. We
also call i1, i2, . . . , it fixed indices, all the other indices
are called free indices.

The subroutine works only if the depth of the recur-
sive call is at most dlog se (Line 1). The subroutine
examines the following functions

f ′j,1 = f ′|xj=−1 and f ′j,2 = f ′|xj=1,

for every j that is a free index (Lines 4, 5). At any
depth t ≤ log s the subroutine is able to calculate
the fourier coefficient f ′j,1(q) and f ′j,2(q) for every q ∈
{−1, 1}n such that

||q|| ≤ 2dlog se+ 1− (t + 1).

7

Subroutine Find Non Zero(f ′ = f |xi1=σ1,xi2=σ2,...,xit
=σt , depth)

1. If depth > dlog se return.
2. a ← 0n.
3. For all j ∈ [n] \ {i1, i2, . . . , it} do
4. f ′j,1 ← f ′|xj=−1.
5. f ′j,2 ← f ′|xj=1.
6. if f ′j,1 6= 0 and f ′j,1 6= 0 then
7. Find Non Zero(f ′j,1 = f |σ1,xi2=σ2,...,xit

=σt,xj=−1 , depth + 1),

8. Find Non Zero(f ′j,2 = f |σ1,xi2=σ2,...,xit
=σt,xj=1 , depth + 1).

9. Return.
10. else if f ′j1 6= 0 and f ′j1 = 0 then
11. aj ← −1 .
12. else
13. aj ← 1.
14. end if
15. end for.
16. For all j ∈ [t] do
17. aij ← σj .
18. end for.

19. output (a, 2n−tf̂ ′(−1n−t)).
20. return.

Figure 2: Subroutine for finding non-zero values.

Thus, since t ≤ dlog se, the subroutine is able to cal-
culate the fourier coefficient f ′j,1(q) and f ′j,2(q) for
every q ∈ {−1, 1}n where

||q|| ≤ dlog se.
Therefore, by Lemma 7, the subroutine is able to de-
termine whether the function f ′j,k is the zero function
or not, for every j that is a free index and k ∈ [2].

The subroutine tries to find a free index j for which
f ′j,1 and f ′j,2 are not zero (Line 6). If found, two re-
cursive calls are made with the input f ′j,1 and f ′j,2
(Lines 7, 8). Otherwise, in case there is no such in-
dex j, then the function f ′ has only one non-zero
value (recall that f ′ is a non-zero function). In this
case, since it is known which of f ′j,1 and f ′j,2 is the
zero function and which is not for every free index
j (Lines 10-14), the subroutine knows the non-zero
value of f ′. It outputs a corresponding non-zero value
of f (Line 19), that is, a vector a ∈ {−1, 1} for which

f(a) 6= 0.
Now, when running the subroutine

Find Non Zero with f as an input, it must
output at least one vector a ∈ {−1, 1}n for which
f(a) 6= 0. This follows from the fact that f has at
most s non-zero values.

Now, given the above subroutine and f , the algo-
rithm is simple. It is presented in Figure 3. It runs
the subroutine with f as an input. The subroutine
returns vectors a1, a2, . . . , ar ∈ {−1, 1}n such that
f(ai) 6= 0 for all i ∈ [r]. The algorithm defines the
following function

h(x) =
{

f(x) x ∈ {a1, a2, . . . , ar}
0 otherwise.

The algorithm then, runs recursively with input f−h.
It does so iteratively until we are remained with the
zero function.

During the running of the algorithm,

8

Algorithm Reconstruct using Fourier Coefficients(f)

1. if f = 0 return.
2. h ← 0. // zero function over {−1, 1}n.
3. Find Non Zero(f).
4. For all (a, f(a)) ∈ output of Find Non Zero, do
5. h(a) ← f(a).
6. end for.
7. Reconstruct using Fourier Coefficients(f − h).

Figure 3: Algorithm for reconstructing a function f using its fourier coefficients.

Find Non Zero reveals all non-zero values and
therefore, the function f is reconstructed.

As for complexity analysis each call of
Find Non Zero calculate fourier coefficients of
f ′j,1 and f ′j,2 for every free index j. This takes at
most

O

(
n

2 log s+1∑

i=0

(
n

i

))
,

time. In total, the algorithm runs at most s calls;
within each such call at most s recursive calls are
made to Find Non Zero. Therefore, the total time
complexity is

O

(
s2n

2 log s+1∑

i=0

(
n

i

))
.

Now after proving the above lemmas, we are ready
to prove our main result, that is, prove Theorem 1.

Proof. Let ` be the smallest integer where

∑̀

i= `
2

εi

(
`

i

)
≥ n

Consider the matrix Mt defined in Appendix A,
where t = `2`−1. Recall that every column of this ma-
trix corresponds to a function fa,k where a ∈ {−1, 1}`

and k ∈ [||a||]. Remove All columns that corre-
spond to functions fa,k where ||a|| ≤ `/2. Also re-
move all columns that corresponds to functions fa,k

where k is less than (1−ε)`
2 . Denote the resulting ma-

trix by M ′. Note that the number of columns might
be greater than n. If this occurs, remove arbitrary
columns until we are remained with a matrix M ′

n

with n columns. Note that the number of rows in
Mn is 2` = O(n/ε log n). Also note that for all func-
tions fa,k that correspond to a column in M ′

n we have
that all fourier coefficient f̂(q) where ||q|| < (1−ε)`

2

are equal to zero with the exception of f̂(−1`) that
is equal to 1/2. Now, consider the following matrix

M∗ =
(

M ′
n

1n1/4×n

)
.

We argue that given r = M∗v + e, where v ∈ {0, 1}n,

e ∈ Rn and wt(e) ≤ c
(

n
ε log n

) 1−ε
4

, one can recon-

struct v in O(n3/2) time. Denote by e′ and r′ the 2`

vectors that contains the first 2` entries of e and r,
respectively. We have that

r′ = M ′
nv + e′.

We view r′, M ′
nv and e′ as functions over {−1, 1}`

just as we did with the columns of M ′
n. All fourier

coefficients of M̂ ′
nv(q) for all q where ||q|| < (1−ε)`

2

are equal to zero with the exception of M̂ ′
nv(−1`)

that is equal to vT 1n

2 . This follows from the fact

9

that all functions fa,k that correspond to a column
in M ′

n we have that all fourier coefficient f̂(q) where
||q|| < (1−ε)`

2 are equal to zero with the exception
of f̂(−1`) that is equal to 1/2. Given that wt(e) ≤
c
(

n
ε log n

) 1−ε
4

, where c < 1/2 is a constant, then a

majority vote over the last n1/4 entries of r deter-
mines vT 1n. Thus, using the value vT 1n and all the
above, we get that one can find all the fourier coeffi-
cients ê′(q) for all q where ||q|| < (1−ε)`

2 by finding the
fourier coefficients r̂′(q) for all q where ||q|| < (1−ε)`

2 .

Now, since wt(e′) ≤ c
(

n
ε log n

) 1−ε
4

, by Lemma 8, we

are able in O(n3/2) time to reconstruct e′ using the
Fourier coefficients ê′(q) for all q where ||q|| < (1−ε)`

2 .
This follows from the fact that

2
(1−ε)`

4 −1 = O

(
n

ε log n

) 1−ε
4

In other words, we are able to find

M ′
nv = r′ − e′.

Finally, note that M ′
n is a matrix formed by selecting

columns from Mt. Therefore, using the reconstruct-
ing algorithm in [5], we are able to reconstruct the
hidden vector v.

4.2 Reconstructing (0,1)-vectors with
Heavy Noise

The algorithm in the above subsection, although fast,
it cannot handle large amount of errors. In this sub-
section, we show that one can compromise the run-
ning time to handle more errors and erasures. To do
so, we rely on tools from coding theory. We show the
following,

Theorem 2. Let v ∈ {0, 1}n be a hidden vector.
There exists a non-adaptive polynomial time recon-
structing algorithm that reconstructs v using

k = O

(
n

ε log n

)

queries. This algorithm reconstructs v correctly when
the number of incorrect answers e1 and the number of

unknown answers e2 are bounded by Ω(n1−ε). More-
over, denote by (q1, q2, . . . , qk) the vector of answers,
that is, qi equals the answer to the ith query, for
i ∈ [k]. If the errors/erasures are consecutive, then,
the algorithm works correctly even if their number is
Ω(n

ε log n).

Proof. To prove this theorem, we give a search matrix
for the problem. That is, we build a matrix B such
that given Bv + e, where v ∈ {0, 1}n and e is any n-
vector with Hamming weight smaller than n1−ε, one
can reconstruct v in polynomial time.

We start by proving the following lemma.

Lemma 9. Let C be a linear code [p, k, d] over Z2

with the generating matrix G. Let D be a polynomial
time decoding algorithm for C. Suppose D is able to
decode correctly in the presence of d′ ≤ d−1

2 errors.
Let Ḡ ∈ Zk×p be equal to G. Given ḠT w + e, where
w ∈ Nk

0 and e ∈ Zp is any p-vector such that wt(e) <
d′, one can reconstruct w in polynomial time in p.

Proof. Let
b = ḠT w + e.

Let wi,s wi,s−1 . . . wi,1 denote the binary representa-
tion of wi for i ∈ [n]. Let bi,t bi,t−1 . . . bi,1 denote the
binary representation of bi for i ∈ [k]. That is,

b =

b1,t . . . b1,1

b2,t . . . b2,1

...
bk,t . . . bp,1

 and w =

w1,s . . . w1,1

w2,s . . . w2,1

...
wk,s . . . wk,1

 .

Denote by w{j} (for j ∈ [s]) and by b{`} (for ` ∈ [t])
the vectors

w1,j

w2,j

...
wk,j

 and

b1,`

b2,`

...
bp,`

 ,

respectively. Note that b{1} = b mod 2 and
ḠT w{1} = ḠT w mod 2. Thus,

b{1} = ḠT w{1} mod 2.

10

That is, we have that D(b{1}) = w{1}. Now, using
C’s decoding algorithm D, and the fact that

D(b{1}) = w{1},

the algorithm can reconstruct w{1} simply by decod-
ing b{1}. Now, after finding w{1}, the algorithm cal-
culates GT w{1}. The algorithm calculates

b′ = ḠT (w − w{1}) + e.

It divides every entry in the vector b′ by 2 and con-
tinue recursively to reconstruct w{2}. This completes
the proof.

Now, recall the matrix Mnε defined in Appendix A.
This matrix is of size

2nε

ε log n
× nε.

In the following, we abbreviate Mnε to M . Let C
be any linear code [c1n

1−ε, n1−ε, c2n
1−ε] over Z2 with

generating matrix G and polynomial time decoding
algorithm D. Concatenated codes are an example to
such code. Let,

B = GT ⊗M

=

g1,1M g2,1M . . . g
n1−ε,1

M

g1,2M g2,2M . . . g
n1−ε,2

M

.

.

.

.

.

.
. . .

.

.

.
g
1,c1n1−ε M g

2,c1n1−ε M . . . g
n1−ε,c1n1−ε M

 .

The matrix B is of size n/(ε log n)×n. We argue that
given Bv + e, where e ∈ Zn and wt(e) ≤ c3n

1−ε, one
can reconstruct v in polynomial time.

Divide v into size nε blocks

v =

v1

v2

...
vn1−ε

 .

Our goal is to reconstruct the vectors

Mv1,Mv2, . . . , Mvn1−ε .

Then, using the algorithm in [5], we reconstruct the
vectors v1, v2, . . . , vn1−ε and therefore, reconstruct v.

Denote by p the number of rows in M , that is,
p = 2nε

ε log n . Denote by x(i) the vector

((Mv1)i, (Mv2)i, . . . , (Mvn1−ε)i),

for i ∈ [p]. Denote by y(i), for i ∈ [p], the vector

((Bv)i, (Bv)i+p, (Bv)i+2p, . . . , (Bv)i+(c1n1−ε−1)p).

Note that,
y(i) = GT x(i).

By Lemma 9, we are able to reconstruct x(i) from
y(i) + e(i) where e(i) is any vector in Zc1n1−ε

with
Hamming weight bounded by (c2n

1−ε− 1)/2. There-
fore, by applying p times the reconstructing algo-
rithm in Lemma 9, we are able from Bv + e to recon-
struct all x(i)’s. This completes the proof.

4.3 Reconstructing Bounded Weight
Vector with Noise

In this subsection, we show an algorithm for recon-
structing a (0,1) vector with at most m non-zero en-
tries in the presence of noise. That is, we prove The-
orem 3.

Theorem 3. There is a polynomial time algorithm
for reconstructing any hidden vector v ∈ {0, 1}n that
uses

O

(
m log n

ε log m

)

queries, where m is the number of non-zeros in v.
This algorithm reconstructs v correctly even in the
present of O(m1−ε) errors or erasures.

To prove the above theorem, we start by extend-
ing the result from previous subsection. We give an
algorithm for reconstructing any hidden positive in-
teger vector in the presence of noise. We prove the
following.

Theorem 10. Let v ∈ [d1]0 × [d2]0 × · · · × [dn]0 be a
hidden vector, where d1, . . . , dn are positive integers
and [di]0 = [di] ∪ {0}. There exists a non-adaptive
algorithm that reconstructs v using k queries, where

k = O

n log

(∑
i di

n + maxi di

nε

)

ε log n

11

This algorithm reconstructs v correctly when the
number of errors e1 and the number of erasures e2

are bounded by Ω(n1−ε). Moreover, if the errors
are consecutive the algorithm works correctly even if
e1 ≤ Ω(n

ε log n).

Proof. We make use of the search matrices from [5].
As mentioned in Appendix A (Lemma 11), these ma-
trices are used to reconstruct vectors v ∈ [d1]0 ×
[d2]0×· · ·×[dn]0 without the presence of noise, where
the di’s are positive integers. The number of rows k
in such matrix is bounded by

k(log k − 4) ≤ 2n log
∑

i di

n
.

We now show how to use these matrices to build a
search matrix for the problem with noise.

Assume w.l.o.g that d1 ≥ d2 ≥ . . . ≥ dn. We di-
vide our reconstruction problem (reconstructing v)
into smaller vector reconstruction problems as fol-
lows: For i ∈ [n1−ε], denote by Mi the search matrix
defined in [5] for reconstructing the vector 1

ui = (vi, vi+n1−ε , vi+2n1−ε , . . . , vi+n−n1−ε)
∈ [di]0 × [di+n1−ε]0 × · · · × [di+n−n1−ε]0.

Since we assumed that d1 ≥ d2 ≥ . . . ≥ dn, we know
that the matrix M1 has the maximal number of rows.
We add zero rows to M2, . . . , Mn1−ε so that all the
matrices Mi have the same number of rows. Now,
let C be any linear code [c1n

1−ε, n1−ε, c2n
1−ε] over

Z2 with generating matrix G = (gij) and polynomial
time decoding algorithm D. Consider the matrix

B =

g1,1M1 . . . gn1−ε,1Mn1−ε

g1,2M1 . . . gn1−ε,2Mn1−ε

...
. . .

...
g1,c1n1−εM1 . . . gn1−ε,c1n1−εMn1−ε

 .

We argue that BP is a search matrix for our problem,
where P is a permutation matrix that reorder v so
that the vector Pv equals the vector

Pv = (u1|u2| . . . |un1−ε)T .

1note that we abuse notation here. The matrices Mi are not
the ones constructed in Appendix A, they are only mentioned
in the appendix in Lemma 11

Denote by k1 the number of rows in M1. Denote by
xi the vector

((M1u1)i, (M2u2)i, . . . , (Mn1−εun1−ε)i),

for i ∈ [k1]. Denote by yi the vector
((BPv)i, (BPv)i+k1 , . . . , (BPv)i+(c1n1−ε−1)k1)
for i ∈ [k1]. Note that

yi = GT xi.

Therefore, using Lemma 9, we are able to reconstruct
every xi. Once the vectors Miui are known, we are
able to reconstruct ui for every i, that is, reconstruct
the hidden vector v.

As for the query complexity, the number of rows
in B is equal to the number of rows in M1 times the
number of rows in GT . The number of rows in M1, k1,
is bounded by

k1(log k1−4) ≤ 2nε log
d1 + d1+n1−ε + · · ·+ dn−n1−ε+1

nε
.

Now, we have

d1 + d1+n1−ε + · · ·+ dn−n1−ε+1

nε

=
n1−ε(d1 + d1+n1−ε + · · ·+ dn−n1−ε+1)

n

≤ d1n
1−ε +

∑n
i=1 di

n

=
∑n

i=1 di

n
+

d1

nε

Summing all the above, we get that the number of
rows k is bounded by

k = O

n log

(∑
i di

n + d1
nε

)

ε log n

This completes the proof.

Corollary 3. Let v ∈ [d1]0 × [d2]0 × · · · × [dn′]0 be a
hidden vector, where d1, . . . , dn′ are positive integers
and n′ ≤ n. Suppose maxi di ≤ nε. There exists
a non-adaptive algorithm that reconstructs v using k
queries, where

k = O

(
n

ε log n
log

(∑
i di

n

))
.

12

This algorithm reconstructs v correctly when the
number of errors e1 and the number of erasures e2

are bounded by Ω(n1−ε).

We are now ready to prove our main result, that
is, Theorem 3.

Proof. The algorithm we present contains two stages.
In the first stage, the algorithm’s goal is to divide
the set of entries in v into disjoint sets S1, S2, . . . , St

where the sum of the entries in each set Si is bounded
from above by mε/2.

For any k, let Ck, be any linear [p, k, d] code over
Z2, where k/p and d/p are Ω(1). Let Gk be its gener-
ating matrix and D be its polynomial time decoding
algorithm.

Let S = S1, S2, . . . , St be disjoint sets, where Si ⊆
[n]. We denote by uS the t-vector for which

uS
i =

∑

j∈Si

vj .

The algorithm’s first stage is presented in Figure 4
The first stage uses the divide and conquer ap-

proach, it finds a set H = {S1, S2, . . . , St}, where
for every i, we have Si ⊆ [n], 0 <

∑
j∈Si

vj ≤ mε/2

and the sets in H are disjoint. Also, the set
⋃

Si∈H Si

contains all non-zero entries in v.
The first stage is iterative. At the beginning of each

iteration, we have disjoint sets S1, S2, . . . , St ⊆ [n],
where the sum of the entries in each set is at least
mε/2. The algorithm divides each set Si into equal
size sets. It continue dividing those sets until we have
more than m1−ε/2 sets. Then, using Lemma 9, it
finds the sum of the entries in each new set. The
algorithm throws all new sets for which the sum of
the entries is zero. Sets for which the sum of the
entries is between “1” and mε/2 are added to the
output. Finally, all the other sets remain or advance
to the next iteration.

The second stage is also iterative. It continues to
use the divide and conquer approach. For Si ⊆ [n],
denote by X(Si) the sum of entries

∑
j∈S vj . At each

iteration, the algorithm have sets S1, S2, . . . , St of in-
dices. The algorithm knows X(Si) for every set Si.
The algorithm divides each set Si into two equal size

sets (up to ±1), Si,1, Si2 . The algorithm uses Corol-
lary 3 to reconstruct the hidden vector

(X(S1,1),X(S2,1), . . . , X(St,1))
∈ [X(S1)]0 × [X(S2)]0 × . . .× [X(St)]0

It throw all set Si,j for which X(Si,j) equal zero and
advanced to the next iteration. After at most log n
iteration, the algorithm knows the all the non-zero
entries in the hidden vector v.

As for complexity analysis, the algorithm’s first
stage asks at most

O(m1−ε/2) log
n

mε/2

queries. In the second stage the algorithm asks, each
iteration (each time it applies Corollary 3) asks

O

(
m

ε log m

)

queries. Since we have at most log n iteration in the
second stage, our total query complexity is

O

(
m log n

ε log m

)

This completes the proof.

References

[1] M. Aigner. Combinatorial Search. John Wiley
and Sons, 1988.

[2] N. Alon and V. Asodi. Learning a Hidden Sub-
graph. SIAM J. Discrete Math, 18, 4, 697–712,
2005.

[3] E. Biglieri and L. Györfi. Multiple Access Chan-
nels Theory and Practice Volume 10 NATO Secu-
rity through Science Series - D: Information and
Communication Security, April 2007.

[4] L. Bruneau and F. Germinet. On the singular-
ity of random matrices with independent entries
Proc. Amer. Math. Soc. 137 (2009), 787-792.

13

Algorithm’s first stage

1. S ← {[n]}
2. H ← ∅.
3. while (|S| < m1−ε/2)
4. Split every Si ∈ S into two equal (up to ±1) sets.
6. End while
7. Find (by asking queries) GT

|S| u
S .

8. Use Lemma 9 to reconstruct uS .

9. For every Si ∈ S for which uS
i =

∑
j∈Si

vj ≤ mε/2.

10. Remove Si from S.
11. if (uS

i > 0) then add Si to H.
12. End for
13. if (|S| = 0) then finish else Goto 3.

Figure 4: Reconstructing with noise. Algorithm’s first stage.

[5] N. H. Bshouty. Optimal Algorithms for the Coin
Weighing Problem with a Spring Scale. Confer-
ence on Learning Theory, 2009.

[6] N. H. Bshouty and H. Mazzawi. On Parity Check
(0, 1)-Matrix over Zp. SODA, 2011.

[7] N. H. Bshouty and H. Mazzawi. Toward a Deter-
ministic Polynomial Time Algorithm with Opti-
mal Additive Query Complexity. MFCS, 2010.

[8] D. Cantor. Determining a set from the cardinali-
ties of its intersections with other sets, Canadian
Journal of Mathematics, V. 16, 94–97, 1962.

[9] J. Cheng, K. Kamoi and Y. Watanabe. User
Identification by Signature Code for Noisy
Multiple-Access Adder Channel. ISIT, 2006.

[10] D. Cantor, W. Mills. Determining a Subset
from Certain Combinatorial Properties. Canad.
J. Math. V. 18, 42–48, 1966.

[11] S.C. Chang and E.J. Weldon. Coding for T-user
multiple access channels. IEEE Transactions on
Information Theory, 25(6), 684–691, 1979.

[12] J. Cheng and Y. Watanabe. A Multiuser k-Ary
Code for the Noisy Multiple-Access Adder Chan-
nel. IEEE Transactions on Information Theory,
vol 47, 6, 2001.

[13] J. Cheng and Y. Watanabe. Affine Code for
T-User Noisy Multiple Access Adder Channel.
IEICE Trans. Fundamentals, vol. E83-A, no. 3,
2000.

[14] S. Choi, J. Han Kim. Optimal Query Complex-
ity Bounds for Finding Graphs. STOC, 749–758,
2008.

[15] J. Cheng, K. Kamoi and Y. Watanabe. User
Identification by Signature Code for Noisy
Multiple-Access Adder Channel. IEEE Interna-
tional Symposium on Information Theory, 1974–
1977, 2006.

[16] D. Du and F. K. Hwang. Combinatorial group
testing and its application, Volume 3 of Series on
applied mathematics. World Science, 1993.

[17] D. Danev, B. Laczay and M. Ruszinkó. Multiple
Access Adder Channel. Multiple Access Channels
- Theory and Practice, IOS Press, 26–53, 2007.

14

[18] Erdös and A. Rényi. On two problems of in-
formation theory. Publ. Math. Inst. Hung. Acad.
Sci. V. 8, 241–254, 1963.

[19] V. Grebinski and G. Kucherov. Optimal Recon-
struction of Graphs Under the Additive Model.
Algorithmica , 28(1), 104–124, 2000.

[20] V. Grebiniski and G. Kucherov. Reconstructing
a hamiltonian cycle by querying the graph: Ap-
plication to DNA physical mapping. Discrete Ap-
plied Mathematics, 88, 147–165, 1998.

[21] V. Grebinski. On the Power of Additive Com-
binatorial Search Model. COCOON, 194–203 ,
1998.

[22] P. Indyk, M. Ruzic. Near-Optimal Sparse Recov-
ery in the L1 Norm. FOCS 2008: 199-207, 2008.

[23] G.K. Khachatrian, S.S. Martirossian. Codes for
T-user Noiseless Adder Channel. Problems of
Control and Information Theory, vol 16, 187–192,
1987.

[24] J. Komlós, On the determinant of matrices, Stu-
dia. Sci. Math. Hungar.. 2, 7-21 (1967).

[25] B. Laczay. Coding for the Multiple Access Adder
Channel. 2003.

[26] B. Lindström. On a combinatorial problem in
number theory. Canad. Math. Bull. 8, 477–490,
1965.

[27] B. Lindström. On a combinatorial detection
problem II. Studia Scientiarum Mathematicarum
Hungarica. 1. 353–361, 1966.

[28] B. Lindström. On Möbius functions and a prob-
lem in combinatorial number theory. Canad.
Math. Bull. 14(4), 513–516, 1971.

[29] B. Lindström. Determining subsets by unram-
ified experiments. In J.N. Srivastava, editor, A
Survey of Statistical Designs and Linear Models.
North Holland, Amsterdam, 407–418, 1975.

[30] M. Li, P. M. B. Vitányi. Combinatorics and
Kolmogorov Complexity. Structure in Complex-
ity Theory Conference. 154–163. 1991.

[31] L. Moser. The second moment method in combi-
natorial analysis. In Combinatorial Structure and
their applications, Gordon and Breach, 283–384,
1970.

[32] N. Pippenger. An Informtation Theoretic
Method in Combinatorial Theory. J. Comb. The-
ory, Ser. A. 23(1), 99–104, 1977.

[33] N. Pippenger. Bounds on the performance of
protocols for a multiple-access broadcast chan-
nel. IEEE Transactions on Information Theory.
27(2), 145–151, 1981.

[34] S. Soderberg, H. S. Shapiro. A combina-
tory detection problem. American Mathematical
Monthly, 70, pp. 1066–1070, 1963.

[35] J.H. Wilson. Error-Correcting Codes for a T-
User Binary Adder Channel. IEEE Transactions
of Information Theory, vol. 34, 4, 1988.

15

Appendix A

In this section we present a family of matrices de-
fined in [5] that optimally solve the coinB(n) weigh-
ing problem in the noiseless case.

Let a ∈ {−1, 1}`. Let j1, j2, . . . , j||a|| be the indices
of the entries in a that are equal to one (Recall that
||a|| denotes the number of ones in a). For k ∈ [||a||],
define the following function

ga,k(x) =

(
2

k∏

i=1

xji + 1
2

− 1

)
xjk+1xjk+2 · · ·xj||a|| .

Now, let fa,k(x) = (ga,k(x) + 1)/2. Define the follow-
ing family of functions

F` = {fa,k|a ∈ {−1, 1}` and k ∈ [||a||]}.

Define the matrix Mt ∈ {0, 1}2`×` 2`−1
in the fol-

lowing way (we assume w.l.o.g. that t = `2`−1 for
some integer `): First, we label the rows of Mt with
the elements of {−1, 1}`. Next, we label the columns
with element of F`. The entries of Mt are define as
follows: Mt[x, fa,k] = fa,k(x). That is, let z1 = 1`,
z2 = 1`−1 · −1, . . . , z2` = −1`, where · denotes con-
catenation, then

Mt =

fz1,1(z1) . . . fz1,`(z1) fz2,1(z1) . . . fz2,`−1(z1) . . . fz2`−1,1(z1)
fz1,1(z2) . . . fz1,`(z2) fz2,1(z2) . . . fz2,`−1(z2) . . . fz2`−1,1(z2)

...
...

...
...

...
fz1,1(z2`) . . . fz1,`(z2`) fz2,1(z2`) . . . fz2,`−1(z2`) . . . fz2`−1,1(z2`)

 .

Note that the columns of the matrix are the truth
tables of the functions in F`.

The above matrix is an optimal size search matrix
for the coinB(n) weighing problem in the noiseless
case [5]. That is, suppose that v ∈ {0, 1}n is a hidden
vector, then there is an algorithm that reconstruct v
given Mnv.

In [5] Bshouty also show a generalization for the
above family of matrices. He gave a construction for
similar search matrices for the following problem.

Lemma 11. [5] Let v ∈ [d1]0 × [d2]0 × · · · × [dn]0 be
a hidden vector. There is a matrix M ∈ {0, 1}k×n

where

k(log k − 4) ≤ 2n log
∑

i di

n
.

such that given Mv there is a polynomial time algo-
rithm that reconstructs the hidden vector v.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

