
On the Limits of Sparsification

Rahul Santhanam1 and Srikanth Srinivasan2

1 University of Edinburgh rsanthan@inf.ed.ac.uk
2 Institute of Advanced Study, Princeton srikanth@math.ias.edu

Abstract. Impagliazzo, Paturi and Zane (JCSS 2001) proved a sparsification lemma for k-CNFs: every
k-CNF is a sub-exponential size disjunction of k-CNFs with a linear number of clauses. This lemma
has subsequently played a key role in the study of the exact complexity of the satisfiability problem.
A natural question is whether an analogous structural result holds for CNFs or even for broader non-
uniform classes such as constant-depth circuits or Boolean formulae. We prove a very strong negative
result in this connection: For every superlinear function f(n), there are CNFs of size f(n) which cannot
be written as a disjunction of 2n−εn CNFs each having a linear number of clauses for any ε > 0. We also
give a hierarchy of such non-sparsifiable CNFs: For every k, there is a k′ for which there are CNFs of
size nk

′
which cannot be written as a sub-exponential size disjunction of CNFs of size nk. Furthermore,

our lower bounds hold not just against CNFs but against an arbitrary family of functions as long as
the cardinality of the family is appropriately bounded.

As by-products of our result, we make progress both on questions about circuit lower bounds
for depth-3 circuits and satisfiability algorithms for constant-depth circuits. Improving on a result
of Impagliazzo, Paturi and Zane, for any f(n) = ω(n log(n)), we define a pseudo-random function
generator with seed length f(n) such that with high probability, a function in the output of this
generator does not have depth-3 circuits of size 2n−o(n) with bounded bottom fan-in. We show that if
we could decrease the seed length of our generator below n, we would get an explicit function which does
not have linear-size logarithmic-depth series-parallel circuits, solving a long-standing open question.

Motivated by the question of whether CNFs sparsify into bounded-depth circuits, we show a
simplification result for bounded-depth circuits: any bounded-depth circuit of linear size can be written
as a sub-exponential size disjunction of linear-size constant-width CNFs. As a corollary, we show that
if there is an algorithm for CNF satisfiability which runs in time O(2αn) for some fixed α < 1 on CNFs
of linear size, then there is an algorithm for satisfiability of linear-size constant-depth circuits which
runs in time O(2(α+o(1))n).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 131 (2011)

1 Introduction

The Sparsification Lemma of Impagliazzo, Paturi and Zane [4] plays a key role in the study of the exact
complexity of SAT (the satisfiability problem for CNFs). It states that for any constants ε > 0 and k a
positive integer, any k-CNF on n variables can be written as the disjunction of 2εn linear-size CNFs, where
the constant factor in the size depends only on k and ε.

The Lemma has found many different applications in both algorithmic and lower bound contexts. Im-
pagliazzo, Paturi and Zane [4] used a constructive version of it in their study of sub-exponential reducibilities
between NP-complete problems. Their results indicate that the Exponential-Time Hypothesis (ETH), which
states that 3-SAT is not solvable in time 2o(n), can be used as a unifying hypothesis in the study of exact
complexity of NP-hard problems. They prove that, for various problems such as k-SAT (where k ≥ 3 is
a positive integer), k-Colourability, Clique, Vertex Cover, Satisfiability of linear-size Boolean circuits etc.,
existence of a 2o(n) time algorithm is equivalent to ETH. The Lemma has also been used to undertake more
refined studies of the complexity of SAT in terms of various parameters such as clause width and clause
density [3, ?]. From the point of view of lower bounds, the Lemma has been used to construct a small pseu-
dorandom family of functions such that with high probability, a function in this family does not have depth-3
circuits of size 2n−o(n) and bounded bottom fan-in. This is closely related to classical questions about lower
bounds for linear-size logarithmic-depth circuits [7].

Intuitively, the Sparsification Lemma provides non-trivial structural information about k-CNFs, and this
information can be used in many ways: to construct reductions, to analyze algorithms for SAT and to
prove lower bounds. It is natural to ask whether a similar structural result holds for broader classes of
formulae or circuits, such as CNFs or even constant-depth circuits. Such a result would be useful in getting
better algorithmic results and deriving new lower bounds. For example, while k-SAT is solvable in time
2n−Ω(n) for m = poly(n) and constant k, the best known algorithm for SAT on general CNFs runs in
time 2n−Ω(n/ log(m/n). A sparsification lemma for CNFs would be an important step towards a 2n−Ω(n) time
algorithm for SAT on polynomial-size formulae. Indeed, this has explicitly been posed as an open question
by Calabro, Impagliazzo and Paturi [2].

In this paper, we show a strong negative answer to the question of whether CNFs (and hence also for
more general classes of circuits) can be sparsified.

Theorem 1. Let f(n) = ω(n) be any function. There exists a family {φn} of CNFs such that |φn| ≤ f(n)
and for any ε > 0 and large enough n, φn cannot be written as the OR of 2n−εn CNFs of size O(n).

In fact, what we show is significantly stronger - for any sequence {Fn} of families of Boolean functions
such that |Fn| = nO(n), there is a sequence of CNFs which are not expressible as a 2n−Ω(n) size disjunction
of functions in Fn. Also, the CNFs for which we show this are very natural. The functions they represent
are the solution sets of sparse linear equations.

Theorem 1 only rules out “sparsifying” superlinear-size CNFs to linear-size CNFs. It could potentially
still be the case that n3-size CNFs are sparsifiable into n2-size CNFs. It turns out that the counter-examples
of Theorem 1 cannot establish this stronger statement, however by using a different set of counter-examples
and a similar argument, we derive a hierarchy of non-sparsifiable CNFs.

Theorem 2. Let k and k′ > 2k be constants. Then there exists an ε > 0 and a sequence of CNFs {φn} such
that |φn| ≤ nk

′
and for large enough n, φn cannot be written as the OR of 2εn CNFs of size nk.

The hard CNFs are again natural - they are simply random CNFs of a specified width and size. Thus, in
a sense, the proof of Theorem 2 shows that CNFs cannot be sparsified even on average.

We motivated the question about sparsification by describing the possible applications of a positive result.
It turns out that our negative results have a couple of interesting byproducts as well. By itself, the results give
some indication of the obstacles to designing better SAT algorithms, as well as what kinds of instances are
likely to be hard. For example it is known that in certain contexts, such as for Resolution-based algorithms,
instances encoding subspaces or random instances are hard. Our results are in a similar spirit.

More concretely, motivated by Theorem 1, we construct a simple new sub-exponential time reduction
from satisfiability on linear-size constant-depth circuits to k-SAT. The motivation is to apply Theorem 1 to

2

show that CNFs cannot in general be sparsified into linear-size constant depth circuits. We cannot simply
use the stronger form of Theorem 1 for arbitrary families of functions of small enough cardinality here, as
we are unable to bound the number of functions computed by unbounded fan-in linear-size constant-depth
circuits by nO(n). Instead, we show a positive result that any linear-size constant-depth circuit can be written
as an OR of 2εn k-CNFs for any ε > 0 and k depending only on ε. This decomposition can actually be done
constructively, and this gives us the reduction we mentioned before. The decomposition also implies that
superlinear-size CNFs cannot be sparsified into linear-size constant-depth circuits.

Theorem 3. Let {fn} be a sequence of Boolean functions on n bits, such that fn is computed by linear-size
constant-depth circuits. For any constant ε > 0, there is a constant k such that fn is the disjunction of 2εn

functions each of which is computed by a k-CNF of linear size.

Theorem 1 also has an application to circuit lower bounds. Here we are concerned with lower bounds
for depth-3 circuits where there is a bound on the bottom fan-in. If we could show that there is an explicit
function which does not have size 2n/2 depth-3 circuits with bottom fan-in O(1), this would be a lower
bound breakthrough, as using a connection due to Valiant[7] it would imply a superlinear-size lower bound
against logarithmic-depth series-parallel circuits. Valiant argues that the series-parallel restriction on the
structure of the circuit is interesting because the best-known circuits for many problems are series-parallel.
Impagliazzo, Paturi and Zane [4] make progress on this question by constructing an explicit pseudo-random
family of 2O(n2) functions such that most functions in the family do not have size 2n−Ω(n) depth-3 circuits
with bottom fan-in O(1). We improve their result by reducing the size of the function family down to nf(n)

for any f(n) = ω(n). We also argue that a further improvement of the family size to 2cn for c < 1 would
actually imply a breakthrough lower bound for an explicit function.

In the theorem below, a Σ3 circuit is an unbounded fan-in depth 3 circuit where the top gate is an OR.
Note that when trying to prove a lower bound for an explicit function, we can assume wlog that the top gate
is an OR.

Theorem 4. For each f(n) ∈ ω(n), there is a sequence {Fn} of families of Boolean functions on n bits,
where Fn has size at most nf(n), such that with probability 1− o(1), a random function from this family does
not haveΣ3 circuits of size 2n−Ω(n) with bottom fan-in O(1). Moreover, given the index of a function f in
the family and an input x of length n, there is a polynomial-time algorithm to evaluate f(x).

1.1 Proof Ideas

Here we give some intuition for the proofs of our results. First we discuss the proof of Theorem 1. We would
like to show that there are superlinear-size CNF formulas which cannot be sparsified to linear-size CNFs.
Our starting point is a sequence of CNFs ϕMRW constructed by Miltersen, Radhakrishnan, and Wegener
[5] which they prove don’t have DNF of size less than 2n−n/ logn. Since a DNF of size 2o(n) can be seen as
a sparsification into 1-CNFs (which are, of course, of linear size), this is a logical place to start. However,
it is easy to show that ϕMRW can indeed be sparsified into linear size CNFs. Hence, we look at a natural
randomized variant of their construction. Suppose that these random CNFs ϕ were all sparsifiable into
linear-size CNFs. Then for each such CNF, the set of solutions would contain as a subset the set of solutions
of a linear-size CNF with exponentially many solutions, by using a pigeonhole argument. Thus, if we could
argue that exponentially large sets are highly unlikely to be contained within the set of solutions of our
random CNFs, where “highly unlikely” means with probability 1 − 1/nω(n), we could use a union bound
over linear-size CNFs (of which there are at most nO(n)) to show that there is a CNF in the support of our
distribution whose solution set does not contain the solution set of any linear-size CNFs with many solutions.

However, what we are aiming for turns out not to be true: assignments satisfied by conjunctions of
n/2 literals turn out to be contained in the solution set of our random CNFs with probability 1/no(n).
Nevertheless,we can show that this is the only ‘obstruction’ to this proof idea, and recover the desired
bound on likelihood of containment conditioned on this obstruction not occurring. We can also bound the
probability of the obstruction happening since there are relatively few “bad” events which give rise to it.
Putting these arguments together, we derive our result.

3

The proof of Theorem 2 follows a very similar framework, so we do not describe it separately. The proof
of Theorem 3 extends an argument due to Schuler [6] who shows how to sparsify linear-size CNFs into
bounded-width linear-size CNFs by recursively branching on large clauses. We show that this procedure can
also be carried out for constant-depth circuits of linear-size to ensure that all gates except the top gate
(which is an AND gate) are of bounded fan-in. This allows us to turn the circuit into a linear-size CNF of
bounded-width. The idea, for a circuit of depth d, is to apply the analysis of Schuler to the terms and clauses
at height 1 separately and recursively apply the same procedure to the circuit obtained by substituting new
variables for each of the gates at height 1 in the original circuit, hence reducing the depth by one. Composing
the bounded fan-in circuits obtained from these two steps gives us our desired sparsification.

The proof of Theorem 4 uses a connection exposed by [4] - strangely enough, it uses both our impossiblity
result on sparsification and the Sparsification Lemma.

2 Preliminaries

2.1 Basic complexity notions

We assume a basic knowledge of complexity theory. Standard references for this include the book by Arora
and Barak [1] and the Complexity Zoo1.

When discussing sparsification, we find it convenient to talk of non-uniform complexity measures. A
non-uniform complexity measure CSIZE associates with each integer n and size bound s, a class of Boolean
functions CSIZE(s(n)) on n bits, such that for any s′ ≥ s, CSIZE(s(n))) ⊆ CSIZE(s′(n)). We will be
concerned mainly with measures which correspond directly to standard models of computation, such as
CNFs, CNFs of constant width (referred to as O(1)-CNFs), constant-depth unbounded fan-in circuits (AC0),
Boolean formulae and Boolean circuits.

By the size of a CNF, we will typically mean the number of clauses. If we mean the total number of
literal occurrences, we will make this explicit.

As we will be studying lower bounds for depth-3 circuits, we require some notation for such circuits.
Define Σk

d to be the set of depth d circuits with top gate OR such that each bottom gate has fan-in at most
k. It is known that any Σk

3 circuit for the Parity function or the Majority function requires Ω(2n/k) gates, and
such bounds are tight for k = O(

√
n). For k = 2, a 2n−o(n) size lower bound is known for an explicit function

in P, however not even an Ω(2n/2) size lower bound is known for an explicit function for any k > 2. Using
a connection due to Valiant [7], this question can be related to classical lower bound questions about linear-
size logarithmic-depth Boolean circuits. Valiant’s results imply that linear-size logarithmic-depth Boolean
circuits with bounded fan-in can be computed by depth-3 unbounded fan-in circuits of size O(2n/ log logn)
with bottom fan-in limited by nε for arbitrarily small ε. If in addition, the graph of connections of the circuit
is restricted to be series-parallel, the simulation can be modified to give size 2n/2 and fan-in O(1).

Given functions f, g : N → R>0, we occasionally use f � g to denote f(n) = o(g(n)). This notation
makes the transitivity of the o(·) relation more transparent.

2.2 Sparsification and simplification

Definition 1. Given non-uniform complexity measures CSIZE and C′SIZE, and functions s, s′ : N → N,
we say that there is a (C, s, C′, s′)-sparsification if for any constant ε > 0 and any function f ∈ CSIZE(O(s)),
f is the OR of at most 2εn functions each belonging to CSIZE(O(s′)). We say that C is sparsifiable to C′ if
there is a (C, nk, C′, n)-sparsification for each k, and we say simply that C is sparsifiable if C is sparsifiable
to C.

Definition 2. Given non-uniform complexity measures CSIZE and C′SIZE, and function s : N → N, we
say that there is an OR-simplification of C to C′ at size s if there is a (C, s, C′, s)-sparsification. We say that
there is an OR-simplification of C to C′ if there is an OR-simplification of C to C′ at size n.

1 http://qwiki.stanford.edu/index.php/Complexity Zoo

4

The following proposition is immediate since sub-exponential size ORs are closed under composition.

Proposition 1. If C is sparsifiable to C′ and there is an OR-simplification of C′ to C, then C is sparsifiable.

There are many interesting positive results on sparsification and simplification. Impagliazzo, Paturi and
Zane [4] showed that k-CNFs are sparsifiable for any constant k.

Lemma 1 (Sparsification Lemma). [4, ?] Let k > 0 be any integer. For any constant ε > 0, there exists
a constant c(k, ε) such that for large enough n, any k-CNF over n variables can be expressed as the OR of
2εn k-CNFs each of size at most c(k, ε)n.

The original proof of Lemma 1 [4] yielded c doubly exponential in k but this was subsequently improved
to singly exponential in k. Using results of Miltersen, Radhakrishnan and Wegener [5], it can be shown that
an exponential dependence on k is necessary.

Schuler [6] showed that there is an OR-simplification of CNFs to O(1)-CNFs. This follows from the
following more general lemma.

Lemma 2. For any constant ε ∈ (0, 1] and function c : N → N, every CNF ϕ with at most cn clauses can
be written as the OR of at most 2εn many k-CNFs with at most cn clauses, where k = O(1

ε log(cε)).

Proof. Fix any CNF ϕ with m ≤ cn clauses. Wlog, we assume c ≥ 1. Let k be a parameter that we will fix
later. Consider the following simplification procedure:

– As long as ϕ contains a clause of size at least k, do the following. Fix any subset of the literals appearing
in this clause of size exactly k and branch on whether or not the OR of these literals is true or not. We
say the branch is of type A if the OR is true and of type B if the OR is false.

– If the OR is true, then the number of clauses falls by 1. Otherwise, we know that each of the literals is
false, and hence, the number of variables falls by k.

Since the number of clauses or the number of variables falls in each step, the total number of steps is
bounded by m + n. Moreover, the number of branches of type B is bounded by n/k. Hence, the number
of leaves in the recursion tree is bounded by

(
m+n
≤n/k

)
≤ O((k(m+ n)/n)n/k) ≤ 2O(

log(k(c+1))
k)n ≤ 2εn for

k = O(1
ε log(cε)). This finishes the proof.

Note that when c is a constant in Lemma 2, k is a constant as well.

Corollary 1. There is an OR-simplification of CNFs to O(1)-CNFs.

3 The Limits of sparsification

3.1 Non-sparsifiability of CNFs

We will show that there are CNFs of slightly superlinear size that cannot be written as a subexponential
OR of CNFs of linear size.

Given `, r ∈ N, let S`,r denote the collection of all r-tuples of subsets of [n] of size `. Given S =
(S1, . . . , Sr) ∈ S`,r, let ϕS denote some CNF for the following function:

GS =
r∧
i=1

¬
⊕
j∈Si

xj

Though the above function has not been written in CNF form, it is easy to see that for any S as above,
ϕS can be chosen to be CNFs of size at most r2`.

Claim. Fix any `, r : N → N. Then we have that for any S ∈ S`,r, the CNF ϕS has at least 2n−r satisfying
assignments.

5

Proof. This follows from the fact that any homogeneous system of r linear equations has at least 2n−r

solutions over F2.

Now we proceed to the proof of the main lemma. Given a CNF formula ϕ, let Sat(ϕ) denote the set of
satisfying assignments of ϕ.

Fix a T ⊆ [n] and assume that S ∈
(
[n]
`

)
is chosen uniformly at random. Given η ∈ [0, 1], we call S

(1 − η)-balanced w.r.t. T if |S ∩ T | ≥ (1 − η) ES [|S ∩ T |]. We call S balanced w.r.t. T if S is 1/2-balanced
w.r.t. T . Given S ∈ S`,r, we say that S is (1− η)-balanced w.r.t. T (balanced w.r.t. T) if at least half the Si
are (1− η)-balanced w.r.t. T (respectively, balanced w.r.t. T).

We need the following technical lemma regarding balance.

Lemma 3. Let ε, η ∈ (0, 1) be constants. Fix ` = `(n), r = r(n) such that 1� `(n) and n/`� r(n). Assume
T ⊆ [n] such that |T | ≥ εn. Then for a randomly chosen S ∈ S`,r, we have

Pr
S

[S is not (1− η)-balanced w.r.t. T] =
1

2ω(n)

Proof. A simple concentration equality tells us that for any i ∈ [r], PrSi [Si not (1− η)-balanced] ≤ 2−Ω(`).
Hence, given a set of r/2 many Si, the probability that none of them are balanced w.r.t. T is bounded by
2−Ω(`r) = 2−ω(n+r), where the last equality follows from the fact that r � n/`. By a union bound, it follows
that the probability that there exists a subset of S of size r/2 all of whose elements are not (1− η)-balanced
w.r.t T is at most

(
r
r/2

)
2−ω(n) ≤ 2r2−ω(n+r) ≤ 2−ω(n). The lemma now follows since this event corresponds

precisely to S not being balanced w.r.t T .

Lemma 4. Fix constants c, ε > 0. Let ` = `(n), r = r(n) be parameters such that 1 � ` = O(log n),
n/` � r � n. Fix any collection A of subsets of {0, 1}n of size at most ncn such that each A ∈ A has size
at least 2εn. Then, for a random S ∈ S`,r, we have

Pr
S

[∃A ∈ A : A ⊆ Sat(ϕS)] = o(1)

Proof. Fix any A ∈ A. Since Sat(ϕ) is a subspace of Fn2 , we see that A ⊆ Sat(ϕ) iff Span(A) ⊆ Sat(ϕ),
where Span(A) is the span of A in Fn2 . Hence, we assume wlog that every A ∈ A is actually a subspace of
dimension at least εn. Fix such a subspace A. Let d ≥ εn denote the dimension of A.

By Gaussian elimination, we can choose a d × n matrix M(A) such that the rows of M(A) generate A
and after some column permutations, M(A) = [Id M ′] where Id denotes the d × d identity matrix. Let the
variables indexed by the first d columns of M(A) be denoted S(A).

Consider a uniformly random S = (S1, . . . , Sr) ∈ S`,r. For i ∈ [r] let χi denote the characteristic vector
of Si. It is easily seen that A ⊆ Sat(ϕS) iff each χi ∈ A⊥, where A⊥ denotes the dual space of A.

We now consider the probability that χi ∈ A⊥ for any fixed i. This happens iff M(A)χi = 0. Note that
this event can occur with probability at least 1

2O(`) if, for example, M ′ = 0 and it happens that Si ⊆ [n]\S(A).
We now show that this probability is much lower if we condition on the event that Si is balanced w.r.t. S(A).

Say we condition on |Si ∩ S(A)| = q, where q ∈ [`]. Note that picking a random Si conditioned on this
event is equivalent to picking a random subset S′i of S(A) of size q and a random subset S′′i of S(A) of size
` − q and setting Si = S′i ∪ S′′i . Let χ′i and χ′′i denote the characteristic vectors of S′i and S′′i respectively.
Then, M(A)χi = 0 iff Idχ

′
i + M ′χ′′i = 0 iff χ′i = M ′χ′′i . For any fixed choice of χ′′i , the probability over the

choice of χ′i that this occurs is at most 1/
(
d
q

)
≤ (q/εn)q ≤ 1

(εn)Ω(q) . Hence, conditioned on Si being balanced
w.r.t. S(A), we see that the probability that M(A)χi = 0 is at most 1

(εn)Ω(ε`) ≤ 1
nΩ(`) . This implies that

Pr
S

[∀i ∈ [r] : M(A)χi = 0 | S balanced w.r.t. S(A)] ≤
(

1
nΩ(`)

)r/2
=

1
nω(n)

(1)

where the last equality follows from the fact that r = ω(n/`).

6

We are now ready to bound the probability that there exists a subspace A ∈ A that is contained in
Sat(ϕS). Let E1(A) denote the event that A ⊆ Sat(ϕS). Given T ⊆ [n] s.t. |T | ≥ εn, let E2(T) denote the
event that S is not balanced w.r.t. T . We have

Pr
S

[
∨
A

E1(A)] ≤ Pr
S

[
∨
A

E1(A) ∨
∨

T⊆[n]:|T |≥εn

E2(T)]

= Pr
S

[
∨
T

E2(T)] + Pr
S

[
∨
A

E1(A) ∧ ¬
∨
T

E2(T)]

≤
∑
T

Pr
S

[E2(T)] +
∑
A

Pr
S

[E1(A) ∧ ¬
∨
T

E2(T)]

≤
∑
T

Pr
S

[E2(T)] +
∑
A

Pr
S

[E1(A) ∧ ¬E2(S(A))]

≤
∑
T

Pr
S

[E2(T)] +
∑
A

Pr
S

[E1(A) | ¬E2(S(A))]

≤ 2n · 1
2ω(n)

+ ncn · 1
nω(n)

= o(1)

where the last inequality follows from Lemma 3 and (1). This concludes the proof of the lemma.

Theorem 5. Fix any constants c > 0 and ε ∈ (0, 1]. Say S is chosen uniformly at random from S`,r, where
`, r are as in the statement of Lemma 4. Then, the probability that ϕS can be written as a union of at most
2n−εn many CNFs of size at most cn is o(1).

Proof. Assume that for some S, ϕS can be written as an OR of at most 2n−εn many CNFs of size at most
cn. By Lemma 2, each such CNF can be written as a union of at most 2εn/2 many k-CNFs of size at most cn,
where k = k(c, ε) is a constant. Moreover, Claim 3.1 implies that |Sat(ϕS)| ≥ 2n−r = 2n−o(n). Hence, it must
be the case that there is some k-CNF ψ of size at most cn such that |Sat(ψ)| ≥ 2εn/4 and Sat(ψ) ⊆ Sat(ϕS).
Let A =

{
Sat(ψ)

∣∣ ψ a k-CNF, Size(ψ) ≤ cn, and |Sat(ψ)| ≥ 2εn/4
}

; clearly, |A| ≤
(
(2n)k

cn

)
≤ nkcn. We have

seen above that if ϕS can be written as an OR of at most 2n−εn many CNFs of size at most cn, then there
must be an A ∈ A such that A ⊆ Sat(ϕS). By Lemma 4, the probability that this happens is o(1). Hence,
the theorem follows.

From Theorem 5, we obtain the following tight result on non-sparsification into linear size.

Theorem 6. Let f : N → N be any function such that f(n) = ω(n). Then there is a sequence of CNFs
{φn}, where for each n φn has n variables and has size at most f(n), such that for any constants ε ∈ (0, 1]
and c > 0, for all large enough n φn cannot be written as the OR of 2n−εn CNFs of size at most cn. In
particular, CNFs are not sparsifiable.

Theorem 6 is a re-statement of Theorem 1. It follows by choosing ` = ω(1) small enough and r = n/
√
`

so that f(n) ≥ n2`/
√
`, and then using Theorem 5 to yield existence of CNFs of the desired size which are

non-sparsifiable.

3.2 A Hierarchy Theorem for Non-Sparsifiability

Theorem 5 shows the existence of CNFs of slightly super-linear size which cannot be sparsified into linear-size
CNFs. A natural question is whether there is a hierarchy of such non-sparsifiable CNFs: is it true that for
each k, there is an k′ > k such that there are CNFs of size nk

′
which cannot be sparsified into CNFs of size

nk.
First note that the hard CNFs we’re looking for cannot be of the form ϕS for some S ∈ S`,r. This is

because the corresponding function GS trivially has formulae of size o(n log(n)) over the basis {∧,∨,⊕},
and so also is sparsifiable into formulae of the same size over this basis. Lemma 4 shows non-sparsifiability
into any class of functions of small enough cardinality, so we cannot hope to strengthen Lemma 4 to get the
desired result for k > 1.

7

Instead, we use a random CNF ψ with a prescribed width and clause density. Fix n ∈ N and ` : N→ N.
We denote by Ψn,`(n) the collection of all CNF formulas on n boolean variables of width exactly `(n) with
2`(n) many clauses (with possible repetitions). To sample a random ψ from Ψn,`(n), we simply sample 2`(n)

random clauses of width `(n). Intuitively, since each clause is chosen at random, we have Ω(2`(n)) bits of
non-uniformity to work with here, rather than just o(n log2 n) as was the case with our earlier example. This
gives us some hope of proving an analogue of Lemma 4 where the cardinality of the collection A of subsets
is Ω(2n

k

) for arbitrarily large constant k by choosing ` = Θ(log n).
Since the proof of Lemma 5 proceeds along similar lines to the proof of Lemma 4, the proof is postponed

to the appendix.

Claim. Fix any ` : N→ N and n ∈ N such that `(n) ≥ 2. A random ψ from Ψn,`(n) has at least 2n/8 solutions
w.p. at least 1/4.

Proof. Let X denote the random variable whose value is the number of solutions to ψ. Fix any x ∈ {0, 1}n.
It is easy to see that the probability that x is a solution is at least (1 − 2−`(n))2

`(n) ≥ 1/4. Thus, we have
Eψ[X] = 2n/4. Moreover, note that we always have 0 ≤ X ≤ 2n. These facts, together with the well-known
statement given below, imply the lemma.

Fact 7 Fix any random variable Y and any N > 0 such that Y ≤ N always. Then, if E[Y] ≥ εN for any
ε ∈ [0, 1], we have Pr[Y ≥ εN/2] ≥ ε

2 .

Lemma 5. Fix constants c ≥ 1, η > 0. Assume ` = `(n) = (2c+η) log n. There exists a constant ε = ε(η, c) >
0 such that the following holds: Fix any collection A of subsets of {0, 1}n of size at most 2O(nc(logn)O(1)) such
that each A ∈ A has size at least 2(1−ε)n. Then, for a random ψ chosen from Ψn,`(n), we have

Pr
ψ

[∃A ∈ A : A ⊆ Sat(ψ)] = o(1)

Theorem 8. Fix c, η, ` as in the statement of Lemma 5. Then, then there exists a fixed δ = δ(η, c) > 0 such
that the probability that a random ψ sampled from Ψn,` can be written as an OR of at most 2δn many CNFs
of size at most O(nc) is at most 3/4 + o(1). In particular, there is no (CNF, n2c+η, CNF, nc)-sparsification.

Proof. We set δ = ε/4, where ε is as defined in the statement of Lemma 5. Consider any CNF ϕ of size
at most O(nc). By Lemma 2, we know that ϕ can be written as an OR of at most 2δn many CNFs of
size O(nc) and width `′ = O(log n), where the constant in the O(·) depend on δ and c. Hence, if ψ can be
written as an OR of at most 2δn many CNFs of size O(nc), then it can be written as an OR of at most
22δn = 2εn/2 many CNFs of size nc and width `′. This implies that either ψ cannot have too many satisfying
assignments or there must be such a CNF ϕ that accepts many satisfying assignments of ψ. Formally, either
ψ accepts at most 2n−3 inputs x ∈ {0, 1}n or there exists some CNF ϕ of size at most nc and width `′ such
that |Sat(ϕ)| ≥ 2n−3/2εn/2 ≥ 2(1−ε)n and Sat(ϕ) ⊆ Sat(ψ). By Lemma 3.2, the probability that the former
occurs is at most 3/4. We now show using Lemma 5 that the probability of the latter is o(1).

Let A =
{

Sat(ϕ)
∣∣ ϕ an `′-CNF of size ≤ nc, |Sat(ϕ)| ≥ 2(1−ε)n }. The number of CNFs of size O(nc)

and width `′ is at most
(
nO(logn)

nc

)
= 2O(nc(logn)O(1)). Hence, |A| ≤ 2O(nc(logn)O(1)). By Lemma 5, we see that

the probability that any such set is contained in Sat(ψ) is o(1). This proves the theorem.

Theorem 8 implies Theorem 2. The proof of Lemma 5, with some small modifications, can also be used
to show the following.

Theorem 9. Let ε ∈ (0, 1] be a constant. For each k > 0, there is k′ > k and a sequence of CNFs {ψn},
where for each n ψn has n variables and is of size at most nk

′
, such that for large enough n ψn cannot be

written as the OR of 2n−εn CNFs each of size at most nk.

4 Simplifying AC0 to CNFs

In this section, all AC0 circuits considered will have AND gates as their output gates. Note that any AC0

circuit can be converted to this form by adding an additional AND gate at the output, hence increasing the
size and depth by 1.

8

Definition 3. Given s, d, k ∈ N, an AC0 circuit C with an AND gate as its output gate is said to be
(s, d, k)-bounded if it has size at most s, depth at most d, and all of its gates except the output gate have
fanin bounded by k.

Fact 10 For constants d, k ∈ N and any s ∈ N, any (s, d, k)-bounded AC0 circuit can be written as a CNF
of size O(s) and width kd.

Definition 4. Given N, s, k ∈ N, a set C of at most N (s, d, k)-bounded AC0 circuits is said to be an
(N, s, d, k)-disjoint system if the set of satisfying assignments of each pair of distinct circuits C1 6= C2 from
C are disjoint. The function computed by C is defined to be

∨
C∈C C.

Lemma 6. Fix constants c, d ∈ N such that d ≥ 2 and ε ∈ (0, 1]. There exists a k = k(c, d, ε) and a
c′ = c′(c, d, ε) such that for any AC0 circuit C of depth d and size at most cn on n variables, there is an
(2εn, c′n, d, k)-disjoint system C that computes the same function as C.

Proof. The proof is by induction on d. We need a small variant of Lemma 2, which gives us the base case of
d = 2:

Claim. For any c ∈ N and ε ∈ (0, 1], there exists a k = k(c, ε) ∈ N such that for any collection S of at most
cn many clauses (respectively, terms), there is a partition of {0, 1}n into at most 2εn many parts such that
in each part, each clause (resp. term) in S has size at most k. Moreover, each element of the partition is
specified by a k-CNF with at most (c+ 1)n clauses.

Proof. We prove the result in the case of clauses; the proof for terms is almost identical. Let k be a parameter
that we will choose later. As long as there is a clause of width at least k, choose k literals from the clause
and split the remainder of the space into two parts depending on whether the disjunction of these literals is
satisfied or not. Call the branch where the literals are not satisfied the good branch. Along the good branch,
we can set k variables to some boolean values; along the other branch, we still end up satisfying the clause.

Note that there can be only cn+ n/k many steps overall, since every step either satisfies a clause or sets
k variables. Moreover, there can be at most n/k many good steps along any branch. This means that the
total number of branches is bounded by

(
cn+n/k
n/k

)
≤
(
(c+1)n
n/k

)
≤ (ek(c+ 1))n/k ≤ 2O(log(kc)n/k) ≤ 2εn for large

enough k depending on c and ε.
Note, moreover, that inputs corresponding to each branch is given by a k-CNF, where k with at most

cn+ n/k · k = (c+ 1)n many clauses.

The above claim easily implies that for any CNF ϕ with at most cn clauses, there is a (2εn, (2c+1)n, 2, k)-
disjoint system computing the same function as ϕ, where k is as defined in Claim 4.

Now consider a circuit of depth d > 2. Let C<d be the circuit C up to layer d − 1, with the layer of
height 1 gates being replaced by a new set of variables y1, . . . , ym, where m ≤ cn. By applying the induction
hypothesis to C<d with ε = ε/(2c), we see that there exist c1, k1 ∈ N and a (2εn/2, c1n, d − 1, k1)-disjoint
system C that computes the same function as C<d on inputs coming from {0, 1}m.

Moreover, by applying Claim 4 to the AND and OR gates at height 1, there exists k2 ∈ N and a partition
P of {0, 1}n into at most 2εn/2 parts, each of which is specified by a k2-CNF of size at most (c+ 1)n, such
that in each partition, each gate at height 1 depends on at most k2 variables. For each P ∈ P, let ϕP denote
the k2-CNF of size at most (c + 1)n that accepts exactly the inputs in P ; given any circuit C ′ ∈ C, let CP
denote the circuit C ′′ ∧ ϕP , where C ′′ is obtained by substituting for each yi the corresponding term or
clause of width at most k2 that agrees with the corresponding gate on inputs from the set P of inputs. The
set of all such circuits CP gives us a (2εn, (c1 + c + 1)n, d,max{k1, k2})-disjoint system that computes the
same function as the circuit C.

Corollary 2. There is an OR-simplification of AC0 to O(1)-CNFs. In particular, we have:

1. For any function f(n) = ω(n) and constants c, ε > 0, there is a sequence of CNFs {ϕn}, where ϕn has
n variables and size at most f(n) such that ϕn cannot be written as an OR of at most 2n−εn many AC0

circuits of depth d and size at most cn.

9

2. If satisfiability of linear-size CNFs can be tested in time 2αn for some fixed α < 1, then satisfiability of
linear-size AC0 circuits can also be tested in time 2(α+ε)n, for any fixed ε > 0.

Proof. That there is an OR-simplification of AC0 to O(1)-CNFs follows directly from Lemma 6 and Fact 10.
Item 1 then follows from Theorem 6. Item 2 follows trivially.

Theorem 3 follows from Corollary 2.

5 Circuit lower bounds for depth-3 circuits

Impagliazzo, Paturi and Zane [4] showed that non-sparsifiability is closely connected to lower bounds for
depth-3 circuits with bounded bottom fan-in. It is a long-standing open problem to find an explicit Boolean
function which requires Σk

3 circuits of size 2ω(n/k), where k is the bottom fan-in.
It is implicit in the work of Impagliazzo, Paturi and Zane that there is no (AC0[⊕], n2, C, n)-sparsification

for any complexity measure CSIZE such that there are at most nO(n) Boolean functions in CSIZE(O(n)).
They use this to construct an explicit family of 2O(n2) Boolean functions such that with probability close
to 1, a random function from this family does not have Σk

3 circuits of size 2n−o(n) for k = o(log log(n)).
Note that such a lower bound holds for a purely random Boolean function using a straightforward counting
argument; what their result gives is a pseudo-random function family of significantly smaller size for which
the lower bound still holds with high probability. Their result relies on the sparsification lemma first proved
in the same paper. Using our result, we can reduce the size of the family down to nf(n) for any f(n) = ω(n),
which, as we show, is “close” to getting the lower bound for an explicit function.

Theorem 11. For each f(n) = ω(n), there is a sequence {Fn} of families of Boolean functions on n bits,
where Fn has size at most nf(n), such that with probability 1−o(1), a random function from Fn does not have
Σk

3 circuits of size 2n−Ω(n) with bottom fan-in O(1). Moreover, given i ∈ [1, nf(n)] in binary and x ∈ {0, 1}n,
there is a polynomial-time algorithm for evaluating the i’th function in Fn on x.

Proof. The function family {Fn} we use is simply the set {GS}, where S ∈ S`,r, with ` and r chosen as in the
proof of Theorem 6.statement of Theorem 5. The bound on the cardinality of Fn and the polynomial-time
evaluability of functions in Fn are clear. We will show that if a function f cannot be written as an OR of
2n−εn CNFs of linear size for any ε > 0, then it does not have Σk

3 circuits of size 2n−o(n) with bottom fan-in
O(1). Thus the theorem follows using Theorem 5.

Suppose, on the contrary, that there is a constant c < 1 such that f has Σk
3 circuits of size 2cn with

bottom fan-in k = O(1). Consider the gates with output wires feeding in to the top OR gate. Each such gate
computes an O(1)-CNF. By the sparsification lemma of Impagliazzo, Paturi and Zane, for any ε > 0 each
such gate can be written as the OR of 2εn O(1)-CNFs of size O(n). By choosing ε such that ε + c < 1, we
get that f is the OR of 2c

′n functions, each of which has CNFs of size O(n) for some c′ < 1. This contradicts
the assumption on f , hence we are done.

Theorem 11 is a re-statement of Theorem 4.

Theorem 12. Suppose there is a sequence {Fn} of families of Boolean functions on n bits, where Fn has
size at most 2n−Ω(n), such that for large enough n, there exists a function fn ∈ Fn such that fn does not have
Σk

3 circuits of size 2n−o(n) with bottom fan-in k(n) = O(1) (resp. no(1)). Also assume that given i ∈ [1, |Fn|]
in binary and x ∈ {0, 1}n, there is a polynomial-time algorithm for evaluating the i’th function in Fn on x.
Then there is a Boolean function g ∈ P such that g does not have linear-size logarithmic-depth series-parallel
circuits (resp. linear-size logarithmic-depth circuits).

Proof. We prove that under the assumption, there is a Boolean function g ∈ P which does not have Σk
3

circuits of size 2m/2 with bottom fan-in k(m/2). From this, the result follows using the classical simulation
[7] of lin-size log-depth series-parallel circuits (resp. lin-size log-depth circuits) by Σk

3 circuits of size 2m/2

with bottom fan-in constant (resp. mo(1)).
Let c > 0 be a constant such that Fn has size at most 2n−cn. g is defined to be zero except on inputs of

length m = 2n− cn for n ∈ N (we assume that real numbers are rounded down in order to interpret them as

10

input lengths). We interpret the input of g as consisting of two parts i and x, where |i| = n− cn and |x| = n.
g(i, x) = 1 iff fi(x) = 1, where fi is the i’th function in Fn. By assumption on Fn, g can be evaluated in
polynomial time.

Suppose, for the purpose of contradiction, that g has Σk
3 circuits of size 2m/2 with bottom fan-in k(m/2),

where m is the input length of g. From this, we get Σk
3 circuits for any function fi ∈ Fn by simply fixing

the first part of the input to the circuit of g to i. Clearly this does not increase the size or the fan-in of the
circuit, and the corresponding circuit is a circuit for fi by definition of g. As a function of n, the size is at
most 2m/2 = 2n−Ω(n) and the bottom fan-in at most k(m/2) = k(n − Ω(n)), contradicting the assumption
that there is some i for which fi does not have Σk

3 circuits of size 2n−o(n) and bottom fan-in at most k(n).

There is a gap between the function family size in Theorem 12 and the family size in Theorem 11. In
fact, using the same idea as in the proof of Theorem 11, one can show that getting lower bounds for explicit
function families of size no(log(n)) would give a lower bound tradeoff for an explicit function between bottom
fan-in and Σ3 circuit size which is better than what is known.

6 Open Problems

Various questions remain about OR-simplification. Can circuits be OR-simplified to CNFs? How about
formulae?

In our work, sparsification corresponds to expressing a formula as an OR of sparser formulae. One could
consider other functions applied to the sparser formulae to give a reduction, eg. Majority or Parity. Can our
negative result be extended to rule out such functions as well?

Our results could be refined to determine the optimal function f(n) such that quadratic size CNFs can be
expressed as the OR of 2n−f(n) linear size CNFs but not of an asymptotically smaller number of them. We
show that f(n) = o(n); on the other hand, it follows from work by Miltersen, Radhakrishnan and Wegener [5]
that f(n) = Ω(n/ log(n)). Also Theorem 8 could potentially be improved to show that for each polynomial
s, CNFs of size s1+o(1) cannot be sparsified to CNFs of size s.

7 Acknowledgements

The first author would like to thank Mohan Paturi for posing the question of whether general CNFs can be
sparsified, as well as for several enlightening discussions.

References

1. Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press,
2009.

2. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause width and clause density
for SAT. In Proceedings of IEEE Conference on Computational Complexity, pages 252–260, 2006.

3. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and System
Sciences, 63(4):512–530, 2001.

4. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complex-
ity? Journal of Computer and System Sciences, 62(4):512–530, 2001.

5. Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. On converting cnf to dnf. Theoretical Computer
Science, 347(1–2):325–335, 2005.

6. Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algorithms,
54(1):40–44, 2005.

7. L. G. Valiant. Graph-theoretic arguments in low-level complexity. In J. Gruska, editor, Proceedings of the 6th
Symposium on Mathematical Foundations of Computer Science, volume 53 of LNCS, pages 162–176, Tatranská
Lomnica, Czechoslovakia, September 1977. Springer.

8. V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their
probabilities. Journal, (2):264–280, 1971.

11

A Proof of Lemma 5

Proof. For x ∈ {0, 1}n and nonempty S ⊆ [n], we denote by xS the element of {0, 1}|S| that is obtained by
projecting x to the coordinates in S in increasing order. Given A ⊆ {0, 1}n, AS := {xS | x ∈ A}. We say that
A shatters S if AS = {0, 1}|S|. Let η′ = η/10c. Standard results about VC-dimension [8] tell us that there is
an ε = ε(η, c) > 0 such that any subset A of size at least 2(1−ε)n shatters some subset of size (1/2 − η′)n.
We fix this ε and given any subset A ⊆ {0, 1}n of size at least 2(1−ε)n, we fix a set S(A) ⊆ [n] of size at least
(1/2− η′)n such that S(A) is shattered by A.

Now, fix A ∈ A. We have |A| ≥ 2(1−ε)n and hence it shatters the set S(A) ⊆ [n] as above. Consider a
random ψ sampled from Ψn,`. Let r = 2` and C1, . . . , Cr denote the clauses of ψ. Define sets Si ⊆ [n] (i ∈ [r])
such that Ci contains the variables indexed by Si. Clearly, S = (S1, . . . , Sr) is distributed uniformly over
S`,r. Lemma 3 tells us that S is (1− η′)-balanced w.r.t. S(A) w.h.p. Therefore, as in the proof of Lemma 4,
we condition on S being (1− η′)-balanced w.r.t. S(A).

Say that we know that Si is (1 − η′)-balanced w.r.t S(A). This implies that |Si ∩ S(A)| ≥ (1/2 − 2η′)`.
Assume, moreover, that we are given the fragment C ′i of the clause Ci restricted to the variables in S(A).
Conditioned on this knowledge, picking Ci is equivalent to picking a random clause C ′′i of width ` − |Si| ≤
`(1/2 + 2η′) over the variables in [n] \S(A) and setting Ci = C ′i ∨C ′′i . We choose an input x(i) ∈ A such that
x

(i)
Si∩S(A) does not satisfy C ′i; there exists one such input because A shatters S(A). The probability (over Ci)

that x satisfies Ci is, therefore, equal to the probability that x satisfies C ′′i , which is at most 1−1/2`(1/2+2η′).
Assume, now, that S is (1− η′)-balanced w.r.t. S(A). Moreover, assume that we are given C ′i for each i.

Call i good if Si is (1 − η′)-balanced w.r.t. S(A). For each good i, we have an x(i) ∈ A as above. As there
at least r/2 many good i, the probability that A ⊆ Sat(ψ) is bounded by the probability that each x(i) is
accepted by ψ which is at most (1− 1/2`(1/2+2η′))r/2 ≤ exp{−Ω(2`(1/2−2η))}. Hence we have

Pr
ψ

[A ⊆ Sat(ψ) | S (1− η′)-balanced w.r.t. S(A)] ≤ exp{−Ω(2`(1/2−2η′)}

= exp{−Ω(2(2c+η)(1/2−η/5c) logn}

= exp{−Ω(n(c+ η
10−

η2

5c))}
≤ exp{−Ω(nc+Ω(1))} (2)

where the last inequality follows for η ≤ 1/4 (we can always assume this w.l.o.g.).
Now, we bound the probability that there exists A ∈ A such that A ⊆ Sat(ψ). Let E1(A) denote the

event that A ⊆ Sat(ψ). Given T ⊆ [n] s.t. |T | ≥ (1/2 − η′)n, let E2(T) denote the event that S is not
balanced w.r.t. T . We have,

Pr
ψ

[
∨
A

E1(A)] ≤ Pr
ψ

[
∨
A

E1(A) ∨
∨

T⊆[n]:|T |≥δn

E2(T)]

= Pr
ψ

[
∨
T

E2(T)] + Pr
ψ

[
∨
A

E1(A) ∧ ¬
∨
T

E2(T)]

≤
∑
T

Pr[E2(T)] +
∑
A

Pr[E1(A) ∧ ¬
∨
T

E2(T)]

≤
∑
T

Pr[E2(T)] +
∑
A

Pr[E1(A) ∧ ¬E2(S(A))]

≤
∑
T

Pr[E2(T)] +
∑
A

Pr[E1(A) | ¬E2(S(A))]

≤ 2n · 1
2ω(n)

+ 2O(nc(logn)O(1)) · 1
2Ω(nc+Ω(1))

= o(1)

where the last inequality follows from Lemma 3 and (2). This concludes the proof of the lemma.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

