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Abstract. The present paper generalises results by Tadaki [12] and
Calude et al. [1] on oscillation-free partially random infinite strings.
Moreover, it shows that oscillation-free partial Chaitin randomness can
be separated from oscillation-free partial strong Martin-Löf randomness
by Π0

1 -definable sets of infinite strings.

In the papers [11] and [2] several relaxations of randomness were defined.
Subsequently, in [8] these were shown to be essentially different. The variants
of partial randomness were characterised by different means such as Martin-Löf
tests [11, 2], Solovay tests [8] and prefix [11] or a priori complexity [2]. Using
description complexity partial randomness of an infinite string ξ was defined by
linear lower bounds on the complexity of the n-length prefix ξ � n, that is, an
infinite string was referred to as ε-random provided the complexity of ξ � n was
lower bounded by ε · n−O(1). In general, the mentioned papers did not require
an upper bound on the complexity, except for [11] where an asymptotic upper
bound was considered.

For the case of a priori complexity, the papers [9, 7] gave a description of infi-
nite oscillation free ε-random strings where the upper complexity bound matches
the lower bound up to an additive constant. For the case of prefix complexity the
construction of similar infinite strings was accomplished in [12, 1]. The construc-
tion in [1] uses ε-universal prefix machines. Here it was observed in Theorem 6
that there are different (inequivalent) types of ε-universal machines.

In recent publications, based on Hausdorff’s original paper [5] the concept
of partial randomness was refined to functions of the logarithmic scale [6] or to
more general gauge functions [10]. Here we showed that for a priori complexity
and computable gauge functions h : Q→ IR there are oscillation-free h-random
infinite strings.

The aim of the present paper is to show that, similarly to the results of [10],
also in the case of prefix complexity one can refine ε-randomness to oscillation-
free h-randomness. Moreover, our investigations reveal the reason of the paradox
of [1, Theorem 6].

Cast into the language of gauge functions (cf. [4, 10]) the papers [12, 1] consid-
ered only the scale h(t) = tε, ε ∈ (0, 1) computable, which results in complexity
bounds of the form ε · n+O(1). The present paper refines this scale to a much
larger class of gauge functions including also non-computable ones.
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The paper is organised as follows. First we introduce some notation and
consider the concept of gauge functions. In the second section we investigate,
for gauge functions h, h-universal machines as a generalisation of the ε-universal
machines of [1]. In this section we also explain the paradox of [1, Theorem 6].
Then, in Section 3, we continue with further generalising results of [12, 1] to
oscillation-free h-randomness for prefix complexity, and in the last part we show
that oscillation-free h-random infinite sequences w.r.t. a priori complexity can be
separated by Π1

1 -definable sets from oscillation-free h-random infinite sequences
w.r.t. prefix complexity.

1 Notation and Preliminaries

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers and by Q the set of rational
numbers. Let X = {0, 1, . . . , r − 1} be an alphabet of cardinality |X| = r ≥ 2.
By X∗ we denote the set of finite words on X, including the empty word e, and
Xω is the set of infinite strings (ω-words) over X. Subsets of X∗ will be referred
to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This concatena-
tion product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω.

We denote by |w| the length of the word w ∈ X∗ and pref(B) is the set of all
finite prefixes of strings in B ⊆ X∗ ∪Xω. We shall abbreviate w ∈ pref(η) (η ∈
X∗ ∪ Xω) by w v η, and η � n is the n-length prefix of η provided |η| ≥ n.
A language W ⊆ X∗ is referred to as prefix-free if w v v and w, v ∈ W imply
w = v.

For a computable domain D, such as IN, Q or X∗, we refer to a function
f : D → IR as left computable (or approximable from below) provided the set
{(d, q) : d ∈ D ∧ q ∈ Q ∧ q < f(d)} is computably enumerable. Accordingly, a
function f : D → IR is called right computable (or approximable from above) if
the set {(d, q) : d ∈ D ∧ q ∈ Q ∧ q > f(d)} is computably enumerable, and f is
computable if f is right and left computable. Accordingly, a real number α ∈ IR as
left computable, right computable or computable provided the constant function
fα(t) = α is left computable, right computable or computable, respectively.

1.1 Gauge functions

A function h : (0,∞) → (0,∞) is referred to as a gauge function provided h
is right continuous and non-decreasing.1 If not stated otherwise, we will always
assume that limt→0 h(t) = 0. As in [10] with a gauge function we associate a
modulus function g : IN→ IN which, roughly speaking, satisfies h(r−g(n)) ≈ r−n
or, more precisely, |−logr h(r−g(n))− n| = O(1).

We may define the modulus as follows

1 In fact, since we are only interested in the values h(r−n), n ∈ IN, the requirement
of right continuity is just to conform with the usual meaning (cf. [4]).



Definition 1. g(n) := sup{m : m ∈ IN ∧ r−n < h(r−m)}

Here we use the convention sup ∅ = 0. Then we have

m ≤ g(n) ⇐⇒ h(r−g(n)) > r−n if g(n) 6= 0 . (1)

Moreover, the following holds true.

Lemma 1. If for all n ∈ IN there is an m ∈ IN satisfying r−n < h(r−m) ≤
r−n+1 then h(r−g(n)) ≤ r−n+1.

The assumption of Lemma 1 implies h(r−n) ≥ r−n and h(r−(n+c)) ≥ h(r−n)·r−c.
It is, in particular, satisfied if the function h is upwardly convex on (0, 1) and
h(1) ≥ 1 (see [10, Lemma 3]).

For computable gauge functions h : Q → IR, relaxing Eq. (1) we obtain a
corresponding computable modulus function.

Lemma 2 ([10, Lemma 4]). Let h : Q → IR be a computable gauge function
satisfying the conditions that 1 < h(1) < r and for every n ∈ IN there is an
m ∈ IN such that r−n < h(r−m) ≤ r−n+1. Then there is a computable strictly
increasing function g : IN→ IN such that r−n−1 < h(r−g(n)) < r−n+1.

2 Universal Machines

In this section we introduce and study the notion of h-universal machine.
A machine T is a partial computable function from X∗ to X∗. We use ma-

chine and function synonymously.
A prefix-free machine is a machine whose domain is a prefix-free language.

The prefix complexity of a word w induced by a prefix-free machine T , HT (w),
is HT (w) = inf{|π| : T (π) = w}. From now on all Turing machines will be
prefix-free and will be referred to simply as machines.

In analogy with [1] we say that a machine U is h-universal for a gauge
function h if for all machines T there exists a constant cU,T such that for each
program σ ∈ X∗ there exists a program π ∈ X∗ such that U(π) = T (σ) and
−logr h(r−|π|) ≤ |σ|+cU,T . If h(t) = t we get the classical notion of universal ma-
chine. Observe that, for gauge functions h, the function `h(n) := − logr h(r−n)
is non-decreasing.

A machine U is strictly h-universal if U is h-universal but not h′-universal

for any gauge function h′ with lim
n→∞

h′(r−n)
h(r−n) = 0.

We fix a gauge function h and a universal machine T . We say that an ω-word
ξ is Chaitin h-random if HT (ξ � n) ≥ −logr h(r−n)−O(n), and we say that ξ is
strictly Chaitin h-random if ξ is Chaitin h-random and is not Chaitin h′-random

for all gauge functions h′ with lim
n→∞

h′(r−n)
h(r−n = 0.

If T is universal and h(t) = tε, then we get Tadaki’s definition of weak Chaitin
ε-randomness (see [11, 2]), if h(t) = t, then we get the classical definition of
randomness.



Lemma 3. The machine U is h-universal if and only if there exists a universal
machine T and a constant cU,T such that − logr h(r−HU ) ≤ HT (w) + cU,T for
all w ∈ X∗.

In [1] ε-universal machines were obtained from universal machines by padding
the inputs. The next theorem shows that the same construction works also in
the case of h-universal machines.

Theorem 1. Let h : Q→ IR be a computable gauge function, and let g : IN→ IN
be a corresponding computable modulus function. If, for a universal machine T ,
we define Th(π · 0g(|π|)−|π|) := T (π) then |−logr h(r−HTh

(w)) − H(w)| = O(1)
and Th is a strictly h-universal machine.

Proof. Let π be a minimal description of w, that is, |π| = H(w). Then π ·
0g(|π|)−|π| is a minimal description of w w.r.t. Th. Consequently, Lemma 2 proves
|−logr h(r−HTh

(w))−H(w)| = O(1). This also implies that Th is h-universal.
Assume now Th to be h′-universal for some h′ tending faster to 0 than

h. Then, on the one hand, − logr h
′(r−HTh

(w)) ≤ H(w) + c for some con-
stant c and, on the other hand, for every i ∈ IN there is an ni such that
− logr h

′(r−HTh
(w)) ≥ − logr h(r−HTh

(w)) + i for H(w) ≥ ni. This contradicts
the relation |−logr h(r−HTh

(w))−H(w)| = O(1). ut

Next we give examples for Chaitin h-random ω-words. We follow the line of
Theorem 3 of [1] and define for a machine U the ω-word ΩU ∈ Xω as the
r-ary expansion of the halting probability of a machine U , that is, 0. ΩU :=∑
w∈dom(U) r

−|w|.

Theorem 2. Let h be a computable gauge function satisfying the hypothesis of
Lemma 2 and let U be a h-universal machine. Then ΩU is Chaitin h-random.

Proof. As in the proof of Theorem 3 of [1] one defines a machine T for which
pref(ΩU ) ⊆ dom(T ) and HU (T (ΩU � m)) ≥ m. From HU (v) ≥ m, we obtain
− logr h(r−m) ≤ − logr h(r−HU (T (v))) ≤ H(T (v)) ≤ H(v) + c whenever v ∈
dom(T ), and the assertion follows. ut

We conclude this section by considering the paradox of Theorem 6 of [1]. Here
inequivalent ε-universal machines Vε,k, k = 0, 1, . . . were defined. The machines
Vε,k had the property that lim|w|→∞HVε,k

(w)−HVε,k+1
(w) =∞.

Recall the definition of Vε,k. In terms of modulus function gk : IN→ IN they
can be described as Vε,k(π0gk(|π|)−|π|) := T (π) where T is a universal machine
and gk(n) := max{n, b 1ε · n − k · logr nc}. In contrast to [1] where all machines
Vε,k were ε-universal our Theorem 2 states that only Vε,k is strictly hk-universal
for gauge functions satisfying hk(r−gk(n)) = r−n. Since gk(n)− gk+1(n) tends to
infinity as n grows, the function hk+1 tends faster to 0 than hk and, consequently,
Vε,k is not hk+1-universal.

The paradox of Theorem 6 of [1] occurs because the family of gauge func-
tions

(
tε
)
ε∈(0,1) admits intermediate computable functions, e.g. functions of the

logarithmic scale like h(t) = tε ·
(
logr

1
t

)
k (see [5]) but these functions were not

taken into consideration in the definition of ε-universality.



3 Oscillation-freeness

The aim of this section is to show that for a large class of gauge function there
exist oscillation-free Chaitin h-random ω-words, that is, ξ ∈ Xω such that |H(ξ �
n) + logr h(r−n)| = O(1).

We start with a generalisation of [1, Proposition 9].

Proposition 1. Let h : Q → IN be a gauge function such that for every d ∈ IN
there is an `d such that the inequality

H(n) + d− 1 ≤ −logr
h(r−(n+`))
h(r−`)

≤ n−
(
H(n) + d− 1) (2)

holds for all ` ≥ `d and, depending on the value of d, for all sufficiently large
n ∈ IN.

Then there are c, `′ ∈ IN such that for all words w ∈ X∗, |w| ≥ `′, exist words
v, u ∈ Xc such that

H(w)− c < H(wu) + logr h(r−(|w|+c)) ≤ H(w) + logr h(r−|w|)− 1, and (3)

H(wv) + logr h(r−(|w|+c)) ≥ H(w) + logr h(r−|w|) + 1 . (4)

Proof. As in the proof of Proposition 9 of [1] , given w ∈ X∗ and c ∈ IN, one
finds strings v and u = 0c such that

H(wv) ≥ H(w) + c−H(c)− d and |H(w0c)−H(w)| ≤ H(c) + d (5)

where the constant d is independent of w and c. Thus H(w) − c < H(w0c) if c
is large enough.

Now, depending on d, choose a sufficiently large `′ and the remaining in-
equalities follow from Eqs. (5) and (2). ut

Remark 1. The assumption of Proposition 1 is a little bit involved. Due to the
fact that H(n) is a slowly growing function one easily observes that Eq. (2)
is satisfied whenever there are real numbers γ, γ ∈ (r−1, 1) such that γn ≤
h(r−(n+`))
h(r−`)

≤ γn for all `, n ∈ IN. The latter is satisfied, in particular, for all

length-invariant unbounded (p, q)-premeasures in the sense of [8].

The next theorem is an existence theorem for oscillation-free Chaitin h-random
ω-words where h is a gauge functions fulfilling Eq. (2). This, in particular, guar-
antees that for arbitrary ε ∈ (0, 1) oscillation-free Chaitin ε-random ω-words
exist. The subsequent theorem will then consider the constructive case.

Theorem 3. Let h : Q → IR be a gauge function satisfying Eq. (2) and the
assumption of Lemma 1. Then there is an ω-word ξ ∈ Xω and a constant ch
such that |H(ξ � n)− (−logr h(r−n))| ≤ ch.

Proof. We proceed as in the proof of Theorem 10 of [1]. In view of h(r−n) ≥ r−n
we choose sufficiently large constants c and `′ from Proposition 1 such that



−logr h(r−`
′
) < H(w) for some w, |w| = `′, and we define W ⊆ X`′ · (Xc)∗ as

follows.

W :=
{
w : w ∈ X`′ · (Xc)∗ ∧ ∀v

(
v ∈W ∧ v v w → H(v) > −logr h(r−|v|)

)}
.

Since there is a w ∈ X`′ with −logr h(r−`
′
) < H(w), we have W 6= ∅. By

induction, Eq. (4) shows that every w ∈ W has an extension wv ∈ W where
|v| = c. Moreover, since h is non-decreasing, H(wv) + logr h(r−|wv|) ≤ H(w) +
logr h(r−|w|) + 2c for |v| = c.

LetH(w) > −logr h(r−|w|)+c+1. In view of Lemma 1 we have−logr h(r−|w|+c) ≤
−logr h(r−|w|) + c. Then the first part of Eq. (3) shows −logr h(r−|w|+c) + 1 <
H(w0c), that is, w0c ∈ W . Finally, the second part of Eq. (4) shows that then
H(w0c) + logr h(r−|w|+c) < H(w) + logr h(r−|w|).

Thus there is an infinite sequence w0 @ w1 @ · · · @ wi @ of words in W such
that |wi+1| − |wi| = c and |H(wi) + logr h(r−|wi|)| remains bounded. ut

Now consider the language W defined in the preceding proof. If h is a computable
function, W is the complement of an computably enumerable language. Hence
the infinite paths through W build a Π0

1 -definable ω-language F ⊆ Xω. Then
the leftmost w.r.t. the lexicographical ordering ω-word ξleft in F defines a left
computable real 0 .ξleft.

We show that ξleft is oscillation-free h-random. Since H(w) > −logr h(r−|w|)
for w ∈ W , it suffices to verify that H(ξleft � n) + logr h(r−n) ≤ ch for some
constant ch. We use the parameters c and `′ from the proof of Theorem 3.

Let pref(ξleft) ∩ W = {wi : i ∈ IN ∧ |wi| = `′ + i · c} where w0 is the
leftmost word in W . Choose a constant ch > max{H(w0) + logr h(r−`

′
), 4c}.

Then H(w0) + logr h(r−|w0|) ≤ ch. Assume that this relation holds for j =
0, . . . , i. If H(wi) + logr h(r−|wi|) ≤ 2c then H(wiv) + logr h(r−|wiv|) ≤ 4c for all
v ∈ Xc. ThusH(wi+1)+logr h(r−|wi+1|) ≤ ch. If 2c < H(wi)+logr h(r−|wi|) ≤ ch
then wi0

c is the leftmost successor of wi in W and 0 < H(wi) + logr h(r−|wi|)−
2c ≤ H(wi0

c) + logr h(r−|wi|+c) < H(wi) + logr h(r−|wi|) ≤ ch.
This proves the following constructive version of Theorem 3.

Theorem 4. Let h : Q → IR be a computable gauge function which satisfies
Eq. (2) and the hypothesis of Lemma 2. Then there exists an oscillation-free
Chaitin h-random ω-word ξ such that 0 .ξ is a left computable real.

4 A Separation Theorem

In the preceding section we showed the existence of oscillation-free Chaitin h-
random ω-words. For the gauge functions fulfilling the assumption of Lemma 2
we proved the existence of Π0

1 -definable ω-languages containing such ω-words as
leftmost ones.

In a recent paper [10] we proved that, for a different kind of h-randomness
(strong Martin-Löf randomness in the sense of [2]), there are Π0

1 -definable ω-lan-
guages containing oscillation-free h-random ω-words. We obtained these ω-lan-
guages by diluting ω-words. The concept of strong Martin-Löf randomness can



be defined using the a priori complexity of words KA. For a definition of KA see
[13, 9, 10] or [3]2. We mention here only the following properties of KA.

Property 1. 1. An ω-word ξ is random if and only if |KA(ξ � n)− n| = O(1),
2. KA(wv) ≥ KA(w)−O(1), for w, v ∈ X∗, and
3. H(w) ≥ KA(w)−O(1) where the difference is unbounded.

For dilution we use prefix monotone mappings. Every prefix-monotone mapping
ϕ : X∗ → X∗ defines as a limit a partial mapping ϕ :⊆ Xω → Xω in the following
way: pref(ϕ(ξ)) = pref(ϕ(pref(ξ))) whenever ϕ(pref(ξ)) is an infinite set, and
ϕ(ξ) is undefined when ϕ(pref(ξ)) is finite.

If a (modulus) function g : IN→ IN is strictly increasing we define a dilution
function ϕ : X∗ → X∗ as follows.

ϕ(e) := 0g(0) and
ϕ(wx) := ϕ(w) · x · 0g(n+1)−g(n)−1 for w ∈ X∗ and x ∈ X (6)

If ϕ is a dilution function then ϕ and also ϕ are one-to-one mappings. If, more-
over, g is computable then ϕ is also computable and ϕ(Xω) is a Π0

1 -definable
ω-language.

It holds the following estimate on the a priori complexity of a diluted string
(see [9, Theorem 3.1]).

Lemma 4. Let g be a computable strictly increasing modulus function and let
ϕ be defined via Eq. (6). Then∣∣KA

(
ϕ(ξ � g(n))

)
−KA

(
ξ � n)

)∣∣ ≤ O(1) for all ξ ∈ Xω .

From Lemmata 4 and 2 and the above Property 1.2 we obtain immediately the
following (cf. also [9, Theorem 3.3]).

Proposition 2. Let h be a computable gauge function, g a corresponding com-
putable modulus function and let ϕ be defined via Eq. (6). Then |KA(ξ � (n +
1))−KA(ξ � n)| = O(1) implies |KA(ϕ(ξ) � g(n)) + logr h(r−n)| = O(1).

Property 1.1 shows that Proposition 2 holds for random ω-words ξ. In that
case ϕ(ξ) is strongly Martin-Löf h-random. Next we consider the situation for
prefix complexity. Here we have |H(w) − H(ϕ(w))| = O(1) whenever ϕ is a
partial computable one-to-one function. Thus we obtain a theorem analogous to
Lemma 4 for prefix complexity H.

Lemma 5. Let g be a computable strictly increasing modulus function and let
ϕ be defined via Eq. (6). Then∣∣H(ϕ(ξ � g(n))

)
−H

(
ξ � n)

)∣∣ ≤ O(1) for all ξ ∈ Xω .

This much preparation allows us to prove our separation theorem.

Theorem 5. Let h : Q → IR be a computable gauge function which satisfies
Eq. (2) and the hypothesis of Lemma 2. Then there exists a Π0

1 -definable ω-
language which contains an oscillation-free strongly Martin-Löf h-random ω-
word ξ but no oscillation-free Chaitin h-random ω-word.

2 In [3] a priori complexity is denoted by KM.



Proof. From Lemma 2 we obtain a computable strictly increasing modulus func-
tion g such that |−logr h(r−g(n)) − n| ≤ 1. Define ϕ according to Eq.(6) and
choose an arbitrary random ω-word ζ ∈ Xω. Then Proposition 2 shows that
ϕ(ζ) is oscillation-free strongly Martin-Löf h-random.

Next we show that the Π0
1 -definable ω-language ϕ(Xω) does not contain any

oscillation-free Chaitin h-random ω-word.
Assume that, for some ξ ∈ Xω, the ω-word ϕ(ξ) is oscillation-free Chaitin

h-random. Then |H(ϕ(ξ) � g(n)) + logrH(r−g(n))| = O(1), and, consequently,
|H(ξ � n)−n| = O(1). But this is impossible as H(ξ � n) ≥ n− c, for all n ∈ IN,
implies limn→∞H(ξ � n)− n =∞. ut
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