
Marginal Hitting Sets Imply Super-Polynomial Lower Bounds for

Permanent

Maurice Jansen∗

Laboratory for Foundations of Computer Science

School of Informatics

The University of Edinburgh

maurice.julien.jansen@gmail.com

Rahul Santhanam†

Laboratory for Foundations of Computer Science

School of Informatics

The University of Edinburgh

rsanthan@inf.ed.ac.uk

October 4, 2011

Abstract

Suppose f is a univariate polynomial of degree r = r(n) that is computed by a size n
arithmetic circuit. It is a basic fact of algebra that a nonzero univariate polynomial of degree
r can vanish on at most r points. This implies that for checking whether f is identically zero,
it suffices to query f on an arbitrary test set of r + 1 points. Could this brute-force method be
improved upon by a single point? We develop a framework where such a marginal improvement
implies that Permanent does not have polynomial size arithmetic circuits.

More formally, we formulate the following hypothesis for any field of characteristic zero:
There is a fixed depth d and some function s(n) = O(n), such that for arbitrarily small ǫ > 0,
there exists a hitting set Hn ⊂ Z of size at most 2s(nǫ) against univariate polynomials of degree
at most 2s(nǫ) computable by size n constant-free1 arithmetic circuits, where Hn can be encoded
by uniform TC0 circuits of size 2O(nǫ) and depth d. We prove that the hypothesis implies that
Permanent does not have polynomial size constant-free arithmetic circuits.

Our hypothesis provides a unifying perspective on several important complexity theoretic
conjectures, as it follows from these conjectures for different degree ranges as determined by the
function s(n). We will show that it follows for s(n) = n from the widely-believed assumption
that poly size Boolean circuits cannot compute the Permanent of a 0, 1-matrix over Z. The
hypothesis can also be easily derived from the Shub-Smale τ -conjecture [SS95], for any s(n)
with s(n) = ω(log n) and s(n) = O(n). This implies our result strengthens a theorem by
Bürgisser [Bür00], who derives the same lower bound from the τ -conjecture. For s(n) = 0, the
hypothesis follows from the statement that (n!) is ultimately hard, a statement that is known
to imply P 6= NP over C [SS95].

We apply our randomness-to-hardness theorem to prove the following unconditional result for
Permanent: either Permanent does not have uniform constant-depth threshold circuits of sub-
exponential size, or Permanent does not have polynomial-size constant-free arithmetic circuits.

∗Supported by EPSRC Grant H05068X/1
†Supported in part by EPSRC Grant H05068X/1
1All our circuits use the operations addition and multiplication only. For a constant-free arithmetic circuit the

only allowed constant labels in the circuit are in {−1, 1}. Our hardness-to-randomness theorem can be generalized to
a circuit model where arbitrary constants from F are allowed, using a theorem of [Bür00]. The latter result assumes
the Generalized Riemann Hypothesis.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 133 (2011)

Turning to the Boolean world, we give a simplified proof of the following strengthening
of Allender’s lower bound [All99] for the (0,1)-Permanent: either the (0,1)-Permanent is not
simultaneously in polynomial time and sub-polynomial space, or logarithmic space does not
have uniform constant-depth threshold circuits of polynomial size.

1 Introduction

Polynomial identity testing (PIT) is the problem of deciding for a multivariate polynomial f ∈
F[x1, x2, . . . , xn], given in some succinct representation, e.g. an arithmetic circuit, whether f is
identical to the zero element of F[x1, x2, . . . , xn]. Using the Schwartz-Zippel-deMillo-Lipton Lemma
[DL78, Sch80, Zip79], Ibarra and Moran [IM83] show this problem is in coRP, when f is given in
the arithmetic circuit representation over Z.

Whether PIT can be solved efficiently without randomization is closely connected to the quest
for proving lower bounds. This connection has been known at least already since the work of
Heintz and Schnorr [HS80]. In a seminal work, Kabanets and Impagliazzo [KI04] show that giv-
ing an NSUBEXP time algorithm for PIT implies that either the permanent polynomial pern =∑

σ∈Sn

∏n
j=1 xjσ(j) does not have polynomial size arithmetic circuits, or that NEXP 6⊆ P/poly.

Agrawal [Agr05] shows that the construction of an explicit poly(n) size hitting set against the
class of multilinear polynomials computed by size n arithmetic circuits, would yield an exponential
arithmetic circuit size lower bound for a multilinear polynomial with coefficients computable in
PSPACE. A set H ⊆ F

n is a hitting set against some class of polynomials C in n variables, if for
every nonzero f ∈ C, there exists h ∈ H with f(h) 6= 0.

Unfortunately, all currently known randomness-to-hardness results based on derandomization
of low-degree (or multilinear) multivariate PIT fall short of establishing a sufficient condition for
proving a super-polynomial lower bound for a polynomial as explicit as the permanent. Koiran
[Koi11] proposes deriving such lower bounds from the stronger2 assumption that we can deran-
domize exponential degree univariate PIT. In this paper we further explore the univariate route to
explicit lower bounds. Trivially, any set of r + 1 distinct points is a hitting set against any class of
univariate polynomials where degrees are bounded by r, which we think of as a ‘brute-force hitting
set’. Our main contribution here is to develop a framework where it holds that improvement over
brute-force by a single point for polynomials computed by size n arithmetic circuits already implies
a super-polynomial lower bound for Permanent. For this purpose we state the following derandom-
ization assumption (in fact, we use a somewhat weaker assumption which is stated as Hypothesis 1
in Section 3):

Hypothesis 1. At some fixed depth d, for some nondecreasing function s(n) = O(n), for arbitrarily

large k ∈ N, for infinitely many n, there exists a hitting set Hn ⊂ Z of size at most 2s(⌈n1/k⌉)

against the class of univariate polynomials of degree at most 2s(⌈n1/k⌉) that are computable by size
n constant-free arithmetic circuits. Furthermore, Hn can be encoded by a uniform TC0 circuit Cn

of size 2O(n1/k) and depth d with s(⌈n1/k⌉) many variable inputs.

In the above, when we say the hitting set Hn is encoded by Cn, it means that Hn ⊆ {Cn(a) :

a ∈ {0, 1}s(⌈n1/k⌉)}, where we use the standard binary representation of integers. We will work over
a field F of characteristic zero only. In the constant-free model the only constants used for labelling

2For example, the multilinear case can be reduced to the univariate case by letting xi = x2i

, for i ∈ [n].

2

gates are in {−1, 1}, cf. [Bür09, KP11]. All of our circuits are restricted to have addition and
multiplication gates only. We let τ(f) denote the constant-free (division-free) arithmetic circuit
size of f , cf. [Bür09]. We establish the following connection:

Theorem 1. If Hypothesis 1 is true, then Permanent does not have polynomial size constant-free
arithmetic circuits.

Perhaps the most striking aspect of our hypothesis is that it asks for a hitting set of size at
most 2s(⌈n1/k⌉), whereas we know that we can do brute-force testing with any set of size 2s(⌈n1/k⌉) +
1. Recently, Williams [Wil10, Wil11] has initiated a program to prove circuit lower bounds by
improving on exhaustive search for circuit satisfiability or approximating the number of satisfying
assignments for a circuit. He has used this approach [Wil11] to show that NEXP does not have
polynomial-size ACC0 circuits.

A natural question [Wil10] is whether some analogue of the connection found by Williams
between lower bounds and algorithmic savings over exhaustive search holds in the arithmetic setting.
Theorem 1 can be seen as a partial answer to his question. On the one hand, while Williams’ results
need a super-polynomial savings over exhaustive search, in our setting, just a reduction of the search
space by one point already gives us lower bounds. However, we do require this savings to hold in the
context of hitting sets, which correspond to black-box derandomization, while in Williams’ results
the algorithm improving on exhaustive search is allowed access to the circuit for whose acceptance
probability an approximation is required.

We demonstrate the viability of our framework by applying Theorem 1 to obtain strong uncon-
ditional lower bounds for Permanent (See Section 1.1 below). This shows that already elementary
methods for constructing hitting sets can yield strong lower bounds when combined with our tech-
niques. By taking advantage of the algebraic structure of the problem, it is possible we could do
much better.

Another salient aspect of our framework is that it provides a unifying perspective on several
important complexity theoretic conjectures. Namely, Hypothesis 1 follows from these conjectures
for different degree ranges as determined by the function s(n). We will observe that the hypothesis
with s(n) = n follows from the widely believed assumption that polynomial size Boolean circuits
cannot compute 0, 1-permanent over Z. We also note that our randomness-to-hardness theorem
strengthens the result of Ref. [Bür09], which shows that τ(pern) 6= nO(1), in case the Shub-Smale τ -
conjecture [SS95] is true. The statement of our hypothesis can be easily derived with s(n) = ω(log n)
from the τ -conjecture (See Section 3), and appears to be a much weaker statement. At the very
low-end, for s(n) = 0, we will show that the Hypothesis is true if (n!) is ultimately hard3 in the
sense of Ref. [SS95]. The latter is defined to mean that for any sequence (an) of nonzero integers,
τ(an · n!) is not polylog(n) bounded. Ref. [SS95] shows that if (n!) is ultimately hard to compute,
then one has the separation PC 6= NPC for the Blum-Shub-Smale model.

Incidentally, by an easy counting argument one can demonstrate the existence of the hitting
sets as posed in the hypothesis (for various s(n), and s(n) = 0 in particular), but where the set is
encoded by nonuniform TC0 circuits of the required size and fixed depth. The real issue is to get
a uniform encoding, or at least a sufficiently succinct encoding in the sense of Ref. [JS11].

We note that Theorem 1 generalizes to the setting where circuits are allowed to carry arbitrary
constants from F, due to a result of Bürgisser [Bür00], provided we assume the Generalized Riemann

3It is well-known that τ(n!) = polylog(n) implies that factoring integers is in P/poly, cf. [Bür09]. Related to this,
Lipton [Lip94] shows that if factoring is hard on average, then a somewhat weaker version of the τ -conjecture is true.

3

Hypothesis. In this case the hitting set has to work against circuits over F, but also the resulting
lower bound will be for circuits over F. In this case it is only interesting to consider the case where
s(n) = ω(log n). For example, for s(n) = O(log n), for any h1, h2, . . . , ht ∈ F with t = 2s(nǫ) = nO(ǫ),
(x−h1)(x−h2) . . . (x−ht) can be computed by a size nO(ǫ) arithmetic circuit over F, so we cannot
get a hitting set of size t = 2s(nǫ) against size n circuits in this case.

The work most closely related to ours is Ref. [Koi11], where lower bounds are derived for the
permanent from certain kinds of hitting sets for classes of univariate polynomials. However, the
emphasis there is on finding the simplest possible class of univariate polynomials for which the
randomness-hardness connection holds rather than on the size of the hitting set. Koiran requires
his hitting sets to be of polynomial or slightly super-polynomial size. In contrast, we are interested
in the weakest possible assumption on hitting set size which still yields superpolynomial lower
bounds. An important benefit of our approach is that there is no a priori required degree bound for
which we must derandomize univariate PIT, where in Ref. [Koi11] this bound is exponential. For
example, even at the high end for s(n) = n, where Hypothesis 1 is implied by the assumed hardness
of the 0, 1-permanent, we can get away with essentially only considering subexponential degrees.
For s(n) = ω(log n), which is the regime where the hypothesis is warranted by the τ -conjecture, all
one needs to do is marginally improve upon the brute-force method for the class of polynomials of
degree 2s(⌈n1/k⌉) = 2ω(1

k
log n) computed by size n circuits. For moderately growing s(n) this is only

slightly super-polynomial in n.

1.1 Unconditional Lower Bounds

Using Theorem 1 we will derive the following unconditional hardness result for the permanent:

Theorem 2. At least one of the following items must be true:

• For every integer d ≥ 1, there exists ǫ > 0 such that 0, 1-permanent can not be computed by
uniform TC0 circuits of size 2nǫ

and depth d.

• Permanent does not have constant-free arithmetic circuits of polynomial size.

Note that the first item of the above disjunction by itself, is stronger than the currently best-
known uniform TC0 circuit lower bound for permanent, due to Allender [All99]. The latter bound is
of level T (n), for any function T (n) such that for any constant k the kth iterate T (k)(n) = 2o(n). Let
us also emphasize that the separate parts of this disjunction make a statement about the hardness
of the same function, albeit in different computational models.

Turning to the Boolean world, we give a simple proof of the following strengthening of Allender’s
[All99] lower bound for Permanent against uniform TC0.

Theorem 3. Either (0,1)-Permanent 6∈ DSPACE(no(1)) ∩ P or L 6⊆ TC0.

Theorem 3 implies that the Permanent is not in uniform TC0 since L ⊆ P ∩ DSPACE(no(1)).

1.2 Techniques

Let us first consider Theorem 1, and for simplicity let us assume that s(n) = n. In the univariate

setting, given a family of hitting sets {Hn} of size 2n1/k
against size n circuits computing polynomials

of degree r = |Hn|, there is a natural polynomial fn of degree r that requires size nk circuits.

4

Namely, take fn =
∏

h∈H
nk

(x−h). By Hypothesis 1 we can do this for arbitrarily large k. Moreover,

we have uniform TC0 circuits of size 2O(n) and some fixed depth d for enumerating the 2n elements
of Hnk . One key idea is that the size and depth bounds for these circuits are independent of k
(although the circuits themselves may very well depend on k). Multiplying out we can express the
2n coefficients of fn as elementary symmetric polynomials in elements of Hn. Using the uniform
TC0 circuits for iterated integer multiplication due to Hesse, Allender and Barrington [HAB01], we
get uniform TC0 circuits of size 2O(n) computing the coefficients of fn.

For the heart of the proof we derive a contradiction by means of a ‘compression argument’ to
get nc size circuits for fn for some constant c that does not depend on k, based on the assumption
that τ(pern) = nO(1). This kind of argument has been key in Refs. [Bür09, Koi11, JS11]. Assuming
τ(pern) = nO(1), for a first compression step, one uses the relation between the counting hierarchy
CH and TC0 to get the coefficients of fn “weakly-definable” in CH. Weak-definability in CH means
we can decide the ith bit of the coefficient in CH given an O(n) bit index i. If τ(pern) = nO(1), then
we have the collapse CH/poly = P/poly. This means that the coefficients are weakly-definable in
P/poly. For a second compression step one exploits this fact and applies Valiant’s Criterion to get
fn as a projection of some polynomial hn in VNP0, where the latter is Valiant’s analogue of NP in
the (constant-free) algebraic model. Permanent is more or less complete for the latter class, aside
from some minor technical issues related to the constant-free model. Note that fn has degree 2n.
In the arithmetic circuit model a power like x2n

can be represented succinctly by O(n) circuitry by
repeated squaring. This fact can be utilized to yield some extra amount of compression. Also in
the second compression step, one leverages the assumption that τ(pern) = nO(1) one more time to
use a collapse result for VNP0 in order to finally get nc size constant-free circuits for fn, for some
constant c.

The crucial observation for us is that the size and depth parameters of the TC0 circuits we start
with are not dependent on k, and neither are any of the subsequently applied collapse results. This
means that the constant c does not depend on k. Since k can be chosen to be arbitrarily large this
yields a contradiction. This completes the sketch of the proof of Theorem 1.

Next we consider the applications. Unfortunately we cannot prove Hypothesis 1 at the present
moment. How then do we obtain unconditional lower bounds? The key idea is to use a win-
win argument. We can show that hitting sets of the form we desire are constructible in a “large”
complexity class, specifically in a fixed level of the Polynomial Hierarchy. Now either the Polynomial
Hierarchy has sub-exponential size uniform TC0 circuits or it does not. If it does, then Hypothesis
1 holds and by Theorem 1, we get that Permanent does not have polynomial-size constant-free
arithmetic circuits. If it does not, then using theorems of Valiant [Val79], Toda [Tod91] and
Zankó [Zan91], we have that Permanent is hard for PH, to the extent that we can show that the
Permanent does not have uniform sub-exponential size TC0 circuits. This yields Theorem 2. We
note that our construction of hitting sets in the Polynomial Hierarchy is pretty simple - it just uses
a counting argument. This already gives us unconditional lower bounds for the Permanent. By
taking advantage of the algebraic structure of the problem, it is possible we could do much better.

The proof of Theorem 3 is completely different, as it is purely a result about the Boolean world.
Allender’s proof [All99] of uniform TC0 lower bounds for Permanent proceeds by considering the
question of whether a P-complete language has small TC0 circuits or not, and deriving a lower
bound in either case. We simplify his proof by considering instead a question about inclusions
between larger complexity classes, namely whether a PSPACE-complete language is in CH, and
showing that either way, an interesting lower bound holds. If yes, then we show that Permanent

5

cannot be both in P and DSPACE(no(1)), i.e., there is a tradeoff between time and space for
computing the Permanent. If no, we show a separation between two low-level complexity classes
- logarithmic space and uniform TC0. Note that in the first of these two cases, a much stronger
lower bound than uniform TC0 holds for the Permanent, while in the second case, a TC0 lower
bound holds for a class that is much weaker in computational power than the Permanent.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of variables and let F be a field. We assume throughout the
paper that F has characteristic zero. This means that Z ⊂ F. An arithmetic circuit Φ over X and
F is given by a labelled directed acyclic graph. Nodes with in-degree zero must be labelled with
elements of X ∪ F. Nodes with higher in-degree must be labelled by + or ×. To each node in Φ
(also called a gate), we associate a polynomial ∈ F[X] in the standard way. Polynomials associated
at gates in Φ are called the polynomials computed by Φ. For the size s(Φ) we count the number
of edges in the underlying graph. The notation |Φ| is synonymous with s(Φ). For a polynomial
f ∈ F[X], the arithmetic circuit complexity L(f) is taken to be L(f) = min{|Φ| : Φ computes f}.

The formal degree of nodes in an arithmetic circuit is defined inductively: all input nodes
have formal degree 1, and for addition we take the maximum formal degree of of its inputs. For
multiplication we add the formal degrees of its inputs. For a constant-free arithmetic circuits the
only field constants that are allowed for labels are ∈ {−1, 1}. For a polynomial f ∈ Z[X], the τ -
complexity of f , denoted by τ(f), is defined to be the size of any smallest constant-free arithmetic
circuit computing f , cf. [Bür09, KP11].

We next define Valiant’s algebraic complexity classes. A family {fn} of polynomials belongs to
VP0 if there exists a family of constant-free arithmetic circuits {Φn} with size and formal degrees
polynomially bounded, such that Φn computes fn. Similarly, in case the circuits {Φn} are over F,
we obtain the class VPF. The nondeterministic counter parts VNP0 and VNPF of these classes
are defined as follows. For polynomials a(n), b(n), VNP0 is the class of polynomials {fn}, for
which there exists {gn} ∈ VP0 such that fn =

∑
e∈{0,1}a(n)−b(n) gn(x1, . . . , xb(n), e1, . . . , ea(n)−b(n)).

Similarly, if the family {gn} ∈ VPF, we obtain VNPF. We need the following result:

Proposition 1 (Proposition 2.10 in [Bür09]). Suppose τ(pern) = nO(1). Then for any family
(hn) ∈ VNP0, there exists a polynomial p(n) such that τ(2p(n)hn) = nO(1).

For definitions of standard complexity classes like P, NP, PH, etc., we refer the reader to the
various excellent standard textbooks on complexity theory for a definition. Some of the frequently
used classes we will define next. The class of functions f : {0, 1}∗ → {0, 1}∗ such that there exists a
language A ∈ P and a polynomial p(n) such that f(x) = |{w ∈ {0, 1}p(|x|) : (x, w) ∈ A}| is denoted
by #P. The class of function f − g, where f, g ∈ #P is denoted by GapP. Valiant [Val79] proved
that computing pern(M) for M with entries in {0, 1} over Z is complete for #P. Toda [Tod91]
proved that PH ⊆ P#P[1]. The majority operator C. acting on a complexity class is defined as
follows. Given a class C, C.C is the class of all languages L for which there exists L′ ∈ C and a
polynomial p(n) such that x ∈ L ⇔ |{w ∈ {0, 1}p(|x|) : (x, w) ∈ L′}| > 2p(|x|)−1. The counting
hierarchy, introduced by Wagner [Wag86], is defined to be CH :=

⋃
i≥0 CiP, where C0P = P, and

for all i ≥ 1, CiP = C.Ci−1P. Note the first level C1P equals PP. Torán [Tor91] characterization of
the counting hierarchy states that Ci+1P = PPCiP, for all i ≥ 0. An advice function is a function of
type h : N → {0, 1}∗. For a complexity class C, define C/poly to be the class of languages for which

6

there exists L′ ∈ C, and advice function h with |h(n)| = nO(1), such that x ∈ L ⇔ (x, h(|x|)) ∈ L′.
We use the following lemma, which follows from Lemma 2.6 and Lemma 2.13 in [Bür09].

Lemma 1 ([Bür09]). If τ(pern) = nO(1), then CH/poly = P/poly.

We also use the following result:

Lemma 2 (Valiant’s Criterion, cf. [Koi11]). Suppose that p(n) is a polynomial, and that
for f : N × N → Z the map 1n0j 7→ f(j, n), where n is given in unary and j in bi-
nary is in GapP/poly. Then the family of polynomials {gn} defined by gn(x1, x2, . . . , xp(n)) =
∑

j∈{0,1}p(n) f(j, n)xj1
1 , xj2

2 , . . . , x
jp(n)

p(n) is in VNP0, where jk is the kth bit of j.

Next follow some remarks about Boolean circuit classes. AC0 is the class of all Boolean functions
computable by polynomial size constant depth circuits with unbounded fan-in gates in {∨,∧,¬}.
TC0 is the class of all Boolean function that can be decided by polynomial size constant depth
unbounded fan-in threshold circuits. We sometimes use TC0 to refer to a type of circuit, i.e.,
constant depth unbounded fan-in threshold circuits, without the size bound implicit. For threshold
circuits all gates either compute the negation, or the majority function. NC1 is the class of all
Boolean functions that can be decided by polynomial size O(log n) depth circuits of bounded fan-
in. We have that AC0 ⊆ TC0 ⊆ NC1.

We import some definitions from Ref. [JS11]. We will use the notion of weak-definability,
originating from Ref. [KP11, Bür09] (See [JS11] for a discussion of the differences). An integer
sequence of bit size q(n) is given by a function a(n, k), such that there exist polynomials p(n) and
so that a(n, k) ∈ Z is defined for all n ≥ 0, and all 0 ≤ k < 2p(n), and where the bit size of a(n, k)
is bounded by q(n). We will often write an(k) instead of a(n, k). We define the language uBit(a)
to be the set of all tuples (1n, k, j, b) such that the jth bit of a(n, k) equals b. Here k and j are
encoded in binary, while 1n denotes a unary encoding of n. For a sequence a(n, k) and a complexity
class C, if uBit(a) ∈ C, then we say that the sequence a(n, k) is weakly-definable in C.

For the set {x1, x2, . . . , xn} ∪ {−1, 1} ∪ {+,×}, we fix some naming scheme that assigns to
each element an O(log n) bit binary string, which is called a type. We assume that circuit gates
have been labelled by unique binary strings, part of which contains the type. We also assume for
the output gate(s) we have fixed a simple naming scheme, where for the ith output i in binary is
embedded in the name.

Definition 1 ([JS11]). A representation of a constant-free arithmetic circuit Φ is given by a Boolean
circuit Cn that accepts precisely all tuples (t, a, b, q) such that 1) In case q = 1 (connection query),
a and b are numbers of gates in Φ, b is a child of a, and a has type t. 2) In case q = 0 (type query
only), a is a number of a gate in Φ, and a is of type t.

Let a(n), b(n) be two functions. For a family of arithmetic circuits {Φn}, we say it is
(a(n), b(n))-succinct, if there exists a non-uniform family of Boolean {∨,∧,¬}-circuits {Cn}, such
that Cn represents Φn, where for all large enough n, Cn has ≤ a(n) inputs and is of size ≤ b(n).
By convention, if a(n) = O(log n), we drop it from the notation, and just write b(n)-succinct.

The notion of (a(n), b(n))-succinct Boolean circuits is defined analogously. In this case types
names refer to elements of {x1, x2, . . . , xn} ∪ {0, 1} ∪ {∨,∧,¬, MAJ}. A poly size Boolean circuit
family {Cn} is DLOGTIME-uniform, if given (n, t, a, b, q) with n in binary, we can answer the
queries of Definition 1 in time O(log n) on a Turning machine. Note that if a Boolean circuit family

7

{Cn} is DLOGTIME-uniform, then it is O(log n)-succinct. For the rest of the paper, when we
speak about a uniform circuit complexity class C, it is intended to mean DLOGTIME-uniform C.

For iterated integer multiplication the problem is, given n integers A1, A2, . . . , An of
n bits each, to compute the bits of A1A2 . . . An. Hesse, Allender and Barrington [HAB01] prove
uniform TC0 circuits can solve this problem. The analogous problem of iterated integer ad-

dition can also be done in uniform TC0, cf. [Vol99]. Zankó [Zan91], cf. [All99] improves Valiant’s
completeness to shows that 0, 1-pern over Z is complete for #P under DLOGTIME uniform-AC0

reductions. The following result is proved in [JS11] using Ref.[HAB01, Zan91]:

Proposition 2 ([JS11]). For any F ∈ GapP there exists constants d′, d′′ and c′ ≥ 1, such that for
any c0, d ∈ N and γ ∈ R, if {pern} can be computed by n1/γ-succinct size nc0 depth d constant-free
arithmetic circuits, then F can be computed by (O(c′c0 log n), nc′/γ)-succinct depth d · d′′ + d′ TC0

circuits of size at most nc′c0.

Finally, we need some simple fact about the elementary symmetric polynomial in n variables of
degree d defined by Sd

n =
∑

I⊆[n],|I|=d

∏
i∈I xi.

Lemma 3. There exist uniform TC0 circuits {Cn} of poly(n, m) such that Cn has n input arrays of
m bits, and one array of ⌊log n⌋+1 bits, such that for any non-negative m-bit integers a1, a2, . . . , an

and 0 ≤ d ≤ n of at most ⌊log n⌋ + 1 bits, Cn(a1, a2, . . . , an, d) outputs Sn−d
n (a1, a2, . . . , an).

Proof. The proof of this is similar to Corollary 3.12 in Ref.[Bür09]. For some t, consider
∏n

r=0(2
t +

ai) =
∑n

r=0 Sr
n(a1, a2, . . . , an)(2t)n−r. For any d, we can bound |Sd

n(a1, a2, . . . , an)| < 2(m+1)n.
Hence if we take t = 2(m + 1)n in the above, for every r, the bits of Sr

n(a1, a2, . . . , an) can be read
off from

∏n
r=0(2

t + ai). To compute this product we can use the uniform TC0 circuits for iterated
integer multiplication of Ref. [HAB01]. The difference n−d can be computed in uniform TC0. We
can easily add uniform AC0 circuits to this for multiplexing the output dependent on n − d.

3 Lower Bounds from Derandomization of Univariate ACIT

For Hn ⊂ Z, we say it is encoded by a Boolean circuit Cn with s(n) many inputs if Hn ⊆ {Cn(a) :
a ∈ {0, 1}s(n)}, where we use standard binary representation of integers. More generally, we say
that the family {Cn} encodes {Hn}, if this holds for all but finitely many n. In this situation, we
can fix an integer sequence an(i) defined for 0 ≤ i < 2s(n), which we say is associated to {Hn}, by
taking an(i) = Cn(i). Note that if t(n) bounds the number of outputs gates of Cn, then we have
that elements of Hn are at most t(n) bits long, and an(i) is an integer sequence of bit length t(n).
In particular this holds if Cn has size at most t(n) (where we also count input gates). We say a
set H ⊆ F

n is a hitting set against some class of polynomials C in n variables, if for every nonzero
f ∈ C, there exists h ∈ H with f(h) 6= 0.

Hypothesis 1 (Formal Statement). There exist d ∈ N and a nondecreasing function s(n) : Z≥0 →
Z≥0 with s(n) = O(n), such that for every ǫ > 0 with 1/ǫ ∈ N, there exists4 a family {Hǫ

n} of subsets
of Z

+ encoded by (O(nǫ), O(nǫ))-succinct TC0 circuits of size 2O(nǫ) and depth d with s(⌈nǫ⌉) many
variable inputs. Furthermore, it holds for infinitely many n ∈ N that

4The assumption of non-negativity can be made at an ignorable expense. We also remark that we prefer to state
the hypothesis in its weakest form using succinct TC0 circuits for encoding the hitting set. One may replace this
by the stronger condition that asks for uniform TC0 circuits of size 2O(nǫ) and depth d with s(⌈nǫ⌉) many variable
inputs.

8

• for any nonzero polynomial f(x) of degree at most 2s(⌈nǫ⌉) computed by a constant-free arith-
metic circuit of size n over a single variable x, there exist a ∈ Hǫ

n such that f(a) 6= 0.

For s(n) = n, our hypothesis is implied by super-polynomial lower bounds on Boolean circuit
size for the Permanent - we give a proof of this in Section 4. This gives strong evidence for the
plausibility of our hypothesis.

Also, our hypothesis follows for any function s(n) with s(n) = ω(log n) and s(n) = O(n), from
the Shub-Smale τ -conjecture [SS95]. For a univariate polynomial f , let Z(f) denote the set of roots
of f . According to the τ -conjecture, there exists an absolute constant c > 0, so that for all f ∈ Z[x],
|Z(f) ∩ Z| ≤ (1 + τ(f))c. If the latter is true, then we know that Hn = {0, 1, . . . , (n + 1)c + 1} is
a hitting set against size n constant-free arithmetic circuits, where we do not even use the given
degree bound. For each ǫ, we can easily encode {Hn} by circuits computing the identity mapping
on s(⌈nǫ⌉) = ω(ǫ log n) bits. Ref. [Bür09] shows that the τ -conjecture implies that τ(pern) 6= nO(1).
The main result of this section (Theorem 4 below) strengthens this implication by showing that
the same lower bound follows from Hypothesis 1.

Another observation is that without the succinctness condition on the circuits computing the
hitting set, the above hypothesis would be easy to prove. To give an extreme example for s(n) = 0,
by counting we know there exist singleton sets Hn = {an}, where an has bit size n3, such that for
every ǫ > 0, for all large enough n, for any nonzero polynomial f(x) of degree5 at most 1 computed
by a constant-free circuit of size at most n, it holds that f(an) 6= 0. This collection {Hn} can
obviously be encoded by non-uniform TC0 circuits of size n3 (with no variable inputs), but the
problem is that Hypothesis 1 is asking for a succinct encoding of {Hn}, so this does not establish
the s(n) = 0 case. We note that in case (n!) is ultimately hard in the sense of Ref. [SS95], it is
straightforward to get the hypothesis for s(n) = 0. Recall we say n! is ultimately hard, if for any
sequence (an) of nonzero integers, τ(an ·n!) is not polylog(n) bounded. Ref. [SS95] shows that if (n!)
is ultimately hard to compute, then one has the separation PC 6= NPC for the Blum-Shub-Smale
model. We have the following proposition:

Proposition 3. If (n!) is ultimately hard, then Hypothesis 1 holds for s(n) = 0.

Proof. Let {Cm} be the uniform family of TC0 circuits for iterated multiplication of Ref. [HAB01].
Let d be the depth of these circuits. Let ǫ > 0 with 1/ǫ ∈ N be given. Define the integer sequence
tn = (2⌈n

ǫ⌉!). We can easily compute tn by uniform TC0 circuits of size 2O(nǫ) and depth O(d) (not
depending on ǫ) with only constant inputs as as follows. Namely, for the first layer we enumerate
all numbers 1, 2, . . . , 2⌈n

ǫ⌉ in binary, and we multiply these by adding below this the appropriate
circuit from the family {Cm}. Note tn has bit length 2O(nǫ). Suppose, for all large enough n,
there exists nonzero fn(x) = anx− bn that is computed by a size n constant-free arithmetic circuit,
such that fn(tn) = 0. Note that τ(bn) ≤ n (set x = 0 in the circuit for fn). This means that
τ(an · tn) ≤ n. By our assumption, for some function g(m) ∈ ω(1), τ(cm · m!) ≥ (log m)g(m), for
any sequence (cm). Hence τ(an · tn) ≥ (⌈nǫ⌉g(m)) = nω(1). We have reached a contradiction.

As remarked on before, perhaps the most striking aspect of our hypothesis is that it ask for a
hitting set of size at most 2s(⌈nǫ⌉), where we know that any set of size 2s(⌈nǫ⌉) + 1 is a hitting set.
Despite this seeming weakness, we show that the hypothesis is sufficient for deducing the following
strong lower bound for permanent:

5We can observe this irrespective of the degree of f .

9

Theorem 4 (Theorem 1 restated). If Hypothesis 1 is true, then τ(pern) 6= nO(1).

Proof. Suppose for all large enough n, τ(pern) ≤ nc0 , for some constant c0. Assume that Hy-
pothesis 1 is true, let d ∈ N be the fixed number given there, and choose arbitrary ǫ > 0 with
1/ǫ ∈ N. We will argue that we can derive a contradiction, provided ǫ was chosen small enough.
Let m = m(n) = n1/ǫ. Let an(i) be the integer sequence associated to {Hǫ

n} given by Hypothesis 1.
Then for all but finitely many n, an(i) has bit size at most 2O(nǫ) and is defined for 0 ≤ i < 2s(⌈nǫ⌉).
We have that am(i) is of bit size 2O(n) and defined for 0 ≤ i < 2s(n). Let

fn =
∏

0≤i<2s(n)

(x − am(i)).

Lemma 4. We have that fn =
∑2s(n)

i=0 bn(i)xi, where it holds that the coefficient bn(i) equals (−1)i ·

S2s(n)−i
2s(n) (am(0), am(1), . . . , am(2s(n) − 1)), and where furthermore it holds that

• For bn(i) we can state a bound of 2O(n) on the bit size, where the latter bound does not depend
on ǫ.

• bn(i) is weakly-definable in P/poly, where the magnitude of the corresponding circuit bound
does not depend on ǫ.

Proof. The first two claims of the lemma are obvious. Next we will argue the last item. First we
construct TC0 circuits for computing bn(i).

Claim 1. There exist TC0 circuits {Dn} such that

• Dn has s(n) + 1 inputs, and on input 0 ≤ i ≤ 2s(n) in binary, Dn(i) = bn(i).

• |Dn| = 2O(n) and depth(Dn) = O(1). Furthermore, these depth and size bounds are indepen-
dent6 of ǫ.

• {Dn} is represented by a family of Boolean circuit {Bn}, where |Bn| = O(n). Furthermore,
the latter stated size bound is independent of ǫ.

Proof. Let us describe the circuits Dn. For the first part it consists of 2s(n) copies of TC0-circuits
computing am(i), for 0 ≤ i < 2s(n), with i in binary hardcode in each copy. Each copy is of size
at most 2O(mǫ) = 2O(n) and depth d. Clearly, this 2O(n) size bound and depth bound of d do not
depend on ǫ. Each copy can be described by a Boolean circuit with the number of inputs and size
bounded by O(mǫ) = O(n). Obtaining a representation for this first part of the circuit is done
by adding s(n) = O(n) bits to gate names. We can easily obtain a representation with size and
number of inputs bounded by O(n).

Let {Cn} be the uniform TC0 circuits from Lemma 3 for computing elementary symmetric
polynomials, where we have catered for enough inputs bits so that C2s(n) is able to receive all
am(i)’s as inputs. For the second part of Dn we use C2s(n) . C2s(n) has 2s(n) + 1 inputs, which are
fed in the bits of the 2s(n) numbers am(i) for 0 ≤ i < 2s(n), each of size 2O(n), and i of s(n) + 1
bits. We can give a size bound of poly(2s(n), 2O(n)) = 2O(n) and depth bounds of O(1) for C2s(n) .

6The circuits Dn and Bn themselves may very well depend on ǫ, but all we need for our argument is that the
given size and depth bounds do not.

10

The uniformity implies that we have a Boolean circuit with number of inputs and size bounded by
O(n) representing C2s(n) . None of these bounds depend on ǫ. Finally, we fix the sign bit of the
output to take account of the (−1)i factor. This is easily done by letting the sign bit of the output
equal the least significant bit of i. Clearly, the circuit Dn we have described computes bn(i).

We can easily merge the representations of the first and second part of the circuit Dn to get a
Boolean circuit with the number of inputs and size bounded by O(n). It is also clear that neither
the given size and and depth bounds for Dn or the size of its representation are dependent on ǫ.

We can now use the circuit families {Dn} and {Bn} from Claim 1 to do a ‘scaling-up’ to CH/poly
argument, where Bn will be given as advice. Since we start with size 2O(n) depth O(1) TC0 circuits
and advice O(n), where all these bounds are independent of ǫ, there will be no dependency on ǫ for
the end result. From our assumption for permanent we get the collapse CH/poly = P/poly (again
independent of ǫ). Hence we will get polynomial size Boolean circuits computing bn(i), for which
we can give a size bound that is independent of ǫ. We give the details in the next subsection.

3.1 Scaling-Up Argument

Let {Dn} be the circuit family provided by Claim 1. The family {Dn} is (O(n), O(n))-succinct. Let
{Bn} be the corresponding family of Boolean circuits of with number of inputs and size bounded
by O(n), where Bn represents Dn. In this representation names of gates in Dn are O(n) bits long.
Wlog. assume that we have constant c ∈ N such that gate names of Dn are exactly cn bits long.
Let d′ be the depth of Dn. For 0 ≤ r ≤ d′, let Lr be the language of tuples (G, 1n, i, b) for which

• G is the name of a gate on level r in Dn. It outputs b when Dn is given input i in binary.

• The input i is given in binary and satisfies 0 ≤ i ≤ 2s(n).

Claim 2. For each 0 ≤ r ≤ d′, Li ∈ CH/poly.

Proof. We will prove the claim by induction on r. It is easy to check the input format (e.g. for
technical convenience one may assume s(n) in unary is given as advice of length padded to O(n)).
So we assume that the input is of form (G, 1n, i, b) with G of cn bits, i a s(n) + 1 bit number, and
b ∈ {0, 1}. We assume that Bn is given as advice for this input length. In the following argument
we make connection and type queries for the circuit Dn by evaluating Bn on certain inputs. Since
the circuit value problem is in P, and |Bn| = O(n) any such queries take time poly(n).

For the base case r = 0, first we use Bn to check that G is a correct gate name, by making O(1)
type queries. It is easy to check whether the gate G is labelled by a variable, since for a gate labelled
by a variable xℓ, ℓ in binary is part of the gate name. Then one just need to fetch the ℓth bit of
i. Gates labelled by Boolean constants are dealt with even more easily as these constants appear
in the gate name itself. To check whether G is on level 0 we can assume wlog.7 this information
can be obtained from the gate name. We can easily do all of the above computation in polynomial
time using the advice Bn, for some polynomial not depending on ǫ. By attaching a clock to this
computation we can ensure the run-time is independent of ǫ for all inputs.

Now assume the claim hold for Lr. By Torán [Tor91] characterization of the counting hierarchy
it suffices to show that Lr+1 ∈ PPLr/poly, This is done as follows. Given input (G, 1n, i, b), we

7Alternatively, one can add another level of oracle calling to the argument by making existential queries to Bn

of the form “Does there exist H such that G is a child of H?”.

11

assume the gate G is of majority type. Negation gates are handled similarly. Let N be a NTM that
on input (G, 1n, i, b) nondeterministically guesses the cn size name of a gate H, uses the advice Bn

to check that H → G is a wire in Dn. If this is not true, nondeterministically flip a bit b′ and accept

if b′ = 1, reject if b′ = 0. Otherwise, query (H, 1n, i, b)
?
∈ Li. Accept if the answer to this query

is yes, reject otherwise. Observe that N accepts on the majority of its nondeterministic guesses
iff the majority of the inputs to G are outputting b in Dn(e, j). Similarly as before, evaluation of
Bn can be done in time poly(|Bn|) = poly(n), where this upper bound does not depend on ǫ. By
attaching a clock, we get a computation running in nondeterministic poly(n) time, independent of
ǫ. This shows that Li+1 ∈ PPLi/poly, and proves the claim.

By the above claim, Ld′ ∈ CH/poly, and from the proof we see that all underlying machines
(according to Torán’s [Tor91] characterization) have running time independent of ǫ, and furthermore
d′ itself is independent of ǫ. The advice possibly depends on ǫ, but the amount of advice does not
(we can pad out the representing circuits for which we have a size bound O(n) independent of ǫ).

Since we assume τ(pern) ≤ nc0 and by Lemma 1, we have that CH/poly = P/poly. Hence
Lr ∈ P/poly. Since c0 does not depend on ǫ and by remarks in the previous line we get polynomial
size Boolean circuits for Lr, whose size does not depend on ǫ. This is easily seen to imply that
bn(i) is weakly-definable in P/poly, where the magnitude of the corresponding circuits bound does
not depend on ǫ. We have completed the proof of Lemma 4.

3.2 Finishing Up: Valiant’s Criterion & Completeness of Permanent

Let e be an absolute constant such that b′n(i) has bit length at most 2en, plus a sign bit sn(i). Write

b′n(i) = (−1)sn(i)
∑2en

j=0 b′n(i)j2
j . Then fn =

∑2s(n)

i=0 (−1)sn(i)
∑2en

j=0 b′n(i)j2
jxi. Take

hn(y,
1 . . . yℓ, z1, . . . zℓ) =

2s(n)∑

i=0

2en∑

j=0

(−1)sn(i)b′n(i)jy
i1
1 . . . yiℓ

ℓ zj1
1 . . . zzℓ

ℓ ,

where ℓ = max(s(n) + 1, en + 1). We have that fn = hn(x20
, x21

, . . . , x2ℓ
, 220

, 221
, . . . , 22ℓ

). We
also have that hn is in VNP0. Namely, Lemma 4 gives us that we have Boolean circuits of size
poly(n) (not depending on ǫ) for computing the jth bit of (−1)sn(i)b′n(i) given i and j in binary.
An application of Valiant’s criterion (Lemma 2) then gives that hn ∈ VNP0.

By Proposition 1, for some polynomials p(n) and q(n), τ(2p(n)hn) ≤ q(n). Furthermore, since
the constant c0, ℓ and the size of the circuits for computing (−1)sn(i)b′n(i) do not depend on ǫ,
we get that p(n) and q(n) do not depend on ǫ. To compute the powers of 2 and x can be done
with ℓ = O(n) operations. We conclude that for all but finitely many n, f ′

n := 2p(n)fn can be
computed by constant-free arithmetic circuits of size r(n), for some fixed polynomial r(n) not
depending on ǫ. We also have that f ′

n is a nonzero polynomial of degree 2s(n′) that vanishes on the
set {am(i) : 0 ≤ i < 2s(n′)}. The latter set includes Hǫ

m. This means that for infinitely many n, f ′
n

requires constant-free arithmetic circuits of size ⌊n1/ǫ⌋. We can choose ǫ > 0 small enough, so that
for all large enough n, r(n) < ⌊n1/ǫ⌋. We have reached a contradiction.

There is some room in this proof for getting different randomness to hardness trade-offs. For
example, for obtaining quasi-polynomial lower bounds for Permanent one can straightforwardly
modify the proof of Theorem 4 to yield the following theorem:

12

Theorem 5. Suppose there exist d ∈ N and a nondecreasing function s(n) : Z≥0 → Z≥0 with
s(n) = O(n), such that for every ǫ > 0 with 1/ǫ ∈ N, there exists a family {Hǫ

n} of subsets

of Z
+ encoded by (O(2logǫ n), O(2logǫ n))-succinct TC0 circuits of size 2O(2logǫ n) and depth d with

s(2⌈log
ǫ n⌉) many inputs. Furthermore, suppose it holds that for infinitely many n that for any

nonzero polynomial f(x) of degree at most 2s(2⌈log
ǫ n⌉) computed by a constant-free arithmetic circuit

of size n over a single variable x, there exist a ∈ Hǫ
n such that f(a) 6= 0. Then there does not exist

k, such that τ(pern) = 2O(logk n).

3.3 Generalization to Circuits with Arbitrary Constants

So far the focus has been on constant-free circuits, but using a result by Bürgisser [Bür00], we can
generalize the randomness-to-hardness theorem to the setting where circuits use arbitrary constants
from F. The result of Ref. [Bür00] assumes the Generalized Riemann Hypothesis (GRH). We have
the following theorem. Note that the derandomization condition posed is as in Hypothesis 1, but
with the hitting set required to work against univariate circuits using constant from F of size n.

Theorem 6. We assume (GRH). Let F be a field of characteristic zero. Suppose there exist d ∈ N

and a nondecreasing function s(n) : Z≥0 → Z≥0 with s(n) = O(n), such that for every ǫ > 0
with 1/ǫ ∈ N, there exists a family {Hǫ

n} of subsets of Z
+ encoded by (O(nǫ), O(nǫ))-succinct TC0

circuits of size 2O(nǫ) and depth d with s(⌈nǫ⌉) many inputs. Furthermore, suppose it holds that for
infinitely many n that for any nonzero polynomial f(x) of degree at most 2s(⌈nǫ⌉) computed by an
arithmetic circuit over F of size n over a single variable x, there exist a ∈ Hǫ

n such that f(a) 6= 0.
Then {pern} 6∈ VPF.

Proof. For purpose of contradiction suppose that the preconditions as stated in the theorem are
satisfied, but that {pern} ∈ VPF. Corollary 1.2 in [Bür00] shows that the latter condition implies
that #P/poly = FP/poly, provided (GRH) is true. This implies that CH/poly = P/poly. We
can now proceed exactly as in the proof of Theorem 4 to define fn of degree 2s(n′) that requires
univariate circuits of size ⌊n1/ǫ⌋ over F. Leveraging the CH/poly = P/poly collapse after the
scaling to CH argument just as before, we get that the coefficients of fn are integers computable
by Boolean circuits of polynomial size. By Valiant’s Criterion over F, this puts fn ∈ VNPF. Since
we are assuming that {pern} ∈ VPF we get that VNPF = VPF. Hence we get polynomial size
arithmetic circuits for fn over F. Just as before, this upper bound can be seen to be independent
of ǫ, which is a contradiction, provided ǫ was chosen large enough.

Note that for the arbitrary constants model it is only interesting to consider the setting where
s(n) = ω(log n). For example, for s(n) = O(log n), for any h1, h2, . . . , ht ∈ F with t = 2s(⌈nǫ⌉) =
nO(ǫ), (x − h1)(x − h2) . . . (x − ht) can be computed by a size nO(ǫ) arithmetic circuit over F.

4 Deriving Hypothesis 1 from Boolean Circuit Lower Bounds for

Permanent

In this section, we show that Hypothesis 1 can be derived from a Boolean circuit lower bound
for Permanent. We divide the proof into two parts. First, we show that if Permanent does not
have polynomial-size Boolean circuits, then there is a pseudo-random generator computable by sub-
exponential size TC0 circuits which fools Boolean circuits. Then we show that a pseudo-random

13

generator fooling Boolean circuits can be viewed as a hitting set against the class of univariate
polynomials of sub-exponential degree computable by small constant-free arithmetic circuits.

For the first part, we mostly give proof sketches rather than proofs because the arguments follow
along standard lines.

Our pseudo-random generator will be based on the worst-case hardness of the following prob-
lem. One could equally well consider other versions of the Permanent, such as computing the
permanent of a general integer matrix, and derive the same consequence, but we focus on this one
for concreteness.

Definition 2. (0,1)-Permanent is the following computational problem: the input is an N × N
matrix with (0,1)-entries, represented by a bitstring of size N2, and the output is the permanent of
the input matrix over the ring Z.

Lemma 5. If (0,1)-Permanent cannot be computed by polynomial-size Boolean circuits, then there
exists a constant c and a language L ∈ PP such that no polynomial-size family of Boolean circuits
decides L correctly on a 1 − 1/nc fraction of inputs for all input lengths n.

Proof Sketch. Assume (0,1)-Permanent cannot be computed by polynomial-size Boolean circuits.
Then, by random self-reducibility of Permanent [BF90, Lip90], there is a constant d such that for an
appropriately chosen decision version L′ of Permanent (eg. ModPerm [IW98]), no polynomial-size
family of Boolean circuits decides L′ correctly on more than a 1 − 1/nd fraction of inputs. But
L′ ∈ PPP, so let L be the PP language to which L′ is polynomial-time reducible. It follows that no
polynomial-size family of Boolean circuits computes L correctly on more than 1 − 1/nc fraction of
inputs of length n, where c is a constant which depends on d and the number of queries made to L
by the polynomial-time oracle machine deciding L′.

Now, we can use Yao’s XOR Lemma [Lev87] to amplify the hardness of the PP language. We
state the XOR Lemma in a somewhat weaker form than usual which is sufficient for our purposes.

Theorem 7. [Lev87] Let L be a language for which there exists a constant c such that no
polynomial-size family of circuits decides L correctly on more than a 1− 1/nc fraction of inputs for
all input lengths n. Given a polynomial p define the language XOR − Lp as follows: the language
consists of all tuples < x1, x2 . . . xp(n) > where |xi| = n for each i and an odd number of elements
of the tuple belong to L. Then there exists a polynomial p such that no polynomial-size family of
circuits decides XOR − Lp correctly on more than a 1/2 + 1/m2 fraction of inputs for each input
length m.

Lemma 6. If there is a language L ∈ PP for which there is a constant c such that no polynomial-
size family of circuits decides L correctly on more than a 1 − 1/nc fraction of inputs of length n
for each integer n, then there is a language L′ ∈ PP such that no polynomial-size family of circuits
decides L′ correctly on more than a 1/2 + 1/m2 fraction of inputs of length m for each integer m.

Lemma 6 follows from Lemma 7 simply by choosing L′ = XOR − Lp for an appropriate poly-
nomial p. By the result of Fortnow and Reingold [FR91] that PP is closed under truth-table
reductions, if L ∈ PP, it follows that L′ ∈ PP.

Next, we will show that if the Permanent is hard, then there is a pseudo-random generator
computable by uniform subexponential-size threshold circuits which fools Boolean circuits of poly-
nomial size. We will need an efficiently computable version of the Nisan-Wigderson generator. We
first define pseudo-random generators against Boolean circuits.

14

Definition 3. Given functions l, s : N → N, an infinitely-often pseudo-random generator (i.o.PRG)
with seed length l against Boolean circuits of size s is a sequence of functions {Gn} : {0, 1}l(n) →
{0, 1}n such that for any family {Cn} of circuits with |Cn| ≤ s(n), for infinitely many n,
| Pr
x∈{0,1}n

C(x) − Pr
y∈{0,1}s(n)

C(G(y))| ≤ 1/n. Given a complexity class C, we say a PRG G is com-

putable within C if the language {< 1n, y, i > ||y| = l(n), G(y)i = 1} belongs to C.

Theorem 8. If (0,1)-Permanent cannot be computed by polynomial-size Boolean circuits, then for
each constant ǫ > 0, there is an i.o.PRG with seed length O(nǫ) against Boolean circuits of size n4

which is computable by uniform constant-depth threshold circuits of size 2nO(ǫ)
.

Proof Sketch. Assume (0,1)-Permanent cannot be computed by polynomial-size Boolean cir-
cuits. Then, by Lemma 5 and Lemma 6, it follows that there is a language L ∈ PP such that
no polynomial-size family of Boolean circuits computed L correctly on more than a 1/2 + 1/m2

fraction of inputs of length m for all integers m.
The black-box pseudo-random generator construction of Nisan and Wigderson [NW94] together

with the efficient design construction of Viola [Vio04] yields generators from nǫ bits to n bits
computable by constant-depth oracle circuits of size 2O(nǫ) making oracle queries of size at most
nǫ such that whenever a language L which is strongly average-case hard against polynomial-size
Boolean circuits is used as the oracle, the resulting generator works infinitely often against Boolean
circuits of any fixed polynomial size, as long as ǫ is small enough. Now, if we plug in the L ∈ PP
which is strongly average-case hard, by using the fact that any L ∈ PP is computable by uniform
constant-depth threshold circuits of size 2nc

for some constant c, we get an i.o.PRG with seed length
nǫ against Boolean circuits of size n4 computable by uniform constant-depth threshold circuits of
size 2nO(ǫ)

.
Now we show how to interpret PRGs against Boolean circuits as hitting sets against univariate

polynomials of not too large degree computed by small constant-free arithmetic circuits.

Theorem 9. Let 0 < ǫ < 1 be any constant. If Gn is an i.o.PRG with seed length nǫ against
Boolean circuits of size n4, then by interpreting the output of G as the binary representation of an
integer, the range of G is a hitting set of size at most 2nǫ

for infinitely many n against univariate
polynomials with degree at most 2nǫ

that are computable by size n constant-free arithmetic circuits.

Proof. Suppose otherwise, and let fn be a sequence of univariate polynomials of degree at most
2nǫ

and computable by constant-free arithmetic circuits Dn of size at most n such that for all but
finitely many n, fn is not identically zero and yet evaluates to zero on all elements of the range of
Gn. We will show how to define a sequence of circuits {Cn} such that for each n, |Cn| ≤ n4 and for
all but finitely many n, the acceptance probability of Cn with respect to the uniform distribution
on inputs differs from the probability with respect to the uniform distribution on the range of Gn

by at least 1/n.
The circuit Cn simply evaluates the small arithmetic circuit for fn modulo a certain prime pn

of size n2, and accepts iff the output is 0. We will describe how pn is chosen later. Note that if the
arithmetic circuit has size at most n, then Cn can be implemented in size at most n3polylog(n),
which is at most n4 for large enough n.

The sequence of primes {pn} we choose will have the following property: For every integer x in
the range of Gn, if Dn(x) is non-zero, then so is Dn(x) mod pn. We will only argue that the primes
pn exist - they can then be hard-coded into the circuit Cn. The argument is via the probabilistic
method. Given a non-negative integer y < 2n, Dn(y) cannot be larger than 2n2n

. Therefore, for

15

a random prime pn of bitsize n2, the probability that p divides Dn(y) is at most 2n+O(log(n))−n2

- here we use the Prime Number theorem. By a union bound, the probability that there exists a
y ∈ {0, 1}n in the range of Gn for which Dn(y) is non-zero but Dn(y) mod pn is zero is at most
22n+O(log(n))−n2

which is less than 1 when n is large enough. Thus there must exist a pn for which
the desired property holds - this is the prime we hard-code into the circuit Cn.

To complete the argument, we need to show that Cn can distinguish the uniform distribution
on n bits from the uniform distribution on the range of Gn for all but finitely many n, assuming
that fn evaluates to zero on all elements in the range of Gn for all but finitely many n. By the
assumption on fn, Cn accepts with probability 1 on the range of Gn for all but finitely many n.
Since fn is of degree at most 2nǫ

, we have that fn has at most 2nǫ
+1 integer roots, and therefore fn

is non-zero with probability at least 1/2 on a random non-negative integer < 2n. By our choice of
pn, Cn rejects whenever fn is non-zero on a non-negative integer < 2n, thus we have that Cn rejects
with probability at least 1/2 for all but finitely many n. This is a contradiction to the assumption
that Gn is an i.o.PRG against Boolean circuits of size n4.

Putting together Theorem 8 and Theorem 9, we have the following corollary:

Corollary 1. If (0,1)-Permanent does not have polynomial-size Boolean circuits, then Hypothesis
1 holds.

5 Applications

First we prove a lemma:

Lemma 7. There exists an integer sequence (an) of bit size O(n3), such that (an) is weakly-definable
in the polynomial hierarchy, and for which the following holds:

• For any constant-free arithmetic circuit Φ of size n over a single variable x, if Φ(x) computes
a nonzero polynomial of degree at most one, then Φ(an) 6= 0.

Proof. Define an to be the smallest number of n3 many bits that satisfies p · an + q 6= 0, for any
integers p and q computable by constant-free arithmetic circuit Φ of size 2n + 4. By counting we
can bound the number of constant-free arithmetic circuits of size n by 2O(n2), so we know such an

exists in {0, 1}n3
. Observe that an satisfies for any constant-free arithmetic circuit Φ of size n over

a single variable x, if Φ(x) computes a nonzero polynomial fn = pn ·x+qn then fn(an) 6= 0. Indeed,
we can compute qn = fn(0) by size at most n, and pn = fn(1) − fn(0) by size at most 2n + 4.

Note that an can be computed by a constant-free arithmetic circuits of Ψ size O(n3), by going
over its binary expansion in the obvious way. Let us call this the canonical circuit for an. For
a ∈ {0, 1}n3

, define the predicate Rn(a) to be true if “For every constant-free arithmetic circuits
Φ1, Φ2 of size at most 2n + 4, the circuit Φ1 · Ψa + Φ2 is not identically zero”, where Ψa is the
canonical constant-free circuit of size O(n3) computing a. Testing where Φ−Ψa ≡ 0 is an instance
of arithmetic circuit identity testing over Z, which is in coRP [IM83]. This implies Rn is a coNPRP

predicate. By binary search in {0, 1}n3
making queries of form “∃a′ < a, Rn(a′)?”, a PNPcoNPRP

machine can find the lexicographical least number for which Rn holds, i.e. compute an. This
implies uBit(an) is in PH.

Using Theorem 4 together with the above lemma, we obtain the following theorem (this result
immediately implies Theorem 2):

16

Theorem 10. One of the following items must be true:

• For every integer d ≥ 1, there exists ǫ > 0 such that 0, 1-permanent can not be computed by
(nǫ, nǫ)-succinct TC0 circuits of size 2nǫ

and depth d.

• τ(pern) is not polynomially bounded.

Proof. For the purpose of deriving a contradiction, suppose there exist d ≥ 1, such that for every
ǫ > 0, we have a family of (nǫ, nǫ)-succinct TC0 circuits of size 2nǫ

and depth d for computing
0, 1-permanent over Z. Let an(i) be the integer sequence given by Lemma 7. By Toda’s Theorem
and Valiant’s completeness result for pern, since uBit(an) ∈ PH, we get that uBit(an) can be
decided in polynomial time with one query to the 0, 1-permanent. This is done in three steps: first
apply R1 ∈ FP to x, then apply per(R1(x)). Finally compute R2 ∈ FP to obtain R2(per(R1(x)).
Since FP ⊆ #P, and due to Proposition 2, for some constant b not depending on ǫ, we obtain
(nǫb, nǫb)-succinct TC0-circuits for R1 and R2 (with depth not depending on ǫ) of size 2nǫb

. Putting
all three TC0 circuits together yields TC0-circuits for uBit(an), where for some constant k not

depending on ǫ, this family is (nǫk, nǫk)-succinct and has size at most 2nǫk
, and whose depth does

not depend on ǫ . The constant k can be picked larger than b to deal with the increase in size when
joining the three representations.

It is easy to go from a circuit for uBit(an) to a circuit computing an by having O(n3) separate
copies for each output bit. This kind of duplication can be done by adding O(log n) bits to gate
names, and adding polylog(n) circuitry to the representing circuits. We conclude that there exist
a constants k̃ > 1 and d̃ ∈ N not depending on ǫ, so that for any ǫ > 0, (an) can be computed by

(nǫk̃, nǫk̃)-succinct TC0 circuits of size at most 2nǫk̃
and depth d̃. The bit size of an is O(n3), which

is less than 2nǫ
, provided n is large enough. This means that Hypothesis 1 is satisfied for depth d̃

and constant function s(n) = 0. Therefore, we get that τ(pern) is not polynomially bounded by
Theorem 4.

Finally, we give a simplified proof of Allender’s superpolynomial lower bound for the Per-
manent against uniform TC0 - in fact, we prove a stronger result. We will need the following
proposition, which follows using padding from the standard fact that uniform TC0 corresponds to
the polylogarithmic-time fragment of CH.

Proposition 4 ([All99]). If L ⊆ TC0, then PSPACE ⊆ CH.

Theorem 11. Either (0,1)-Permanent 6∈ DSPACE(no(1)) ∩ P or L 6⊆ TC0

Proof. Either PSPACE ⊆ CH or not.
In the first case, we assume (0,1)-Permanent ∈ DSPACE(no(1)) ∩P and derive a contradiction.

If (0,1)-Permanent ∈ P, then PP = P since (0,1)-Permanent is hard for PP. This implies CH = P.
Since PSPACE ⊆ CH, we have that PSPACE = P. Now, we know that (0,1)-Permanent is hard
for NP and hence for P. Thus we have that (0,1)-Permanent is hard for PSPACE and now using
the assumption that (0,1)-Permanent ∈ DSPACE(no(1)), we derive a contradiction to the space
hierarchy theorem.

If PSPACE 6⊆ CH, then by Proposition 4, we immediately have L 6⊆ TC0.

Corollary 2 ([All99]). (0,1)-Permanent 6∈ TC0

The corollary follows from Theorem 11 simply because L ⊆ P ∩ DSPACE(no(1)).

17

References

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. 25th Annual
Conference on Foundations of Software Technology and Theoretical Computer Science,
pages 92–105, 2005.

[All99] E. Allender. The permanent requires large uniform threshold circuits. Chicago Journal
of Theoretical Computer Science, 1999. article 7.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proc. 7th
Annual Symposium on Theoretical Aspects of Computer Science, volume 415 of Lect.
Notes in Comp. Sci., pages 37–48. Springer Verlag, 1990.

[Bür00] Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theor. Comp. Sci., 235:71–88, 2000.

[Bür09] P. Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Compu-
tational Complexity, 18:81–103, 2009.

[DL78] R. DeMillo and R. Lipton. A probabilistic remark on algebraic program testing. Inf.
Proc. Lett., 7:193–195, 1978.

[FR91] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. In Proc. 6th
Annual IEEE Conference on Structure in Complexity Theory, pages 13–15, 1991.

[HAB01] W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth threshold circuits
for division and iterated multiplication. J. Comp. Sys. Sci., 64(4):695–716, 2001.

[HS80] J. Heintz and C.P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proc. 12th Annual ACM Symposium on the Theory of Computing, pages
262–272, 1980.

[IM83] O. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line
programs. J. Assn. Comp. Mach., 30:217–228, 1983.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under a
uniform assumption. In Proc. 39th Annual IEEE Symposium on Foundations of Computer
Science, 1998. to appear.

[JS11] M. Jansen and R. Santhanam. Permanent does not have succinct polynomial size arith-
metic circuits of constant depth. In Proc. 38th International Colloquium on Automata,
Languages and Programming (ICALP 2011), pages 724–735, 2011.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means
proving circuit lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

[Koi11] P. Koiran. Shallow circuits with high powered inputs. In Proc. 2nd Symp. on Innovations
in Computer Science, 2011.

[KP11] P. Koiran and S. Perifel. Interpolation in Valiant’s theory. Computational Complexity,
20(1):1–20, 2011.

18

[Lev87] L. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

[Lip90] R. Lipton. New directions in testing. In J.Feigenbaum and M.Merritt, editors, Distributed
Computing and Cryptography, pages 191–202. American Mathematical Society, 1990.

[Lip94] R. Lipton. Straight-line complexity and integer factorization. Algorithmic Number The-
ory, LNCS 877, pages 71–79, 1994.

[NW94] N. Nisan and A. Wigderson. Hardness versus randomness. J. Comp. Sys. Sci., 49:149–167,
1994.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp.
Mach., 27:701–717, 1980.

[SS95] M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and and algebraic
vesion of “NP 6= P”. Duke Math J., 81:47–54, 1995.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865–877,
1991.

[Tor91] J. Torán. Complexity classes defined by counting quantifiers. J. Assn. Comp. Mach.,
38(3):753–774, 1991.

[Val79] L. Valiant. The complexity of computing the permanent. Theor. Comp. Sci., 8:189–201,
1979.

[Vio04] E. Viola. The complexity of constructing pseudorandom generators from hard functions.
Computational Complexity, 13(3–4):147–188, 2004.

[Vol99] H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999. A uniform ap-
proach.

[Wag86] K. Wagner. The complexity of combinatorial problems with succinct input representation.
Acta Informatica, 23:325–356, 1986.

[Wil10] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Proc. 42nd Annual ACM Symposium on the Theory of Computing, pages 231–240, 2010.

[Wil11] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th IEEE
Conference on Computational Complexity, 2011.

[Zan91] V. Zankó. #P-completeness via many-one reductions. International Journal of Founda-
tions of Computer Science, 2:77–82, 1991.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72
of Lect. Notes in Comp. Sci., pages 216–226. Springer Verlag, 1979.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

