
Separating multilinear branching programs and formulas

Zeev Dvir∗ Guillaume Malod† Sylvain Perifel‡ Amir Yehudayoff§

Abstract

This work deals with the power of linear algebra in the context of multilinear computation.
By linear algebra we mean algebraic branching programs (ABPs) which are known to be compu-
tationally equivalent to two basic tools in linear algebra: iterated matrix multiplication and the
determinant. We compare the computational power of multilinear ABPs to that of multilinear
arithmetic formulas, and prove a tight super-polynomial separation between the two models.
Specifically, we describe an explicit n-variate polynomial F that is computed by a linear-size
multilinear ABP but every multilinear formula computing F must be of size nΩ(log n).

1 Introduction

Arithmetic circuits provide a model of computation that captures the complexity of computing
polynomials using algebraic operations (addition, multiplication and division). Arithmetics circuits
are useful when studying computations of an algebraic nature such as matrix multiplication, or over
infinite fields like the real numbers. General arithmetic circuits are quite powerful, and, to this
day, there are still no explicit examples of polynomials requiring super-polynomial circuit-size. By
explicit we mean in the class VNP defined by Valiant [13]. The permanent is conjectured to be
such a polynomial, because it is complete for VNP. For more on algebraic complexity, see [2] or the
recent survey [12].

Progress has, nevertheless, been made on understanding restricted models of arithmetic compu-
tation. Of particular relevance to this work is the case of multilinear computation [5]. A polynomial
is multilinear if it has degree at most one in each variable. Many important polynomials are mul-
tilinear, e.g., the determinant, the permanent and matrix product. A natural restricted model for
computing multilinear polynomials is multilinear computation, in which all intermediate stages of
the computation are required to be multilinear as well.

There is a large body of research devoted to multilinear computation, specifically, to proving
lower bound for multilinear formulas (for which the underlying computation graph is a tree). The
first result in this direction was the breakthrough paper of Raz [6] showing that multilinear formulas

∗Department of Computer Science, Princeton University, Princeton NJ. Email: zeev.dvir@gmail.com. Research
partially supported by NSF grant CCF-0832797 and by the Packard fellowship.
†Université Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu, UMR 7586 CNRS, F-75205

Paris, France. Email: malod@logique.jussieu.fr.
‡Université Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, F-75205 Paris, France. Email:

sylvain.perifel@liafa.jussieu.fr.
§Department of Mathematics, Technion–IIT, Haifa, Israel. Email: amir.yehudayoff@gmail.com. Horev fellow

– supported by the Taub Foundation. Research supported by grants from ISF and BSF, and by NSF Grant CCF-
0832797.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 134 (2011)

for both the permanent and the determinant must be of super-polynomial size. Later, in [7], Raz
showed that multilinear circuits are super-polynomially stronger than multilinear formulas (see [9]
for a simpler proof). Exponential lower bounds for constant depth multilinear circuits, as well as
strong separations based on circuit-depth, were proved in [10]. Super-linear lower bounds for the
size of arithmetic circuits were proved in [8].

In this article, we further extend this line of work by proving a super-polynomial separation
between multilinear algebraic branching programs (ABPs) and multilinear formulas. As multilinear
circuits can efficiently simulate multilinear ABPs, in particular, we strengthen the mentioned results
of [7, 10]. Before stating our results we take a moment to formally define and to briefly motivate
the two models (for more details, see the survey [12]).

An algebraic branching program (ABP) is a directed acyclic graph with two special nodes in
it: a start-node and an end-node. The edges of the ABP are labeled by either variables or field
elements. Every directed path γ from the start-node to the end-node computes the monomial fγ
which is the product of all labels on the path γ. The ABP computes the polynomial f =

∑
γ fγ ,

where the sum is over all paths γ from start-node to end-node.
A formula is a rooted directed binary tree (the edges are directed toward the root). The leaves of

the formula are labeled by either variables or field elements. The inner nodes which have in-degree
two are labeled by either + or ×. A formula computes a polynomial in the obvious way.

Both ABPs and formulas have natural restrictions to the multilinear world. An ABP is multi-
linear if on every directed path from start-node to end-node no variable appears more than once.
A formula is multilinear if every sub-formula in it computes a multilinear polynomial.

ABPs capture the computational power of iterated matrix product: For every ABP of size s,
there are poly(s) many matrices A1, A2, . . . of dimensions poly(s) × poly(s) with entries that are
either variables or field elements, so that the polynomial computed by the ABP is the (1, 1) entry
in the matrix A1A2 · · · . In the other direction, for every s matrices of dimensions s× s, there is a
(multi-start-node and multi-end-node) ABP of size poly(s) computing the product of the matrices.
In fact, ABPs also capture the computational power of the determinant: For every ABP of size s,
there is a matrix A of dimension poly(s) with entries that are either variables or field elements, so
that the determinant of A is the polynomial the ABP computes [13, 4], and the determinant can
be computed by a polynomial-size ABP [1, 11, 3]. However, the known polynomial-size ABPs for
the determinant are not multilinear, so the lower bound of [6] does not yield our result (by current
knowledge).

Formulas, on the other hand, capture a computational model in which every sub-computation
can be used only once (as the underlying computation graph is a tree). Since formulas can be
parallelized to have depth which is logarithmic in their size, they also capture the parallel time it
takes to perform the computation.

It is known that ABPs can efficiently simulate formulas [13]. Similar ideas show that multilinear
ABPs can efficiently simulate multilinear formulas. A natural question is thus whether the other
direction holds as well. We show that in the multilinear world it does not (a similar separation is
believed to hold for general algebraic computation). This is the first separation between branching
programs and formulas we are aware of.

Theorem 1.1. For every positive integer n, there is a multilinear polynomial F = Fn in n variables
with zero-one coefficients so that the following holds:

(i) There is a uniform algorithm that, given n, runs in time O(n) and outputs a multilinear
branching program computing F .

2

(ii) Over any field, every multilinear formula computing F must be of size nΩ(logn).

Our lower bound of nΩ(logn) is tight since every polynomial-size multilinear ABP can be simu-
lated by a multilinear formula of size nO(logn) (see, e.g., [9]).

We mention two directions for future study. First, multilinear ABPs can be efficiently simulated
by multilinear circuits. Is the other direction true? The guess would be that the answer is negative,
but current techniques are not sufficient to prove strong lower bound for multilinear ABPs. Second,
as mentioned, there is a polynomial-size non-multilinear ABP computing the determinant. Is there a
polynomial-size multilinear ABP computing the determinant? A positive answer would yield a new
type of algorithm for the determinant (and will imply our result via [6]). A negative answer would
yield a strong lower bound for ABPs and emphasize the power of non-multilinear computation.

1.1 Our techniques

The proof of Theorem 1.1 consists of two parts: (i) constructing a small multilinear ABP com-
puting some polynomial F and (ii) showing that any multilinear formula computing F is of super-
polynomial size. The two parts have conflicting demands: In part (i) we wish to make the poly-
nomial F simple enough so that a small ABP can compute it, whereas in part (ii) we will need to
rely on the hardness of F to prove a lower bound. To succeed in both parts we need to take full
advantage of the expressive power that ABPs grant us. Below we give a high-level description of
the proof, focusing on part (ii), which is considerably more complicated. Along the way we will
highlight ideas from previous works that are used in the proof.

The lower bound part of the proof uses several ideas introduced in previous works [6, 7, 9]. Of
particular importance is the notion of a full-rank polynomial. A given polynomial f can be used
to define a family of matrices {M(fΠ)}Π, where Π ranges over all partitions of the variables X to
two sets of variables Y, Z of equal size (these are the so-called partial derivative matrices). The
polynomial f is said to have full-rank if the rank of M(fΠ) is full for every such Π. This property
turns out to be useful in showing complexity lower bounds for f . Indeed, Raz showed that every
full-rank polynomial f cannot have polynomial-size multilinear formulas [6, 7].

To the best of our knowledge, full-rank polynomials may also require super-polynomial-size
ABPs. Thus, in order to prove our separation we will look for a property which is weaker than
being full-rank and is still useful for proving lower bounds. One of the main new ideas in our proof
is a construction of a special subset of partitions, called arc-partitions, which is sufficiently powerful
to carry through the lower bound proof and, at the same time, simple enough to carry part (i)
of the proof. The number of arc-partitions is much smaller than the total number of partitions.
Nevertheless, we are still able to show that every arc-full-rank polynomial f (i.e., M(fΠ) has full
rank for all arc-partitions Π) does not have polynomial-size multilinear formulas.

We now go into more details as to how this family of partitions is defined and what makes
it useful. We will start by describing a distribution over partitions. The partitions that will
have positive probability of being obtained in this distribution will be called arc-partitions. The
distribution is defined according to the following (iterative) sampling algorithm. Position the n
variables on a cycle with n nodes so that there is an edge between i and i+ 1 modulo n. Start with
the arc [L1, R1] = {0, 1} (an arc is a connected path on the cycle). At step t > 1 of the process,
maintain a partition of the arc [Lt, Rt]. “Grow” this partition by first picking a pair uniformly
at random out of the three possible pairs (Lt − 2, Lt − 1), (Lt − 1, Rt + 1), (Rt + 1, Rt + 2), and
then defining the partition Π on this pair to map to a random permutation of the two variables

3

yt+1, zt+1. After n/2 steps, we have chosen a partition of the n variables into two disjoint, equal-size
sets of variables (for more details, see Section 2.2).

The arc-partitions allow us to adapt the key argument in [6]. Let us remind roughly how
this argument works after the simplifications from [12]. Every multilinear formula defines a “non-
redundant” K-coloring of the n-variables with K ∼ log n. This is simply a mapping C : [n] 7→ [K]
so that the pre-image of every color k ∈ [K] is not too small. A color k is said to be “balanced”
with respect to a partition Π if the number of Y variables of color k is roughly the same as the
number of Z variables of color k. Now, for a given coloring C, if we choose a random partition Π
from the set of all partitions, simple properties of the hyper-geometric distribution imply that the
probability that all colors in C are “balanced” is at most p = n−Ω(K) = n−Ω(logn). This bound, in
turn, proves a roughly 1/p = nΩ(logn) lower bound for the size of multilinear formulas.

Following a similar strategy, we show that for any “non-redundant” K-coloring C, for a random
arc-partition, the probability that all colors in C are “balanced” is at most n−Ω(K) as well. This
turns out to be significantly more difficult than showing it for a random partition (from the set
of all partitions). The hardest part of the proof is analyzing a random walk on a two-dimensional
“distorted chessboard” where we need to prove certain anti-concentration results (see Section 5 for
details).

1.2 Organization

Section 2 contains some preliminary useful definitions. Section 3 introduces the basic notion behind
our proof, arc-full-rank polynomials, and describes a construction of an ABP computing an arc-full-
rank polynomial. Section 4 contains the main probability estimate we require. Finally, in Section 5
we study a random walk on a “distorted chessboard” that is the key part of the main probability
estimate.

2 Preliminaries

2.1 The partial derivative matrix

Let F be a field. Let Y, Z be two disjoint sets of variables. Given a multilinear polynomial f ∈
F[Y,Z], the partial derivative matrix M(f) is the coefficient matrix of f , that is, the 2|Y | × 2|Z|

matrix whose (p, q) entry is the coefficient of the monomial pq in f , where p is a monic multilinear
monomial in Y and q is a monic multilinear monomial in Z.

The following proposition from [6] gives some basic properties of this matrix.

Proposition 2.1. Given two polynomials f, g ∈ F[Y, Z], the following holds:

(i) rank(M(f + g)) ≤ rank(M(f)) + rank(M(g)).

(ii) If f, g are over disjoint sets of variables, rank(M(f · g)) = rank(M(f)) · rank(M(g)).

(iii) rank(M(f)) ≤ 2min(Y (f),Z(f)), where Y (f) is the number of Y variables appearing in f and
Z(f) is the number of Z variables appearing in f .

4

2.2 Arc-partitions

Let n be an even integer, letX = {x0, x1, . . . , xn−1}, let Y = {y1, . . . , yn/2} and let Z = {z1, . . . , zn/2}.
A partition is a one-to-one map Π from X to Y ∪ Z. Given a polynomial f in the variables X,
define the polynomial fΠ as the polynomial obtained by substituting Π(xi) instead of xi in f for
all xi in X.

Define arc-partitions as the following family of partitions. In fact, we shall define a distribution
D on partitions, whose support is by definition the set of arc-partitions. For the purpose of the
definition, we identify X with the set {0, 1, . . . , n − 1} in the natural way. Consider the n-cycle
graph, i.e., the graph with nodes {0, 1, . . . , n − 1} and edges between i and i + 1 modulo n. For
two nodes i 6= j in the n-cycle, denote by [i, j] the arc between i, j, that is, the set of nodes on the
path {i, i+ 1, . . . , j − 1, j} from i to j in n-cycle.

First, define a distribution DP on a family of pairings (a list of disjoint pairs of nodes in the
cycle) as follows. A random pairing is constructed in n/2 steps. At the end of step t ∈ [n/2], we
shall have a pairing (P1, . . . , Pt) of the arc [Lt, Rt]. The size of [Lt, Rt] is always 2t. The first pairing
contains only P1 = {L1, R1} with L1 = 0 and R1 = 1. Given (P1, . . . , Pt) and [Lt, Rt], define the
random pair Pt+1 (independently of previous choices) by

Pt+1 =


{Lt − 2, Lt − 1} with probability 1/3,
{Lt − 1, Rt + 1} with probability 1/3,
{Rt + 1, Rt + 2} with probability 1/3,

where addition is modulo n. This process is illustrated in Figure 1. Define

[Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.

So Lt+1 is either Lt − 2, Lt − 1 or Lt, each value is obtained with probability 1/3, and similarly
(but not independently) for Rt+1.

0 1n− 1

Lt

Rt

0 1n− 1

Lt

Rt = Rt+1

Pt+1

Lt+1

0 1n− 1

Lt

Rt

Pt+1

Lt+1

Rt+1

0 1n− 1

Lt = Lt+1

Rt

Pt+1
Rt+1

Figure 1: Incremental definition of a pairing. On the left the arc [Lt, Rt] in the n-cycle. On the right the

three options for the next pair Pt+1 and the corresponding Lt+1, Rt+1.

The final pairing is
P = (P1, P2, . . . , Pn/2).

Denote by P ∼ DP a pairing distributed according to DP .
Secondly, given P = (P1, . . . , Pn/2) ∼ DP , define a random partition Π as follows: For every

t ∈ [n/2], if Pt = {it, jt}, let with probability 1/2, independently of all other choices,

Π(xit) = yt and Π(xjt) = zt,

5

and, with probability 1/2,
Π(xit) = zt and Π(xjt) = yt.

We denote by Π ∼ D an arc-partition distributed as defined above.

3 Arc-full-rank polynomials

We now define the criterion by which a polynomial is difficult to compute for multilinear formulas.
We say that f is arc-full-rank if for every arc-partition Π the partial derivative matrix M(fΠ) has
full rank.

Theorem 3.1. If f is an arc-full-rank multilinear polynomial in n variables over a field F, then
any multilinear formula computing f over F has size at least nΩ(logn).

The proof of the theorem consists of two parts, given by two lemmas. The first lemma is a
well-known decomposition of multilinear formulas (see e.g. [12]). To state the lemma, we need the
following definition.

Definition. A multilinear polynomial f in variables X is called a (K,T)-product polynomial if
there exists K disjoint sets of variables X1, . . . , XK , each of size at least T , so that

f = f1f2 · · · fK ,

and each fk, k ∈ [K], is a multilinear polynomial in Xk.

Note that, in the above definition, not all variables in Xk must occur in fk. For example, the
polynomial x1x2 · · ·xK is always a (K,T)-product polynomial if it is thought of over at least KT
variables.

Lemma 3.2 (see e.g. [12]). Every n-variate polynomial f computed by a multilinear formula of
size s can be written as a sum f = f1 + . . . + fs+1, each fi is a (K,T)-product polynomials with
K ≥ (log n)/100 and T ≥ n7/8.

The second lemma (whose proof is the main technical part of this paper) shows that if f is
a product polynomial, then for an arc-partition Π ∼ D, with very high probability, the rank of
M(fΠ) is not full. Recall that the rank of M(fΠ) cannot exceed its dimension, which is 2n/2.

Lemma 3.3. There exists a constant δ > 0 so that the following holds. Let n be a large enough even
integer. Let f be a (K,T)-product polynomial in n variables with K ≥ (log n)/100 and T ≥ n7/8.
Then

P
[
rank(M(fΠ)) ≥ 2n/2−n

δ] ≤ n−δ logn,

where Π ∼ D.

We defer the proof of Lemma 3.3 to Section 4. The two lemmas immediately imply Theorem 3.1:

Proof of Theorem 3.1. Assume toward a contradiction that Φ is a multilinear formula of size s ≤
n(δ/2) logn computing a n-variate arc-full-rank polynomial f , with δ > 0 from Lemma 3.3 and n
large enough. Lemma 3.2 implies that f = f1 + . . .+ fs+1, where each fi is a product polynomial.

6

Let Π be a random partition distributed according to D. Lemma 3.3, Proposition 2.1 and the union
bound imply

1 = P
[
rank(M(fΠ)) = 2n/2

]
≤ P

[
there exists i ∈ [s+ 1] with rank(M((fi)Π)) ≥ 2n/2/(s+ 1)

]
≤

s+1∑
i=1

P
[
rank(M((fi)Π)) ≥ 2n/2−n

δ]
≤ (s+ 1)n−δ logn < 1.

3.1 A construction of an arc-full-rank polynomial

Here we describe a simple construction of an ABP that computes an arc-full-rank polynomial.
The high-level idea is to construct an ABP in which every path between start-node and end-node
corresponds to a specific execution of the random process which samples arc-partitions. Each node
in the ABP corresponds to an arc [L,R], which sends an edge to each of the nodes [L− 2, R], [L−
1, R + 1] and [L,R + 2]. The edges have specially chosen labels that guarantee full rank w.r.t. to
every arc-partition. For simplicity of presentation, we allow the edges of the program to be labeled
by degree two polynomials in three variables. This assumption can be easily removed by replacing
each edge with a constant-size ABP computing the degree two polynomial.

Formally, the nodes of the program are even-size arcs in the n-cycle, n an even integer. The
start-node of the program is the empty arc ∅ and the end-node is the whole cycle [n] (both are
“special” arcs). Let X = {x0, . . . , xn} be a set of variables, and let Λ = {λe} be a different set of
variables of size at most 3n2. In the construction, the sub-script e in λe is an edge of the branching
program (which will have at most 3n2 edges).

Construct the branching program by connecting a node/arc of size 2t to three nodes/arcs of
size 2t + 2. For t = 1, there is just one node [0, 1], and the edge e from start-node to it is labeled
λe(x0 + x1). For t > 1, the node [L,R] ⊃ [0, 1] of size 2t < n is connected to the three nodes:
[L−2, R] , [L−1, R+1], and [L,R+2]. (It may be the case that the three nodes are the end-node.)
The edge labeling is: The edge e1 between [L,R] and [L− 2, R] is labeled λe1 · (xL−2 + xL−1). The
edge e2 between [L,R] and [L− 1, R+ 1] is labeled λe2 · (xL−1 +xR+1). The edge e3 between [L,R]
and [L,R+ 2] is labeled λe3 · (xR+1 + xR+2).

Consider the ABP thus described, and the polynomial F = Fn it computes. For every path γ
from start-node to end-node in the ABP, the list of edges along γ yields a pairing P ; every edge e
in γ corresponds to a pair Pe = {ie, je} of nodes in n-cycle. Thus,

F =
∑
γ

∏
e∈γ

λe ·
∏
e∈γ

(xie + xje), (3.1)

where the sum is over all paths γ from start-node to end-node. There is in fact a one-to-one
correspondence between pairings P and such paths γ (this follows by induction on t). The sum
defining F can be thought of, therefore, as over pairings P .

The following theorem summarizes the relevant properties of F .

Theorem 3.4. Over every field F, the polynomial F = Fn defined above satisfies the following:

7

1. F is computed by a linear-size (in number of variables which is O(n2)) multilinear ABP. The
ABP for F can be constructed uniformly in time O(n2).

2. F has zero-one coefficients.

3. F is arc-full-rank as a polynomial in the variables X over the field F(Λ) of rational functions
in Λ.

Proof. That the branching program is multilinear is justified as follows. By induction, for every arc
[L,R], the X variables that occur on every path reaching the node [L,R] in the ABP is a subset of
{xi : i ∈ [L,R]}. Every Λ variable is labeling a single edge.

The program is of linear-size since every edge is labeled by a different variable. In fact, the
description above yields an algorithm that given n runs in time O(n2) and outputs the branching
program.

The fact that F has zero-one coefficients follows from (3.1), since given the monomial
∏
e∈γ λe

one can reconstruct γ.
Finally, F is arc-full-rank over F(Λ): Let Π be an arc-partition. It remains to show that M(FΠ)

has full rank. The arc-partition Π is defined from a pairing P = P (Π). The pairing P corresponds
to a path γ = γ(Π) from start-node to end-node. Consider the polynomial f obtained from FΠ by
substituting λe = 1 for every e in γ, and λe = 0 for every e not in γ. By (3.1), and by definition of
Π from P ,

f =
∏

t∈[n/2]

(yt + zt).

The rank over F of M(yt + zt) is two. Proposition 2.1 hence implies that the rank over F of
M(f) is full. Since the rank of M(FΠ) over F(Λ) is at least the rank of M(f) over F, the proof is
complete.

4 Arc-partitions and product polynomials

In this section (and the next one), we prove Lemma 3.3. Again, we identify the set of variables
X = {x0, . . . , xn−1} with the n-cycle {0, 1, . . . , n−1}, where addition is modulo n. A (K,T)-product
polynomial is defined by a partition of X to K sets. It is more convenient to work with partitions
of {0, 1, . . . , n− 1} instead. Let S be a partition of the cycle to K parts, namely, S = (S1, . . . , SK)
where

⋃
k∈[K] Sk is the whole cycle and Sk ∩ Sk′ = ∅ for all k 6= k′ in [K]. We also think of [K] as

a set of colors, and of S as a coloring of the cycle.
For a pairing P , define the number of k-violations by

Vk(P) = {Pt ∈ P : |Pt ∩ Sk| = 1},

in words, the set of pairs in which one color is k and the other color is different. Denote

G(P) =
∣∣{k ∈ [K] : |Vk(P)| ≥ n1/1000}

∣∣.
We do not include S as a subscript in these two notations since S will be known from the context
(and will be fixed throughout most of the discussion). The next crucial lemma shows that for every
fixed non-redundant K-coloring of the cycle, a random pairing has, w.h.p., many colors with many
violations.

8

Lemma 4.1. There exists a constant C > 0 such that for all C ≤ K ≤ n1/1000 the following holds:
Let S = (S1, . . . , SK) be a partition of the n-cycle and suppose that |Sk| ≥ n7/8 for all k ∈ [K].
Then,

P[G(P) ≤ K/1000] ≤ n−Ω(K),

where P ∼ DP .

We defer the proof of this lemma to Section 4.1 below and continue with the proof of Lemma 3.3.
Before the formal proof, we provide some intuition. To prove Lemma 3.3, thanks to Proposition 2.1
(items (ii) and (iii)) it suffices to show that the probability that all colors are “balanced” (i.e., the
number of Y variables of color k is close to that of Z variables) w.r.t. a random arc-partition is
very small. Lemma 4.1 implies that, w.h.p., there are order K colors, each with many violations.
For each such color k, anti-concentration implies that the probability that the color k is “balanced”
is small. Numerically speaking, the colors are “independent” which implies that the probability
that all colors are “balanced” is very small.

Proof of Lemma 3.3. Let f be a (K,T)-product with K = d(log n)/100e and T = dn7/8e. Let S be
the partition of the cycle induced by the partition of the variables of f as a product polynomial.
Let P ∼ DP , and let Π ∼ D be a random arc-partition obtained from P . From Lemma 4.1 we
know that

P[G(P) ≤ K/1000] ≤ n−Ω(K).

For every P , define a graph H(P) whose nodes are colors k in [K] so that |Vk(P)| ≥ n1/1000, and
every two nodes k 6= k′ in G(P) are connected by an edge if the size of Vk(P) ∩ Vk′(P) is at least
n1/1500 (i.e., there are at least n1/1500 pairs colored by both k, k′). Since K ≤ log n and by definition
of G(P), the degree of each node in H(P) is at least one.

Use the following simple graph-theoretic claim.

Claim 4.2. Let H be a graph with minimal degree at least one and M nodes, then there is a subset
{h1, . . . , hN} of the nodes of H of size N ≥ M/2 − 1, so that for every j ∈ [N − 1], the degree of
hj+1 in the graph induced on the nodes not in {h1, . . . , hj} is at least one.

Proof. The claim follows by induction. If M ≤ 2, the claim trivially holds. For M > 2, argue as
follows. Let h1 be a node of least degree in H. Consider the graph H1 induced on all nodes except
h1. By choice of h1, the graph H1 has at most one isolated node. If such an isolated node exists,
call it h′1. Apply the claim on the graph induced on nodes not in {h1, h

′
1}, which is of minimal

degree at least one, and of size at least M − 2 to obtain a set of nodes {h2, . . . , hN}. The set
{h1, h2, . . . , hN} satisfies the claim.

Let {k1, . . . , kK′}, K ′ ≥ G(P)/2 − 1, be the subset of nodes in H(P) given by the claim
above. View the sampling of Π from P as happening in a specific order, according to the order
of k1, k2, . . . , kK′ : First define Π on pairs with at least one point with color k1, then define Π on
remaining pairs with at least one point with color k2, and so forth. When finished with k1, . . . , kK′ ,
continue to define Π on all other pairs.

For every j ∈ [K ′], define Ej to be the event that
∣∣Ykj −|Skj |/2∣∣ ≤ n1/5000, where Ykj is the size

of Π−1(Y)∩Skj . By choice, conditioned on E1, . . . , Ej−1, there are at least n1/1500 pairs Pt so that
|Pt ∩Skj | = 1 that are not yet assigned variables in Y,Z. For every such Pt, the element in Pt ∩Skj
is assigned a Y variable with probability 1/2, and is independent of any other Pt′ . The probability

9

that a binomial random variable B over a universe of size U ≥ n1/1500 and marginals 1/2 obtains
any specific value is at most O(U−1/2) = O(n−1/3000). Hence, for all j ∈ [K ′], by the union bound,

P[Ej |E1, . . . , Ej−1, P] ≤ PB[U/2− n1/5000 ≤ B ≤ U/2 + n1/5000] ≤ O
(
2n1/5000n−1/3000

)
≤ n−Ω(1).

Therefore,

P
[
|Yk − |Sk|/2| ≤ n1/5000 for all k ∈ [K]

]
≤ E

[
n−Ω(G(P))

∣∣G(P) > K/1000
]

+ n−Ω(K) = n−Ω(logn).

Items (ii) and (iii) in Proposition 2.1 imply that if one of the factors of fΠ is unbalanced (i.e., the
number of Y variables in it is far from the number of Z variables in it) then M(fΠ) has low rank.
Formally,

P
[
rank(M(fΠ)) ≥ 2n/2−n

1/5000] ≤ P
[
|Yk − |Sk|/2| ≤ n1/5000 for all k ∈ [K]

]
.

4.1 Proof of Lemma 4.1

Fix some partition/coloring S = (S1, . . . , SK) of the n-cycle satisfying the conditions of the lemma.
Think of S as a function from the n-cycle to the set [K], assigning each node its color; S(i) is the
color of i. Use the following definition to partition the proof into cases. For a color k, count the
number of jumps in it (w.r.t. the partition S) to be

Jk = {j ∈ Sk : k = S(j) 6= S(j + 1)},

the set of elements j of color k so that j + 1 has a color different from k.
Case 1: Many colors with many jumps. The intuition is that each color with many jumps

has many violations because a jump j ∈ Jk gives a violation as soon as the construction of the
pairing takes the pair (j, j + 1).

Assume that for at least K/2 colors k,

|Jk| > n1/100.

Denote by B ⊆ [K] the set of k’s that satisfy the above inequality. For every k in B, there is thus
a subset Qk ⊂ Jk of size N = dn1/100e. Denote

Q =
⋃
k∈B

Qk.

Think of the construction of the (random) pairing P as happening in stages, depending on Q, as
follows.

For t > 0, define the random variable

Q(t) = Q \ [Lt − 4, Rt + 4],

the set Q after removing a four-neighborhood of [Lt, Rt]; If the distance between Lt, Rt is at most
ten, define Q(t) = ∅.

10

Let τ1 ≥ τ0 = 1 be the first time t after τ0 so that the distance between [Lt, Rt] and Q(τ0) is
at most two. The distance between [Lτ0 , Rτ0] and Q(τ0) is at least five. The size of the arc [Lt, Rt]
increases by two at each time step. So, τ1 ≥ τ0 +2. Let q1 be an element of Q(τ0) that is of distance
at most two from [Lτ1 , Rτ1]; If there is more than one such q1, choose arbitrarily. The minimality
of τ1 implies that q1 is not in [Lτ1 , Rτ1].

Let τ2 ≥ τ1 be the first time t after τ1 so that the distance between [Lt, Rt] and Q(τ1) is at most
two. Let q2 be an element of Q(τ1) that is of distance at most two from [Lτ2 , Rτ2].

Define τj , qj for j > 2 similarly, until Q(τj) is empty. As long as |Q(τj)| ≥ 8, we have |Q(τj+1)| ≥
|Q(τj)| − 8. This process, therefore, has at least KN/10 steps.

For 1 ≤ j ≤ KN/10, denote by Ej the event that during the time between τj and τj+1 the pair
[qj , qj + 1] is added to P . The pair [qj , qj + 1] is violating color S(qj). At time τj , even conditioned
on all the past P1, . . . , Pτj , in at most two steps (and before τj+1) we can add the pair [qj , qj + 1]
to P . For every j, therefore,

P[Ej |P1, . . . , Pτj] ≥ (1/3)(1/3) = 1/9.

Subsequently,
P
[
there is j1, . . . , jN ′ so that Ej1 ∩ . . . ∩ EjN′

]
≥ 1− cN

with
N ′ = bKN/100c

and c < 1 a universal constant.
The size of every Qk is N . So, every color k in B can contribute at most N elements to

j1, . . . , jN ′ . Hence,

P
[
G(P) ≥ K/1000

]
≥ P

[
there is j1, . . . , jN ′ so that Ej1 ∩ . . . ∩ EjN′

]
.

The proof is hence complete in this case.
Case 2: Many colors with few jumps. The intuition is that many violations will come

from pairs of the form (Lt − 1, Rt + 1) in the construction of the pairing.
Assume that for at least K/2 colors k,

|Jk| ≤ n1/100.

Denote again by B ⊆ [K] the set of k’s that satisfy the above inequality. We say that a color k is
noticeable in the arc A if

n5/8 ≤
∣∣Sk ∩A∣∣ ≤ |A| − n5/8.

Claim 4.3. There are K ′ ≥ K/2− 1 disjoint arcs A1, . . . , AK′ so that for every j ∈ [K ′],

(i) |Aj | = m = bn3/4c, and

(ii) there is a color kj in B that is noticeable in Aj.

Moreover, the colors k1, . . . , kK′ can be chosen to be pairwise distinct.

11

Proof. For each color k in B, there are at least n7/8 vertices of color k in the n-cycle and at most
n1/100 jumps in the color k. Therefore, there is at least one k-monochromatic arc of size at least
n7/8−1/100. Hence, on the n-cycle there are such monochromatic arcs Ik1 , . . . , Ik|B| for the colors
k1, . . . , k|B| in B, in this order (0 < 1 < . . . < n− 1).

Consider an arc A of size m included in Ik1 . Thus |Sk1 ∩A| = m. If we “slide” the arc A until
it is included in Ik2 , then |Sk1 ∩A| = 0. By continuity, there is an intermediate position for the arc
A such that n5/8 ≤ |Sk1 ∩A| ≤ m− n5/8. This provides the first arc A1 of the claim.

Sliding an arc inside Ik2 to inside Ik3 shows that there exists an arc A2 such that n5/8 ≤
|Sk2 ∩A2| ≤ m− n5/8. The arcs A1 and A2 are disjoint: The distance of the largest element of A1

and the smallest element of Sk2 is at most m. The distance of the smallest element of A2 and the
largest element of Sk2 is at most m. The size of Sk2 is larger than 2m.

Proceed in this way to define A3, . . . , A|B|−1.

Use Claim 4.3 to divide the construction of the (random) pairing into stages. Denote by A(0)

the family of arcs given by the claim. Let τ1 be the first time t that the arc [Lt, Rt] hits one of
the arcs in A(0). Denote by A1 that arc that is hit at time τ1 (break ties arbitrarily). Denote by
k1 the color that is noticeable in A1. Let σ1 be the first time t so that A1 is contained in [Lt, Rt].
Let A(1) be the subset of A(0) of arcs that have an empty intersection with [Lσ1 , Rσ1]. Similarly,
let τ2 be the first time t after σ1 that the arc [Lt, Rt] hits one of the arcs in A(1). If there are no
arc in A(1), τ2 = ∞. Denote by A2 that arc that is hit at time τ2. Denote by k2 the color that
is noticeable in A2. Let σ2 be the first time t so that A2 is contained in [Lt, Rt]. Let A(2) be the
subset of A(1) of arcs that have an empty intersection with [Lσ2 , Rσ2]. Define τj , σj , Aj , kj , A

(j) for
j > 2 analogously.

For every j ≥ 1, denote by Ej the event that during the time between τj and τj+1 the number of
pairs added that violate color kj is at most n1/150. (If Ej does not hold, |Vkj (P)| ≥ n1/150 ≥ n1/1000.)
The main part of the proof is summarized in the following proposition, whose proof is deferred to
Section 5.

Proposition 4.4. For every j ≥ 1,

P
[
Ej
∣∣P1, . . . , Pτj , |A(j−1)| ≥ 3

]
≤ n−Ω(1).

Given the proposition, the proof is complete: Denote by T the event that the number of j’s so
that |A(j)| ≥ 3 is at least K ′′ = 2bK ′/8− 6c. Using the union bound,

P
[
G(P) < K/1000

]
≤ P

[
G(P) < K/1000, T

]
+ P[not T]

≤ 2K
′′

max
H={j1<j2<...<jK′′/2}⊂[K′′]

P
[
Ej1 , Ej2 , . . . , EjK′′/2 , |A

(K′′)| ≥ 3
]

+ P[not T].

For every j ≥ 1, Chernoff’s bound implies

P
[
|A(j)| ≥ |A(0)| − 3 · j

∣∣∣E1, . . . , Ej−1, |A(j−1)| ≥ |A(0)| − 3 · (j − 1)
]
≥ 1− cm1/3

with c < 1. Thus,

P[not T] ≤ ncm1/3
.

12

Furthermore, for fixed H as above, by the proposition (and bounding 1−x ≥ e−2x for 0 ≤ x ≤ 1/2),

P
[
Ej1 , Ej2 , . . . , EjK′′/2 , |A

(K′′)| ≥ 3
]

≤
(

1− cm1/3
)−K′′/2

P[Ej1]
P
[
Ej2 , Ej1 , |A(1)| ≥ |A(0)| − 3

]
P
[
Ej1 , |A(1)| ≥ |A(0)| − 3

] ·

·
P
[
Ej3 , Ej2 , Ej1 , |A(2)| ≥ |A(0)| − 3 · 2

]
P
[
Ej2 , Ej1 , |A(2)| ≥ 3 · 2

] · · ·

· · ·
P
[
Ej1 , Ej2 , . . . , EjK′′/2 , |A

(jK′′/2−1)| ≥ |A(0)| − 3 · (K ′′/2− 1)
]

P
[
Ej1 , Ej2 , . . . , EjK′′/2−1, |A(jK′′/2−1)| ≥ |A(0)| − 3 · (K ′′/2− 1)

]
≤ eK′′cm

1/3

n−Ω(K′′) ≤ n−Ω(K).

Overall,

P
[
G(P) < K/1000

]
≤ n−Ω(K).

This completes the proof of Lemma 4.1.

5 Distorted chessboard random walk

This section is devoted for the proof of Proposition 4.4. To prove the proposition, we use a different
point of view of the random process. We begin by describing this different view, and later describe
its formal connection to the distribution on pairings.

The view uses two definitions. One is a standard definition of a two-dimensional random
walk, and the other is a definition of a “chessboard” configuration in the plane. The proof of the
proposition will follow by analyzing the behavior of the random walk on the “chessboard.”

Let n be a large integer and m = bn3/4c. The random walk W on N2 is defined as follows. It
starts at the origin, W0 = (0, 0). At every step it move to one of three nodes, independently of
previous choices,

Wt+1 =


Wt + (0, 2) with probability 1/3,
Wt + (1, 1) with probability 1/3,
Wt + (2, 0) with probability 1/3.

At time t, the L1-distance of Wt from the origin is thus 2t.
The “chessboard” is defined as follows. Let α1 : [m] → {0, 1} and α2 : [2m] → {0, 1} be two

Boolean functions. The functions α1, α2 induce a “chessboard” structure on the board [m]× [2m].
A position in the board ξ = (ξ1, ξ2) is colored either white or black. It is colored black if α1(ξ1) 6=
α2(ξ2) and white if α1(ξ1) = α2(ξ2). We say that the “chessboard” is well-behaved if

(i) α1 is far from constant:

n5/8 ≤
∣∣{ξ1 ∈ [m] : α1(ξ1) = 1

∣∣ ≤ m− n5/8,

(ii) α1 does not contain many jumps:∣∣{ξ1 ∈ [m− 1] : α1(ξ1) 6= α1(ξ1 + 1)}
∣∣ ≤ n1/100,

and

13

(iii) α2 does not contain many jumps:∣∣{ξ2 ∈ [2m− 1] : α2(ξ2) 6= α2(ξ2 + 1)}
∣∣ ≤ n1/100.

Consider a random walk W on top of the “chessboard” and stop it when reaching the boundary
of the board (i.e., when it tries to make a step outside the board [m] × [2m]). We define a good
step to be a step of the form (1, 1) that lands in a black block. We will later relate good steps to
violating edges. Our goal is, therefore, to show that a typical W makes many good steps.

Lemma 5.1. Assume the chessboard is well-behaved. The probability that W makes less than n1/100

good steps is at most n−Ω(1).

Using this lemma we prove Proposition 4.4. We prove the lemma in Section 5.1 below.

Proof of Proposition 4.4. Recall that Aj is an arc of size |Aj | = m = bn3/4c so that there is a color
kj satisfying

n5/8 ≤
∣∣Skj ∩Aj∣∣ ≤ m− n5/8. (5.1)

Furthermore, condition on P1, . . . , Pτj , |A(j−1)| ≥ 3. Assume w.l.o.g. that Rτj is in Aj (when Lτj is
in Aj , the analysis is similar). The distance of Rτj from the smallest element of Aj is at most one
(the length of “one step to the right” is between zero and two). We now grow the random interval
until σj , i.e., as long as Rt stays in Aj . At the same time, Lt performs a movement to the left.
Since

∣∣A(j−1)
∣∣ ≥ 3, there are at least 2m steps for Lt to take to the left before hitting Aj .

There is a one-to-one correspondence between pairings P and random walks W using the cor-
respondence

Pt+1 = {Lt − 2, Lt − 1} ↔ Wt+1 = Wt + (0, 2)

Pt+1 = {Lt − 1, Rt + 1} ↔ Wt+1 = Wt + (1, 1)

Pt+1 = {Rt + 1, Rt + 2} ↔ Wt+1 = Wt + (2, 0).

Define the function α1 to be 1 at positions of Aj with color kj , and 0 at the other positions. Set
the function α2 as to describe the color kj from Lτj leftward. The “chessboard” is well-behaved by
(5.1) and since kj is in the set B defined in case 2 of the proof Lemma 4.1 (so there are not many
jumps for the color kj).

Finally, if W makes a good step, then the corresponding pair added to P violated color kj .
So, if Ej holds for P , then the corresponding W makes less than n1/100 good steps. Formally, by
Lemma 5.1,

P
[
Ej
∣∣P1, . . . , Pτj , |A(j−1)| ≥ 3

]
≤ P[W makes less than n1/100 good steps] ≤ n−Ω(1).

5.1 Proof of Lemma 5.1

Define three events ER, EC , ED, all of which happen with small probability, so that every W that
is not in their union makes many good steps.

14

Call a subset of the board of the form I × [2m] or [m]× I, where I is a sub-interval, a region.
The width of a region is the size of I. Let R be the set of regions of width at least n1/90. The size
of R is at most 2m2. For a region r in R, denote by Er the event that the number of steps of the
form (1, 1) that W makes in its first n1/95 steps in r is less than n1/100. Denote

ER =
⋃
r∈R

Er.

By the union bound and Chernoff’s bound,

P[ER] ≤ cn1/200

with c < 1 a universal constant.
Denote by H the set of all points in the board with L1-norm at least m5/8. At time T the

random walk W is distributed along all points in N2 of L1-norm exactly T . The distribution of
W on this set is the same as that of a random walk on Z that is started at 0, and moves at every
step to the right w.p. 1/3, stays in place w.p. 1/3 and moves to the left w.p. 1/3. The probability
that such a random walk on Z is at a specific point in Z at time T is at most O(T−1/2). Hence, for
every point h in H,

P[W hits h] ≤ O(m−5/16) ≤ m−1/4.

Call a point c = (ξ1, ξ2) in the board a corner if both (ξ1, ξ2) and (ξ1 + 1, ξ2 + 1) are of the same
color κ ∈ {black,white}, but (ξ1 + 1, ξ2) and (ξ1, ξ2 + 1) are not of color κ. For a corner c, denote
by ∆(c) the n1/90-neighborhood of c in L1-metric. Denote by ∆ the union over all ∆(c), for corners
c in H. Denote by EC the event that W hits any point in ∆. Since the board is well-behaved, the
number of jumps in each of α1, α2 is at most n1/100. Therefore, the number of corners is at most
n1/50. By the union bound,

P[EC] ≤ O
(
n1/50n2/90m−1/4

)
= n−Ω(1).

Let m′ = dm5/8e. Define three (vertical) lines: D1 is the line {m′} × [2m], D2 is the line
{2m′} × [2m] and D3 is the line {m−m′} × [2m]. Denote by ED the event that W does not cross
the line D3 before stopped (i.e., hitting the boundary of the board). Chernoff’s bound implies

P[ED] ≤ cn1/200
.

To conclude the proof, by the union bound, it suffices to show that for every W not in ER ∪
EC ∪ ED, the walk W makes at least n1/100 good steps. Fix such a walk W . Since W 6∈ ED, we
know that W crosses the line D2.

There are several cases to consider. A block is a maximal monochromatic rectangle in the board.
The board is thus partitioned into black blocks and white blocks. (Hence, the name “chessboard.”)
Think of the board [m] × [2m] as drawn in the plane with (1, 1) at the bottom-left corner and
(m, 2m) at the upper-right corner.

Case 1: The walk W does not hit any white block after crossing D1 and before crossing D2.
In this case, all step in the region whose left border is D1 and right border is D2 are in a black
area. The number of such steps is at least m5/8/2. Since W 6∈ ER, the claim holds.

Case 2: The walk W hits a white block after crossing D1 and before crossing D2. There are
two sub-cases to consider: Number the blocks so that every block is associated with a pair 〈η1, η2〉

15

where η1 is between 1 and the number of jumps in α1 and η2 is between 1 and the number of jumps
in α2.

Case 2.1: At some point after crossing D1 and before crossing D3, there are two white blocks
of either the form 〈η1, η2〉 , 〈η1 + 1, η2 + 1〉 or the form 〈η1, η2〉 , 〈η1 − 1, η2 − 1〉 so that W intersects
both blocks. Let c be the corner between these two blocks (such a corner must exist). Since
W 6∈ EC , we know that W does not visit ∆(c). Therefore, W must walk in a black area around
∆(c). Every path surrounding ∆(c) has length at least n1/90. Since W 6∈ ER, the claim holds.

Case 2.2: At all times after crossing D1 and before crossing D3, the walk never moves from a
white block 〈η1, η2〉 to one of the two white block 〈η1 + 1, η2 + 1〉, 〈η1 − 1, η2 − 1〉. Since W 6∈ ED,
this is indeed the last case. The width of a combinatorial rectangle in the board is the size of its
“bottom side” (i.e., the corresponding subset of [m]). Let η be the first white block W hits after
crossing D1. Let Σ be the family of black blocks that are to the right but on the same height as η.
Define γ as the maximal width of a rectangle of the form σ ∩ [0,m−m′ − 1]× [2m] over all σ ∈ Σ.
Since we are in case 2, the left border of η is to the left of D2. Since the board is well-behaved, the
total width of the black area to the right of the left border of η, on the same height as η and to the
left of D3 is at least n5/8 − 3m′. Therefore, since the number of jumps is at most n1/100,

γ ≥ (n5/8 − 3m′)/n1/100 ≥ n1/90.

Since we are in case 2.2, the walk W must “go through” every black block it hits: it can go from
bottom side to upper side or from left side to right side (but not from left side to upper side or
from bottom side to right side). Because W 6∈ ED, for each black block in Σ, therefore, there exists
a black block “in the same column” that W crosses horizontally. Focussing on one such black block
of width γ, since W 6∈ ER, the claim holds.

References

[1] S. J. Berkowitz. On computing the determinant in small parallel time using a small number of
processors. Inf. Proc. Letters 18, pages 147–150, 1984.

[2] P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7 of Algo-
rithms and Computation in Mathematics. Springer-Verlag, Berlin, 2000.

[3] M. Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms, and Complexity. Chicago
J. Theor. Comput. Sci., 1997, 1997.

[4] G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity classes. Journal of
Complexity 24 (1), pages 16–38, 2008.

[5] N. Nisan and A. Wigderson. Lower bound on arithmetic circuits via partial derivatives. Com-
putational Complexity 6, pages 217–234, 1996.

[6] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. In
Proceedings of the 36th Annual STOC, pages 633–641, 2004.

[7] R. Raz. Multilinear NC1 6= Multilinear NC2. In Proceedings of the 45th Annual FOCS, pages
344–351, 2004.

16

[8] R. Raz, A. Shpilka, and A. Yehudayoff. A lower bound for the size of syntactically multilinear
arithmetic circuits. SIAM J. on Computing 38 (4), pages 1624–1647, 2008.

[9] R. Raz and A. Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Computa-
tional Complexity 17 (4), pages 515–535, 2008.

[10] R. Raz and A. Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Computational Complexity 18 (2), pages 171–207, 2009.

[11] P. A. Samuelson. A method for determining explicitly the coefficients of the characteristic
equation. Ann. Math. Statist. 13, pages 424–429, 1942.

[12] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Found. Trends Theor. Comput. Sci. 5, pages 207–388, 2010.

[13] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual STOC,
pages 249–261, 1979.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

