
Stronger Lower Bounds and Randomness-Hardness Trade-Offs

Using Associated Algebraic Complexity Classes

Maurice Jansen∗

Laboratory for Foundations of Computer Science
School of Informatics

The University of Edinburgh
maurice.julien.jansen@gmail.com

Rahul Santhanam†

Laboratory for Foundations of Computer Science
School of Informatics

The University of Edinburgh
rsanthan@inf.ed.ac.uk

October 9, 2011

Abstract

We associate to each Boolean language complexity class C the algebraic class a·C con-
sisting of families of polynomials {fn} for which the evaluation problem over Z is in C. We
prove the following lower bound and randomness-to-hardness results:

1. If polynomial identity testing (PIT) is in NSUBEXP then a·NEXP does not have poly
size constant-free arithmetic circuits.

2. a·NEXPRP does not have poly size constant-free arithmetic circuits.

3. For every fixed k, a·MA does not have arithmetic circuits of size nk.

Items 1 and 2 strengthen two results due to Kabanets and Impagliazzo [6]. The third item
improves a lower bound due to Santhanam [11].

We consider the special case low-PIT of identity testing for (constant-free) arithmetic
circuits with low formal degree, and give improved hardness-to-randomness trade-offs that
apply to this case.

Combining our results for both directions of the hardness-randomness connection, we
demonstrate a case where derandomization of PIT and proving lower bounds are equivalent.
Namely, we show that low-PIT ∈ i.o-NTIME[2no(1)

]/no(1) if and only if there exists a family
of multilinear polynomials in a·NE/lin that requires constant-free arithmetic circuits of
super-polynomial size and formal degree.

∗Supported by EPSRC Grant H05068X/1
†Supported in part by EPSRC Grant H05068X/1

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 135 (2011)

1 Introduction

In this paper we study the arithmetic circuit complexity of families of multivariate polynomials
{fn} in terms of the computational hardness of the underlying evaluation problem. Towards
this end we associate to each Boolean language complexity class C the class a·C consisting of
all families of polynomials {fn} with integer coefficients, such that given an integer input tuple
x to fn, an integer i and a bit b, it can be decided within the resources of the class C whether
the ith bit of fn(x) equals b. We restrict the number of variables, the degree, and the bit size
of coefficients of such families to be polynomially bounded in n (See Section 2 for the formal
definition). We note that a similar notion was suggested by Koiran and Perifel [9].

One of our main motivations is to find an elegant way to state “hybrid” results involving
Boolean and arithmetic circuit lower bounds, such as the trade-offs of Kabanets and Impagli-
azzo [6] or the lower bound of Santhanam [11]. These are examples where people, perhaps
unknowingly, have been proving lower bounds and randomness-hardness tradeoffs geared to-
wards associated algebraic classes, while in our opinion lacking the proper language to describe,
and consequently interpret, the results. The a·C notions provides a language for succinctly ex-
pressing these results, and leads to natural questions for making improvements. Consequently
we have strengthened several important results from the literature.

A prime example of the above situation is the celebrated theorem by Kabanets and Im-
pagliazzo [6], which says that if polynomial identity testing (PIT) is in NSUBEXP, then either
NEXP 6⊆ P/poly, or permanent does not have poly-size arithmetic circuits. PIT is the problem
of deciding for a given arithmetic circuit Φ whether it computes the zero polynomial. We refer
to a recent survey by Saxena [12] for more on this problem. The quoted theorem tells us that
derandomization of polynomial identity testing yields lower bounds of some sort. However, it
doesn’t tell us whether these will be Boolean lower bounds or arithmetic lower bounds. We make
the observation (proof in Appendix A) that the theorem by Kabanets and Impagliazzo is equiv-
alent to the statement PIT ∈ NSUBEXP ⇒ a·NEXP/lin 6⊆ ASIZE′(poly). Here ASIZE′(poly)
denotes the class of polynomial families {fn} computable by constant-free arithmetic circuit of
size poly(n) using addition, multiplication, and division by constants (See Section 2). Hence, to
answer the above question, putting PIT in NSUBEXP gives arithmetic lower bounds for families
of polynomials that can be evaluated in NEXP with linear advice. A natural improvement to
the result would be to drop the linear advice. We show that this can indeed be done1, resulting
in the following stronger theorem:

Theorem 1. PIT ∈ NSUBEXP⇒ a·NEXP 6⊆ ASIZE′(poly).

In the above, on the right hand side, the associated algebraic class gives us a measure of the
explicitness of the lower bound. We have improved this explicitness from evaluable in NEXP/lin
down to evaluable in NEXP. As it is generally undesirable to have non-uniform dependencies
appearing in the explicitness measure of a lower bound, the main significance of our result is
that we have managed to remove the non-uniformity.

Similar to Theorem 1 we observe that Theorem 5.2 of Ref. [6], which states that either
NEXPRP 6⊂ P/poly or Permanent does not have poly-size arithmetic circuits, is equivalent to
the statement that a·NEXPRP/lin 6⊆ ASIZE′(poly) (See Appendix A). We also improve the
explicitness of this lower bound and obtain that

Theorem 2. a·NEXPRP 6⊆ ASIZE′(poly).
1An obvious way to do this would be to ‘just’ show that a·NEXP ⊆ ASIZE′(poly) ⇒ a·NEXP/lin ⊆

ASIZE′(poly). It is not clear whether this is true, cf. Appendix A.

2

Furthermore, we improve a theorem by Santhanam [11] which states that for every k, either
MA 6⊆ SIZE(nk), or there exists a family polynomial {fn}, whose graph is decidable in MA,
that is not in ASIZE(nk). We show the following stronger result:

Theorem 3. For every k, a·MA 6⊆ ASIZE(nk).

The above results demonstrate the usefulness of the a·C notion. There are further reasons
why the notion is worth exploring. It gives a way of bringing uniformity into the algebraic
complexity setting. Note that traditional algebraic complexity classes such as VP and VNP are
inherently non-uniform. We also feel the notion could facilitate more interactions of techniques
from structural complexity and algebraic complexity. Given how few lower bound techniques
we have available, and given the well-known barriers such as natural proofs and algebrization
to finding new ones, we need to make the best use of the ones we have. The recent lower
bounds success of Williams [17] is an instructive example of how known techniques from different
domains can be combined to give an interesting new result.

In general, one might ask for any known separation C 6⊆ D in the Boolean world whether it
can be strengthened to show that a·C 6⊆ a·D. Note that this would indeed be a strengthening
as C ⊆ D trivially implies a·C ⊆ a·D. Arithmetic analogues of time hierarchy results, eg.,
a·DTIME[n2] (a·DTIME[n3] and a·NTIME[n2] (a·DTIME[n3] can be proved quite easily
using the fact that the separation can be witnessed by a unary language. However, we don’t
know whether arithmetic analogues of results such as Williams’ lower bound hold. There could
be a connection between proving the arithmetic analogue of a Boolean result and whether the
techniques used to prove the Boolean result algebrize in the sense of Aaronson and Wigderson
[1]. We have not properly explored this yet.

One of the advantages of using associated algebraic classes is that this enables us to derive
tighter hardness-randomness trade-offs. This is especially striking for the case of the low-formal-
degree polynomial identity testing problem (low-PIT). We define low-PIT as the special case
of PIT for circuits Φ whose formal degree deg(Φ) is less than or equal to the size |Φ|. Formal
degree is a syntactic notion, easily computed for a circuit (See Section 2). Examples of types of
circuits that automatically satisfy the degree restriction deg(Φ) ≤ |Φ| are formulas and skew-
circuits, the latter being equivalent to algebraic branching programs. This makes low-PIT an
important special case of the general problem. We show that we can specialize Theorem 1 to
obtain the following low-degree version:

Theorem 4. low-PIT ∈ NSUBEXP⇒ a·NEXP 6⊆ ASIZEDEG′(poly).

In the above ASIZEDEG′(poly) is the class of families of polynomials {fn} computable by
constant-free arithmetic circuits of size poly(n) and formal degree poly(n) (The ‘prime’ indicates
that we allow a single division by a previously computed constant at the output gate).

For the special case of low-PIT, we also make progress on trade-offs that go in the opposite
direction. Namely, we show that derandomization can be achieved under weaker hardness
assumptions than was known previously. For example using our techniques we can prove the
following theorem:

Theorem 5. Suppose there exists a family {pn} ∈ ml·NEXP with {pn} 6∈
i.o-ASIZEDEG′(ne(n)), where e(n) is a monotone non-decreasing time constructible function
with e(n) = ω(1). Then low-PIT ∈ NTIME[2n

o(1)
].

In the above, ml·NEXP is the subclass of a·NEXP consisting of all families {fn}, where each
fn is multilinear. The key improvement2 that we make here over the techniques of Ref. [6], is

2See some remarks about the difference in Section 2.

3

that we can work with ASIZEDEG′-hardness instead of ASIZE′-hardness in case we only need
to cater for low-PIT. To achieve such improved trade-offs, we prove a so-called root extraction
lemma (Lemma 5) that is formal-degree efficient. This lemma, which is of independent interest,
is subsequently combined with the framework of Ref. [6]. As an additional twist, we start with
a hardness assumption in terms of an associated algebraic class.

Finally, combining our results for both directions of the hardness vs. randomness connection,
the work of this paper culminates with the following theorem, which demonstrates a setting
where derandomization of PIT and proving lower bounds are formally equivalent:

Theorem 6. There exists a family {pn} ∈ ml·NE/lin with {pn} 6∈ ASIZEDEG′(s(n)), for
s(n) = nω(1) if and only if low-PIT ∈ i.o-NTIME[2r(n)]/r(n), for r(n) = no(1).

Our paper is the first in the literature where for a specific setting an equivalence is established
between proving lower bounds and derandomization of PIT. In this the associated algebraic
classes play a central role, which we offer as further evidence of the importance of this notion.

2 Preliminaries

Let NSUBEXP = ∩εNTIME[2n
ε
]. We define SIZE(s(n)) to be the class of all languages in

{0, 1}∗ computable by Boolean circuits of size s(n). A (division-free) arithmetic circuit over
some field F and a set of variables X = {x1, x2, . . . , xn} is given by a labeled directed acyclic
graph. Nodes of in-degree zero are labeled with elements of X ∪ F. Other nodes are labeled by
+ or ×. To each node, a.k.a. gate, we can associate a polynomial ∈ F[X], defined inductively
in the obvious way. If constant-labels are restricted to be in {−1, 0, 1} the circuit is called
constant-free. For the size of an arithmetic circuit we count the number of wires. We define
ASIZE(s(n)) to be the class of all families of polynomials {fn} with integer coefficients that
have constant-free arithmetic circuits of size s(n). We let ASIZE′(s(n)) be the class obtained
from ASIZE(s(n) by allowing one single division at the output gate by an integer a 6= 0, where a
has been computed by the circuit. We remark that due to a result by Strassen [14] on avoidance
of divisions, cf. Theorem 2.17 and Corollary 3.9 in [6], a family of polynomials {fn} of poly(n)
degree can be computed by an arithmetic circuit of poly(n) size with arbitrary use of division
gates iff {fn} ∈ ASIZE′(poly(n)). We define “infinitely often” versions of these classes in the
obvious way. For example i.o-ASIZE(s(n)) is the class of families {fn} such that for infinitely
many n, fn can be computed by a size s(n) circuit.

ASIZEDEG(s(n)) is obtained from ASIZE(s(n)) by adding the restriction that formal degree
of the circuit is bounded by s(n) as well. Formal degree is defined inductively as follows. For
input gates, regardless of their label, formal degree is 1. Formal degree of an addition gate is
taken to be the maximum of the formal degree of its inputs. For multiplication gates one takes
the sum of formal degrees of its inputs. We define the class ASIZEDEG′(poly) to be the class
of families of polynomials {fn} with integer coefficients such that there exist families {gn} and
{cn ∈ Z} in ASIZEDEG(poly) with fn = gn/cn, for each n.

Families in ASIZE(poly) can have super-polynomial degree, e.g. x2n can be computed with
n − 1 repeated multiplications. We like to point out that in general for a family {fn} ∈
ASIZE(poly) with deg(fn) = nO(1) it is not known whether {fn} ∈ ASIZEDEG(poly). In
particular it is a fallacy to think the well-known trick of computing degree components separately
at every gate in the circuit proves this, as was pointed3 out by Bürgisser [3], cf. [8]. Namely,
this construction requires a model where arbitrary constants can be used by the circuit at unit

3The class ASIZEDEG(poly) is known as VP0 in the literature, whereas ASIZE(poly) corresponds to families
of polynomials with τ -complexity poly(n), cf. Ref. [9].

4

cost. A similar remark can be made for the classes ASIZEDEG′(poly) and ASIZE′(poly), in
which case it is perhaps more obvious that computing components separately does not help,
since one of the given circuits only computes a constant.

We define the language corresponding to the polynomial identity testing problem PIT =
{Φ : Φ is a division-free constant-free arithmetic circuit such that Φ ≡ 0}. Similarly, we define
low-PIT to be the following language

{Φ : Φ is a division-free constant-free arithmetic circuit of formal degree ≤ |Φ| and Φ ≡ 0}.

We make use of the well-known Schwartz-Zippel-deMillo-Lipton Lemma.

Lemma 1 ([4, 13, 18]). Let A be an arbitrary nonempty subset of the field F. Then for any
nonzero polynomial f ∈ F[X] of degree d, Pr[f(a1, a2, . . . , an) = 0] ≤ d

|A| , where the ai’s are
picked independently and uniformly at random from A.

We use several easily proved propositions.

Proposition 1. A constant-free division-free arithmetic circuit of size s and formal degree d
without variables computes an integer constant of absolute value at most 2ds.

By hard-wiring inputs we obtain the following corollary:

Corollary 1. For a constant-free division-free arithmetic circuit of size s and formal degree d
computing a polynomial f(x1, x2, . . . , xn), if we evaluate f on integers a1, . . . , an of at most B
bits, then |f(a1, a2, . . . , an)| ≤ 2O(dsB2).

Proposition 2 (Multilinear Extension over Z). Let f : {0, 1}n → {0, 1} be a Boolean function.
Define F (x1, . . . , xn) =

∑
a∈{0,1}n f(a)

∏
i∈[n](1 − xi + ai(2xi − 1)). Then F is a multilinear

polynomial with integer coefficients that coincides with f on {0, 1}n. Furthermore, F is the
unique polynomial with these properties.

We now get to the central definition of this paper.

Definition 1. Let C be a language complexity class. Corresponding to C we have the associated
algebraic class a·C which is given by the collection of all polynomial families {fn} defined in
m(n) = nO(1) variables of degree poly(n) having integer coefficients of poly(n) bit size such that
the evaluation language

E({fn}) := {(1n, a1, a2, . . . , am(n), i, b) : the ith bit of fn(a1, a2, . . . , am(n)) equals b} ∈ C,

where i, a1, a2, . . . , am(n)∈Z are given in binary. We denote the subclass of a·C consisting of
families of multilinear polynomials by ml·C.

Typically for a complexity class C we will have the complementation property that a·C =
a·(C ∩ coC). This is due to the inclusion of the bit b in the definition of the evaluation language.
We have the following property in particular:

Proposition 3. a·NEXP = a·(NEXP ∩ coNEXP).

Namely, given a NEXP-machine M deciding E({fn}) for some family of polynomials {fn},
one can simulate M on inputs (1n, a1, a2, . . . , am(n), i, b) and (1n, a1, a2, . . . , am(n), i, 1 − b). In
these nondeterministic simulations one finds at most one of them accepting, and it is guaranteed
there exists at least one such path. For all paths where an accept is found, the machine knows
exactly whether (1n, a1, a2, . . . , am(n), i, b) ∈ E({fn}). This means that we have a nondeter-
ministic exponential time flag machine for computing the characteristic function of E({fn}),
which implies that E({fn}) ∈ NEXP ∩ coNEXP. Recall that a flag machine sets a flag bit and
produces output. If the flag is 0 this means on the given path no output is produced. If the
flag is 1 it signals the output is valid. To compute a function, all flag = 1 paths must produce
the same value, and there must be at least one such path.

5

3 Improved Lower Bounds from Derandomization of PIT

In this section, in order to avoid ambiguity we use a new variable N to indicate the input length
for Boolean complexity classes. For example, Σ4TIME[N] is the class of all languages decidable
by Σ4-machines in time O(N) for inputs of size N . We will prove Theorem 2, and the following
theorem (which implies Theorem 1):

Theorem 7. PIT ∈ NSUBEXP⇒ ml·NEXP 6⊆ ASIZE′(poly).

We first establish fixed polynomial size arithmetic circuit lower bounds for a·PH.

Theorem 8. For any fixed k, there exists {fn} ∈ a·PH with {fn} 6∈ i.o-ASIZE′(nk). Further-
more, each fn is multilinear in n variables, has degree 3k and has coefficients in {0, 1}.

Proof. For simplicity we show a fixed size lower bound in terms of ASIZE instead of ASIZE′.
The proof is easily modified to yield the more general statement. There are 2O(n2k) arithmetic
circuits of size at most nk. Consider the class F of homogeneous multilinear polynomials in n

variables of degree 3k with 0, 1 coefficients. Then |F| = 2(n3k). Hence there exists fn ∈ F that
is not in ASIZE(nk). Our goal is to find it ‘in PH’.

Let C be the class of arithmetic circuits corresponding to F , where we just represent in the
ΣΠ-form, i.e. a sum of monomials. We can fix some representation of C by strings of length
O(n3k). Our goals is to find the lexicographically least circuit Φ ∈ C such that for all arithmetic
circuits Ψ of size nk, Φ−Ψ 6≡ 0. Define the language L to consist of tuples (1n, < Φ >) with the
property that for all circuits Ψ of size nk, Φ−Ψ 6≡ 0, where < Φ > to denotes the string encoding
of Φ. Checking Φ − Ψ 6≡ 0 is a coRP predicate. This implies that L is in coNPRP. On input
1n, using binary search and making existential queries to L, one can find the lexicographically

least Φ of size O(n3k) such that (1n, < Φ >) ∈ L in FPNPcoRPRP

. Define fn to be the polynomial
computed by this Φ. Once the sum of monomials representations of fn is known, evaluations is
poly-time computable for integer inputs. Hence we obtain that E({fn}) ∈ PH.

From the proof of Theorem 8 we can conclude that the following lemma is true:

Lemma 2. There exists a constant c1 ∈ N, such that for any k ≥ 1, there exists {fn} ∈
ml· Σ4TIME[N c1k] with {fn} 6∈ i.o-ASIZE′(nk).

Namely, to describe an algorithm for E({fn}), consider an input (1n, a1, . . . , an, i, b) of size
N . The proof of Theorem 8 shows that we can first find in Σ4TIME[poly(n3k)] a sum-of-
monomials description of a polynomial fn of size O(n3k) that requires size nk. After that we
evaluate f(a1, . . . , an), which can be done in time poly(N3k) given this simple representation of
fn. We get that the total overhead for deciding E({fn}) is Σ4TIME[poly(Nk)]. One now easily
derives the following lemma:

Lemma 3. There exists a constant c2 ∈ N, such that for any k ≥ 1, there exists {fn} ∈
ml·DTIME0,1-Perm[1][N c2k] with {fn} 6∈ i.o-ASIZE′(nk).

Proof. By Toda’s theorem [15] and Valiant’s Completeness result [16], we know that
there exists an absolute constant b ∈ N so that for every k ∈ N, Σ4TIME[Nk] ⊆
DTIME0,1-Perm[1][N bk]. Let c1 be the constant given by Lemma 2. We get that
Σ4TIME[N c1k] ⊆ DTIME0,1-Perm[1][N bc1k]. Hence the lemma holds for c2 = bc1.

We use the following lemma by Kinne, van Melkebeek and Shaltiel (See Appendix B for the
change from ASIZE to ASIZE’):

6

Lemma 4 (Claim 5 in [7]). There exists a constant d such that the following holds for any
functions a(·) and t(·) with a(·) time-constructible and t(·) monotone. If PIT ∈ NTIME(t(N))
and {pern} ∈ ASIZE′(a(n)), then DTIME0,1-Perm[1][N] ⊆ NTIME[t(N · logdN · a(

√
N))].

We are now ready to prove Theorem 7.

Proof. (Theorem 7) We are done if {pern} 6∈ ASIZE′(poly), so assume that ASIZE′({pern}) ≤
n`, for ` ∈ N. Consider arbitrary k ≥ 1. Combining Lemmas 3 and 4, we obtain that for any
monotone function t(·), if PIT ∈ NTIME[t(N)], then ml·NTIME[t(N c2k · logdN c2k ·N c2`k/2)] 6⊆
ASIZE′(nk). As we are assuming that PIT ∈ NSUBEXP, if we apply this with t(N) = 2N

ε
, for

small enough ε, we get that ml·NTIME[2N] 6⊆ ASIZE′(nk). Since k was arbitrary, we get that
ml·NTIME[2N] 6⊆ ASIZE′(poly), which implies that ml·NEXP 6⊆ ASIZE′(poly).

Next we move on to the proof of Theorem 2.

Proof. (Theorem 2). Suppose that a·NEXPRP ⊆ ASIZE′(poly). Then a·EXP ⊆ ASIZE′(poly).
We claim that this implies that EXP ⊆ SIZE(poly). Let L ∈ EXP be any language. We
will show that L ∈ SIZE(poly). Since we can evaluate multilinear extensions (Proposition 2)
of characteristic functions of EXP languages within EXP itself, we get {Fn} in a·EXP, where
Fn is the multilinear extension of χL on {0, 1}n. We get that {Fn} ∈ ASIZE′(poly). This
means that we have constant-free (division-free) arithmetic circuits Φ1 and Φ2 of size at most
p(n) = nO(1), such that Φ2 does not contain variables and computes some nonzero constant
c ∈ Z. Furthermore, if Φ1 computes Gn then it holds that Gn = c · Fn. For input a ∈ {0, 1}n,
Fn(a) ∈ {0, 1} , which means for such inputs Gn(a) ∈ {0, c}. We want to evaluate Φ1 modulo
some prime number q that does not divide c. This will tell us χL(a). We have that |c| ≤ 22p(n)

due to Proposition 1. This means that c has at most 2p(n) prime factors. Hence, using the Prime
Number Theorem there exists a prime number q of p(n)2 bits, provided n is large enough, that
does not divide c. As our task is to show only the non-uniform upper bound L ∈ SIZE(poly),
mere existence of this number q suffices for our purposes, as we can hardcode it into the Boolean
circuit simulating Φ1 and Φ2. Hence EXP ⊆ SIZE(poly).

Babai, Fortnow, Lund [2] prove that EXP ⊆ SIZE(poly) ⇒ EXP = MA. So we get that
EXP = MA. Also, because easily {pern} ∈ a·NEXPRP, we have that {pern} ∈ ASIZE′(poly).
This implies that P#P ⊆ NPRP, cf. Lemma 5.3 in Ref. [6]. By Toda’s Theorem [15], MA ⊆ P#P.
Hence we obtain that EXP = MA ⊆ NPRP. By padding this implies that EEXP ⊆ NEXPRP.
Hence a·EEXP ⊆ a·NEXPRP ⊆ ASIZE′(poly). This is a contradiction. One can easily deduce
that a·EEXP 6⊆ i.o-ASIZE′(nlogn) by observing that Lemma 2 also holds if we allow k to depend
on n as k(n) = dlog ne.

We can specialize Lemma 4 so that we replace the condition “PIT ∈ NTIME(t(N)) and
{pern} ∈ ASIZE′(a(n))” by “low-PIT ∈ NTIME(t(N)) and {pern} ∈ ASIZEDEG′(a(n))” (See
Appendix B). This yields the following theorem (which implies Theorem 4):

Theorem 9. low-PIT ∈ NSUBEXP⇒ ml·NEXP 6⊆ ASIZEDEG′(poly).

4 Stronger Fixed Size Lower Bounds for MA

As the result we aim to strengthen puts somewhat different constraints on constants appearing
in arithmetic circuits compared to what we have seen so far, we make the following provisional
definition. Let ASIZEfree(s(n)) denote the class obtained from ASIZE(s(n)) by granting the
underlying circuits arbitrary constant labels ∈ Z. Similar to Theorem 8 we have the following
theorem.

7

Theorem 10. ∀k∃{fn} ∈ a·PH with {fn} 6∈ i.o-ASIZEfree(nk).

Proof. Consider the set of all arithmetic circuits of circuits of size nk with n inputs with constant
labels in Z. Evaluating such circuits modulo 2, this defines a class R of at most 2O(n2k) Boolean
functions {0, 1}n → {0, 1}. Let B be the class of all Boolean function f : {0, 1}n → {0, 1} such
that f(a) = 0, for all a where the number of 1s is not equal to 3k. Then |B| = 2(n3k). Hence
there exist fn ∈ B/R. We can represent element of B by strings of length

(
n
3k

)
. Similarly as in

the proof of Theorem 8, one can find fn ∈ B/R. Letting C be the class of arithmetic circuits of
size nk with constants labels ∈ {0, 1}, our goal for this is the following:

• Find the lexicographically least fn ∈ B such that for all Ψ ∈ C there exists a ∈ {0, 1}n
such that Ψ(a) mod 2 6= f(a).

We conclude that we can compute fn in FPPH. Applying Proposition 2, we take Fn to be the
multilinear extension of fn. We have that {Fn} 6∈ ASIZEfree(nk). Namely, if this were not
true, then reducing modulo 2, we obtain a circuit in C that coincides with Fn on {0, 1}n, but
for such inputs Fn coincides with fn. Finally, as fn can be computed in FPPH, and we only
have

(
n
3k

)
= O(n3k) terms in the outermost sum in the definition of Fn, we can easily evaluate

Fn for integer inputs in FPPH. This implies that E({Fn}) ∈ PPH ⊆ PH.

We want to strengthen Theorem 4 of [11], which we can reformulate it in our terminology
as follows:

Theorem 11 ([11]). For every k, either 1) MA 6⊆ SIZE(nk), or 2) a·MA 6⊆ ASIZEfree(nk).

We will show that for every k, the second item holds by itself. Let us briefly remark on a
technical issue related to this reformulation. For {fn}, where fn is a integer polynomial over n
variables, Ref. [11] uses the notion Gh({fn}) = {(~x, v)|fn(~x) = v}, and proves that for every k,
either MA 6∈ SIZE(nk), or there exists {fn} 6∈ ASIZEfree(nk) with Gh({fn}) ∈ MA. We prefer
to work with the evaluation language E({fn}) instead of Gh({fn}). One can observe that the
argument we give to strengthen Theorem 11 can be easily modified to work with Gh(·) instead.
Consider the following proposition:

Proposition 4. If {pern} ∈ ASIZEfree(poly), then 1) 0, 1-permanent of an n× n matrix over
Z can be computed with poly(n) size Boolean circuits, and 2) PH ⊆ MA.

For the above, it is argued in Ref. [11], proof of Theorem 4, that the first item follows
from {pern} ∈ ASIZEfree(poly), and that the second item follows from the first. The following
theorem implies Theorem 3 from the introduction:

Theorem 12. For any fixed k, there exists {fn} ∈ a·MA/ASIZEfree(nk).

Proof. We show that Item 2 of Theorem 11 holds by itself. For this, we indicate how the
proof of Theorem 4 in Ref. [11] must be modified. This proof conditions on the predicate
{pern} ∈ ASIZEfree(poly). If this is not true, the proof there can easily be modified to use
E(·) instead of Gh(·), which then yields the statement of the theorem. Otherwise, suppose that
{pern} ∈ ASIZEfree(poly). By Proposition 4 we have that PH ⊆ MA. The latter implies that
a·PH ⊆ a·MA. Hence in this case Item 2 holds also, due to Theorem 10.

8

5 A Characterization of Derandomization for low-PIT

We will use the algebraic hardness-to-randomness framework of Ref. [6]. The refinement that we
make here is to show that it suffices to start with a weaker4 ASIZEDEG′-hardness assumption
rather than ASIZE′-hardness, in case we only need to cater for low-PIT.

For a polynomial f(x, y) ∈ F[x1, . . . , xn, y] and p(x) ∈ F[x1, . . . xn], f|y=p denotes the poly-
nomial obtained by substituting p for y in f . We will also write this polynomial as f(x, p). In
case f|y=p = 0, we say that p is a root of f for y. The following is our degree-efficient root
extraction lemma:

Lemma 5. Suppose that f ∈ Z[x1, . . . , xn, y] is a nonzero polynomial computed by a division-
free constant free arithmetic circuit of size s and formal degree D. Suppose that p ∈ Z[x1, . . . , xn]
is a root of f for y. Then there exist constant-free division-free arithmetic circuits Φ1 and Φ2

of size and formal degree bounded by poly(n, s,D,L) such that the following are true:

1. Φ1 computes a polynomial q ∈ Z[x1, . . . , xn].

2. Φ2 does not contain variables. It computes a nonzero constant c ∈ Z.

3. It holds that c · p = q.

4. L bounds the maximum bit size of p(x) on {0, 1, . . . , dpdf}n, where df and dp are the
degrees of f and p, respectively.

The proof of the above lemma follows by analyzing the degree blow-up in the root extraction
method of Ref. [5]. As this procedure involves Newton iteration it is a priori not at all clear
that formal-degrees are well-behaved, but this turns out to be true.

5.1 Proof of Lemma 5

We use the following proposition for the proof of Lemma 5:

Proposition 5. Let f(x1, . . . , xn, y) be a polynomial of degree df that is computed by a constant-
free division-free arithmetic circuit Φ of size s and formal-degree d. Then ∂rf

∂ry can be computed by
a constant-free division-free arithmetic circuit of size O(sd2

f +rdf) and formal degree d+df +r.

Proof. We sketch the proof. First write f =
∑df

i=0 y
ici(x1, . . . , xn). By computing degree

components separately for all gates of Φ, we obtain an arithmetic circuit of size O(sd2
f) and

formal degree at most d computing c0, c1, . . . , cdf separately. Then we compute y, y2, . . . , ydf−r

within size and degree O(df). We compute for each i ≥ r, i(i − 1) . . . i − r + 1) within size
O(rdf) and degree r. We then put together a circuit for ∂rf

∂ry =
∑df

i≥r i(i − 1) . . . (i − r +
1)yi−rci(x1, . . . , xn) that is of size O(sd2

f + rdf) and formal degree at most d+ df + r.

For a polynomial f ∈ F[X], we denote by f=i, or if it is clear from the context simply fi,
the homogeneous component of degree i. We also use the notation f≤i, which is defined as
f0 + f1 + . . .+ fi. We have the following lemma:

Lemma 6 (Gauss). Let f ∈ F[X, y] be a nonzero polynomial, and let p ∈ F[X] be a root of f
for y. Then p− y is an irreducible factor of f in the ring F[X, y].

In the above situation, the multiplicity of the root p is defined to be the largest number m
such that (p− y)m divides f . We use the following lemma:

4See Section 2 for some remarks pertaining to these measures when dealing with families of poly-degree.

9

Lemma 7 ([5]). Let f ∈ F[X, y] and let f ′(x, y) := ∂f
∂y . Let p ∈ F[X] be a root of f for y, and

assume that ξ0 := f ′(0, p(0)) 6= 0. Then ∀k ≥ 1 it holds that p≤k+1 = p≤k − 1
ξ0
· f(x, p≤k)=k+1.

We now give the proof of Lemma 5. Let M be the multiplicity of the root p in f . One
first reduces to the case where M = 1 by taking partial derivatives. Namely, as shown in Ref.
[5], if f = (y − p)r · g, with g not divisible by (y − p), then p is a root of multiplicity one the
nonzero polynomial ∂

r−1f
∂y . This blows up the size and formal degree of the circuit we are trying

to extract from to O(sd2
f +Mdf) and D + df +M, respectively, due to Proposition 5. Note

that M can be bounded by df . We conclude that wlog. we may assume that M = 1.
Let f ′ = ∂f

∂y . We have that f ′(x, p) 6≡ 0. Namely, f = (y − p) · g with g not divisible by

(y − p). So f ′ = g + (y − p) · ∂g∂y . Hence f ′(x, p) = g(x, p) 6≡ 0 by Lemma 6.
One next reduces to the case f ′(0, p(0)) 6= 0 by making a coordinate shift. Let F = f(x +

a0, y) and P = p(x + a0), where a0 ∈ Zn is such that f ′(a0, p(a0)) 6= 0. Note we can find such
a0 as f ′(x, p) 6≡ 0. let F ′ = ∂F

∂y . Then P is a root of F and F ′(0, P (0)) = f ′(a0, p(a0)) 6= 0. We
have that deg(f ′(x, p)) ≤ dpdf . Hence by Lemma 1 we can find a0 ∈ {0, 1, . . . , dpdf}n such that
f ′(a0, p(a0)) 6= 0. This means entries of a0 are O(log dpdf)) many bits . So we can compute
all n entries by going over the binary expansion by a constant-free arithmetic circuit of size
O(n log dpdf)). This is an inconsequential blow-up. One does the root extraction for P from F ,
and then apply the reverse coordinate shift to obtain p. Also the latter can be done at ignorable
cost as it only add O(n log dpdf)) circuitry.

Let L′ bounds the maximum bit size of f ′(x, p(x)) and p(x) on {0, 1, . . . , dpdf}n, where
f ′ = ∂f

∂y . We can conclude that for the rest of the proof we may assume that ξ0 := f ′(0, p(0)) 6= 0,
where we have that the bit size of ξ0 and p(0) is bounded by L′. This means that ξ0 and p(0)
can be computed by a constant-free (division-free) arithmetic circuit of size and formal degree
O(L′).

Let Φ be a constant-free division-free arithmetic circuit of size s computing f . We will first
construct an arithmetic circuit Ψ with gates in {+,×} that computes p that using constants
∈ {−1, 0, 1} ∪ {− 1

ξ0
}. The constant − 1

ξ0
will be used in Ψ only at multiplications gates to

compute a division by −ξ0. In a second step we remove divisions by −ξ0 to finally obtain Φ1

and Φ2.
By Lemma 7, pi = − 1

ξ0
f(x, p≤i−1)i, for each i > 0. We use this equation to compute

p0, p1, . . . , pdp in stages, using a copy of Φ each time. Wlog. we assume there is a single gate h
in Φ that carries the label y. Let g be the output gate of Φ.

To start the construction, at stage i = 0 we must compute p0. This is the constant term
of p, i.e. p(0). We observed above that we have a constant-free arithmetic circuit of size and
formal degree O(L′) computing p(0).

We now describe stage i > 0. In the circuit constructed so far there are gates
G0, G1, . . . , Gi−1 computing p0, p1, . . . , pi−1, respectively. We will use a copy Φi of Φ, but where
for each gate we compute the homogeneous components up to degree i separately. This means
that for each gate v in Φ there exists a corresponding gate vi,j in Φi for all j ∈ {0, 1, . . . , i}. In
other words, we use a naming scheme where the first index specifies which copy, and the second
index specifies the degree. Wlog. we assume all addition and multiplication gates in Φ have
fan-in two. We add circuitry to Ψ as follows. For each v in Φ, excluding g and h,

• if v is an addition gate with inputs u and w, then in Φi, vi,j is an addition gate with
inputs ui,j and wi,j , for all j ∈ {0, 1, . . . , i}.

• if v is an multiplication gate with inputs u and w, then in Φi, for all j ∈ {0, 1, . . . , i}, we
add gates computing ui,`wi,m for all `+m = j. Then we make vi,j an addition gate so it
computes vi,j =

∑j
t=0 ui,twi,j−t.

10

We also do the following:

• For the gate h (which is labeled by y) in Φ, for each 0 ≤ j ≤ i − 1, the gate hi,j in Φi is
an addition gate with dummy input zero and input from Gj . The gate hi,i is a input gate
labeled with the constant zero. This effectively achieves setting y := p≤i−1.

• For the output gate g in Φ, we have that the corresponding gate gi,i computes f(x, p≤i−1)i.
We add one more multiplication gate, named Gi, that multiplies with − 1

ξ0
(we allocate

globally one constant gate labeled − 1
ξ0

). We have that Gi computes pi.

The above is repeated up to stage i = dp, at which point the construction of Ψ is completed
by adding a single addition gates which computes p0 +p1 + . . .+pdp . We will analyze the formal
degrees of nodes added by the construction. Let D′ = D ·D′′, where D′′ = O(L′) is the formal
degree of the circuit computing p(0). Let v1, v2, . . . , vs be a topological sort of the gates of Φ,
where v1 = h (the unique node with label y) and vs = g (the output gate). Thus for each
k ∈ [s], we have for 1 ≤ i ≤ dp and 0 ≤ j ≤ i a corresponding node vki,j in Ψ. In what follows,
for a node vk in Φ, deg(vk) denotes the formal degree of vk in Φ, whereas deg(vki,j) denotes
formal degree of node vki,j in Ψ.

Claim 1.

deg(vki,j) ≤
{
α(i, k)D′j if j ≥ 1
D′ if j = 0

,

for all 1 ≤ k ≤ s and i ≥ max(1, j), where α(i, k) = is+ k.

Proof. We prove this claim by simultaneous induction on j and the value of the function α(i, k).
Base Case j = 0. Nodes of the form v1

i,0 are addition gates taking input from the gate G0

that computes p(0) together with a dummy constant zero gate. The degree of G0 is bounded
by D′′. Nodes of the form vki,0 for k 6= 1 compute a constant that is equal to the output of the
gate vk in Φ(0, p(0)). Hence we can assume that the formal degree of such a node is bounded
by D ·D′′, as D bounds the formal degree in Φ(0, y).

Base Case α(i, k) = s+ 1. The lowest value α(i, k) can obtain is s+ 1. This happens for
i = 1 and k = 1. The node v1

1,j corresponds to the input gate labeled with y. In case j = 0
it receives input from G0, which means formal degree is bounded by D′′. In case j = 1 it is a
constant zero gate. In both cases Claim 1 holds.

Induction Case j > 0.
Consider an arbitrary node vki,j in Ψ with j > 0. We now make a case distinction bases on

the type of the corresponding gate vk in Φ. We will apply the induction hypothesis whenever
we have lowered the value of j or have decreased the value of the function α(i, k).

Subcase 1: vk is a constant labeled gate. Then vki,j is labeled by a constant also, and
thus has degree at most 1.

Subcase 2: vk is a x-labeled gate. In this case vki,j is labeled with x if j = 1 and labeled
with 0 otherwise. Hence degree is at most 1.

Subcase 3: vk is the y-labeled gate, i.e. k = 1. In case i = j then vki,j is an input
gate labeled with the constant 0, and the bound of Claim 1 clearly holds. For j < i, by the
construction deg(vki,j) = deg(Gj) = 1 + deg(vsj,j). Note that α(j, s) = (j + 1)s ≤ is < is + k =
α(i, k). We have lowered the value of α and thus can apply the induction hypothesis to get
deg(vki,j) ≤ 1 + (j + 1)sD′j. We thus need to check that 1 + (j + 1)sD′j ≤ (is + k)D′j. This
holds iff 1

D′j + (j + 1)s ≤ (is+ k). This is true as j + 1 ≤ i, k = 1 and D′j ≥ 1.
Subcase 4: vk is an addition gate. Say vk = +(v`, vm), where obviously `,m < k.

Then vki,j = +(v`i,j , v
m
i,j). Hence deg(vki,j) = max(deg(v`i,j), deg(vmi,j)). Note that we can apply

11

for the latter the induction hypothesis based on the value of α. We get deg(vki,j) ≤ max((is +
`)D′j, (is+m)D′j) ≤ (is+ k)D′j.

Subcase 5: vk is a multiplication gate. Say vk = ×(v`, vm), where `,m < k. Then,
per abuse of notation, we have that vki,j =

∑j
t=0 v

`
i,t · vmi,j−t. The degree of vki,j is the maximum

degree of deg(v`i,t · vmi,j−t), where the latter (abusive) notation is intended to denote the formal
degree of the intermediate multiplication gate allocated in the construction which takes inputs
from v`i,t and vmi,j−t. Similarly, by writing vki,j =

∑j
t=0 v

`
i,t · vmi,j−t we mean that gate vki,j is a sum

gate taking inputs from all such intermediate multiplication gates. We consider the terms of this
expression separately. We treat the case t = 0 and the symmetrical case t = j first. We have
that deg(v`i,0 · vmi,j) = deg(v`i,0) + deg(vmi,j). Note that by induction on j, deg(v`i,0) ≤ D′ and that
by induction on the value of α, deg(vmi,j) ≤ (is+m)D′j. So deg(v`i,0 · vmi,j) ≤ D′ + (is+m)D′j.
We have that D′ + (is + m)D′j ≤ (is + k)D′j iff 1

j + (is + m) ≤ (is + k). The latter holds as
m ≤ k − 1 and j ≥ 1.

Now consider case where 0 < t < j. In this case we apply the induction hypothesis on j for
both terms. Hence deg(v`i,t · vmi,j−t) = deg(v`i,t) + deg(vmi,j−t) ≤ (is+ `)D′t+ (is+m)D′(j − t) <
(is+ k)D′t+ (is+ k)D′(j − t) = (is+ k)D′j.

We have verified Claim 1.

By Claim 1 we can conclude that the formal degree of Ψ is at most dp(dp + 1)sD′ =
poly(s,D,L′, dp). Taking into account the size blow-up due to preprocessing we get that
p can be compute by an arithmetic circuit of formal degree poly(n, s,D,L′, dp, df). This is
poly(n, s,D,L′, df) as dp ≤ df . The latter circuit still uses the constant −1

ξ0
at multiplication

gates, which we will treat next. Wlog. we can ignore the minus sign as we can compute −1
ξ0

from 1
ξ0

with inconsequential increase in size and degree. So we assume our task is to remove
a single gate with label 1

ξ0
. First we replace the label 1

ξ0
by a new variable z to get a circuit

Ψ′ computing a polynomial q(x, z) such that q(x, 1
ξ0

) = p. Let D′′′ be the formal degree of
Ψ′, then D′′′ = poly(n, s,D,L′, df). Let s′ = poly(n, s,D,L′, df) be the size of Ψ′. We can
write q =

∑D′′′

i=0 z
ici(x1, . . . , xn). Hence ξD

′′′
0 · p =

∑D′′′

i=0(ξ0)D
′′′−ici(x1, . . . , xn). Recall ξ0 can

be computed within size and formal degree O(L′). Hence the integer ξD
′′′

0 can be computed
by an arithmetic circuit of size O(L′ + D′′′) and formal degree O(D′′′L′). This is the circuit
Φ2 as mentioned in the statement of the lemma. We can construct an arithmetic circuit from
Ψ′ computing c0, c1, . . . , cD′′′ separately with size O(s′(D′′′)2) and formal degree D′′′. We can
compute ξ0, ξ20 , . . . , ξ

D′′′
0 separately in size O(L′ +D′′′) and formal degree O(D′′′L′). From this

we construct the circuit Φ1 computing
∑D′′′

i=0(ξ0)D
′′′−ici(x1, . . . , xn). We may conclude that size

an formal degree of both Φ1 and Φ2 are poly(n, s,D,L′, df).
To finish the proof, we show that we can replace the parameter L′ by L. By Proposition 5,

we have that f ′ can be computed by a constant-free circuit of size O(sd2
f) and formal degree

D+df+1. By Corollary 1 we get that f ′(x, p(x)) has bit sizeO(sd2
f (D+df+1) max(L, log dfdp)2)

on {0, 1, . . . , dfdp}n. The bit size of p(x) on {0, 1, . . . , dfdp} is bounded by L by definition. hence
we get that L′ = poly(s, df , dp, D, L) = poly(s, df , D, L). Finally, we can also drop df in the
statement of the bound as df ≤ D. This completes the proof of Lemma 5.

5.2 Hardness-Randomness Trade-Offs

We need the following lemma:

Lemma 8 (Nisan-Wigderson Design [10]). Let n,m be integers with n < 2m. There exists a
family of sets S1, S2, . . . , Sn ⊆ [`], such that 1) ` = O(m2/ log n), 2) For each i, |Si| = m, and

12

3) For every i 6= j, |Si ∩ Sj | ≤ log n. Furthermore, the above family of sets can be computed
deterministically in time poly(n, 2`).

Define NW p as follows. For parameters `,m, n, construct the set system S1, S2, . . . , Sn as
in Lemma 8. Then for a1, a2, . . . , a` ∈ F, and a polynomial p in m variables, NW p(a) =
(p(a|S1

), p(a|S2
), . . . , p(a|Sn)). The following lemma is proved using a hybrid argument, cf.

Lemma 7.6 in [6]:

Lemma 9. Let n and m be integers with n < 2m and m < n. Suppose we are given a nonzero
polynomial f ∈ Z[y1, . . . , yn] of degree df and a multilinear polynomial p ∈ Z[x1, . . . , xm] with
coefficients of bit size at most me, for some integer constant e ≥ 1. Assume that f can be
computed by a division free constant-free arithmetic circuit of size s and formal degree D. Let
S ⊆ Z be any set of size |S| > dfm, and let ` be given by Lemma 8. Suppose that f(NW p(a)) = 0
for all a ∈ S`. Then there exists q ∈ Z[x1, . . . , xm] and c ∈ Z/{0} such that p = q/c, where
q and c can be computed by constant-free division-free arithmetic circuits of size and formal
degree poly(n,me, s,D).

Proof. Define

f0 = f(y1, y2, . . . , yn)
f1 = f(p(x|S1

), y2, . . . , yn)
...

fn = f(p(x|S1
), p(x|S2

), . . . , p(x|Sn)).

Note that fn is a polynomial of degree at most dfm. By assumption fn(a) = 0 for all a ∈ S`.
Hence by Lemma 1 we have that fn ≡ 0. On the other hand f0 6≡ 0. Let i be the smallest
number such that fi 6≡ 0 and fi+1 ≡ 0. Consider the polynomial fi:

fi = f(p(x|S1
), p(x|S2

), . . . , p(x|Si), yi+1, . . . , yn)

We want to set x-variables not in Si+1 and yi+2, . . . , yn to certain integer values, while keeping
the polynomial nonzero, and furthermore argue this new polynomial can be computed by a
small constant-free arithmetic circuit. By Lemma 1 there exists values in {0, 1, . . . , df} for
removing the y-variables, while leaving the polynomial nonzero. We can compute these values
with a constant-free circuit of size at most O(df) and formal degree 1. Also by Lemma 1 we
get that there exist values in {0, 1, . . . , dfm} for removing x-variables not in Si+1. Consider
p(x|Sj) for j ≤ i. After fixing values not in Si+1 we obtain a multilinear polynomial in at
most log n variables. We can bound the absolute value of any coefficient of a monomial in this
polynomial by (dfm)m2m2m

e
, i.e. O(me(log df +logm)) bits. We can conclude that after fixing,

the polynomial resulting from p(x|Sj) can be computed by a constant-free arithmetic circuit of
size O(n log n · me(log df + logm)) and formal degree O(me(log df + logm) · log n). Putting
everything together, we conclude that there exists a nonzero polynomial g(x|Si+1

, yi+1) that can
be computed by a constant-free arithmetic circuit of size O(s+df +n2 log n ·me(log df +logm))
and formal degree O(D · me(log df + logm) log n) such that p(x|Si+1

) is a root for yi+1 of g.
We now apply root extraction Lemma 5. The bit size of p on {0, 1, . . . , dfm} can be bound by
O(me(log df + logm)). We obtain arithmetic circuits Φ1 and Φ2 computing a polynomial q and
a nonzero integer c such that p · c = q. The size and formal degree of Φ1 and Φ2 are bounded
by poly(n,me, df , s,D) = poly(n,me, s,D).

Our first trade-off is as follows:

13

Theorem 13. ml·NEXP 6⊆ ASIZEDEG′(poly(n))⇒ low-PIT ∈
⋂
ε>0 i.o-NTIME[2N

ε
].

Proof. Consider a family {pm} ∈ ml·NEXP that is not in ASIZEDEG′(poly). By reindexing we
can assume wlog. that pm is defined over m variables. Let e be such that coefficients of pm are
at most me bits. We have that for every k, there exist infinitely many m such that pm cannot be
written as pm = fm/cm, where fm and cm ∈ Z/{0} are computed by constant-free division-free
arithmetic circuits of size and formal degree at most mk. The m ∈ Z that satisfy this property
we call the good indexes for k. We use the fact that a·NEXP = a·(NEXP ∩ coNEXP). This
means that we there exists a constant d and a nondeterministic flag machine M running in time
2(n′)d for inputs of size n′ that can compute the characteristic function of E({pm}) on a given
input, cf. Proposition 3.

Let c0 be an absolute constant that bounds the overhead of Lemma 9, in the sense that for
the case n = s = D we can write an upper bound of nc0mec0 for the bound poly(n,me, s,D)
given by the lemma. We will describe an i.o-NSUBEXP algorithm for low-PIT. Let Φ be a
constant-free (division-free) arithmetic circuit of size N computing f . First we check that the
formal degree of Φ is bounded by N , if not reject.

Let m = bN1/rc, where r is chosen arbitrarily large. We claim that for infinitely many input
lengths N the following test property holds: for every constant-free arithmetic circuit Ψ of size
N , Ψ ≡ 0 ⇔ (∀a ∈ S`),Ψ(NW pm(a)) = 0, where S = [Nm + 1] with ` = O(m2/ logN) taken
according to Lemma 8. This follows from Lemma 9. Namely, let k = c0(r + e) and let M be
the set of good indexes for k. Then M is an infinite set. Consider input lengths N of the form
N = (N ′)r, where N ′ ∈M. For such N , we set m = N ′. The test property can only be violated
if for some Ψ of size N we have that Ψ 6≡ 0, while (∀a ∈ S`),Ψ(NW pm(a)) = 0. By Lemma 9
we obtain that pm can be written as pm = fm/cm, for fm and cm ∈ Z/{0} that are computed by
constant-free arithmetic circuits of size and formal degree at most N c0mc0e = (m)c0(r+e) = mk.
We know the latter does not hold for m ∈M.

We continue the description of the algorithm. We produce a set H to sample Φ with, namely
we take H to be the output of NW pm(·) on S`. We have that |H| = (Nm+ 1)` = 2O(N2/r logN).
We do simulations of the machine M for E({pm}) to get all the bits of all the evaluations of pm(·)
on S`. As pm is multilinear with coefficients of bit length at most me, we can bound the bit size
of any such evaluation by O(me log(Nm)). This means that the inputs (1m, a1, . . . , am, i, b) that
we simulate M on, have bit size O(m log(Nm)) (recall that i is given in binary). The simulation
for a single such input thus costs NTIME[2O(md logd(Nm))] = NTIME[2O(Nd/r logdN)]. To get all
bits of an evaluation for a single element in H therefore takes at most NTIME[O(me log(Nm)) ·
2O(Nd/r logdN)], which we can bound as NTIME[2O(Nd/r logdN)]. To construct the entire set H
we can use the same asymptotic time bound assuming wlog. that d ≥ 2.

If during the process of obtaining all the bits we obtain a flag bit set to 0, we reject. This
means that on every path where we pass this check, we have obtained a hitting set, unless N
is an input length where the test property is not satisfied. On these paths, we continue to
verify deterministically that f(h) = 0 for all h ∈ H. If yes, then we accept, else reject. By our
previous remarks, for infinitely many N , this correctly decides whether Φ ≡ 0.

Let us consider the cost of evaluation of Φ on elements of H. For a ∈ S` and subset
Sj in the Nisan-Wigderson design, the bit size of pm(a|Sj) is O(me log(Nm)). By Corol-
lary 1 this means that the absolute value of any gate of Φ for input NW pm(a) is at most
2O(N2m2e log2(Nm)) = 2N

O(1)
. Thus intermediate values can be represented by poly(N) bits.

We conclude that evaluation of Φ on a single element of the test set H cost time poly(N).
We can conclude the entire cost of our test algorithm is NTIME[2O(Nd/r logdN)]. As r can be
chosen arbitrarily large and d is an absolute constant not depending on r, we conclude that
low-PIT ∈

⋂
ε>0 i.o-NTIME[2N

ε
].

14

5.2.1 Proof of Theorem 5

The following corollary to Lemma 9 follows straightforwardly:

Corollary 2. Let e : R≥0 → R≥0 be an monotone non-decreasing function with e(n) = ω(1)
and ne(n) < 2n. Suppose that {pn} is a family of multilinear polynomials in n variables with
coefficients of bit size at most ne

′
for some integer e′, such that ASIZEDEG′(pn) > ne(n). Then

there exists an absolute constant c > 0 such that for any division-free constant-free arithmetic
circuit Φ of size n with deg(Φ) ≤ n, if we take m such that me(m)−e′c > nc and let ` be
given by Lemma 8, then for all large enough n, Φ ≡ 0 ⇔ (∀a ∈ S`),Φ(NW pm(a)) = 0, where
S = [nm+ 1].

We will describe an NSUBEXP algorithm for low-PIT. Let Φ be an arithmetic circuit of
size N , and let f be the polynomial computed by it. First we check that the formal degree
of Φ is bounded by N , if not reject. Else, consider the given family {pm} ∈ ml·NEXP. By
reindexing we may assume wlog. that pm is defined over m variables. Let e′ ≥ 1 be such that
pm has coefficients of bit size at most me′ .

We use the fact (Proposition 3) that a·NEXP = a·(NEXP∩ coNEXP). This means that we
have a nondeterministic flag machine M running in time 2(n′)d for inputs of size n′ that can
compute the characteristic function of E({pm}), where d is an absolute constant.

Let c be the constant given by Corollary 2. Let m = min{m : me(m)−ce′ > N c}. An
easy argument shows that m = No(1). We can compute m by linear search in time poly(N)
by repeatedly computing r(i) := ie(i)−e

′c for i = 1, 2, . . ., until the first r(i) > N c is found.
There will be No(1) iterations, each taking poly(N, e(N)) = poly(N) time. By Corollary 2,
there exists N0 such that for all N ≥ N0 the following test property holds: Φ ≡ 0 ⇔ (∀a ∈
S`),Φ(NW pm(a)) = 0, where S = [Nm+1] with ` = O(m2/ logN) taken according to Lemma 8.
We can hardcode the thresholdN0 in our algorithm, and perform a brute-force check forN < N0.
For N ≥ N0 we operate as follows. We produce a set H to sample Φ with, namely take H to
be the output of NW pm(·) on S`. We have that |H| = (Nm+ 1)` = 2N

o(1)
.

We do simulations of the machine M for E({pm}) to get all the bits of all the evaluations of
pm(·) on S`. As pm is multilinear with coefficient of at most me′ many bits, we can bound the bit
size of any such evaluation by O(me′ log(Nm)). This means that the inputs (1m, a1, . . . , am, i, b)
that we simulate M on, have bit size O(m log(Nm)) (recall i is given in binary). The simulation
for a single such input thus costs NTIME[2O(md logd(Nm))] = NTIME[2N

o(1)
]. To get all bits of an

evaluation for a single element in H therefore takes at most NTIME[O(me′ log(Nm)) · 2No(1)
] =

NTIME[2N
o(1)

]. To construct the entire set H thus takes NTIME[2N
o(1)

].
If during the process of obtaining all the bits we obtain a flag bit set to 0, we reject. This

means that if on every path where we pass this check, we have obtained a hitting set, provided
N is large enough. On the path where we pass this check, we continue to verify deterministically
that f(h) = 0 for all h ∈ H. If yes, then we accept, else reject. By our previous remarks, for
infinitely many N , this correctly decides whether Φ ≡ 0.

Let us consider the cost of evaluation of Φ on elements of H. For a ∈ S` and subset
Sj in the Nisan-Wigderson design, the bit size of pm(a|Sj) by O(me′ log(Nm)). By Corol-
lary 1 this means that the absolute value of any gate of Φ for input NW pm(a) is at most
2O(N2m2e′ log2(Nm)) = 2N

O(1)
. Thus intermediate values can be represented by poly(N) bits. We

conclude that evaluation of Φ on a single element of the test set H cost time poly(N). We can
conclude the entire cost of our test algorithm is NTIME[2N

o(1)
].

15

5.2.2 Proof of Theorem 6

We first prove the hardness-to-randomness direction. We use the following straightforward
corollary to Lemma 9:

Corollary 3. Let s(n) = nω(1) be a function. Suppose that {pn} is a family of multilinear
polynomials in n variables with coefficients of bit size at most ne

′
for some integer e′, such

that pn cannot be written as qn/cn for cn ∈ Z\{0} for any qn and cn computed by constant-
free arithmetic circuits of size s(n). Then there exists an absolute constant c > 0 such that
for any division-free constant-free arithmetic circuit Φ of size n with deg(Φ) ≤ n, if we take
m such that s(m) · m−e′c > nc and let ` be given by Lemma 8, then for all large enough n,
Φ ≡ 0⇔ (∀a ∈ S`),Φ(NW pm(a)) = 0, where S = [nm+ 1].

We will describe an i.o-NTIME[2n
o(1)

]/no(1) algorithm for low-PIT. Let Φ be an arithmetic
circuit of size N , and let f be the polynomial computed by it. First we check that the formal
degree of Φ is bounded by N , if not reject. Else, consider the given family {pm}. By reindexing
we may assume wlog. that pm is defined over m variables. Let e′ ≥ 1 be such that pm has
coefficients of bit size at most me′ . We have that for infinitely many m, pm has ASIZEDEG′-
hardness larger than s(m), where s(m) = mω(1). The m that have this property we call good.

We use the complementation property for ml·NE/lin, cf. Proposition 3 and the comment
thereafter. This means that we have a nondeterministic flag machine M running in time 2O(n′)

with O(n′) bits of advice for inputs of size n′ that can compute the characteristic function of
E({pm}) Let c be the constant given by Corollary 2. For input size N the algorithm receives
two strings of advice α and β. First, if there exists a good m0 such that s(m0)(m0)−ce

′ ∈
[N c, (N + 1)c], then α = 1m0 . If there is no such m0, then α is set to the empty string. A
simple argument shows that |α| = No(1). For the second piece of advice β we obtain the advice
M needs so we can complete the simulations which we describe below (we will analyze this in
more detail there).

In case the algorithm receives the empty string for α, it halts and rejects. Otherwise, we
set m = m0. Note that as N c is a strict monotone increasing function it must be that for
infinitely many N we obtain a good m0 as advice. By Corollary 2, provided N is large enough,
the following test property holds: Φ ≡ 0 ⇔ (∀a ∈ S`),Φ(NW pm(a)) = 0, where S = [Nm + 1]
with ` = O(m2/ logN) taken according to Lemma 8.

Let us continue the description of the algorithm. We produce a set H to sample Φ with,
namely take H to be the output of NW pm(·) on S`. We have that |H| = (Nm+ 1)` = 2N

o(1)
.

We do simulations of the machine M for E({pm}) to get all the bits of all the evaluations of
pm(·) on S`. As pm is multilinear with coefficient of at most me′ many bits, we can bound the bit
size of any such evaluation by O(me′ log(Nm)). This means that the inputs (1m, a1, . . . , am, i, b)
that we simulate M on, have bit size O(m log(Nm)) (recall i is given in binary). For the string
β we give the advice that M needs for all input lengths up to this maximum bit size, which
is O(m2 log2(Nm)) = No(1) in total. Given such advice, the simulation for a single such input
thus costs NTIME[2O(m log(Nm))] = NTIME[2N

o(1)
]. To get all bits of an evaluation for a single

element in H therefore takes at most NTIME[O(me′ log(Nm))·2No(1)
] = NTIME[2N

o(1)
] with the

same amount of advice. We conclude that we can construct the entire set H in NTIME[2N
o(1)

]
with No(1) advice.

If during the process of obtaining all the bits we obtain a flag bit set to 0, we reject. This
means that if on every path where we pass this check, we have obtained a hitting set, provided
N is large enough. On the path where we pass this check, we continue to verify deterministically
that f(h) = 0 for all h ∈ H. If yes, then we accept, else reject. By our previous remarks, for
infinitely many N , this correctly decides whether Φ ≡ 0.

16

Let us consider the cost of evaluation of Φ on elements of H. For a ∈ S` and subset
Sj in the Nisan-Wigderson design, the bit size of pm(a|Sj) by O(me′ log(Nm)). By Corol-
lary 1 this means that the absolute value of any gate of Φ for input NW pm(a) is at most
2O(N2m2e′ log2(Nm)) = 2N

O(1)
. Thus intermediate values can be represented by poly(N) bits. We

conclude that evaluation of Φ on a single element of the test set H cost time poly(N). We can
conclude the entire cost of our test algorithm is NTIME[2N

o(1)
] with No(1) advice, and that

for infinitely many input lengths N the algorithm is correctly decides low-PIT. This concludes
the proof of the hardness-to-randomness direction.

Next we prove the converse direction. Suppose that low-PIT ∈ i.o-NTIME[2n
r(n)

]/r(n) for
some r(n) = ne(n), where e(n) = o(1). We assume wlog that e(n) is monotonically decreasing.
We are done if {pern} 6∈ ASIZEDEG′(poly), so assume that {pern} has size and formal degree
upper-bounded by n`, for ` ∈ N. Let k(n) = O(log(n)) be a monotonically increasing slowly
growing function of n, which we shall specify more carefully later.

Using the proof strategy of Lemma 3 we know that when nk(n) is time-constructible there
exists a constant c2 and a deterministic Turing machine M0 running in time nc2k(n) making
queries to 0, 1-permanent, so that M0 on input 1n can construct the description of a multilinear
polynomial fn in n variables of degree 3k(n) that, for all but finitely many n, cannot be written
as fn = gn/cn for polynomial gn and integer constant cn computable by size nk(n) constant-free
circuits. We will not be able to ensure constructibility of nk(n) - instead, we give M0 advice
which specifies k(n). Wlog. M0 makes queries that are all of the same length m2 to perm with
m(n) = nc3k(n) for some integer constant c3.

Also we have a machine M1 running in NTIME[2r(n)]/r(n) for deciding low-PIT. This
machine correctly decides instances of low-PIT for infinitely many input lengths. Using the
ideas in the proof of Lemma 4, we can show that for the function R(m) = dml+1 · logdme, we
can reduce testing a candidate circuit for perm of size ml to a low-PIT instance of size R(m).
Call a length n good if there exists `0 ∈ [R(nc3k(n)), R((n + 1)c3k(n))] such that M1 is correct
for instances of size `0. We choose k(n) so that R(N c3k(n))e(n) < N . For instance, choosing
k(n) = 1/(c3(l+2)e(n)) would suffice. Since e(n) = o(1) and monotonically decreasing, we have
that k(n) = ω(1) and monotonically increasing, but without loss of generality we can assume
e(n) is large enough that k(n) = O(log(n)).

We construct the following nondeterministic Turing machine M for deciding the evaluation
language of a family of polynomials {hn}. The polynomial hn will be fn for n good, and 0 for
n bad. On input (1n, a1, a2, . . . , an, i, b) of size N the machine requires four types of advice. It
receives anN -bit string indicating for all lengths in [N] whether they are good or not. If there are
no good lengths in this input the rest of the advice can be arbitrary. Otherwise, for the largest
n0 ∈ [N] that is good we give in binary the good length `0 in [R(nc3k(n0)

0), R((n0 + 1)c3k(n0))]
and we give a string γ of (`0)e(`0) bits of advice the machine M1 needs to correctly run at the
input length `0. The fourth type of advice is simply an exhaustive list of numbers n between 1
and N such k(n) > k(n−1). Since k(N) = O(log(N)), the list has size O(log(N)) and moreover
each number on the list can be represented with O(log(N)) bits.

The machine M operates as follows. By looking at the first advice string, if n is not a good
length it rejects. Otherwise, M guesses an arithmetic circuit Φ for perm0

, where m0 = n
c3k(n0)
0

of size m`
0. M now nondeterministically simulates M1 with the advice string γ. On paths where

a reject is found, M rejects also. On other paths it simulates M0 on 1n. When M0 needs to
know the value of k(n), it can figure this out from the list given as the fourth type of advice.
Whenever a query is made to perm(n), let’s say to a matrix A, it pads A to a matrix A′ of
dimension m0, simply by adding 1’s along the diagonal and 0’s everywhere else. It evaluates
φ(A′) to answer the query. This way M obtain the description of a multilinear polynomial gn,

17

which it then evaluates on its input.
We show that M operates in time 2O(N) with linear advice, and that it is the evaluation

machine for a family of polynomials {hn} such that {hn} 6∈ ASIZEDEG′(poly). For the time
and advice bounds, note that the time taken is 2O(N) by choice of k(n) and the time bound on
M0. Also each of the four types of advice has at most linear length - the first is an N -bit string,
the second is O(log(N)) bits long, and the third is O(N) bits long by choice of k(n) and since
e(n) is monotonically decreasing, and the last is O(log2(N)) bits long.

Next, we argue that M is an evaluation machine for the family of polynomials {hn} defined
by setting hn = fn when n is good, and hn = 0 otherwise. Note that {hn} 6∈ ASIZEDEG′(nk(n))
because for all but finitely many n, fn does not have arithmetic circuits of size and formal degree
bounded by nk(n). When n is bad, by the way we defined our advice strings, M correctly rejects.
If n is good, for any N which is a bit length for evaluation of hn on certain inputs, the advice
will indicate that there is at least one good length (since n is good). By the definition of
goodness of lengths, M will run M1 on a circuit for which M1 returns the correct answer, and
hence we get that on accepting paths of M1 (which are guaranteed to exist on a correct guess
φ for a circuit for Permanent), by specializing the proof of Lemma 4 to low-PIT, the machine
M0 indeed produces a description of fn. Thus hn agrees with fn on good n, as desired. This
concludes the proof, as we get nk(n) size lower bounds for hn, and nk(n) = nω(1) by choice of
k(n).

References

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
ACM Trans. Comput. Theory, 1:1–54, 2009.

[2] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991. Addendum in vol. 2 of
same journal.

[3] P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Springer Verlag,
2000.

[4] R. DeMillo and R. Lipton. A probabilistic remark on algebraic program testing. Inf. Proc.
Lett., 7:193–195, 1978.

[5] M. Jansen. Extracting roots of arithmetic circuits by adapting numerical methods. In
Proc. 2nd Symp. on Innovations in Computer Science, 2011.

[6] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving
circuit lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

[7] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators, typically-
correct derandomization, and circuit lower bounds. Technical report, Electronic Colloquium
on Computational Complexity (ECCC), 2010.

[8] P. Koiran. Shallow circuits with high powered inputs. In Proc. 2nd Symp. on Innovations
in Computer Science, 2011.

[9] P. Koiran and S. Perifel. Interpolation in Valiant’s theory. Computational Complexity,
20(1):1–20, 2011.

[10] N. Nisan and A. Wigderson. Hardness versus randomness. J. Comp. Sys. Sci., 49:149–167,
1994.

18

[11] Rahul Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

[12] N. Saxena. Progress of polynomial identity testing. Technical Report ECCC TR09-101,
Electronic Colloquium in Computational Complexity, 2009.

[13] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp.
Mach., 27:701–717, 1980.

[14] V. Strassen. Vermeidung von divisionen. Journal für die Reine und Angewandte Mathe-
matik, 264:182–202, 1973.

[15] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865–877,
1991.

[16] L. Valiant. The complexity of computing the permanent. Theor. Comp. Sci., 8:189–201,
1979.

[17] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th IEEE Con-
ference on Computational Complexity, 2011.

[18] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72
of Lect. Notes in Comp. Sci., pages 216–226. Springer Verlag, 1979.

A Characterization Results

Recall again that there exists a family of poly-size arithmetic circuits over Q with arbitrary use
of divisions that compute {pern} iff {pern} ∈ ASIZE′(poly). We also remark that in Ref. [6]
arithmetic circuits can have arbitrary constants, but that the bit size of constants is counted
towards the size. Within the polynomial size regime this is equivalent to the constant-free
model. Thus we can state Theorem 4.1 and Theorem 5.2 of Ref. [6] as follows:

Theorem 14 (Theorem 4.1 in [6]). PIT ∈ NSUBEXP ⇒ NEXP 6⊆ P/poly, or {pern} 6∈
ASIZE′(poly).

Theorem 15 (Theorem 5.2 in [6]). 5 NEXPRP 6⊂ P/poly or {pern} 6∈ ASIZE′(poly).

We use Lemma 3.16 in Ref. [9], which can be adapted6 as follows:

Theorem 16 ([9]). {pern} ∈ ASIZE′(poly)⇒ a·CH/poly ⊆ ASIZE′(poly(n)).

We first give a characterization for the r.h.s. of Theorem 14.

Theorem 17. a·NEXP/lin 6⊆ ASIZE′(poly)⇔ NEXP 6⊆ P/poly, or {pern} 6∈ ASIZE′(poly).

Proof. We first prove the left-to-right direction. We argue by the contrapositive. Suppose
that NEXP ⊆ P/poly and {pern} ∈ ASIZE′(poly). By Theorem 16, the latter implies that
a·CH/poly ⊆ ASIZE′(poly). We use that NEXP ⊆ P/poly ⇒ NEXP/lin ⊆ P/poly. Hence
a·NEXP/lin ⊆ a·P/poly ⊆ a·CH/poly ⊆ ASIZE′(poly).

Next we prove the right-to-left direction. Suppose that a·NEXP/lin ⊆ ASIZE′(poly). As
{pern} is easily seen to be in a·NEXP/lin we immediately have that {pern} ∈ ASIZE′(poly).

5The original statement would be for ASIZE, but this can be strengthened to ASIZE′.
6Aside from a change in language, the statement here differs in that we work with ASIZE′ instead of ASIZE,

but this can be dealt with.

19

Now consider an arbitrary L ∈ NEXP. Let N be the corresponding NEXP-machine. Using
Proposition 2, let Fn be the multilinear extension of the characteristic function χL of L on
{0, 1}n.

We claim that {Fn} ∈ a·NEXP/lin. This is done as following given (1n, a1, . . . , an, i, b) as
input we require as advice |L ∩ {0, 1}n| in binary, which is linear in the input size. We then
simulate the nondeterministic machine N for all inputs in {0, 1}n. On paths where we see less
than |L ∩ {0, 1}n| accepts, we reject. On all other paths we know exactly the function χL. We
can now use the formula of Proposition 2 for Fn to compute F (a1, a2, . . . , an) in deterministic
exponential time. This proves the claim.

We get that {Fn} ∈ ASIZE′(poly). This means that we have constant-free (division-free)
arithmetic circuits Φ1 and Φ2 of size at most p(n) = nO(1), such that Φ2 does not contain
variables and computes some nonzero constant c ∈ Z. Furthermore, if Φ1 computes Gn then
it holds that Gn = c · Fn. For input a ∈ {0, 1}n, Fn(a) ∈ {0, 1} , which means for such inputs
Gn(a) ∈ {0, c}. We want to evaluate Φ1 modulo some prime number q that does not divide
c. This will tell us χL(a). We have that |c| ≤ 22p(n)

due to Proposition 1. This means that
c has at most 2p(n) prime factors. Hence, also using the Prime Number Theorem there exists
a prime number q of p(n)2 bits, provided n is large enough, that does not divide c. As our
task is to show only the non-uniform upper bound L ∈ P/poly, mere existence of this number
q suffices for our purposes. We conclude that there exist poly size Boolean circuits for χL. We
have shown that NEXP ⊆ P/poly.

As a corollary to Theorem 17 we get that Theorem 14 is equivalent to the statement
PIT ∈ NSUBEXP ⇒ a·NEXP/lin 6⊆ ASIZE′(poly). Incidentally, one obvious way to prove
the stronger statement PIT ∈ NSUBEXP⇒ a·NEXP 6⊆ ASIZE′(poly), would be to ‘just’ show
that a·NEXP ⊆ ASIZE′(poly) ⇒ a·NEXP/lin ⊆ ASIZE′(poly). In spite of the striking re-
semblance to the know fact that NEXP ⊆ SIZE(poly) ⇒ NEXP/poly ⊆ SIZE(poly), it is not
clear whether this implication is true. To prove the latter, one simply makes the advice part of
the input, giving some language in NEXP, which by assumption is in P/poly. Hardcoding the
right advice one obtains poly-size circuits for the original NEXP/poly language. For the former
however, when making advice part of the input, the resulting language does not necessarily
correspond to the an evaluation language E({gn}) of a family of polynomials {gn}. It seems
hard to enforce this semantic condition.

We observe that also Theorem 15 can be characterized in our framework. Namely, by
relativizing the proof of Theorem 17 one can conclude that the statement of this theorem is
equivalent to the following lower bound:

Theorem 18. a·NEXPRP/lin 6⊆ ASIZE′(poly).

B Specialization to Low-Degree

Let us first say some words about adapting Lemma 4 to use ASIZE′ instead of ASIZE. We
use the notation of the proof in Ref. [7]. There one crucial idea is to guess a candidate circuit
for perm of size a(m), and to check whether the candidate is correct, which can be done, as
by the self-reducibility of perm this reduces to a PIT instance of size m2 · logdm · a(m). For
the adaption, the idea is to guess two constant-free arithmetic circuits Φ1 and Φ2 of size a(m),
where Φ2 does not contain variables, and to verify that Φ1 ≡ Φ2 · perm. One can still use a
self-reducibility property to reduce this check to a single PIT instance, cf. Theorem 3.10 in [6].
This only changes the ‘bottom-most’ equation in the chain of self-reductions. The proof of the
lemma then goes through without a problem.

20

Next we show that we can derive a low-PIT version of Theorem 7. Observe this only
requires a specialization of Lemma 4, where we replace the condition “PIT ∈ NTIME(t(N))
and {pern} ∈ ASIZE′(a(n))” by “low-PIT ∈ NTIME(t(N)) and {pern} ∈ ASIZEDEG′(a(n))”.
For the modified proof one guesses two constant-free circuits Φ1 and Φ2, where Φ2 does not
contain variables, of size and formal degree at most a(m). Formal degree is computed easily
and a(·) is time-constructible, so we can reject for guesses where the formal degree is larger than
a(m). The guesses are candidates for satisfying Φ1 ≡ Φ2 · perm. Invoking the self-reducibility
property, as was done in the above, increases formal degree to an inconsequential extent, Namely,
checking that Φ1 ≡ perm · Φ2 reduces to checking the identity of an constant-free arithmetic
circuit Ψ of size at most m2 · logdm · a(m) and formal degree at most (m+ 1)a(m). If needed,
we use some padding to ensure that deg(Ψ) ≤ |Ψ|, and hence we can use our low-PIT algorithm
to correctly decide whether Ψ ≡ 0. Consequently, the proof of the lemma goes through for the
modification “low-PIT ∈ NTIME(t(N)) and {pern} ∈ ASIZEDEG′(a(n))”. This then yields
Theorem 9.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

