
Isomorphism Testing of Boolean Functions Computable by
Constant Depth Circuits

V.Arvind and Yadu Vasudev

The Institute of Mathematical Sciences, Chennai
{arvind,yadu}@imsc.res.in

Abstract. Given two n-variable boolean functions f and g, we study the problem of computing
an ε-approximate isomorphism between them. I.e. a permutation π of the n variables such that
f(x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n)) differ on at most an ε fraction of all boolean inputs

{0, 1}n. We give a randomized 2O(
√
n polylog(n)) algorithm that computes a 1

2polylog(n) -approximate
isomorphism between two isomorphic boolean functions f and g that are given by depth d circuits
of poly(n) size, where d is a constant independent of n. In contrast, the best known algorithm
for computing an exact isomorphism between n-ary boolean functions has running time 2O(n)

[Luk99] even for functions computed by poly(n) size DNF formulas. Our algorithm is based on
a recent result for hypergraph isomorphism with bounded edge size [BC08] and the classical
Linial-Mansour-Nisan result on approximating small depth and size boolean circuits by small
degree polynomials using Fourier analysis.

1 Introduction

Given two Boolean functions f, g : {0, 1}n → {0, 1} the Boolean function isomorphism is
the problem of checking if there is a permutation π of the variables such that the Boolean
functions f(x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n)) are equivalent. The functions f and g
could be given as input either by Boolean circuits that compute them or simply by black-box
access to them. This problem is known to be coNP-hard even when f and g are given by DNF
formulas (there is an easy reduction from CNFSAT). The problem is in Σp

2 but not known to
be in coNP. Furthermore, Agrawal and Thierauf [AT96] have shown that the problem is not
complete for Σp

2 unless the polynomial hierarchy collapses to Σp
3 .

On the other hand, the best known algorithm for Boolean function isomorphism, which
reduces the problem to Hypergraph Isomorphism, runs in time 2O(n) where n is the number
of variables in f and g. This algorithm works even when f and g are given by only black-box
access: First, the truth-tables of the functions f and g can be computed in time 2O(n). The
truth tables for f and g can be seen as hypergraphs representing f and g. Hypergraph Isomor-
phism for n-vertex and m-edge hypergraphs has a 2O(n)mO(1) algorithm due to Luks[Luk99]
which yields the claimed 2O(n) time algorithm for testing if f and g are isomorphic. This is the
current best known algorithm for general hypergraphs and hence the current best algorithm
for Boolean function isomorphism as well. Indeed, a hypergraph on n vertices and m edges
can be represented as a DNF formula on n variables with m terms. Thus, even when f and
g are DNF formulas the best known isomorphism test takes 2O(n) time. In contrast, Graph
Isomorphism has a 2O(

√
n logn) time algorithm due to Luks and Zemlyachenko (see [BL83]).

More recently, Babai and Codenotti [BC08] have shown for hypergraphs of edge size bounded

by k that isomorphism testing can be done in 2Õ(k2
√
n) time.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 137 (2011)

Our results

Since the exact isomorphism problem for Boolean functions is as hard as Hypergraph Iso-
morphism, and it appears difficult to improve the 2O(n) bound, we investigate the problem
of computing approximate isomorphisms (which we define below). An interesting question
is whether the circuit complexity of f and g can be exploited to give a faster approximate
isomorphism test. Specifically, in this paper we study the approximation version of boolean
function isomorphism for functions computed by small size and small depth circuits and give
a faster algorithm for computing approximate isomorphisms.

We note that, in a different context, approximate Boolean function isomorphism has been
studied in the framework of property testing, and nearly matching upper and lower bounds
are known ([AB10],[CSM10],[BO10]). In property testing the objective is to test whether two
given Boolean functions are close to being isomorphic or far apart. The goal is to design a
property test with low query complexity. In contrast, our result is algorithmic and the goal
is to efficiently compute a good approximate isomorphism.

We also note that approximate versions of Graph Isomorphism have been studied in the
literature as graph edit distance, graph similarity and graph matching with respect to various
distance measures (e.g. [Bu00]). There are various heuristic algorithms for the problem. These
results do not appear related to the topic of our paper.

The rest of the paper is organized into four sections. Section 2 gives basic definitions.
In Section 3 we explain our approximate isomorphism algorithm for constant-depth small
size boolean circuits. Finally, in Section 4 we study a general problem: given two n-variable
boolean functions f and g consider the optimization problem where the objective is to find
a permutation π that maximizes |{x ∈ {0, 1}n | f(x) = gπ(x)}|. This problem is coNP-hard
under Turing reductions. We give a simple 2O(n) time deterministic approximation algorithm
that, when given as input Boolean functions f and g such that f and gπ agree on a constant
fraction of the inputs for some permutation π, outputs a permutation σ such that f and gσ

agree on an O(1√
n

) fraction of the inputs.

2 Some Notation and Definitions

Let ACs,d,n denote the class of n-ary boolean functions computed by circuits of depth d
and size s, where the gates allowed are unbounded fan-in AND and OR gates, and negation
gates. Suppose f, g ∈ ACs,d,n are isomorphic boolean functions. As a consequence of the main
result, in Section 3, we show that there is a randomized algorithm that computes a 1

2log
O(1) n

-

approximate isomorphism between f and g in time 2log(ns)
O(d)√n. This is substantially faster

than the 2O(n) time algorithm for computing an exact isomorphism. We show how to achieve
this running time by combining some Fourier analysis of boolean functions with the Babai-
Codenotti algorithm mentioned above.

We will make precise the definition of closeness between two boolean functions and the
notion of approximate isomorphism. Let Bn denote the set of all n-ary boolean functions
f : {0, 1}n → {0, 1}. We remark that in Section 3, where we use Fourier analytic methods, it
is convenient for us to consider boolean functions with domain {−1, 1}n and range {−1, 1}.
It is an easy transformation to switch between these two domains and ranges for Boolean
functions.

Let g : {0, 1}n → {0, 1} be a boolean function and let π : [n] → [n] be any permutation.
Then gπ : {0, 1}n → {0, 1} is defined as follows gπ(x1, x2, . . . , xn) = g(xπ(1), xπ(2), . . . , xπ(n)).

2

This clearly defines a faithful group action of the permutation group Sn on the set Bn. I.e.
g(πψ) = (gπ)ψ for all g ∈ Bn and π, ψ ∈ Sn, and gπ = gψ for all g ∈ Bn if and only if π = ψ.

Definition 1. Two boolean functions f, g ∈ Bn are said to be isomorphic (denoted by f ∼= g)
if there exists a permutation π : [n]→ [n] such that ∀x ∈ {0, 1}n, f(x) = gπ(x).

Since in this paper, we are interested in the case when two boolean functions are close to
being isomorphic, we first define the notion of closeness of boolean functions.

Definition 2. Two boolean functions f, g are 1
2`

-close if Prx∈{0,1}n
[
f(x) 6= g(x)

]
≤ 1

2`
.

With this definition in hand, we can define when two boolean functions are approximately
isomorphic.

Definition 3. Two boolean functions f, g are 1
2`

-approximate isomorphic if there exists a

permutation π : [n]→ [n] such that the functions f and gπ are 1
2`

-close.

3 Main Result

In this section we focus on the problem of computing an approximate isomorphism for two
boolean functions f, g ∈ ACs,d,n. We first recall some Fourier analysis of Boolean functions
which is an important ingredient in our algorithm. For Fourier analytic purposes, it is con-
venient for us to consider boolean functions with domain {−1, 1}n and range {−1, 1}. The
range {−1, 1} makes it convenient to define the Fourier basis.

The set F = {f : {−1, 1}n → R} of real-valued functions forms a 2n-dimensional vector
space over R, where vector addition is defined as (f + g)(x) = f(x) + g(x). The vector space
F forms an inner product space with inner product defined as:

〈f, g〉 = Ex∈{−1,1}n [f(x)g(x)] =
1

2n

∑
x∈{−1,1}n

f(x)g(x).

The `2-norm of a function f ∈ F is ‖f‖2 =
√
〈f, f〉. Clearly every Boolean function f :

{−1, 1}n → {−1, 1} has unit norm under this inner product. The Fourier basis, {χS
∣∣S ⊆ [n]}

is defined as χS(x) =
∏
i∈S xi. It is easy to observe that Ex[χS(x)] = 0 for nonempty sets S

and Ex[χ∅(x)] = 1. Furthermore, 〈χS , χT 〉 = Ex[χS4T (x)]. It follows that the Fourier basis is
an orthonormal basis with respect to the inner product. Thus, any f ∈ F can be written as
f =

∑
f̂SχS . This is the Fourier representation of f , and the numbers f̂S = 〈f, χS〉 are the

Fourier coefficients of f . The orthonormality of the Fourier basis yields Parseval’s identity:

〈f, f〉 =
∑
S⊆[n]

f̂(S)2.

In particular, since any Boolean function f : {−1, 1}n → {−1.1} has unit norm, we note
that

∑
S⊆[n] f̂(S)2 = 1.

In the next two propositions we relate the isomorphism of Boolean functions f and g to
their Fourier coefficients.

Proposition 1. Let π : [n] → [n] be any permutation, g any boolean function and S ⊆ [n],
then ĝπ(S) = ĝ(Sπ) where Sπ = {i|π(i) ∈ S}.

3

Proof. ĝπ(S) = 1
2n
∑

x∈{−1,1}n g
π(x)χS(x) = 1

2n
∑

x∈{−1,1}n g(x)χSπ(x) = ĝ(Sπ).

Proposition 2. Two Boolean functions f, g : {−1.1}n → {−1, 1} are isomorphic via permu-
tation π if and only if f̂(S) = ĝ(Sπ) for each subset S.

Proof. Suppose π : [n] → [n] is an isomorphism. I.e. f(x) = gπ(x) for all x ∈ {−1, 1}n.
Consider any subset S ⊆ [n]

f̂(S) =
1

2n

∑
x∈{−1,1}n

f(x)χS(x) =
1

2n

∑
x∈{−1,1}n

gπ(x)χS(x) = ĝπ(S) = ĝ(Sπ).

Conversely, if f̂(S) = ĝ(Sπ) for each subset S, by the previous proposition we have f̂(S) =
ĝπ(S) which implies that f = gπ.

3.1 Approximate Isomorphism for ACs,d,n

Now we turn to isomorphism for Boolean functions from the class ACs,d,n. We first outline
our approach to Boolean function isomorphism via Fourier coefficients.

A crucial theorem that we will use is the celebrated result of Linial-Mansour-Nisan
[LMN93] which gives the distribution of Fourier coefficients for Boolean functions computed
by small depth circuits.

Theorem 1 ([LMN93]). Let f : {−1, 1}n → {−1, 1} be computed by an ACs,d,n circuit.
Then for all t > 0, ∑

S⊆[n]
|S|>t

f̂(S)2 ≤ 2s2−t
1/d/20.

Consequently, for f̃ =
∑

S⊆[n]
|S|≤t

f̂(S)χS we have ‖f − f̃‖22 ≤ 2s2−t
1/d/20.

Notice that each χS =
∏
i∈S xi is a monomial, and hence f̃ is a degree-t polynomial that

approximating f . Given boolean functions f, g ∈ ACs,d,n as an instance of boolean function

isomorphism, our aim is to work with the polynomials f̃ and g̃:

f̃ =
∑
S⊆[n]
|S|≤t

f̂(S)χS and g̃ =
∑
S⊆[n]
|S|≤t

ĝ(S)χS . (1)

This is because f̃ and g̃ are of degree t and have only nt terms. I.e. we will check if there is
an approximate isomorphism between f̃ and g̃. Notice that the polynomials f̃ , g̃ : {−1, 1}n →
R are not boolean-valued functions. We need an appropriate notion of isomorphism here.

Definition 4. Let f ′, g′ : {−1, 1}n → R be two functions from F . We say that f ′ and g′ are
1
2`

-approximate isomorphic witnessed by a permutation π : [n]→ [n] if ‖f ′ − g′π‖22 ≤ 1
2`

.

We now explain the connection between 1
2`

-approximate isomorphism of two functions
and their Fourier coefficients.

4

Proposition 3. If f, g : {−1, 1}n → {−1, 1} are 1
2`

-close, then ‖f − g‖22 ≤ 4 1
2`

Proof. Follows from ‖f − g‖2 = E[(f − g)2] = 4 Pr[f 6= g].

Lemma 1. Let f and g be two boolean functions that are 1
2`

-approximate isomorphic via

permutation π : [n]→ [n]. Then ∀S ⊆ [n] :
∣∣f̂(S)− ĝπ(S)

∣∣ ≤ 2
2`/2

.

Proof. Notice that
∑

S⊆[n](f̂(S) − ĝπ(S))2 = ‖f − gπ‖22. Suppose f, g are 1
2`

-approximate

isomorphic via permutation π. By Proposition 3 we know that
∑

S⊆[n](f̂(S) − ĝπ(S))2 =

‖f − gπ‖22 ≤ 4
2`

. Hence for each subset S ⊆ [n] we have
(
f̂(S)− ĝπ(S)

)2 ≤ 4
2`

.

Suppose f and g be two boolean functions that are 1
2`

-approximate isomorphic via permu-

tation π : [n]→ [n]. By the above proposition |f̂(S)− ĝπ(S)| is bounded by 2
2`/2

. Furthermore,

since both f̂(S) and ĝπ(S) are Fourier coefficients of Boolean functions f and gπ, we have
0 ≤ |f̂(S)| ≤ 1 and 0 ≤ |ĝπ(S)| ≤ 1. Hence, the bound implies that the b`/2c − 1 most
significant positions in the binary representation of f̂(S) and ĝπ(S) are identical.

For each subset S, let f̂`(S) denote the truncation of f̂(S) to the first b`/2c−1 bits. Thus,
|f̂`(S) − f̂(S)| ≤ 1

2b`/2c−1 for each S. Similarly, ĝ`(S) denotes the truncation of ĝ(S) to the
first b`/2c − 1 bits. We define the following two functions f` and g` from {−1, 1}n → R:

f` =
∑
S⊆[n]

f̂`(S)χS and g` =
∑
S⊆[n]

ĝ`(S)χS . (2)

The following lemma summarizes the above discussion. It gives us a way to go from
approximate isomorphism to exact isomorphism.

Lemma 2. If f and g be two boolean functions that are 1
2`

-approximate isomorphic via per-
mutation π : [n]→ [n] then f` = gπ` , i.e. the functions f` and g` are (exactly) isomorphic via
the permutation π.

Lemma 1 and Proposition 3 yield the following observation.

Lemma 3. Suppose f, g are two boolean functions that are 1
2`

-approximate isomorphic via

permutation π. Then ‖f̃ − g̃π‖22 ≤ 4
2`

. I.e. f̃ and g̃ are 4
2`

-approximate isomorphic via the

same permutation π. Furthermore, |f̂(S)− ĝπ(S)| ≤ 2
2`/2

for all S : |S| ≤ t.

Proof. By Lemma 1 and Proposition 3 we have
∑

S⊆[n]
(
f̂(S) − ĝπ(S)

)2 ≤ 4
2`

, which implies

‖f̃−g̃π‖22 =
∑
|S|≤t

(
f̂(S)−ĝπ(S)

)2 ≤ 4
2`

. It follows that |f̂(S)−ĝπ(S)| ≤ 2
2`/2

for all S : |S| ≤ t.

Now, if |f̂(S) − ĝπ(S)| ≤ 2
2`/2

for all S : |S| ≤ t, it implies that f̂`(S) = ĝπ` (S) for

all S : |S| ≤ t, where f̂`(S) and ĝ`(S) are defined in Equation 2. Indeed, if we truncate the
coefficients of the polynomials f̃ and g̃ also to the first b`/2c−1 bits we obtain the polynomials

f̃` =
∑

S:|S|≤t

f̂`(S)χS and g̃` =
∑

S:|S|≤t

ĝ`(S)χS . (3)

5

It clearly follows that π is an exact isomorphism between f̃` and g̃`. We summarize the
above discussion in the following lemma which is crucial for our algorithm.

Lemma 4. Suppose f, g are two boolean functions that are 1
2`

-approximate isomorphic via
permutation π. Then:

1. ‖f̃ − g̃π‖22 ≤ 4
2`

. I.e. f̃ and g̃ are 4
2`

-approximate isomorphic via the same permutation π,

and hence |f̂(S)− ĝπ(S)| ≤ 2
2`/2

for all S : |S| ≤ t.
2. Consequently, π is an exact isomorphism between f̃` and g̃`.

We can represent f̃` and g̃` as weighted hypergraphs with hyperedges S : |S| ≤ t of weight
f̂`(S) and ĝ`(S) respectively. We can then apply the Babai-Codenotti hypergraph isomorphism
algorithm [BC08] to compute an exact isomorphism π between f̃` and g̃`. Now, if π is an exact
isomorphism π between f̃` and g̃` what can we infer about π as an approximate isomorphism
between f and g? The following lemma quantifies it.

Lemma 5. Suppose f and g are boolean functions in ACs,d,n such that π is an exact isomor-

phism between f̃` and g̃` (where f̃ and g̃ are given by Equation 1). Then π is an (δ + ε)2-

approximate isomorphism between f and g, where δ = 2s2−t
1/d/20 and ε = 2nt/2

2(`−1)/2 .

Proof. Since π is an exact isomorphism between f̃` and g̃` we have f̃` = g̃π` . Now consider
‖f − gπ‖22. By triangle inequality

‖f − gπ‖2 ≤ ‖f − f̃‖+ ‖f̃ − f̃`‖+ ‖f̃` − g̃π`‖+ ‖g̃π − g̃π`‖+ ‖gπ − g̃π‖
= ‖f − f̃‖+ ‖f̃ − f̃`‖+ ‖g̃π − g̃π`‖+ ‖gπ − g̃π‖.

By Theorem 1, both ‖f − f̃‖ and ‖gπ − g̃π‖ are bounded by δ. Furthermore,

‖f̃ − f̃`‖22 =
∑

S:|S|≤t

(f̂(S)− f̂`(S))2 ≤
∑

S:|S|≤t

4

2`−1
≤ 4nt

2`−1
.

Hence, ‖f̃ − f̃`‖ ≤ 2nt/2

2(`−1)/2 and, likewise, ‖g̃π − g̃π`‖ ≤ 2nt/2

2(`−1)/2 . Putting it together with
Proposition 3 we get

4 Pr[f 6= gπ] = ‖f − gπ‖22 ≤

(
2δ +

4nt/2

2(`−1)/2

)2

.

It follows that f and g are (δ + ε)2-approximate isomorphic via the permutation π.

Suppose f and g are in ACs,d,n and are given by circuits Cf and Cg. Our goal now is to

design an efficient algorithm that will compute the polynomials f̃` and g̃`, where ` will be
appropriately chosen in the analysis. In order to compute f̃` and g̃` we need to estimate to
b`/2c − 1 bits of precision the Fourier coefficients f̂(S) and ĝ(S) for each subset S : |S| ≤ t.
Now, by definition, f̂(S) is the average of f(x)χS(x) where x is uniformly distributed in
{−1, 1}n. Hence, following a standard Monte-Carlo sampling procedure, we can estimate
f̂(S) quite accurately from a random sample of inputs from {−1, 1}n and hence with high
probability we can exactly compute f`(S) for all S : |S| ≤ t. We formally explain this in the
next lemma.

6

Lemma 6. Given f : {−1, 1}n → {−1, 1} computed by an ACs,d,n circuit, there is a random-
ized algorithm C with running time poly(s, nt, 2`) that outputs the set {f`(S) | |S| ≤ t} with
probability 1− 1

2Ω(n) .

Proof. We use the same technique as [LMN93]to estimate the required Fourier coefficients.

1. For each subset S ⊂ [n] such that |S| ≤ t do the following two steps:
2. Pick xi ∈r {−1, 1}n and compute the value f(xi)χS(xi) for i ∈ [m].
3. Estimate the Fourier coefficient as αf (S) = 1

m

∑m
i=1 f(xi)χS(xi).

Applying Chernoff bounds, for each subset S we have

Pr
[∣∣f̂(S)− αf (S)

∣∣ ≥ λ] ≤ 2e−λ
2m/2.

In our case we set λ = 1
2b`/2c−1 . In order to estimate f̂(S) for each S : |S| ≤ t within

the prescribed accuracy and with small error probability, we set m = tn log n2`. The entire
procedure runs in poly(s, nt, 2`) time. Furthermore, by a simple union bound it follows that
with probability 1−2−Ω(n) we have αf (S) = f`(S) for each S : |S| ≤ t with probability. Thus,

the randomized algorithm computes the polynomial f̃` with high probability.

3.2 Exact isomorphism test for low degree polynomials

We now focus on the problem of checking if the polynomials f̃` =
∑

S:|S|≤t f̂`(S)χS and
g̃` =

∑
S:|S|≤t ĝ`(S)χS are isomorphic, and if so to compute an exact isomorphism π. To this

end, we shall encode f` and g` as weighted hypergraphs Gf and Gg, respectively.
The vertex sets for both graphs is [n]. Let E denote the set of all subsets S ⊂ [n] of size

at most t. The weight functions for the edges are wf and wg for Gf and Gg defined as follows

wf (S) =

{
αf (S) ∀S ⊆ [n], |S| ≤ t
0 otherwise,

wg(S) =

{
αg(S) ∀S ⊆ [n], |S| ≤ t
0 otherwise.

The isomorphism problem for the polynomials the f` and g` is now the edge-weighted
hypergraph isomorphism problem, where Gf and Gg are the two edge-weighted graphs, and
the problem is to compute a permutation on [n] that maps edges to edges (preserving edge
weights) and non-edges to non-edges. Our aim is to apply the Babai-Codenotti isomorphism
algorithm for hypergraphs with hyperedge size bounded by k [BC08]. Their algorithm has

running time 2Õ(k2
√
n). We need to adapt their algorithm to work for hypergraphs with edge

weights. Since the edge weights for the graphs Gf and Gg are essentially b`/2c−1 bit strings,
we can encode the weights into the hyperedges by introducing new vertices.

More precisely, we create new graphs G′f and G′g corresponding to f and g, where the
number of vertices is now n+O(`). Let the set of new vertices be {v1, . . . , vr}, where r = O(`).
Let S ⊂ [n] be a hyperedge in the original graph Gf . A subset T ⊂ {v1, . . . , vr} encodes an r-
bit string via a natural bijection (the jth bit is 1 if and only if vj ∈ T). Let T (S) ⊂ {v1, . . . , vr}
denote the encoding of the number f̂`(S) for each hyperedge S ∈ E. Similarly, let T ′(S) ⊂
{v1, . . . , vr} denote the encoding of the number ĝ`(S). The hyperedge S ∪ T (S) encodes S

7

along with its weight f̂`(S) for each S in G′f . Similarly, S ∪ T ′(S) encodes S along with its
weight ĝ`(S) for each S in G′g. As candidate isomorphisms between G′f and G′g we wish to
consider only permutations on [n]∪{v1, . . . , vr} that fix each vi, 1 ≤ i ≤ r. This can be easily
ensured by standard tricks like coloring each vi with a unique color, where the different colors
can be implemented by putting directed paths of different lengths, suitably long so that the
vertices vi are forced to be fixed by any isomorphism between G′f and G′g.

This will ensure that G′f and G′g are isomorphic iff there is a weight preserving isomor-
phism between Gf and Gg. Now we invoke the algorithm of [BC08] on G′f and G′g which
will yield an isomorphism ψ between f ′ and g′. In summary, the algorithm for isomorphism
testing f` and g` carries out the following steps.

Polynomial Isomorphism Algorithm

1. Construct the hypergraphs G′f and G′g as defined above.

2. Run the algorithm of Babai and Codenotti[BC08] on the hypergraphs G′f and G′g and
output isomorphism ψ or report they are non-isomorphic.

Lemma 7. The isomorphism of polynomials f̃` and g̃` (defined by Equation 2) can be tested

in time 2O(
√
n)(`+t)2 logO(1) n, and if the polynomials are isomorphic an exact isomorphism can

be computed in the same running time bound.

3.3 The approximate isomorphism algorithm

We now give an outline of the entire algorithm.

Input: f, g ∈ ACs,d,n given by circuits of size s along with parameters t and `.

Step 1. Compute the polynomials f̃` and g̃` using randomized algorithm of Lemma 6.

Step 2. Check if f̃` and g̃` are isomorphic using the polynomial isomorphism algorithm
described above. If they are not isomorphic reject else output the computed exact iso-
morphism π.

Suppose π is an exact isomorphism between f̃` and g̃` computed by the above algorithm.
By Lemma 5 π is a (δ+ε)2-approximate isomorphism between f and g, where δ = 2s2−t

1/d/20

and ε = 2nt/2

2(`−1)/2 . From Lemmas 6 and 7 it follows that the overall running time of the algorithm

is poly(s, nt, 2`) + 2O(
√
n)(`+t)2 logO(1) n and the error probability, as argued in Lemma 6, is at

most 2−Ω(n).

We now set parameters to obtain the main result of the paper. Suppose f and g are 1
2`

-

approximate isomorphic, where ` = (log n+ log s)kd for a suitably large constant k > 1. Then

we choose t = (log n+ log s)O(d) so that (δ + ε)2 is bounded by 2−(logn)
O(1)

.

Theorem 2. Given two boolean functions f, g ∈ ACs,d,n which are 1

2(logn)
O(d) -isomorphic,

there is a randomized algorithm running in time 2O(logO(d)(n)
√
n) to compute a permutation π

such that f, g are 1

2(logn)
O(1) -approximate isomorphic with respect to π.

8

4 A general approximate isomorphism algorithm

Given two n-variable boolean functions f and g (either by Boolean circuits computing them
or just by black-box access) consider the optimization problem of finding a permutation π
that minimizes |{x ∈ {0, 1}n | f(x) 6= gπ(x)}|. This problem is coNP-hard under Turing
reductions. We reduce the coNP-complete problem TAUTOLOGY (checking if a propositional
formula is a tautology) to the problem MinBooleanIso of computing a permutation π that
minimizes |{x ∈ {0, 1}n | f(x) 6= gπ(x)}|.

Lemma 8. TAUTOLOGY is polynomial-time Turing reducible to MinBooleanIso.

Proof. Given f : {0, 1}n → {0, 1} as an n-variable propositional formula, we define functions
gi : {0, 1}n → {0, 1} for i ∈ [n] such that gi(1

i0n−i) = 0 and gi(x) = 1 for all x 6= 1i0n−i.
Notice that if f is a tautology then for each i |{x ∈ {0, 1}n | f(x) 6= gπi (x)}| = 1 for all
permutations π.

We now describe a polynomial-time algorithm for TAUTOLOGY with MinBooleanIso as
oracle. For each gi, we compute (with a query to the function oracle MinBooleanIso) a per-
mutation πi that minimizes |{x ∈ {0, 1}n | f(x) 6= gπi (x)}|. If f(π−1i (1i0n−i)) = 1 for each
i, the algorithm describing the Turing reduction “accepts” f as a tautology and otherwise it
“rejects” f .

We now show the correctness of the reduction. If f is a tautology, then clearly for each
πi we have f(π−1i (1i0n−i)) = 1. Conversely, suppose f is not a tautology. Then f−1(0) =
{x ∈ {0, 1}n | f(x) = 0} is nonempty. Let |f−1(0)| = N . Then for any permutation π the
cardinality |{x ∈ {0, 1}n | f(x) 6= gπi (x)}| is either N + 1 or N − 1 for each i. Furthermore,
suppose x ∈ f−1(0) has Hamming weight i. Then for any permutation πi that maps x to
1i0n−i we have |{x ∈ {0, 1}n | f(x) 6= gπii (x)}| = N − 1. Hence, f(π−1i (1i0n−i)) = f(x) = 0.

A brute-force search that runs in n! time by cycling through all permutations yields a
trivial algorithm for the optimization problem MinBooleanIso.

The corresponding maximization problem is: Find π that maximizes |{x ∈ {0, 1}n | f(x) =
gπ(x)}|. Of course computing an optimal solution to this problem is polynomial-time equiv-
alent to MinBooleanIso. In remainder of this section we design a simple approximate iso-
morphism algorithm for the maximization problem. Our simple algorithm is based on the
method of conditional probabilities. We first examine how good a random permutation is as
an approximate isomorphism. Then we describe a deterministic algorithm for computing a
permutation with the same solution quality.

For boolean functions f and g, consider the random variable |{x|f(x) = gπ(x)}| when the
permutation π is picked uniformly at random from Sn.

Let si(f) denote the cardinality | {x ∈ {0, 1}n| wt(x) = i, f(x) = 1} | where wt(x) is the
hamming weight of the boolean string x. Clearly, si(f) ≤

(
n
i

)
. For each u ∈ {0, 1}n define the

0-1 random variable Xu which takes value 1 if and only if f(u) = gπ(u) for π ∈ Sn picked
uniformly at random. If wt(u) = i, then

Pr
π

[Xu = 1] =
si(g)(
n
i

) f(u) +

(
n
i

)
− si(g)(
n
i

) (1− f(u)) .

9

The sum X =
∑

u∈{0,1}n Xu is the random variable | {x|f(x) = gπ(x)} | for a random
permutation π ∈ Sn. We have

Eπ [X] =

n∑
i=0

∑
u : wt(u)=i

si(g)(
n
i

) f(u) +

n∑
i=0

∑
u : wt(u)=i

(
n
i

)
− si(g)(
n
i

) (1− f(u)) (4)

=
n∑
i=0

si(g)si(f)(
n
i

) +
n∑
i=0

(
(
n
i

)
− si(g))(

(
n
i

)
− si(f))(

n
i

) (5)

≥ max
i

(
si(f)si(g)(

n
i

) ,
(
(
n
i

)
− si(g))(

(
n
i

)
− si(f))(

n
i

))
. (6)

Theorem 3. There is a deterministic 2O(n) time algorithm that takes as input Boolean func-
tions f, g : {0, 1}n → {0, 1} as input (either by Boolean circuits or by black-box access) and
outputs a permutation σ with the following property: If f and gπ are δ-close for some permu-
tation π and constant δ, then

| {x|f(x) = gσ(x)} | ≥ Ω(1/
√
n)2n.

Proof. First we show how to compute a permutation σ such that |{x|f(x) = gσ(x)}| ≥ Eπ[X]
(see Equation 4 and discussion preceding it for the definition of random variable X). Firsrtly,
notice that given a partial permutation σi defined on {1, 2, . . . , i}, we can define random
variables Xσi,u for each u ∈ {0, 1}n and Xσi =

∑
uXσi,u, defined by a uniformly picked

random permutation π in Sn that extends σi. Similar to Equation 4, we can write an expression
for E[Xσi] and compute it exactly in time 2O(n) for a given σi. Now, in time 2O(n) we can
compute an extension σi+1 of σi that tries all (n− i) extensions σi+1, computes E[Xσi+1], and
chooses the image of i+ 1 that maximizes E[Xσi+1]. In particular, this will satisfy

E[Xσi+1] ≥ E[Xσi].

Continuing this process until i = n yields σn = σ such that |{x | f(x) = gσ(x)}| ≥ Eπ[X],
where π is randomly picked from Sn.

Now, consider the expected value Eπ(X). It is promised that for some permutation τ ∈ Sn
the fraction δ = maxσ∈Sn |{x|f(x) = gσ(x)}|/2n is a constant (independent of n). For 0 ≤ i ≤
n let

δi =
|{x | f(x) = gτ (x),wt(x) = i}|(

n
i

) .

Thus
∑n

i=0 δi
(
n
i

)
= δ2n which we can write as

√
n∑

i=0

(δi + δn−
√
n+i)

(
n

i

)
+

n/2+
√
n∑

i=n/2−
√
n

δi

(
n

i

)
= δ2n.

Since each δi ≤ 1,
∑√n

i=0(δi + δn−
√
n+i)

(
n
i

)
≤ 2n

√
n+1 ≤ 22

√
n logn for sufficiently large n.

Let A denote the sum
∑n/2+

√
n

i=n/2−
√
n
δi
(
n
i

)
. Then

A ≥ δ2n
(

1− 22
√
n logn

δ2n

)
≥ δ

2
2n.

10

By averaging, there is some hamming weight i in the range n/2 −
√
n ≤ i ≤ n/2 +

√
n,

such that

δi

(
n

i

)
= |{u | wt(u) = i and f(u) = gπ(u)}| ≥ δ2n

4
√
n
.

We fix this value of i and let S denote the set {u | wt(u) = i and f(u) = gπ(u)}. Assume
without loss of generality that |f−1(1)∩S| > δ2n

8
√
n

(Otherwise we consider f−1(0)∩S). Thus,

we have si(f) ≥ |f−1(1) ∩ S| = |(gπ)−1(1) ∩ S| ≥ δ2n

8
√
n

.

Now, {u | wt(u) = i and gπ(u) = 1} ⊇ (gπ)−1(1)∩S. Hence |(gπ)−1(1)∩S| ≤ |{u | wt(u) =
i and gπ(u) = 1}| = |{u | wt(u) = i and g(u) = 1}| = si(g). Combined with Equation 4 and
using the inequality

(
n
i

)
≤ 2n√

n
for large enough n, we get the desired lower bound on E[X]:

E[X] ≥ si(f)si(g)(
n
i

) ≥ δ222n

64n
(
n
i

) ≥ δ22n

64
√
n

= Ω

(
2n√
n

)
.

Concluding Remarks. Motivated by the question whether boolean function isomorphism
testing has algorithms faster than Luks’ 2O(n) time algorithm [Luk99], we initiate the study
of approximate boolean function isomorphism. As our main result we show a substantially
faster algorithm that for boolean functions having small depth and small size circuits
computes an approximate isomorphism. Precisely characterizing the approximation thresh-
old for this problem for various boolean function classes is an interesting direction of research.

Acknowledgment. We are grateful to Johannes Köbler and Sebastian Kuhnert for discus-
sions on the topic, especially for their help with Lemma 8.

References

[AT96] Manindra Agrawal and Thomas Thierauf, The boolean isomorphism problem, FOCS, 1996, pp. 422–
430.

[AB10] Noga Alon and Eric Blais, Testing Boolean function isomorphism, APPROX/RANDOM, 2010,
pp. 394–405

[BC08] László Babai and Paolo Codenotti, Isomorphism of hypergraphs of low rank in moderately exponential
time, FOCS, 2008, pp. 667–676.

[BL83] László Babai and Eugene M.Luks, Canonical labeling of graphs, Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, pages 171–183, 1983.

[BO10] Eric Blais and Ryan O’Donnell, Lower Bounds for Testing Function Isomorphism, CCC, 2010,
pp. 235-246.

[Bu00] Bunke: Graph matching: Theoretical foundations, algorithms, and applications. International Confer-
ence on Vision Interface, Montreal, Quebec, Canada, (2000), pp. 82-88.

[CSM10] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah, Nearly Tight Bounds for Testing
Function Isomorphism, SODA, 2011, pp. 1683-1702

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan, Constant depth circuits, Fourier transform, and
learnability, J. ACM 40 (1993), 607–620.

[Luk99] Eugene M. Luks, Hypergraph isomorphism and structural equivalence of boolean functions, STOC,
1999, pp. 652–658.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

