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Abstract

In this work we describe an explicit, simple, construction of large subsets of Fn, where F
is a finite field, that have small intersection with every k-dimensional affine subspace. Interest
in the explicit construction of such sets, termed subspace-evasive sets, started in the work of
Pudlák and Rödl [PR04] who showed how such constructions over the binary field can be used
to construct explicit Ramsey graphs. More recently, Guruswami [Gur11] showed that, over large
finite fields (of size polynomial in n), subspace evasive sets can be used to obtain explicit list-
decodable codes with optimal rate and constant list-size. In this work we construct subspace
evasive sets over large fields and use them, as described in [Gur11], to reduce the list size of
folded Reed-Solomon codes form poly(n) to a constant.

1 Introduction

1.1 Subspace evasive sets

Defined formally, a (k, c)-subspace evasive set S ⊂ Fn has intersection of size at most c with every
k-dimensional affine subspace H ⊂ Fn. This definition makes sense over finite fields, as well as
over infinite fields. Over finite fields, a simple probabilistic argument shows that a random set S of
size |F|(1−ε)n will have intersection of size at most c(k, ε) = O(k/ε) with any k-dimensional affine
subspace H. In this work we give the first explicit construction of a subspace-evasive set S of size
|F|(1−ε)n that has intersection size at most c(k, ε) = (k/ε)k with every k-dimensional affine subspace
H. This is stated in the next theorem. We postpone the exact definition of the term explicit to
the following sections (see Theorem 3.2 for the formal statement of this theorem and Section 4 for
a discussion of explicitness).

Theorem 1 (Main theorem). For any finite field F and parameters k ≥ 1, ε > 0 there exists an
explicit construction of a set S ⊂ Fn of size |S| > |F|(1−ε)n that is (k, c(k, ε))-subspace evasive with
c(k, ε) = (k/ε)k.

While being far from the optimal bound of O(k/ε) and despite being exponential in k, the
bound we obtain is useful when k is small and the field is sufficiently large. As we will see below,
this is precisely the setting that was raised by Guruswami in connection to error correcting codes.
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The main ingredient in our construction is an explicit family of degree d polynomials f1, . . . , fk ∈
F[x1, . . . , xn], for all k ≤ n ≤ |F|, such that for every injective (i.e full rank) affine map ` : Fk 7→ Fn
the system of equations

f1(`(t1, . . . , tk)) = 0

...

fk(`(t1, . . . , tk)) = 0.

has at most dk solutions. The degree d can be any number between n and |F|. Using algebraic-
geometry terminology, the set of common zeros of f1, . . . , fk forms an (n − k)-dimensional vari-
ety which has finite intersection with any k dimensional affine sub-space. We call such varieties
everywhere-finite varieties (see Section 2 for a longer discussion of this particular choice of name).

Constructing subspace evasive sets as in Theorem 1 is then obtained by partitioning the n coor-
dinates of the space into blocks of size k/ε and applying the basic construction (of an everywhere-
finite variety) on each block independently. The polynomials we use in the basic construction are
extremely simple (weighted sums of powers of variables) which makes the final construction explicit
enough to be useful for the list-decoding application described in [Gur11] (allowing for both efficient
encoding and list-decoding). Our proofs are elementary and do not use any sophisticated algebraic
machinery (apart from Bezout’s theorem).1

1.2 List-decodable codes

An error-correcting code allows one to encode a message into a codeword so that encodings of
different messages differ in many coordinates. This allows one to recover the original message from
an encoding that is corrupted in a small number of coordinates. More formally, A code is a subset
C ⊂ Σm, where Σ is some finite alphabet. The rate of the code is denoted R = log |C|

m log |Σ| and the
distance of the code, denoted ρ, is the minimal Hamming distance between two codewords divided
by m. It is easy to show that ρ < 1−R and that unique decoding (i.e decoding a message uniquely
from a corrupted codeword) is only possible from a fraction (1−R)/2 of errors. When the number
of errors goes beyond (1 − R)/2 one has to be satisfied with list-decoding, in which a short list of
possible messages is returned (i.e all messages whose encodings are close to the received word).
Non explicitly, one can show the existence of a code that can be list-decoded from 1−R− ε errors
with list-size bounded by O(1/ε). Obtaining an explicit construction of such a code (with efficient
encoding/decoding) is a major open problem in coding theory. The first work to give explicit codes
that can be list-decoded from 1 − R − ε errors was the paper of Guruswami and Rudra [GR08]
which builds on earlier work by Parvaresh and Vardi [PV05]. Their work showed that a certain
family of codes, called folded Reed-Solomon (RS) codes can be list-decoded from 1 − R − ε errors
with list size bounded by mO(1/ε), where m is the number of coordinates (or block length) of the
code.

In a recent work, Guruswami [Gur11] gave a new list-decoding algorithm for folded RS codes
which have some nice advantages over previous decoding algorithms. Among these advantages is
the property that the list of possible messages, returned by the decoder, is contained in a low

1We do use Weil’s exponential sum estimates to analyze a certain variant of the construction but this part of the
proof can be omitted by choosing the polynomials f1, . . . , fk more carefully (as described in Section 4).
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dimensional subspace. More precisely, the code represents messages as elements of Fn, where F is
a finite field of size q ∼ n, and the list returned by the decoder is (quite surprisingly) a subspace
of dimension O(1/ε). This immediately gives the size bound for the list of qO(1/ε) mentioned above
but also shows a way for improving further the list size. Guruswami observed that restricting the
messages to come from a ((1/ε), c(ε))-evasive set S ⊂ Fn, instead of coming from the entire space
Fn, will reduce the list size to c(ε) and remove the dependency on the block length. In order for
the rate to not degrade by much we need the size of S to be sufficiently large, say |S| > |F|(1−ε)n.

For this application to produce codes with efficient encoding/decoding, the evasive set S must
satisfy two explicitness conditions. The first is that messages can be encoded and decoded efficiently
into S. The second condition is that, given a subspace (say, as a list of basis vectors), one can
efficiently compute the intersection of this subspace with S. Our construction of subspace evasive
sets satisfies both of these conditions (see Section 4) and so we obtain the following theorem.

Theorem 2. For every R and ε, there exists an explicit family of codes C ⊂ Σm with rate R that
can be list-decoded from a fraction 1−R−ε of errors in quadratic time and with list size (1/ε)O(1/ε).

The use of evasive sets to enhance list-decoding is completely black-box and only uses the
property that the returned list is a subspace of a certain dimension in a sufficiently large field. We
give the proof of Theorem 2 in Section 5, stating the relevant claims from [Gur11] that are needed
for the black-box application.

Following [Gur11], Guruswami and Wang [GW11] showed another family of codes with optimal
distance list decoding and with the additional property that the list returned by the decoder is a
subspace. This family of codes, called derivative codes (also called multiplicity codes in [KSY11]),
obtains roughly the same parameters as folded RS codes and can be also combined with our
construction of evasive sets in the same way to reduce the list size.

1.3 Affine and two-source extractors

The work of Pudlák and Rödl [PR04] showed that constructing (n/2, c)-subspace evasive sets S ⊂ Fn2
gives explicit constructions of bipartite Ramsey graphs. These are bipartite graphs that do not
contain bipartite cliques or independent sets of certain size. A recent work of Ben-Sasson and Zewi
[BSZ11] explored this connection further and showed (under some number theoretic conjectures)
that such sets can also be used to construct two-source extractors which are strong variants of
bipartite Ramsey graphs. Another application given in [BSZ11] was to the construction of affine
extractors which are functions that have uniform output whenever the input chosen uniformly from
a subspace of sufficiently high dimension. Both of these applications require that the construction
be over a field of two elements. Our construction requires the field to be at least of size n and
so is not useful for these applications. An important direction for progress is to generalize our
construction for smaller fields. Alternatively, one can try to generalize the approach of [BSZ11] to
larger fields and then try to use our construction to obtain better extractors (affine or two-source).

1.4 Organization

Section 2 contains the main construction of everywhere-finite varieties (Theorem 2.4). In Section 3,
we show how to compose this basic construction to obtain our main theorem, Theorem 3.2, which
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gives explicit evasive sets. In Section 4 we prove several claims which deal with the explicitness
of our construction, and use them, in Section 5 to derive Theorem 2. Appendix A contains some
basic results on Fourier analysis that are used in part of Section 3.

2 Everywhere-finite varieties

Let F be a field and F its algebraic closure (recall that the algebraic closure is always infinite, even
if F is finite). A variety in Fn is the set of common zeros of one or more polynomials. Given k
polynomials f1, . . . , fk ∈ F[x1, . . . , xn], we denote the variety they define as

V(f1, . . . , fk) := {x ∈ Fn | f1(x) = . . . = fk(x) = 0}.

The dimension of a variety is a generalization of the notion of dimension for subspaces and can
be thought of, informally, as the number of ‘degrees of freedom’ the variety has. In particular, k
generic polynomials f1, . . . , fk define a variety V(f1, . . . , fk) of dimension n − k. It is well known
that the intersection of an (n− k)-dimensional variety V ⊂ Fn with a generic k dimensional affine
subspace H ⊂ Fn is finite2. In the following we will not rely on any of these properties and keep the
discussion self-contained. Our main result in this section is a construction of an explicit variety V
where this holds for all affine subspaces H of dimension k. Using Bezout’s theorem (Theorem 2.2)
and the bound on the degrees of the polynomials defining V we will also get an explicit uniform
bound on the size of the intersections |V ∩H|. We start with the formal definition.

Definition 2.1 (Everywhere-finite variety). Let f1, . . . , fk ∈ F[x1, . . . , xn] be polynomials. The
variety V = V(f1, . . . , fk) is everywhere-finite if for any affine subspace H ⊂ Fn of dimension k,
the intersection V ∩H is finite.

The importance of showing that the intersection is finite comes from Bezout’s theorem, which
allows one to give explicit bounds on the intersection size, given that it is finite. This result can be
found in most introductory texts on Algebraic Geometry [Sha94] (for an elementary proof of this
particular formulation see [Sch95]).

Theorem 2.2 (Bezout). Let g1, . . . , gk ∈ F[t1, . . . , tk] be polynomials. If V(g1, . . . , gk) is finite then

|V(g1, . . . , gk)| ≤
k∏
i=1

deg(gi).

For everywhere-finite varieties this gives the following immediate corollary.

Corollary 2.3. Let f1, . . . , fk ∈ F[x1, . . . , xn] be polynomials such that V = V(f1, . . . , fk) is
everywhere-finite. Then for any k-dimensional affine subspace H ⊂ Fn we have

|V ∩H| ≤
k∏
i=1

deg(fi).

2For a precise definition of dimension and proofs of its basic properties we refer the reader to any elementary text
on Algebraic Geometry (e.g [Sha94]).
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Proof. Let the k-dimensional affine subspace H be given as the image of an affine map ` =

(`1, . . . , `n) : Fk → Fn. Let gi ∈ F[t1, . . . , tk] denote the restriction of fi to H, i.e.

gi(t1, . . . , tk) := fi(`1(t1, . . . , tk), . . . , `n(t1, . . . , tk)).

Clearly V∩H = V(g1, . . . , gk) and deg(gi) ≤ deg(fi). The corollary now follows from Theorem 2.2.

We will now describe an explicit construction of an everywhere-finite variety. We will need the
following definition: A k×n matrix (where k ≤ n) is k-regular if all its k×k minors are regular (i.e
have non-zero determinant). For example, if F is a field with at least n distinct nonzero elements
γ1, . . . , γn then Ai,j = γij is k-regular.

Theorem 2.4 (Construction of an everywhere-finite variety). Let 1 ≤ k ≤ n be parameters and F be
a field. Let A be a k×n matrix with coefficients in F which is k-regular. Let d1 > d2 > . . . > dn ≥ 1
be integers. Let the polynomials f1, . . . , fk ∈ F[x1, . . . , xn] be defined as follows:

fi(x1, . . . , xn) :=
n∑
j=1

Ai,j · x
dj
j .

Then V = V(f1, . . . , fk) is everywhere-finite. In particular, for any k-dimensional affine subspace
H ⊂ Fn we have |V ∩H| ≤ (d1)k.

We prove Theorem 2.4 in the remainder of this section. Let H ⊂ Fn be a k-dimensional
affine subspace. Our goal is to show that V ∩ H is finite, and then the size bound follows from

Corollary 2.3. The first step is to present H as the image of an affine map ` : Fk 7→ Fn with a

convenient choice of basis. In the following let t = (t1, . . . , tk) ∈ Fk and x = (x1, . . . , xn) ∈ Fn.

Claim 2.5. There exists an affine map ` = (`1, . . . , `n) : Fk → Fn whose image is H and such that
the following holds. There exist k indices 1 ≤ j1 < j2 < . . . < jk ≤ n such that

1. For all i ∈ [k], `ji(t) = ti.

2. If j < j1 then `j(t) ∈ F (i.e `j is constant).

3. If j < ji for i > 1 then `j(t) is an affine function just of the variables t1, t2, . . . , ti−1.

Proof. Let `′ : Fk → Fn be an arbitrary affine map whose image is H. We construct ` by a basis
change of `′ which puts it in an upper-echelon form. That is, let j1 be the minimal index such that
`′j1(t) is not constant. We take `j1(t) = t1. Let j2 be the minimal index after j1 such that `′j2(t)
is not an affine function of `′j1(t). We take `j2(t) = t2, and we have that `j(t) for j1 < j < j2 are
affine functions of t1. Generally, let ji be the minimal index after ji−1 such that `′ji(t) is not an
affine function of `′j1(t), . . . , `′ji−1

(t). We take `ji(t) = ti and have that `j(t) for ji−1 < j < ji are
affine functions of t1, . . . , ti−1. Obviously, for j > jk we have that `j(t) are affine functions of all
t1, . . . , tk.
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Let ` = (`1, . . . , `n) : Fk → Fn be given by Claim 2.5 and let 1 ≤ j1 < j2 < . . . < jk ≤ n be the
indices given by the claim. Let J := {j1, . . . , jk}. Our goal is to show that the following system
has a finite number of solutions:

fi(`1(t1, . . . , tk), . . . , `n(t1, . . . , tk)) = 0, i ∈ [k].

Clearly, applying an invertible linear transformation on the set f1, . . . , fk (replacing each fi with
a linear combination of f1, . . . , fk) will not affect the number of solutions. Our next step is to find
such a linear transformation that will put the fi’s in a more convenient form, eliminating some of
their coefficients.

Claim 2.6. Let f(x) = (f1(x), . . . , fk(x)). There exist k linearly independent vectors u1, . . . , uk ∈
Fk such that, for all i ∈ [k],

〈ui, f(x)〉 = x
dji
ji

+
∑

j∈[n]\J

cij · x
dj
j , (1)

where the coefficients cij are elements of F.

Proof. Recall that by definition fi(x) =
∑n

j=1Ai,j · x
dj
j where A is a k-regular matrix. Let A′ be

the k × k minor of A given by restriction to columns j1, . . . , jk. Since A is k-regular we have that
A′ is regular. Let u1, . . . , uk ∈ Fk denote the rows of (A′)−1. We thus have that uiA

′ = ei where ei

is the i-th unit vector. That is, 〈ui, f(x)〉 = x
dji
ji

+
∑

j /∈J cij · x
dj
j where cij is the inner product of

ui and the j-th column of A.

Let u1, . . . , uk be the vectors given by Claim 2.6 and denote

f̃i(x) := 〈ui, f(x)〉.

Let us also denote
gi(t1, . . . , tk) := f̃i(`1(t1, . . . , tk), . . . , `n(t1, . . . , tk)).

Recall that, from the above discussion, our goal is to show that the system {gi(t) = 0 : i ∈ [k]} has

a finite number of solutions in Fk. By Claims 2.5 and 2.6 we have that

gi(t) = t
dji
i +

∑
j∈[n]\J

cij · `j(t)dj . (2)

We now perform one final transformation on our system. Contrary to the previous transformations
which were linear transformations, this will be a polynomial transformation. Let

D :=

k∏
i=1

dji

and let

Di :=
D

dji
.
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For i ∈ [k] define

hi(t1, . . . , tk) := gi

(
tD1
1 , . . . , tDk

k

)
.

We first note that in order to show that V(g1, . . . , gk) is finite it suffices to show that V(h1, . . . , hk)
is finite.

Claim 2.7. |V(g1, . . . , gk)| ≤ |V(h1, . . . , hk)|.

Proof. For each w ∈ V(g) we can define w′ ∈ V(h) by letting w′i be some Di root of wi (it exists
since F is algebraically closed). Clearly distinct elements in V(g) are mapped to distinct elements
in V(h).

The reason for these transformations is that the final polynomials hi have a specifically nice
form: they are the sum of tDi with a polynomial of lower total degree.

Claim 2.8. For all i ∈ [k] we have that

hi(t1, . . . , tk) = tDi + ri(t1, . . . , tk)

where deg(ri) < D.

Proof. By definition

hi(t) = gi(t
D1
1 , . . . , tDk

k ) = tDi +
∑

j∈[n]\J

cij · `j(tD1
1 , . . . , tDk

k )dj .

To prove the claim we need to show that deg(`j(t
D1
1 , . . . , tDk

k )) < D/dj for all j /∈ J . If j < j1 then
`j is constant. Otherwise let i ∈ [k] be maximal such that j > ji. By Claim 2.5 we have that `j(t)
is an affine function of t1, . . . , ti. Since D1 < . . . < Dk we have that

deg(`j(t
D1
1 , . . . , tDk

k )) ≤ Di =
D

dji
<
D

dj

since d1 > . . . > dn.

To complete the proof of Theorem 2.4 we need to show that V(h1, . . . , hk) is finite. This follows
from a general bound for polynomials of the form hi(t) = tDi + ri(t) where deg(ri) < D.

Lemma 2.9. Let h1, . . . , hk ∈ F[t1, . . . , tk] be polynomials such that hi(t) = tDi + ri(t) where
deg(ri) < D. Then V(h1, . . . , hk) ≤ Dk.

Lemma 2.9 follows immediately from the following two claims. In the following, let R :=
F[t1, . . . , tk] be the ring of polynomials; I := 〈h1, . . . , hk〉 be the ideal in R generated by h1, . . . , hk;
and M := R/I be their quotient. Note that M is a vector space over F.

Claim 2.10. |V(h1, . . . , hk)| ≤ dimM.

7



Proof. Assume by contradiction there exist w1, . . . , wm ∈ V(h1, . . . , hk) where m > dim(M). Let
qi ∈ F[t1, . . . , tk] be polynomials such that qi(wi) = 1 and qi(wj) = 0 for all j 6= i. Let q̃i be
the image of qi in M . Since m > dim(M) there must exist a nonzero linear dependency among
q̃1, . . . , q̃m. That is, there exist c1, . . . , cm ∈ F not all zero such that∑

i∈[m]

ci · q̃i(t) = 0 (in M).

Equivalently put, ∑
i∈[m]

ci · qi(t) ∈ I.

The key observation is that for any polynomial h(t) ∈ I we have that h(w) = 0 for all w ∈
{w1, . . . , wm}. This is because hi(w) = 0 for all i ∈ [k] by assumption. Thus substituting t = wj
we get that

0 =
∑
i∈[m]

ci · qi(wj) = cj ,

which contradicts the assumption that not all c1, . . . , cm are nonzero.

Claim 2.11. dimM ≤ Dk.

Proof. We will show that M is spanned by the image in I of the monomials te11 . . . tekk where
0 ≤ e1, . . . , ek ≤ D− 1. Thus in particular dimM ≤ Dk. In order to do so, we need to show that if
q(t) is a polynomial then there exists a polynomial q̃(t) such that q − q̃ ∈ I and the degree of each
variable in q̃ is at most D− 1. It suffices to show that if q(t) has some variable of degree at least D
then we can find q̃ such that q − q̃ ∈ I and such that deg(q̃) < deg(q). The claim then follows by
iterating this process until all variables have degrees below D. Moreover, it suffices to prove this
in the case where q is a monomial, as this process can be applied to each monomial individually.

Thus, let q(t) = te11 . . . tekk be a monomial where ei ≥ D for some i ∈ [k]. Define

q̃(t) = tei−Di (tDi − hi(t)) ·
∏
j 6=i

t
ej
j .

We have that deg(q̃) < deg(q) since deg(hi(t) − tDi ) < D by assumption; and q(t) − q̃(t) =
hi(t)t

ei−D
i

∏
j 6=i t

ej
j ∈ I as required.

3 Subspace Evasive sets

In this section we construct subspace evasive sets, based on the construction of everywhere-finite
varieties given in Theorem 2.4. We first recall the definition of subspace evasive sets.

Definition 3.1 (Subspace evasive sets). Let S ⊂ Fn. We say S is (k, c)-subspace evasive if for all
k-dimensional affine subspaces H ⊂ Fn we have |S ∩H| ≤ c.
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We next give some necessary definitions. For polynomials f1, . . . , fk ∈ F[x1, . . . , xm] we define
their common solutions in Fm (as opposed to their solutions over the algebraic closure) as

VF(f1, . . . , fk) := V(f1, . . . , fk) ∩ Fm = {x ∈ Fm : f1(x) = . . . = fk(x) = 0}.

We say that a k ×m matrix is strongly-regular if all its r × r minors are regular for all 1 ≤ r ≤ k.
For example, if F is a field with at least m distinct nonzero elements γ1, . . . , γm then Ai,j = γij is
strongly-regular.

Theorem 3.2. Let k ≥ 1, ε > 0 and F be a finite field. Let m := k/ε and assume m is integer
and m divides n. Let A be a k × m matrix with coefficients in F which is strongly-regular. Let
d1 > . . . > dm be integers. For i ∈ [k] let

fi(x1, . . . , xm) :=

m∑
j=1

Ai,j · x
dj
j ,

and define S ⊂ Fn to be the (n/m)-times cartesian product of VF(f1, . . . , fk) ⊂ Fm. That is

S = VF(f1, . . . , fk)× . . .×VF(f1, . . . , fk)

= {x ∈ Fn : fi(xtm+1, . . . , xtm+m) = 0, ∀ 0 ≤ t < n/m, 1 ≤ i ≤ k}.

Then S is (k, (d1)k)-subspace evasive. Moreover,

1. If ε ≤ 1/10, d1 ≤ |F|1/4 and |F|m ≥ n8 then |S| ≥ 1
3 |F|

(1−ε)n.

2. If at least k of the degrees d1, . . . , dm are co-prime to |F| − 1 then |S| = |F|(1−ε)n.

We prove Theorem 3.2 in the remainder of this section. We first show that VF(f1, . . . , fk) has
small intersection with affine subspaces of dimension at most k (this is a stronger statement than
the one we proved in Section 2 since the dimension of the subspace can be smaller than k).

Claim 3.3. Let H ⊂ Fm be an r-dimensional affine subspace for r ≤ k. Then |VF(f1, . . . , fk)∩H| ≤
(d1)r.

Proof. Note that VF(f1, . . . , fk)∩H = V(f1, . . . , fk)∩H since H ⊂ Fm. We will show that in fact
|V(f1, . . . , fr) ∩H| ≤ (d1)r, from which the claim will follow since V(f1, . . . , fk) ⊂ V(f1, . . . , fr).
Now, since the matrix A is strongly-regular, its restriction to the first r rows is r-regular; hence
V(f1, . . . , fr) is everywhere-finite (as an (n − r)-dimensional variety) and, by Bezout’s Theorem
(Theorem 2.2), we have |V(f1, . . . , fr) ∩H| ≤ (d1)r.

We now prove that S = VF(f1, . . . , fk)
(n/m) is subspace evasive for dimensions up to k.

Claim 3.4. Let H ⊂ Fn be an r-dimensional affine subspace for r ≤ k. Then |S ∩H| ≤ (d1)r.

Proof. Let VF = VF(f1, . . . , fk). We prove the claim by induction of the number of blocks b = n/m.
If b = 1 then S = VF and the claim follows from Claim 3.3. We thus assume that b > 1. Decompose
H as a disjoint union of subspaces based on the restriction to the first m coordinates x1, . . . , xm
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(i.e. the first block). That is, let T := {(x1, . . . , xm) : (x1, . . . , xn) ∈ H} and for each t ∈ T let
Ht := {(x1, . . . , xn) ∈ H : (x1, . . . , xm) = t}. Thus H = ∪t∈THt and we have that

|Vn/m
F ∩H| =

∑
t∈VF∩T

|V(n/m)−1
F ∩Ht|.

Now, since H is an affine subspace so is T . Let r′ = dim(T ) where 0 ≤ r′ ≤ r. We also have
that Ht is an (r − r′)-dimensional affine subspace for all t ∈ T . Now by Claim 3.3 we have that

|VF ∩ T | ≤ (d1)r
′
; and by induction we have that |V(n/m)−1

F ∩Ht| ≤ (d1)r−r
′

for all t ∈ T . Hence

|Vn/m
F ∩H| ≤ (d1)r as claimed.

We now turn to prove the ‘Moreover’ part of Theorem 3.2, namely to lower bound the size of S.
To do so, it is enough to bound the size of VF(f1, . . . , fk) (since S is a product of such sets). We
begin with the unrestricted case, where all we assume are some (rather weak) bounds on the size
of the field. We refer the reader to Appendix A for the notations/preliminaries on Fourier analysis
and Weil’s theorem used in the proof.

Claim 3.5. Assume that ε ≤ 1/10, d1 ≤ |F|1/4 and |F|m ≥ n8. Then |VF(f1, . . . , fk)| ≥ (1 −
1/n)|F|m−k. In particular |S| ≥ |F|(1−ε)n/3.

Proof. Let x = (x1, . . . , xm) ∈ Fm be chosen uniformly. Our goal is to estimate the probability

that
∑m

j=1Ai,j · x
dj
j = 0 for all i ∈ [k]. Equivalently, let X(j) ∈ Fk be a random variable defined as

X
(j)
i := Ai,j ·x

dj
j and let X := X(1) + . . .+X(m). We need to estimate the probability that X = 0k.

To this end, we apply Fourier analysis (for definitions see Appendix A). Assume F = Fq where
q = p`. The characters of Fk are given by χa(x) = ep(Tr(〈a, x〉)) for a ∈ Fk where Tr : Fq → Fp is
the trace operator. Since X(1), . . . , X(m) are independent we have that

X̂(a) = E[χa(X)] = E[χa(
m∑
j=1

X(j))] =
m∏
j=1

E[χa(X
(j))] =

m∏
j=1

X̂(j)(a).

We proceed to estimate the Fourier coefficients of X(j). Let A(j) ∈ Fk denote the j-th column of
A. We have that

X̂(j)(a) = Exj∈F[ep(Tr(〈a,A(j)〉 · xdjj ))].

Thus, if the inner product of a and A(j) is nonzero, we have by the Weil bound (Theorem A.1) that∣∣∣X̂(j)(a)
∣∣∣ ≤ dj − 1√

|F|
≤ |F|−1/4.

Since we assume A is strongly-regular, for any nonzero a ∈ Fm there could by at most k−1 columns
of A which are orthogonal to a; hence we deduce that for any nonzero a,∣∣∣X̂(a)

∣∣∣ ≤ (|F|−1/4)(m−k+1) ≤ |F|−k−m/8 ≤ (1/n) · |F|−k

by our choice of parameters. We now apply these bounds to estimate the probability that X = 0.
We have that Pr[X = 0] = |F|−k

∑
a X̂(a) and X̂(0) = 1; hence∣∣∣Pr[X = 0]− F−k

∣∣∣ ≤ F−k
∑
a6=0

|X̂(a)| ≤ (1/n) · |F|−k.
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Thus |VF(f1, . . . , fk)| ≥ (1 − 1/n)Fm−k = (1 − 1/n)F(1−ε)m and |S| = |VF(f1, . . . , fk)|n/m ≥
(1/e) · |F|(1−ε)n.

We now prove the second item of the ‘Moreover’ part of Theorem 3.2 in which we assume that
at least k of the degrees d1, . . . , dn are co-prime to |F| − 1 and use this extra condition to obtain
a precise quantity for the size of S. In Section 4 we show that this condition on the degrees is
relatively easy to satisfy if we are the ones choosing the field F.

Claim 3.6. If at least k of the degrees d1, . . . , dm are co-prime to |F∗| = |F| − 1 then
|VF(f1, . . . , fk)| = |F|m−k. This implies |S| = |F|(1−ε)n.

Proof. Let VF = VF(f1, . . . , fk). Let dj1 , . . . , djk be degrees among d1, . . . , dm co-prime to |F| − 1
and let J = {j1, . . . , jk}. We will show that for any setting of {xj : j /∈ J} there exists a unique
setting of {xj : j ∈ J} which makes x ∈ VF. This will clearly show that |VF| = |F|m−k as claimed.

Substitute xj = cj ∈ F for all j /∈ J . We have that x ∈ VF if∑
j∈J

Ai,j · x
dj
j = −

∑
j /∈J

Ai,j · c
dj
j ∀i ∈ [k].

Let A′ be the k× k minor of A given by restricting A to columns in J . Let y = (x
dj1
j1
, . . . , x

djk
jk

) and

let b ∈ Fk be given by bi = −
∑

j /∈J Ai,j · c
dj
j . Then x ∈ VF if

A′y = b.

We have that A′ is regular since A is strongly regular; hence there exists a unique solution y ∈ Fk
for the linear system A′y = b. We now apply our assumption that each degree dji is co-prime to
|F∗| = |F| − 1. This implies that raising to the dji power in F is an automorphism of F∗. That is,

for each yi there exists a unique solution to x
dji
ji

= yi where xji ∈ F.

4 Explicitness of the construction

In this section we discuss the explicitness of our construction of subspace evasive sets. The construc-
tion of everywhere-finite varieties accomplished in Theorem 2.4 is given as the zero set of explicitly
defined polynomials. One can use our construction over any finite field, including F = F2` which is
convenient for applications. The construction requires an explicit strongly regular k× n matrix A.
Such a matrix can be easily obtained when |F| > n by taking Ai,j = γij where γ1, . . . , γn ∈ F are n
nonzero distinct elements in F (this is because each k × k sub-matrix is a Vandermonde matrix).

4.1 Efficient encoding of vectors as elements of S

It is trivial to decide in polynomial time if a given point x ∈ Fn is in S or not. The first non-trivial
issue regarding explicitness is how to sample an element of the set uniformly. More precisely, for an
evasive set S ⊂ Fn of size |F|r we would like to have an efficiently computable bijection ϕ : Fr 7→ S.
This is needed for the list-decoding application (see Section 5) because we would like to encode
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messages as strings in S without losing much in the rate of the code and so that we can efficiently
recover the original messages from their representation as elements of S. We now show how one can
sample from the variety VF(f1, . . . , fk) efficiently (this is enough since the construction of evasive
sets is a Cartesian product of such sets). We show this is simple when at least k of the degrees
d1, . . . , dm are co-prime to |F| − 1 (we will show below that this condition is easy to obtain).

Claim 4.1. Assume that at least k of the degrees d1, . . . , dm are co-prime to |F| − 1. Then there
is an easy to compute bijection ϕ : Fm−k → VF(f1, . . . , fk) ⊂ Fm. Moreover, there are m − k
coordinates in the output of ϕ that compute the identity mapping Id : Fm−k 7→ Fm−k.

Proof. The proof is similar to the proof of Claim 3.6. Let dj1 , . . . , djk be degrees among d1, . . . , dm
co-prime to |F| − 1 and let J = {j1, . . . , jk}. We showed in Claim 3.6 that for any setting for
{xj : j /∈ J} there exists a unique setting of {xj : j ∈ J} which makes x ∈ VF(f1, . . . , fk). We now
show that given this setting, the values of {xj : j ∈ J} can be found efficiently. Thus taking ϕ to
be the identity map from Fm−k to F[m]\J and completing it uniquely to Fm will give the required

map. As we showed in Claim 3.6 we have x
dji
ji

= yj where y = (y1, . . . , ym) is a unique solution to
a linear system A′y = b, where A′, b are easy to compute and A′ is regular. The value of y can be
found by solving a linear system; and the value of xji can be retrieved since xji = y

ej
j where ej is

the inverse of dji modulo |F| − 1 (which exists by assumption).

4.2 Computing the intersection with a given subspace

Another important explicitness issue is how to efficiently compute the intersection of a (k, c)-
subspace evasive set S ⊂ Fn with a given affine subspace H of dimension k. This question comes
up in the list-decoding application when we obtain a subspace (given in some basis) that is supposed
to contain all possible decodings of a corrupted codeword and we wish to ‘filter-out’ this subspace
to obtain the list of elements in it that are also in S. One way of doing this is to go over all elements
in H and to check for each whether or not it is in S (in our case by evaluating the k polynomials
and checking that they are all zero). Using the specific structure of our construction we can do
much better and output the set S ∩H in polynomial time in the size of the intersection.

Claim 4.2. Let S ⊂ Fn be the (k, c)-subspace evasive set constructed in Theorem 3.2 (for some
choice of the parameter m and degrees d1 > . . . > dm). There exists an algorithm that, given a
basis for any affine subspace H of dimension k, outputs S ∩ H in time polynomial in the output
size.

Proof. This follows from powerful algorithms that can solve a system of polynomial equations (over
finite fields) in time polynomial in the size of the output, provided that the number of solutions is
finite in the algebraic closure (i.e the ‘zero-dimensional’ case). See for example [Laz92, FGLM93]. In
our basic construction of an everywhere finite variety, given as the common zero set of k polynomials
f1, . . . , fk in n variables x1, . . . , xn, the intersection with a k dimensional affine subspace reduces
to solving a system of k equations in k variables – simply substitute xi = `i(t1, . . . , tk), where H is
the image of the degree one map ` : Fk 7→ Fn. For the construction of the evasive set (which is the
direct product of these simple varieties) we can use an iterative argument (similar to the proof of
Theorem 3.2). Recall that in our construction we partitioned the set of coordinates into consecutive
blocks of length m – each containing an independent copy of a the variety V(f1, . . . , fk). In the
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first step we solve a system of equations for the projection of H on the first m coordinates. If the
dimension of this projection is r1 then this step will take time polynomial in (d1)r1 which is the
bound on the number of solutions. For every fixing of the first m coordinates to a solution obtained
in this step, we reduce the dimension of H by r1 and obtain a new subspace H ′ on the remaining
coordinates. Continuing in the same fashion with H ′ on the second block we can compute all
solutions in time poly((d1)r1) · poly((d1)r2) · · · · · poly((d1)r`), where r1 + r2 + . . .+ r` = k. This will
add up to a total of poly((d1)k) running time, which is polynomial in the number of solutions.

4.3 Generating a field with k degrees co-prime to |F| − 1

We now address the condition, appearing in Theorem 3.2 and in Claim 4.1, that at least k of the
degrees d1 > . . . > dm used in the construction are co-prime to |F| − 1. We will want to satisfy
this condition, while still maintaining am reasonable bound on d1 (which is important since it
determines the intersection size with subspaces). For certain fields it may be the case that |F| − 1
has many small divisors, in which case d1 might have to be large. However, if one has the freedom
of ‘picking’ the field size (as we do in the application to list-decoding) then this problem can be
avoided. In essence, we need a (deterministic) way of generating a field F of size within some
specified range and with at least k small integers co-prime to |F| − 1. The best bound on the k
integers is O(k) which can be obtained, for example, using ‘safe’ primes or primes of the form 2q+1
for q prime. Since we do not know how to find a safe prime in a specified range (or even to show
that infinitely many such primes exist!) we will have to resort to an asymptotically weaker bound
as is given by the following claim.

Claim 4.3. There exists a constant C > 0 such that the following holds: There is a deterministic
algorithm that, given integer inputs k, n so that n > kC log log k, runs in poly(n) time and returns a
prime p and k integers kC log log k > d1 > d2 > . . . > dk > 1 such that:

1. For all i ∈ [k], gcd(p− 1, di) = 1.

2. n < p ≤ n · kC log log k.

Proof. Let K be the product of the first dlog2(k+ 1)e odd primes. By the prime number theorem,
K < kC

′ log log k for some constant C ′ > 0. Let K > d1 > . . . > dk be k distinct odd divisors of K.
We will show how to chose the prime p as in the claim using results on the distribution of primes
in arithmetic progressions (see [IK04] for more details). Property 1. will follow if our prime p will
satisfy the congruence p = 2 mod K. Since K and 2 are co-prime, we know (see [IK04]) that the
number of primes smaller than x satisfying this congruence is asymptotically 1

φ(K) ·
x

lnx , where φ is

Euler’s totient function. From this it follows that there exists a prime in the range [n, 2nK] that
satisfies the congruence p = 2 mod K and, consequently, p− 1 is co prime to all the divisors of K.
Finding this p in time polynomial in n is trivial since we can just try all integers in the range and
test them for primality.
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5 Proof of Theorem 2

In [Gur11], Guruswami considers an explicit family of codes (folded Reed-Solomon codes) that are
defined as the image of an explicit mapping

C : Fn → (Fr)m/r

where F = Fq is any finite field of size q and 1 ≤ m ≤ q− 1 is a multiple of r. Since our application
is black-box (and applies to any code that shares the decoding properties listed below, such as the
codes from [GW11]) we omit the precise description of the code and refer the reader to [Gur11] for
more details on the actual definition of C.

In this setting, n is the message length, Σ = Fr is the alphabet, N = m/r is the block length
and R = n/m is the rate. Let ε > 0 be a sufficiently small constant and set k ≈ 1/ε and r ≈ 1/ε2.
Guruswami shows (Theorem 7 in [Gur11]) that for the above choice of parameters:

1. The mapping C can be computed in polynomial time.

2. There exists a polynomial time algorithm that, given y ∈ (Fr)m/r, returns a basis to a subspace
H ⊂ Fn of dimension k which contains all points x ∈ Fn whose encoding C(x) has normalized
hamming distance at most 1− R − ε from y. (In fact, this algorithm runs in time quadratic
in its output length.)

We now describe how to combine this code C with our construction of subspace evasive sets
(Theorem 3.2) to obtain a code C ′ with shorter list size and without loosing too much in the
decoding radius. Let S ⊂ Fn be a (k, c = c(k, ε)) subspace-evasive set obtained from Theorem 3.2.
Using Claim 4.3, we can construct a finite field F of size between n and Oε(n) so that the first k
degrees d1, d2, . . . , dk used in the construction are co-prime to |F| − 1. From Claim 4.1 we know
that there is an efficiently computable bijection ϕ : F(1−ε)n → S ⊂ Fn. Consider the composed
code C′ : F(1−ε)n → (Fr)m/r defined as

C′(x) = C(ϕ(x)).

Let R′ denote the rate of C ′. Then

R′ = (1− ε)n/m = (1− ε) ·R ≥ R− ε.

First, we claim that the composed code C′ can be list-decoded with list size c(1/ε, ε) = (1/ε)O(1/ε)

from a fraction
1−R− ε ≥ 1−R′ − 2ε

of errors. This is since for every y ∈ (Fr)m/r, the subspace H ⊂ Fn returned by the list-decoding
algorithm for C contains at most c messages who lie in S.

In order to maintain the efficiency of encoding and list-decoding of C′, we need to guarantee
three properties:

(i) Encoding: the map ϕ should be computable in polynomial time.

(ii) Decoding: the inverse map ϕ−1 should be computable in polynomial time.
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(iii) List-decoding: for every subspace H ⊂ Fn of dimension s, we can find in polynomial time the
intersection S ∩H ⊂ Fn.

The first two items are guaranteed by Claim 4.1, and the third by Claim 4.2. Using the property
that the decoded given by Guruswami runs in quadratic time we get that the composed code C ′

can be list-decoded (with the above parameters) in quadratic time (for all constant ε > 0). This
completes the proof of Theorem 3.2.
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A Fourier analysis

Let F be a finite field. An additive character (e.g. Fourier basis) of F is a function χ : F→ C such
that χ(x+y) = χ(x)χ(y) for all x, y ∈ F. The set of characters form an orthogonal basis of functions
from F to C. Let ep(x) := e2πix/p. The set of characters of F = Fp` for p prime and ` ≥ 1 is given

by χa(x) = ep(Tr(ax)) for a ∈ Fp` , where the trace Tr : Fp` → Fp is defined as Tr(x) =
∑e−1

i=0 x
pi .

The constant function 1 is a trivial character for any field; any other character is called non-trivial.
More generally, the characters of the vector space Fm are given by χa(x) = ep(Tr(〈a, x〉)) where
a = (a1, . . . , am) ∈ Fm, x = (x1, . . . , xm) ∈ Fm and 〈a, x〉 = a1x1 + . . .+ amxm.

Let X be a random variable taking values in Fm. Its Fourier coefficients X̂(a) for a ∈ Fm are
given by

X̂(a) :=
∑
x∈Fm

Pr[X = x]χa(x);

and for any x ∈ Fm, the Fourier inversion formula gives that

Pr[X = x] = |F|−m
∑
a∈Fm

X̂(a)χa(x).

Character sums The following result by Weil [Wei48] (see also [Sch04]) is a strong tool which
gives a bound on the average of a nontrivial character evaluated over the output of a low degree
polynomial.

Theorem A.1 (Weil). Let f(x) be a non-constant degree d polynomial over a finite field F. Let
χ : F→ C be a nontrivial additive character. Then |Ex∈F[χ(x)]| ≤ d−1√

|F|
.
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