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Abstract

Let G = (S) be a solvable permutation group given as input by the generating set
S. Le. G is a solvable subgroup of the symmetric group S,. We give a deterministic
polynomial-time algorithm that computes an expanding generating set of size O(n?) for

G. More precisely, given a A < 1, we can compute a subset T' C G of size 5(712) (%)O(l)

such that the undirected Cayley graph Cay(G,T) is a A-spectral expander (the O
notation suppresses logo(l) n factors). In particular, this construction yields e-bias
spaces with improved size bounds for the groups Z}; for any constant £ > 0.

We also note that for any permutation group G < S,, given by a generating set, in
deterministic polynomial time we can compute an (%)O(l) size expanding generating
set T, such that Cay(G,T) is a A\-spectral expander; here the constant in the exponent

is large but independent of .

1 Introduction

Let G be a finite group, and let S = (g1, g2, - - -, gx) be a generating set for G. The undirected
Cayley graph Cay(G,SUS™1) is an undirected multigraph with vertex set G' and edges of the
form {z,xg;} for each x € G and g; € S. Since S is a generating set for G, Cay(G,SUS™1)
is a connected regular multigraph.

For a regular undirected graph X = (V, E) of degree D on n vertices, its normalized
adjacency matrix Ay is a symmetric matrix with largest eigenvalue 1. For 0 < A < 1, the
graph X is an (n, D, A)-spectral ezpander if the second largest eigenvalue of Ay, in absolute
value, is bounded by .

Expander graphs are of great interest and importance in theoretical computer science,
especially in the study of randomness in computation; the monograph by Hoory, Linial, and
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Wigderson [HLWOG] is an excellent reference. A central problem is the explicit construction
of expander graph families [HLWO6|, [LPS88]. By explicit it is meant that the family of
graphs has efficient deterministic constructions, where the notion of efficiency depends upon
the application at hand, e.g. [Rei08]. Explicit constructions with the best known and
near optimal expansion and degree parameters (the so-called Ramanujan graphs) are Cayley
expander families [LPS8Y].

Alon and Roichman, in [AR94], show that every finite group has a logarithmic size
expanding generating set using the probabilistic method. For any finite group G and A > 0,
they show that with high probability a random multiset S of size O(log |G|) picked uniformly
at random from G is a A-spectral expander. Algorithmically, if G is given as input by its
multiplication table there is a randomized Las Vegas algorithm for computing S: we pick
the multiset S of O(log |G|) many element from G and check in deterministic time |G|°®)
that Cay(G,T) is a A-spectral expander.

Wigderson and Xiao gave a derandomization of this algorithm in [WX08] (also see [AMNT1]
for an alternative proof of [WXO08§]). Given A > 0 and a finite group G by a multiplication
table, they show that in deterministic time |G|°) a multiset S of size O(log|G|) can be
computed such that Cay(G,T) is a A-spectral expander.

This paper

Suppose the finite group G is a subgroup of the symmetric group 5, or the matrix group
GL,(F,) and G is given as input by a generating set S, and not explicitly by a multiplication
table. The question we address is whether we can compute an O(log|G|) size expanding
generating set for G in deterministic polynomial time. Notice that if we can randomly (or
nearly randomly) sample from the group G in polynomial time, then the Alon Roichman
theorem implies that an O(log |G|) size sample will be an expanding generating set with high
probability (though we do not know how to certify this in polynomial time).

This problem can be seen as a generalization of the construction of small bias spaces in,
say Fy [AGHP92|. It is easily proved (see e.g. [HLW0G] ), using some character theory of finite
abelian groups, that e-bias spaces are precisely expanding generating sets for F4 (and this
holds for any finite abelian group). Interestingly, the best known explicit construction of e-
bias spaces is of size O(n?/e), whereas the Alon-Roichman theorem guarantees the existence
of e-bias spaces of size O(n).

Subsequently, Azar, Motwani and Naor [AMNOS8] gave a construction of e-bias spaces
for finite abelian groups of the form Z] using Linnik’s theorem and Weil’s character sum
bounds. The size of the e-bias space they give is O((d + n?)¢) where the constant C' comes
from Linnik’s theorem and the current best known bound for C' is 11/2.

In this paper we prove a more general result. Given any solvable subgroup G of S,
where G is given by a generating set, we construct an expanding generating set 1" for G such
that Cay(G,T) is a A-spectral expander for constant A\. Furthermore, |T| is O(n?) which is
close to some of the best known e-bias space construction for F4 [AGHP92, ABNT92]. We
note that for even for a general permutation group G < S, given by a generator set, we



can compute (in deterministic polynomial time) an (2)°() size generating set 7' such that

Cay(G,T) is A-spectral.

It is interesting to ask if we can obtain expanding generator sets of smaller size in de-
terministic polynomial time. For an upper bound, by the Alon-Roichman theorem we know
that there exist expanding generator sets for any G of size O(log|G|) which is bounded by
O(nlogn) = O(n). In general, given G an algorithmic question is to ask for a minimum size
expanding generating set for G that makes the Cayley graph A-spectral.

In this connection, it is interesting to note the following negative result that Lubotzky and
Weiss in [LW93] have shown about solvable groups as expanders: Let {G;} be any infinite
family of finite solvable groups {G;} such that each G; has derived series of length bounded
by some constant ¢. Further, suppose that ¥; is an arbitrary generating set for G; such that
its size |X;| < k for each ¢ and some constant k. Then the Cayley graphs Cay(G;, ;) do
not form a family of expanders. In contrast, they also exhibit an infinite family of solvable
groups in [LW93] that give rise to constant-degree Cayley expanders.

Coming back to our present paper, the main ingredients of our construction are the
following;:

n
A

e Let GG be a finite group and N be a normal subgroup of G. Given expanding generating
sets S1 and Sy for N and G/N respectively such that the corresponding Cayley graphs
are A-spectral expanders, we give a simple polynomial-time algorithm to construct an
expanding generating set S for G such that Cay(G,S) is also A-spectral. Moreover,
|S| is bounded by a constant factor of | S| + |Sa.

e We compute the derived series for the given solvable group G < S, in polynomial time
using a standard algorithm [Luk93]. This series is of O(logn) length due to Dixon’s
theorem. Let the derived series for GG be

G:G()DGlD"'DGk:{l}.

Assuming that we already have an expanding generating set for each quotient group
G;/G;;1 (which is abelian) of size O(n?), we apply the previous step repeatedly to
obtain an expanding generating set for G of size 6(712) We can do this because the
derived series is a normal series.

e Finally, we consider the abelian quotient groups G;/G;41 and give a polynomial time
algorithm to construct an expanding generating set for it of size 9] (n?). This construc-
tion applies a series decomposition of abelian groups as well as makes use of the Ajtai
et al construction of expanding generating sets for Z; |[AIKT90|. In particular, we note

that our construction improves the Azar-Motwani-Naor construction of e-bias spaces
for Z1y for any constant ¢ > 0 [AMNOS].

We present the above three steps of the construction in the next three sections.



2 Combining Expanders for N and G/N

Let G be any finite group and N be a normal subgroup of G (i.e. g7*Ng = N for all g € G).
We denote this by G > N > {1}. Let A C N be an expanding generating set for N and
Cay(N, A) be a A-spectral expander. Similarly, suppose B C G such that B= {Nz | x € B}
is an expanding generating set for the quotient group G/N and Cay(G/N, B\) is also a A-
spectral expander. Let X = {x, 2o, ..., 2} denote a set of distinct coset representatives for
the normal subgroup N in G. In this section we show that AU B is an expanding generating
set for G. More precisely, we will show that Cay(G, AU B) is a %—spectral expander.

In order to analyze the spectral expansion of the Cayley graph Cay(G, AU B) it is useful
to view vectors in C/¢! as elements of the group algebra C[G]. The group algebra C[G]
consists of linear combinations »_ . a9 for ay € C. Addition in C[G] is component-wise,
and clearly C[G] is a |G|-dimensional vector space over C. The product of 3~ ., agg and
>_nec Brh is defined naturally as: 3° o agBugh.

Let S C G be any symmetric subset and let Mg denote the normalized adjacency matrix
of the undirected Cayley graph Cay(G,S). Now, each element a € G defines the linear
map M, : C[G] — C[G] by M,(}_,ay9) = >, agg9a. Clearly, Mg = ﬁ Y wcs M, and

MS(ZQ Ozgg) = ﬁ ZQES Zg O‘gga‘
In order to analyze the spectral expansion of Cay(G, AU B) we consider the basis {zn |

x € X,n € N} of C[G]. The element uy = ﬁ > nen 1 of C[G] corresponds to the uniform
distribution supported on N. It has the following important properties:

1. For all a € N M,(uxn) = uy because Na = N for each a € N.

2. For any b € G consider the linear map o, : C[G] — C|G] defined by conjugation:
ob(D_,9) = 2, ayb~tgb. Since N < G the linear map oy, is an automorphism of N.
It follows that for all b € G op(un) = un.

Now, consider the subspaces U and W of C[G] defined as follows:

W= {Zx(Zﬁn@n> > e =0, V:L’EX}

zeX neN n

It is easy to see that U and W are indeed subspaces of C[G]. Furthermore, we note that
every vector in U is orthogonal to every vector in W, i.e. U L W. This follows easily from
the fact that zuy is orthogonal to x Ene ~ Bn,zn whenever Zne ~ Bn,zn is orthogonal to uy.
Note that )\ Bnn is indeed orthogonal to uy when )\ B, = 0. We claim that C[G]
is a direct sum of its subspaces U and W.

Proposition 2.1. The group algebra C[G] has a direct sum decomposition C[G] = U + W.

4



Proof. Since U L W, it suffices to check that dim(U) + dim(W) = |G|. The set {zuy |z €
X} forms an orthogonal basis for U since for any x # y € X, zuy is orthogonal to yuy.
The cardinality of this basis is | X].

Let 21,..., zn|-1 be the |[N| —1 vectors orthogonal to the uniform distribution uy in the
eigenbasis for the Cayley graph Cay(N, A). It is easy to see that the set {zz; |z € X,1 <
Jj <|N|—1} of size | X|(|]N] — 1) forms a basis for W. O

We will now prove the main result of this section.

Lemma 2.2. Let G be any finite group and N be a normal subgroup of G and X\ < 1/2 be any
constant. Suppose A is an expanding generator set for N so that Cay(N, A) is a A-spectral
expander. Furthermore, suppose B C G such that B = {Nz | z € B} is an expanding
generator for the quotient group G/N and Cay(G/N, E) is also a \-spectral expander. Then

1+\)(max | A[,| B|)

AU B is an expanding generating set for G such that Cay(G, AU B) is a (IW_

spectral expander. In particular, if |A| = |B| then Cay(G, AUB) is a @-spectml expander)*

Proof. We will give the proof only for the case when |A| = |B| (the general case is identical).

Let v € C[G] be any vector such that v L 1 and M denote the adjacency matrix of
the Cayley graph Cay(G, AU B). Our goal is to show that ||[Mwv|| < 2|jv||. Notice that
the adjacency matrix M can be written as %(MA + Mp) where My = ﬁ Y aen Ma and

MB = ﬁaZbEB Mb.2

Claim. For any two vectors u € U and w € W, we have Mau € U, Maw € W, Mpu € U,
Mpw € W, ie. U and W are invariant under the transformations M, and Mp.

Proof. Consider vectors of the form v = zuy € U and w = xzneN Bnam, where z € X
is arbitrary. By linearity, it suffices to prove for each a € A and b € B that M,u € U,
Myu € U, M,w € W, and Myw € W. Notice that M,u = ruya = ruy = u since uya = uy.
Furthermore, we can write M,w = x ZneN Bnana = T En,eN Vs &1, Where vy, = B, and
n' = na. Since Y . cnVYn'e = Dopen Bna = 0 it follows that M,w € W. Now, consider
Myu = ub. For x € X and b € B the element xb can be uniquely written as xyn,;, where
z, € X and ng, € N.

Myu = zuyb = xb(b™ uyb)

= xbnx,bab(uN) = TpNgpUN = TpUN € U.

Finally,

IThe sizes of A and B is not a serious issue for us. Since we consider multisets as expanding generating
sets, notice that we always ensure |A| and |B| are within a factor of 2 of each other by scaling the smaller
multiset appropriately. Indeed, in our construction we can even ensure when we apply this lemma that the
multisets A and B are of the same cardinality which is a power of 2.

Al

%In the case when |A| # |B|, the adjacency matrix M will be |A||+WMA + %MB.



Myw = x(z Bnzn)b = xb(z Bn,zb_lnb)

neN neN

= TpNzp E anb—l,xn

neN

=Ty Z/Yn,xn eWw.

neN

Here, we note that v, , = B, and n' = b(n;in)b‘l. Hence ), .y ¥ne = 0, which puts
Myw in the subspace W as claimed. O

Claim. Let uw € U such that v L 1 and w € W. Then:

L [Maul] < lul]
2. [Mpwl| < Jw].
3. [Mpul| < Aljull
4 [[Maw]] < Aw].

Proof. Since M is the normalized adjacency matrix of the Cayley graph Cay(G, A) and Mp
is the normalized adjacency matrix of the Cayley graph Cay(G, B), it follows that for any
vectors u and w we have the bounds | Mau|| < ||u|| and ||Mpw]|| < ||w]].

Now we prove the third part. Let u = (D> a,x)uy be any vector in U such that u L 1.
Then )y o, = 0. Now consider the vector u =) _, ayNx in the group algebra C[G/N].
Notice that u L 1. Let Mz denote the normalized adjacency matrix of Cay(G/N, B). Since
it is a A-spectral expander it follows that ||Mzu| < A||ul|. Writing out Mzu we get Mzu =
|—]§| Y oven Qozex CalNTb = ﬁ Y oven Qowex QalNxy, because xb = xyngy and Nab = Nay (as
N is a normal subgroup). Hence the norm of the vector ﬁ Y ben Dozex QN Ty is bounded
by A||@||. Equivalently, the norm of the vector ‘—é‘ Y ben Qozex Oty is bounded by Alju||. On
the other hand, we have

Mpu = — Z (Z ozzx) unb = B Z (Z w:b) b unb
(Z S o, ) ux (z 5 a> ux

|~

Uv\



For any vector (3 ..y V.%)uny € U it is easy to see that the norm |(3°, .y V.2)un|| =
| > sex Yol [lun]|. Therefore,

1
[Mpul = HEZZ%%HHWH
b T
< 'S auellfux

zeX

= Allu]l-

We now show the fourth part. For each x € X it is useful to consider the following
subspaces of C[G]
ClzN)={z > 6.n |6, € C}.
neN

For any distinct  # 2’ € X, since tNNz'N = (), vectors in C[x N] have support disjoint from
vectors in C[z'N]. Hence C[zN] L C[z'N] which implies that the subspaces ClzN],z € X
are pairwise mutually orthogonal. Furthermore, the matrix M4 maps C[zN]| to C[zN] for
each z € X.

Now, consider any vector w =Y. # (3, Bu.n) in W. Letting w, = x (3,,cn Buan) €
ClzN] for each x € X we note that M w, € ClzN] for each z € X. Hence, by Pythogoras
theorem we have ||w|®* = >y [lwa]|* and |[Maw|]* = >y [[Maw,]|*. Since Mjw, =

eMa (3, cn Bnzn), it follows that |[Maws| = |[Ma (X ,cn Bran) | < A en Buantll =
Aljws |-
Putting it together, it follows that [|[Maw||* < A? (3 ,cx [|wa|?) = A?|lw|]?. O

We now complete the proof of the lemma. Consider any vector v € C[G] such that v L 1.
Let v = u+w where u € U and w € W. Let (,) denote the inner product in C[G]. Then we
have

1
[Mol[* = 21 (Ma + Mp)o|?

- }L«MA + Mp)v, (Ma + Mp)v)

1 1 1
= Z<MA'U7MA'U> + Z<MBU,MBU> + §<MA’U,MBU>

We consider each of the three summands in the above expression.

<MAU,MAU> = <MA<U+ w),MA(u+w)>
= <MAU, MAU> + <MAU),MA’LU> -+ 2<MAU, MAw>

By Claim 2/ and the fact that U L W, (Mau, M4w) = 0. Thus we get

<MAU,MAU> = <MAU, MAU> + <MAU), MA’UJ>
< lul® + A[jw|?, from Claim 2.



By an identical argument Claims 2| and 2 imply (Mgv, Mpv) < A?||u||? + ||w|[*. Finally

(Mav, Mpv) = (Ma(u+ w), Mg(u+ w))

= (Myu, Mpu) + (M sw, Mpw) + (Mau, Mpw) + (Msw, Mpu)

= (Mu, Mpu) + (M aw, Mpw)

< || Maul|||Mpul|| + ||Maw||||Mpw|| (by Cauchy-Schwarz inequality)

< M|ul|? + Allwl]|?, which follows from Claim 2

Combining all the inequalities, we get

(1+N)?
[Mol> < = (142X +22) (ull® + w]?) = THUHZ-

AN,

Hence, it follows that [|Mo| < H2{jv]|. O

2.1 A Derandomized Squaring Step

Notice that Cay(G, AU B) is only a %—spectral expander. We can compute another ex-
panding generating set S for G from AU B, using derandomized squaring [RV05], such that
Cay(G, S) is a A-spectral expander. We recall a result in [RV05], Observation 4.3, Theorem
4.4] about derandomized squaring applied to Cayley graphs which we recall in some detail.

Theorem 2.3 ([RV0S]). Let G be a finite group and U be an expanding generating set such
that Cay(G,U) is a N-spectral expander and H be a consistently labeled d-reqular graph
with vertex set {1,2,...,|U|} for a constant d such that H is a p-spectral expander. Then
Cay(G,U)QH is a directed Cayley graph for the same group G and with generating set
S = {wwu; | (i,5) € E(H)}. Furthermore, if A is the normalized adjacency matriz for
Cay(G,U)®H then for any vector v € CI¢l such that v L 1:

1Av]] < (X2 + ) Jo]l.

Observe that in the definition of the directed Cayley graph Cay(G, U)®H (in the state-

ment above) there is an identification of the vertex set {1,2, ..., |U|} of H with the generator
multiset U indexed as U = {uq, us, ..., ujy|}-

Alternatively, we can also identify the vertex set {1,2,...,|U|} of H with the generator
multiset U indexed as U = {u;',uy’, ... ,u‘_U1|}, since U is closed under inverses and, as

a multiset, we assume for each u € U both u and u~! occur with same multiplicity. Let

us denote this directed Cayley graph by Cay(G,U 1)®H. Clearly, by the above result of
[RV05] the graph Cay(G,U1)®H also has the same expansion property. Le. if A’ denotes
its normalized adjacency matrix for Cay(G,U~")®H then for any vector v € CI¢l such that
v L 1:

[A]| < (X2 + ) v]].

We summarize the above discussion in the following lemma.



Lemma 2.4. Let G be a finite group and U be a generator multiset for G such that for each
w € U both u and u™' occur with the same multiplicity (i.e. U is symmetric and preserves
multiplicities). Suppose Cay(G,U) is a N -spectral expander. Let H be a consistently labeled
d-regular graph with vertex set {1,2,... |U|} for a constant d such that H is a p-spectral
expander. Then Cay(G,S) is an undirected Cayley graph for the same group G and with
generating set S = {uu; | (i,j) € E(H)} U{u;'u;" | (i,j) € E(H)}. Furthermore,
Cay(G, S) is a (N? + u)-spectral expander of degree 2d|U|.

We can, for instance, use the graphs given by the following lemma for H in the above
construction.

Lemma 2.5. [[RV05]] For some constant Q) = 49, there exists a sequence of consistently
labelled Q-regular graphs on Q™ wvertices whose second largest eigenvalue is bounded by 1/100
such that given a vertezv € [Q™] and an edge label x € [Q], we can compute the " neighbour
of v in time polynomial in m.

Suppose Cay(G, U) is a 3/4-spectral expander and we take H given by the above lemma
for derandomized squaring, then it is easy to see that with a constant number of squaring
operations we will obtain a generating set S for G such that |S| = O(|U]|) and Cay(G, S)
is a 1/4-spectral expander. Putting this together with Lemma [2.2] we obtain the following
consequence which we will use repeatedly in the rest of the paper.

Lemma 2.6. Let G be a finite group and N be a normal subgroup ofG such that N = (A)
and Cay (N, A) is a 1/4-spectral ezpander. Further, let B € G and B= {Nz | = € B} such
that G/N = (B) and Cay(G/N, B) is a 1/4-spectral ezpander. Then in time polynomial| in
|A|+|B|, we can construct an expanding generating set S for G, such that |S| = O(|A|+|B|)
and Cay(G, S) is a 1/4-spectral expander.

2.2 Expanding Generator Sets for any Permutation Group

Before we return to the problem of computing expanding generating sets for solvable permu-
tation groups, we briefly describe construction of expanding generating sets for any permuta-
tion group G = (5). We require the following result on expansion of vertex-transitive graphs;
recall that a graph X is said to be vertex transitive if its automorphism group Aut(X) acts
transitively on its vertex set.

Theorem 2.7. [Bab9l| For any vertez-transitive undirected graph of degree d and diameter
A the second largest eigenvalue of its normalized adjacency matriz is bounded in absolute

value by 1 — m.

We note the well-known fact that an undirected Cayley graph Cay(G, S) is vertex tran-
sitive, given any generator set S for the group G. In particular, if G < S,, we know by the

3Though the lemma holds for any finite group G, the caveat is that the group operations in G should be
polynomial-time computable. Since we focus on permutation groups in this paper we will require it only for
quotient groups G = H/N where H and N are subgroups of .S,.



Schreier-Sims algorithm [Luk93] that in deterministic polynomial time we can compute a
strong generator set S’ for G, where |S’| < n?. In particular, S’ has the property that every
element of GG is expressible as a product of n elements of S’. As a consequence, the diameter
of the Cayley graph Cay(G, S’) is bounded by 2n. Hence by Theorem 2.7, the second largest
cigenvalue of Cay(G,S’) is bounded by 1 — ;. Now we will apply derandomized squaring
[RV05] to get a spectral gap 1 — A for any A > 0.

First, we apply derandomized squaring repeatedly for at most 8 logn times to get a gener-
ator set T for G. By Lemma 2.4/ and [RV05, Theorem 4.4] it follows that the corresponding
Cayley graph Cay(G,T) has a spectral gap of at least 1/4. Further, by Lemma 2.4 the
size of T is O(n'%), assuming that we use the expander graphs given by Lemma (2.5 for
derandomized squaring.

We cannot use a constant-degree expander to increase the spectral gap beyond a con-
stant. For 1—\ > 1/4, we will apply the derandomized squaring using a non-constant degree
expander as described in [RV05, Section 5]. By the analysis of [RV05], if we apply deran-
domized squaring m times with a suitable non-constant degree expander then the second
largest eigenvalue (in absolute value) will be bounded by (7/8)%". In order to bound this by
A we can set m = 4 + loglog % Also, for the i"" derandomized squaring step the degree of
the auxiliary expander expander graph turns out to be 4q2i, 1 <7 < m. Hence the overall
degree of the final Cayley graph will become n69492™ "' =1 Then by Lemma 2.4, the size of

the generating set will be |T| = n!6 (%)0(1). To summarize, we have the following theorem.

Theorem 2.8. Given G < S, by a generating set S’ and A\ > 0, we can deterministically
compute (in time poly(n, |S’|)) an expanding generating set T' for G such that Cay(G,T) is

a A-spectral expander and |T| = n'% (%)O(l) (where q is the constant in Lemma|2.5).

3 Normal Series and Solvable Permutation Groups

Let G < S, such that
G=Gy>Gi>--->G, ={1}

is a normal series for G. l.e. (G; is a normal subgroup of G for each ¢ and hence Gj is a
normal subgroup of G; for each j < i.

Lemma 3.1. Let G < S, with normal series {G;};_, as above. Further, for each i let B;
be a generating set for G;/Giy1 such that Cay(G;/G,y1, B;) is a 1/4-spectral expander. Let
s = r-max;{|B;|}. Then in deterministic time polynomial in n and s we can compute a
generating set B for G such that Cay(G, B) is a 1/4-spectral expander and |B| = c°¢"s for
some constant ¢ > 0.

Proof. The proof is an easy application of Lemma [2.6. First suppose we have three indices

k, ¢, m such that G.>G,>G,, and Cay (G /Gy, S) and Cay(Gy/G,,, T') both are 1/4-spectral
expanders. Then notice that we have the groups Gi/G,,, > G /G, > {1} and the group g—’; is

Ge/Gm GolC S ) is also a 1/4-spectral

isomorphic to via a natural isomorphism. Hence Cay(
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expander, where S is the image of S under the said natural isomorphism. Therefore, we can
apply Lemma 2.6 by setting G to Gy/G,, and N to G,;/G,, to get a generating set U for
Gy /Gy, such that Cay(Gy /G, U) is 1/4-spectral and |U| < ¢(|S| + |T).

To apply this inductively to the entire normal series, assume wlog its length r = 2%
Inductively assume that in the normal series

G - Go > Gzi > G2.2i > G3.2i "'[>Gr - {1},

for each quotient group Gjsi/G(j11)2¢ We have an expanding generating set of size ¢'s that
makes G j9i /G (j11)21 1/4-spectral. Now, consider the three groups G'(9;)2i > G (2)41)2: > G (25122
and setting k = 252, ¢ = (25 + 1)2" and m = (25 + 2)2° in the above argument we get
expanding generator sets for Gojoi/G 242y Of size ¢"™'s that makes it 1/4-spectral. The
lemma follows by induction. O]

3.1 Solvable permutation groups

Now we apply the above lemma to solvable permutation groups. Let G be any finite solvable
group. The derived series for G is the following chain of subgroups of G:

G:GobGlb"'DGk:{l}

where, for each ¢, G;y1 is the commutator subgroup of G;. 1.e. G;1; is the normal subgroup
of G; generated by all elements of the form xyx~ty~! for z,y € G;. It turns out that G4, is
the minimal normal subgroup of G; such that G;/G; is abelian. Furthermore, the derived
series is also a normal series. l.e. each G; is in fact a normal subgroup of G itself. It also
implies that G; is a normal subgroup of G for each j < ¢.

Our algorithm will crucially exploit a property of the derived series of solvable groups
G < S,. This is a theorem of Dixon [Dix68] which states that the length k of the derived
series of a solvable subgroup of .5, is bounded by 5 logs n.

Lemma 3.2. Suppose G < S, is a solvable group with derived series
G:G()DGlD"'DGk:{l}

such that for each i we have an expanding generating set B; for the abelian quotient group
G;/Gis1 such that Cay(G;/Git1, B;) is a 1/4-spectral expander. Let s = kmax;{|B;|}. Then
in deterministic time polynomial in n and s we can compute a generating set B for G such
that Cay (G, B) is a 1/4-spectral expander and |B| = 200°¢k) s = (1ogn)°Ws.

Proof. Follows by a direct application of Lemma (3.1} O

Given a solvable permutation group G < S, by a generating set the polynomial-time
algorithm for computing an expanding generating set will proceed as follows: in deterministic
polynomial-time we first compute [Luk93] generating sets for each subgroup {G;}1<i<k in the
derived series for GG. In order to apply the above lemma it suffices to compute an expanding
generating set B; for G;/G;41 such that Cay(G;/Gis1, B;) is 1/4-spectral. We deal with this
problem in the next section.
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4 Abelian Quotient Groups

As explained above we are now left with the problem of computing expanding generating
sets for the abelian quotient groups G;/G;11. We prove a couple of easy lemmas that will
allow us to further simplify the problem.

Lemma 4.1. Let H and N be subgroups of S,, such that N is a normal subgroup of H and
H/N is abelian. Let p1 < ps < ... < py be the set of all primes bounded by n and e = [logn].
There is an onto homomorphism ¢ from the product group Zg‘i X ZZS X o X Z;‘z onto the
abelian quotient group H/N.

Proof. Since H is a subgroup of S, it has a generating set of size at most n — 1. Let
{1, 29,...,2,} be a generator (multi)set for H. Each permutation z; can be written as a
product of disjoint cycles and the order, r;, of x; is the lem of the lengths of these disjoint
cycles. Thus we can write for each ¢

ri=prtpyt e ph
where the key point to note is that p;” < n for each ¢ and j because r; is the lem of the
disjoint cycles of permutation z;. Clearly, e;; < e = [logn].

Y g

Now, define the elements y;; = m:l/pj . Notice that the order, o(y;;), of y;; is pj” :
Let (@11, .-, an1y- .-, a1k, - - -, Gpg) be an element of the product group Z;% XZSS X o -XZ%,
where for each i we have (a;, ..., an;) € ZJ. Let b = pj_e“ a;; for each ¢ and j. Now define

the mapping ¢ as

k n

¢(CL11, ey Only e ey gy - e >ank) = N(HH?JZ”)

j=1i=1

Since H/N is abelian, it is easy to see that ¢ is a homomorphism. To see that ¢ is onto,
consider Nzy'. ..x? € H/N. Clearly, the cyclic subgroup generated by z; is the direct

product of its p;-Sylow subgroups generated by y;; for 1 < j < k. Hence :Ef‘ =yt oyt
for some (a;,...,a;) € Zpiu X ... ZpZik. This vector (ay1,...,a,) is a preimage of
Nzi' ... x{e, implying that ¢ is onto. O]

Suppose H; and H, are two finite groups such that ¢ : H; — H, is an onto homomor-
phism. In the next lemma we show that the ¢-image of an expanding generating set for Hy,
is an expanding generating set for Hs.

Lemma 4.2. Suppose Hy and Hy are two finite groups such that ¢ : Hi — Hs is an
onto homomorphism. Furthermore, suppose Cay(Hy,S) is a A-spectral expander. Then
Cay(Hz, ¢(95)) is also a \-spectral expander.

Proof. Let N = Ker(¢) be the kernel of the onto homomorphism ¢. Then H;/N is iso-
morphic to Hy and the lemma is equivalent to the claim that Cay(H;/N,S) is a A-spectral
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expander, where S = {Ns | s € S} is the corresponding generating set for H;/N. We
can check by a direct calculation that all eigenvalues of the normalized adjacency matrix of
Cay(H,/N,S) are also eigenvalues of Cay(H;,S). This claim also follows from well-known
results in the “expanders monograph” [HLWO06, Lemma 11.15,Proposition 11.17]. In order
to apply these results we note that H; naturally defines a permutation action on the quo-
tient group Hy/N by h : Nz — Nzxh for each h € H; and Nz € Hy/N. Then the Cayley
graph Cay(H;/N, S ) is just the Schreier graph for this action and the generating set S of
H, and, by [HLWO06|, Proposition 11.17], all eigenvalues of Cay(H;/N, S ) are eigenvalues of
Cay(H,, S) and the lemma follows. O

Now, suppose H, N < S,, are groups given by generating sets where N <« H and H/N is
abelian. By Lemmas 4.1/ and 4.2} it suffices to describe a polynomial (in n) time algorithm
for computing an expanding generating set of size 9] (n?) for the product group Zg? X Z;}g X
cee X ZZE‘ In the following section we solve this problem. Our solution improves the Azar-
Motwani-Naor construction of e-bias spaces for Z}; [AMNISg] for constant ¢ > 0, that we
describe in Section 5l

4.1 Improved small-bias spaces for abelian groups

In this section we give a deterministic polynomial (in n) time construction of an 9] (n?) size
expanding generating set for the product group ZZT X ng X ... X Z;‘i :

Consider the following normal series for this product group given by the subgroups
K; = ZZT” X ZZ;‘i X ... X Zzz_i for 0 < i < e. Clearly,

Kov K-> K, = {1}

This is obviously a normal series since Ky = ZZ? X ZZ; X ... X Zgi is abelian. Furthermore,
Ki/Kiyn =73 XLy, X ... X 1L .

Since the length of this series is e = [logn] we can apply Lemma [3.1] to construct an
expanding generating set of size 6(712) for Ky in polynomial time assuming that we can
compute an expanding generating set of size O (n?) for Ly X Ly, X ... x Zy in deterministic
polynomial time. B

Thus, it suffices to efficiently compute an O(n?)-size expanding generating set for the
product group Zj X Zy X ... X Ly .

In [AIK™T90], Ajtai et al, using some number theory, gave a deterministic polynomial time
expanding generating set construction for the cyclic group Z;, where t is given in binary.

Theorem 4.3. Let t be a positive integer given in binary as an input. Then there is a de-
terministic polynomial-time (i.e. in poly(logt) time) algorithm that computes an expanding
generating set T' for Z; of size O(log™ tlogt), where log™t is the least positive integer such
that a tower of k 2’s bounds t. Furthermore, Cay(Z;,T') is A-spectral for each constant \.

Now, consider the group Z,,,,. p.- Since pips ... p; can be represented by O(nlogn) bits
in binary, we apply the above theorem to compute an expanding generating set of size O(n)
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for Zy,p,..p, in poly(n) time. Let m = O(logn) be a positive integer to be fixed in the
analysis later. Consider the product group My = Z} x Z;} X ...Z; and for 1 <i < m let
M; = 277" < 2= x ... x Zm~*. Clearly, the groups M; form a normal series for My:

M0[>M1[>"'[>Mm={1}.

and the quotient groups are M; /M1 = Zy, XLy, X . . . XLy, = Lipypy..py.- SINCE WE can compute
in poly(n) time an expanding generating set for Z,,,,...,, of size 5(71) by Theorem 4.3, we
can again apply Lemma |3.1] to this normal series and, given A > 0, compute in polynomial
(in n) time an expanding generating set of size O(n) for the product group My such that the
corresponding Cayley graph is A-spectral.

Now we are ready to describe the expanding generating set construction for Z; X Zj,

X Ly, -

Pk

4.1.1 The final construction

For 1 <7 <k let m; be the least positive integer such that p** > cn (where ¢ is a suitably
large constant). Thus, pi"* < cn? for each . For each i, [F,m: be the finite field of p;" elements
which can be deterministically constructed in polynomlal time since it is polynomial sized.
Clearly, there is an onto homomorphism ¢ from the group Z; x Z;’ x ... X Z; to the
additive group of F prn X Fyme X xR P Thus, if S is the expandlng generator set of

size O(n) constructed above for Zry X L % ... x 7 it follows that ¢(S) is an expanding
generator multiset of size 5(71) for the additive group Fym x F ms x ... x ]szlk. Define
T C IFp;m X ]Fpglz X ... X IFpsz to be any (say, the lexicographically first) set of c¢n many
k-tuples such that for any two tuples (21, x9,...,xx) and (2,25, ..., 2}) in T are distinct in
all coordinates. Le. x; # ' for all j € [k]. It is obvious that we can construct T' by picking
the first cn such tuples in lexicographic order.

Now we will define the expanding generating set R. Let x = (x1,22,...,7;) € T and
y = (y1,92, -, ) € ¥(S). Define v; = (yi, (x5, vi), (@2, 5), ..., (@1, y:)) where 2] € IFp;w
and (xf ,¥;) 1s the inner product modulo p; of the elements xf
Lt = Fp:”i- Hence, v; is an n-tuple and v; € Z;,. Now define

R ={(vi,va,...,0¢) | x € T,y € ¥(5)}.

Notice that |R| = O(n2). We claim that R is an expanding generating set for the product
group Zp X Zy, X ... X Z, . Let (X1, X2, -- -, Xx) be a nontrivial character of the product
group Zp X Zy, X ... X Z, , i.e. there is at least one j such that y; is nontrivial. Let w;
be a primitive p" root of unity. Recall that, since y; is a character there is a corresponding
vector f; € Zy., i.e. x;: Zy — C and x;(u) = wiw“w for uw € Z;, and the inner product in
the exponent is a modulo p; inner product. The character x; is nontrivial if and only if j; is
a nonzero element of Z .

Since the characters (x1, X2, - -, Xx) of the abelian group Z; x Z; X ... x Z; are also
the eigenvectors for the group (for any generating set for it). In particular, for the set R

and y; seen as p;-tuples in
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as well the characters are the eigenvectors, and the nontrivial characters are orthogonal to

1. Thus, in order to prove that R is an expanding generating set for Zj x Zj X ... X Z ,

it is enough to bound the following exponential sum estimate for the nontrivial characters

(X1, X2, - - -, X&) since that directly bounds the second largest eigenvalue in absolute value.
|Eoeryess)xa(vi)xz(v2) ... xe(v)]| = ‘ExGT,yew(S) Mﬁl,m N .wliﬁkm]
- ‘E%T’yewa wiPrEan v
< Eper [Eyey(s w9 o)
where pi(z) = ?;01 Biex® € Fym(z] for B; = (Bi, Bia,- -, Bin). Since the character is

nontrivial suppose [3; # 0, which means p; is a nonzero polynomial of degree at most n — 1.
Hence the probability that p;(z;) = 0, when 2 is picked from T" is bounded by .

On the other hand, when p;(z;) # 0 the tuple (pi(z1),...,pr(zx)) defines a nontriv-
ial character of the group Zj' X ... X Zj . Since S is an expanding generating set for
the abelian group Zj' x ... x Z;", the character defined by (pi(z1),...,pe(z)) is also an
eigenvector for Z% x ... X Zy', in particular w.r.t. generating set S. Hence, we have that

(p1(z1),91) (P (rk),yw]

Eyes|w; CWy ‘ < g, where the parameter ¢ can be fixed to an arbitrary small

constant by Theorem 4.3, Hence the above estimate is bounded by = + ¢ = % + ¢ which
can be made an arbitrarily small constant by choosing c¢ suitably. To summarize, the above
discussion along with Lemmas 4.1 and 4.2| directly yields the following theorem.

Theorem 4.4. Let pi,ps,...,pr be all primes bounded by n and A > 0 any constant. In
deterministic polynomial (in n) time we can construct an expanding generating set of size
5(n2) Jor the product group Zy, X --- X Zy that makes it A spectral. Consequently, if H and
N are subgroups of S, given by generating sets and H/N s abelian then in deterministic
polynomial time we can compute an expanding generator set of size 5(712) for H/N that
makes it A spectral.

Finally, we state the main theorem which follows directly from the above theorem and
Lemma 3.2,

Theorem 4.5. Let G < S,, be a solvable permutation group given by a generator set and
A > 0 any constant. Then in deterministic polynomial time we can compute an expanding
generating set S of size O(n?) such that the Cayley graph Cay(G, S) is a A\-spectral expander.

In the above theorem, one can observe the explicit dependence of A in |S| in the same

1)0(1).

manner as we have described in Section 2.2, In particular, the size of S is 5(n2) (x

5 Comparison with known results

In [AMNOS8] Azar, Motwani, and Naor first considered the construction of e-bias spaces for
abelian groups, specifically for the group Z};. For arbitrary d and any € > 0 they construct
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e-bias spaces of size O((d + n?/e?)¢), where C is the constant in Linnik’s Theorem. The
construction involves finding a suitable prime (or prime power) promised by Linnik’s theorem
which can take time upto O((d + n?)¢). The current best known bound for C' is < 11/2
(and assuming ERH it is 2). Their construction yields a polynomial-size e-bias space for
d =n°W. In fact when d = O(logn)°W), their construction is of size O(n?).

It is interesting to compare with our results in Section 4.1: Let d be any positive integer
with prime factorization pi'ps? - - - p;* such that each p; is O(logn) bit sized and each e; is
bounded by O(logn). Then note that we can efficiently find the prime factorization of d.
Now, it follows from the construction described in Section 4.1 that in polynomial time we can
compute an O(n?) size e-bias space for Z7 for any constant ¢ > 0. Notice that for constant &
this is a significant improvement upon the construction in [AMNO9S] for such d, in particular
for d = n°M. Also, we note that for d = O(logn)®") and constant e, our construction yields
an 5(n) size e-bias space. The reason is that we get an O(log*nloglogn) size expanding

generating set for Z,,,, .. (where py,ps, ..., p, are the distinct prime factors of d) using
[ATK™90).
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