
Characterizing Pseudoentropy and

Simplifying Pseudorandom Generator Constructions ∗

Salil Vadhan† Colin Jia Zheng‡

School of Engineering and Applied Sciences
Harvard University

Cambridge, Massachusetts
{salil,colinz}@seas.harvard.edu

November 1, 2011

Abstract

We provide a characterization of pseudoentropy in terms of hardness of sampling: Let (X,B)
be jointly distributed random variables such that B takes values in a polynomial-sized set. We
show that B is computationally indistinguishable from a random variable of higher Shannon
entropy given X if and only if there is no probabilistic polynomial-time S such that (X,S(X))
has small KL divergence from (X,B). This can be viewed as an analogue of the Impagliazzo
Hardcore Theorem (FOCS ‘95) for Shannon entropy (rather than min-entropy).

Using this characterization, we show that if f is a one-way function, then (f(Un), Un) has
“next-bit pseudoentropy” at least n+ log n, establishing a conjecture of Haitner, Reingold, and
Vadhan (STOC ‘10). Plugging this into the construction of Haitner et al., this yields a simpler
construction of pseudorandom generators from one-way functions. In particular, the construc-
tion only performs hashing once, and only needs the hash functions that are randomness extrac-
tors (e.g. universal hash functions) rather than needing them to support “local list-decoding”
(as in the Goldreich–Levin hardcore predicate, STOC ‘89).

With an additional idea, we also show how to improve the seed length of the pseudorandom
generator to O(n3), compared to O(n4) in the construction of Haitner et al.

Keywords: cryptography, computational complexity, pseudorandomness, entropy, KL diver-
gence, min-max theorem, hardcore lemma

∗Supported by NSF grant CCF-1116616 and US-Israel BSF grant 2010196.
†http://seas.harvard.edu/˜salil. Currently on leave as a Visiting Researcher at Microsoft Research SVC

and a Visiting Scholar at Stanford University.
‡http://seas.harvard.edu/˜colinz. Currently an Exchange Scholar at Stanford University.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 141 (2011)

http://seas.harvard.edu/~salil
http://seas.harvard.edu/~colinz

1 Introduction

Computational analogues of information-theoretic notions have given rise to some of the most in-
teresting phenomena in complexity and cryptography. For example, computational indistinguisha-
bility [GM84], which is the computational analogue of statistical distance, enabled bypassing Shan-
non’s impossibility results on perfectly secure encryption [Sha49], and provided the basis for the
computational theory of pseudorandomness [BM82, Yao82a].

Computational analogues of entropy were introduced by Yao [Yao82a] and H̊astad, Impagliazzo,
Levin, and Luby [HILL99]. The H̊astad et al. notion, known as pseudoentropy, was key to their
fundamental result establishing the equivalence of pseudorandom generators and one-way functions,
and has also now become a basic concept in complexity theory and cryptography.

A more relaxed notion, called next-bit pseudoentropy, was recently introduced by Haitner, Rein-
gold, and Vadhan [HRV10], who used it to give a simpler and more efficient construction of pseu-
dorandom generators from one-way functions. From a one-way function on n-bit strings, they
construct a pseudorandom generator with seed length O(n4), improving the bound of O(n8) from
[HILL99, Hol06].

In this work, we provide new characterizations of pseudoentropy and next-bit pseudoentropy,
and use these to further simplify the construction of pseudorandom generators from one-way func-
tions. In addition, we show how to save another factor of n in the seed length, yielding a pseudo-
random generator with seed length O(n3) from a one-way function on n bits.

1.1 Characterizing Pseudoentropy

The H̊astad et al. notion of pseudoentropy is the following:

Definition 1.1 (Pseudoentropy [HILL99], informal). A random variable X has pseudoentropy at
least k if there exists a random variable Y such that:

1. X is computationally indistinguishable from Y .

2. H(Y) ≥ k, where H(·) denotes Shannon entropy.1

Pseudoentropy is interesting because a random variable can have much higher pseudoentropy
than its Shannon entropy. Indeed, if G : {0, 1}n → {0, 1}m is a pseudorandom generator, then
G(Un) has Shannon entropy at most n, but is indistinguishable from Um (by definition) and hence
has pseudoentropy m > n. (Here and throughout, Un denotes a random variable uniformly dis-
tributed over {0, 1}n.)

A useful generalization is the notion of conditional pseudoentropy, analogous to the notion of
conditional pseudo-min-entropy studied by Hsiao, Lu, and Reyzin [HLR07]:

Definition 1.2 (Conditional pseudoentropy, informal). Let (X,B) be jointly distributed random
variables. We say that B has (conditional) pseudoentropy at least k given X if there exists a random
variable C, jointly distributed with X such that

1. (X,B) is computationally indistinguishable from (X,C).

2. H(C|X) ≥ k, where H(·|·) denotes conditional Shannon entropy.2

1The Shannon entropy of a discrete random variable X is defined as H(X) = Ex∼X [log(1/Pr[X = x])].
2The conditional (Shannon) entropy of random variable Y given random variable Z is defined as H(Y |Z) =

Ez∼Z [H(Y |Z=z)].

1

Note that if B has pseudoentropy at least k given X, then (X,B) has pseudoentropy at least
H(X) + k, but the converse is false (consider X that has pseudoentropy H(X) + k on its own, with
a B that has no pseudoentropy).

Intuitively, a random variable B should have high pseudoentropy given X iff B is hard to
predict from X, and indeed there are results of this type known in special cases involving pseudo-
min-entropy (to be discussed later). Our main result is such a characterization for pseudoentropy
(i.e. pseudo-Shannon-entropy).

Before getting to the formal statement, note that both pseudoentropy and unpredictability may
occur for information-theoretic reasons, as H(B|X) may be larger than 0. For example, suppose
that B is a uniform random bit, independent of X. Then B has 1 bit of pseudoentropy given X
and cannot be predicted better than random guessing from X, but these are not for computational
reasons (i.e. they also hold for computationally unbounded algorithms). We would like to focus
on the computational randomness in B. For pseudoentropy we can do this by simply subtracting
H(B|X). For unpredictability, we do this by considering the feasibility of sampling the distribution
B|X=x given a sample x ∼ X. Thus, in the example that B is a random bit independent of X, this
sampling is easy to do (in contrast to the task of predicting B from X).

With these choices, we can indeed prove that pseudoentropy and hardness of sampling are
equivalent:

Theorem 1.3 (Characterizing pseudoentropy, informal). Let (X,B) be jointly distributed ran-
dom variables where B takes values in a polynomial-sized set. Then B has pseudoentropy at least
H(B|X) + δ given X if and only if there is no probabilistic polynomial-time algorithm S such that
the KL divergence from (X,B) to (X,S(X)) is at most δ.3

KL divergence is a common information-theoretic measure of “distance” between random vari-
ables (though it is not a metric).

The constraint that B takes values in a polynomial-sized set is essential for this theorem: If f is
a one-way permutation and X is a uniformly random output, then it is very hard to sample f−1(X)
given X, but the pseudoentropy of f−1(X) given X is negligible (since we can efficiently recognize
f−1(X) given X). However, we do have an alternative version of our result that holds for B taking
values in an exponentially large range (when considering nonuniform complexity). In that version,
we replace the task of sampling a distribution S(X) from X with that of computing a “measure”
that, when normalized to be a distribution, has small KL divergence from (X,B). In particular,
this alternative formulation is interesting even when X is empty and gives a characterization of
pseudoentropy of an arbitrary random variable B (with respect to nonuniform complexity).

To provide some more intuition for our theorem and the proof techniques, we compare it to
previous results relating forms of pseudoentropy and unpredictability.

1. Yao [Yao82b] showed that if B is a single bit, then (X,B) is indistinguishable from (X,U1) (i.e.
B has pseudoentropy at least 1 given X) iff B cannot be predicted from X with probability
noticeably more than 1/2. This can be generalized to B taking values in a polynomial-
sized alphabet Σ: B ∈ Σ has pseudoentropy log |Σ| given X iff B cannot be predicted with
probability noticeably more than 1/|Σ|. Thus, in the extreme case of maximal pseudoentropy
(equal to log q), we have an equivalence with unpredictability.

2. ForB that takes values in larger (say exponentially large) alphabets, Goldreich and Levin [GL89]
showed that if B is very hard to predict from X (i.e. cannot be predicted with nonnegligible

3The KL divergence (a.k.a. relative entropy) from random variable Y to random variable Z is defined as

Ey∼Y [log(Pr[Y = y]/Pr[Z = z])].

2

probability), then we can choose a random hash function H whose range is a polynomial-sized
set Σ and it will hold that H(B) ∈ Σ has pseudoentropy log |Σ| given X and H. While this is
very useful and has many applications, it does not characterize the pseudoentropy of B itself
(but rather a hash of it), requires a hash function that supports “local list-decoding,” and
again only talks about maximal pseudoentropy (log |Σ|).

3. As noted in [STV01], the Hardcore Theorem of Impagliazzo [Imp95] (and subsequent strength-
enings [KS99, Hol05, BHK09]) can be interpreted as relating unpredictability and a kind of
pseudoentropy. Specifically, when B is a single bit, the Hardcore Theorem tells us that B
cannot be predicted from X with probability greater than 1 − δ iff “B is indistinguishable
from a random bit on a 2δ fraction of the probability space (X,B)” (this fraction of the
probability space is typically called the “hardcore measure”). One formalization of the latter
condition is to say that (X,B) is indistinguishable from (X,C) where C has average min-
entropy [DORS08] at least log(1/δ) given X. This result is of the same spirit as Theorem 1.3,
but refers to average min-entropy rather than Shannon entropy, and does not distinguish
between information-theoretic hardness and computational hardness.

In light of the above similarities, it is natural that the proof of Theorem 1.3 follows the same
overall structure as existing proofs of the Hardcore Theorem when showing that the hardness of
sampling B given X implies the pseudoentropy of B given X. Specifically, our proof for the
case of nonuniform complexity (i.e. circuit size) has the same structure as Nisan’s proof of the
Hardcore Theorem [Imp95]. We assume for contradiction that B does not have pseudoentropy
H(B|X) + δ given X, i.e. B is distinguishable from every C such that H(C|X) ≥ H(B|X) + δ.
Using the Min-Max Theorem, we deduce that there is a convex combination D of small circuits
that is a universal distinguisher, i.e. Pr[D(X,B) = 1] − Pr[D(X,C) = 1] > ε for every C such
that H(C|X) ≥ H(B|X) + δ. Next we show how to use such a D to sample a distribution S(X)
at small KL divergence from B (given X). It turns out that we can do this by exponentiating D
— we take S(X) to be such that Pr[S(X) = b] ∝ 2kD(x,b) where k ∈ R is the largest number such
that H(S(X)|X) ≥ H(B|X) + δ. The proof that S(X) has small KL divergence from B uses a key
lemma saying that if C is a random variable obtained from exponentiating D in this way, then
the KL divergence from (X,B) to (X,C) can be expressed exactly in terms of D’s advantage in
distinguishing (X,B) and (X,C).

For the case of uniform complexity (namely, probabilistic polynomial-time algorithms), we re-
place the use of the Min-Max Theorem with a new UniformMin-Max Theorem, which constructively
builds a near-optimal strategy of the second player in a 2-player game from several best-responses
of the second player to strategies of the first player. We defer a detailed discussion of the Uniform
Min-Max Theorem and its other applications to a forthcoming paper [VZ], but we include the proof
of the Uniform Min-Max Theorem in the appendix for reference. We note that the proof of the
Uniform Min-Max Theorem also uses ideas from the proof of the Uniform Hardcore Theorem due
to Barak, Hardt, and Kale [BHK09].

1.2 Next-Bit Pseudoentropy from One-Way Functions

The H̊astad, Impagliazzo, Levin, and Luby [HILL99] construction of pseudorandom generators
from one-way functions begins by showing how to use a one-way function to construct an efficiently
samplable distribution X whose pseudoentropy is noticeably larger than its Shannon entropy. This
approach was refined by Haitner et al. [HRV10] using the following variant of pseudoentropy:

Definition 1.4 (next-block pseudoentropy [HRV10], informal). A sequence of jointly distributed

3

random variables (X1, . . . , Xm) has next-block pseudoentropy at least k iff there exist random vari-
ables (Y1, . . . , Ym), jointly distributed with (X1, . . . , Xm) such that:

1. (X1, . . . , Xi−1, Xi) is computationally indistinguishable from (X1, . . . , Xi−1, Yi), and

2.
∑

iH(Yi|X1, . . . , Xi−1) ≥ k.

Equivalently, XI has pseudoentropy at least k/m given X1, . . . , XI−1, where I is uniformly dis-
tributed in [m].

We say that a random variable X taking values in {0, 1}m has next-bit pseudoentropy at least
k iff when we break X into 1-bit blocks, then X = (X1, . . . , Xm) has next-block pseudoentropy at
least k.

Intuitively, next-bit pseudoentropy captures the pseudoentropy from the perspective of an ad-
versary who gets the bits one at a time (from left to right), instead of all at once. Thus, the next-bit
pseudoentropy of a random variable can be much larger than its pseudoentropy. For example, if
G : {0, 1}n → {0, 1}m is a pseudorandom generator, then (G(Un), Un) has next-bit pseudoentropy
at least m > n, but does not have pseudoentropy larger than n.

Haitner, Reingold, and Vadhan [HRV10] showed that if f : {0, 1}n → {0, 1}m is a one-way
function, X ∈R {0, 1}n, and H : {0, 1}n → {0, 1}n is a random hash function from an appropriate
family, then (f(X),H,H(X)) has next-bit pseudoentropy n + r + log n, where r is the number of
random bits used to describe the hash function H. The intuition for this is as follows: Condition
on f(X) = y for some y ∈ {0, 1}n. Given that f(X) = y, X is uniformly distributed in a set of
size |f−1(y)|. Thus, by the Leftover Hash Lemma [HILL99], the first ≈ log |f−1(y)| bits of H(X)
are statistically close to uniform given the prefix preceding them. In addition, it is still difficult
to invert f and predict X given these bits (since a uniform random string can’t help in inverting).
Thus, by the Goldreich–Levin Theorem [GL89], the next ≈ log n bits of H(X) are computationally
indistinguishable from uniform given the preceding bits. Therefore the next-bit pseudoentropy of
(f(X),H,H(X)) is at least

H(f(X)) +m+ E
y←f(X)

[log |f−1(y)|] + log n = H(f(X)) +m+H(X|f(X)) + log n = n+m+ log n.

Haitner, Reingold, and Vadhan [HRV10] conjectured that the hashing in the above construction
is not necessary, and the hardness of inverting a one-way function directly provides (next-bit)
pseudoentropy. We prove their conjecture:

Theorem 1.5 (one-way functions⇒ next-bit pseudoentropy). If f : {0, 1}n → {0, 1}m is a one-way
function and X ∈R {0, 1}n, then (f(X), X) has next-bit pseudoentropy at least n+ log n.

The proof of this theorem starts by showing that the one-wayness of f implies that for every
probabilistic polynomial-time algorithm A, the KL divergence from (f(X), X) to (f(X), A(f(X)))
is at least log n; otherwise A would invert f with nonnegligible probability. Then we show that
the same holds also in a “next-bit” sense: if we break X into bits X = X1 · · ·Xn and choose
I ∈R [n], then for every probabilistic polynomial-time S, the KL divergence from (f(X), X1, . . . , XI)
to (f(X), X1, . . . , XI−1, S(f(X), X1, . . . , XI−1)) is at least (log n)/n. (Otherwise by iteratively
applying S n times, we can obtain a probabilistic polynomial-time A such that (f(X), A(f(X)))
has KL divergence at most log n from (f(X), X).) By Theorem 1.3, we deduce that XI has
pseudoentropy at least H(XI |f(X), X1, . . . , XI−1) + (log n)/n given f(X), X1, . . . , XI−1. That is,
on average, the individual bits of X have (log n)/n extra bits of pseudoentropy (beyond their
Shannon entropy) given f(X) and the previous bits of X. Summing over all n bits of X, the
next-bit pseudoentropy is at least log n bits larger than the Shannon entropy of (f(X), X), which
is n.

4

1.3 Pseudorandom Generators

Given the next-bit pseudoentropy generator (f(X), X) ∈ {0, 1}m+n of Theorem 4.4, we can ap-
ply the construction of Haitner et al. [HRV10] to obtain a pseudorandom generator through the
following three steps:

• Entropy Equalization: To spread the pseudoentropy out evenly among the bits, we con-
catenate u = O(n) independent random evaluations of (f(X), X), then drop the first I bits
and the last m+ n− I bits of the result, for I ∈R [m+ n].

• Converting Shannon Entropy to Min-Entropy and Amplifying the Gap: Next, we
take t = O(n2) copies of the above next-bit pseudoentropy generator (after entropy equal-
ization), but concatenate them “vertically” to obtain blocks, each of which consists of t bits.
It can be shown that each of the blocks is indistinguishable from having high min-entropy
conditioned on the previous ones.

• Randomness Extraction: Finally, we use a random universal hash function to extract
the pseudo-min-entropy from each of the blocks, and concatenate the results to produce our
output.

Thus, to obtain a pseudorandom generator from a one-way function f , we simply need to
evaluate f on u · t = O(n3) random inputs, arrange the input and output bits into a matrix
consisting of (u − 1) · (m + n) columns and t rows, and apply a universal hash function to each
column. (The seed of the pseudorandom generator consists of the u·t inputs to f , the t random shifts
used for entropy equalization, and the description of the universal hash function.) The construction
is illustrated in Figure 1. Note that we only need to hash once in the construction and the only
property we need of our hash function is randomness extraction (e.g. via the Leftover Hash Lemma).
In contrast, all previous constructions of pseudorandom generators from one-way functions (even
from one-way permutations) required hash functions with “local list-decoding” properties (e.g. the
Goldreich–Levin hardcore predicate) in addition to randomness extraction.

f(Un), Un f(Un), Un

f(Un), Un f(Un), Un f(Un), Un

f(Un), Un

f(Un), Un f(Un), Un f(Un), Un

H
(·)

H
(·)

H
(·)

pseudorandom bits

t

(u− 1)(n+m)

01
..
.1

10
..
.1

10
..
.0

Figure 1: Simplified construction
of PRG from one-way function f :
{0, 1}n → {0, 1}m. Each row contains
iid copies of (f(Un), Un), shifted by a
random offset I ∈ [n + m]. To extract
pseudorandom bits, an arbitrary uni-
versal hash function H (with a proper
output length) is applied to all bits in
the same column.

While simpler, the aforementioned construction achieves essentially the same parameters as
[HRV10]. Using an additional idea, we show how to save a factor of roughly u = Θ̃(n) in the seed
length. The idea is that to extract the randomness from a column of the aforementioned matrix,

5

we do not need to construct the entire matrix. We can use just enough seed to fill a single column,
and then we can use randomness extracted from that column to help generate more columns, and
iterate. Thus we show:

Theorem 1.6 (one-way functions ⇒ pseudorandom generators, informal). Given a one-way func-
tion f : {0, 1}n → {0, 1}n, we can construct a pseudorandom generator with seed length Õ(n3).

This theorem improves the seed length of O(u · t · n) = O(n4) from Haitner et al. [HRV10]. We
note that Haitner et al. gave a nonuniform construction of seed length O(n3), requiring poly(n)
bits of nonuniform advice to compute the pseudorandom generator. (Entropy equalization can be
avoided by nonuniformly hardwiring the amount of entropy contributed by each bit.) Also, our
construction still requires evaluating the one-way function at least u · t = Θ̃(n3) times; we just no
longer need these evaluations to be independent.

Thus, now the only blow-up in seed length in constructing pseudorandom generators from
one-way functions is due to converting Shannon entropy to min-entropy. It is an intriguing open
problem whether that blow-up can be avoided or shown to be necessary.

1.4 Paper Organization

Basic notions of information theory and computational randomness are defined in Section 2. In
Section 3 we describe and prove our characterization of pseudoentropy. In Section 4 we show how
to generate next-bit pseudoentropy from any one-way function. In Section 5 we describe the PRG
construction and how to save the seed length.

2 Preliminaries

2.1 Entropy

Shannon entropy and conditional Shannon entropy play a central role in this paper. For more
background on entropy and proofs of the lemmas stated here, see [CT06].

Definition 2.1. For a random variable X, the (Shannon) entropy of X is defined to be

H(X) = E
x∼X

[
log

1

Pr[X = x]

]
For jointly distributed random variables X and B, the conditional (Shannon) entropy of B given
X (or, conditional (Shannon) entropy of B when X is clear from the context) is defined to be

H(B|X) = E
x∼X

[H(B|X=x)]

Fact 2.2. (Chain rule for Shannon entropy) H(X,B) = H(X) + H(B|X)

The notion of KL divergence from random variable A to random variable B is closely related to
Shannon entropy; intuitively it measures how dense A is within B, on average (with 0 divergence
representing maximum density, i.e. A = B, and large divergence meaning that A is concentrated
in a small portion of B).

Definition 2.3. For random variables A and B, the KL divergence from A to B is defined to be

KL(A||B) = E
a∼A

[
log

Pr[A = a]

Pr[B = a]

]
or conventionally +∞ if Pr[A = a] > 0 and Pr[B = a] = 0 for some a.

6

Definition 2.4. For random variables (X,A) and (Y,B), the conditional KL divergence from A|X
to B|Y is defined to be

KL((A|X)||(B|Y)) = E
x∼X,a∼A

[
log

Pr[A = a|X = x]

Pr[B = a|Y = x]

]
Thus, conditional KL divergence captures the expected KL divergence from A|X=x to B|Y=x,

over x ∼ X. Like Shannon entropy, it has a chain rule:

Fact 2.5. (Chain rule for KL divergence) KL(X,A||Y,B) = KL(X||Y) + KL((A|X)||(B|Y))

Like other distance measures between distributions, applying any (deterministic) function never
increases the KL divergence (this is essentially the log sum inequality):

Fact 2.6. (An entropy-like property of KL divergence)4 KL(g(A)||g(B)) ≤ KL(A||B) for any
function g.

Note however, that the KL divergence is not a metric; it is not symmetric and does not satisfy
the triangle inequality.

2.2 Pseudorandom Generators

First, we define the computational analogue of two random variables being statistically close:

Definition 2.7. Let n be a security parameter. Two {0, 1}n-valued random variables X = X(n)
and Y = Y (n) are (T, ε) indistinguishable for T = T (n), ε = ε(n) if for all time T randomized
algorithm D and all sufficiently large n, |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ ε.
|Pr[D(X) = 1]− Pr[D(Y) = 1]| is called D’s distinguishing advantage for X, Y .

A pseudorandom generator is an algorithm that stretches a short uniformly random string to a
longer pseudorandom string, one which looks random even to algorithms more powerful than the
generator itself:

Definition 2.8. Let n be a security parameter, q = q(n). A [q]-valued random variable X is (T, ε)
pseudorandom for T = T (n), ε = ε(n) if X and U[q] are (T, ε) indistinguishable. A polynomial time

computable function G : {0, 1}d=d(n) → {0, 1}`=`(n) is a (T, ε) pseudorandom generator (PRG), if
G(Ud) is (T, ε) pseudorandom.

We say G is a pseudorandom generator if G is a (nc, 1/nc) pseudorandom generator for every
constant c. The input to a pseudorandom generator is called the seed. The number of extra bits,
`− d, is called the stretch.

While the notions of indistinguishability and pseudorandom generators here are defined for
uniform algorithms, nonuniform indistinguishability and nonuniform pseudorandomness can be
defined by replacing time T algorithms with size T boolean circuits.

2.3 Conditional Pseudoentropy and Next-Bit Pseudoentropy

The computational analogue of entropy, pseudoentropy, was first introduced by Hastad et al.
[HILL99]. We begin with the nonuniform definition because it is simpler:

4This is in fact equivalent to the log-sum inequality [CT06]. For a more direct proof, see [GV98].

7

Definition 2.9. (Pseudoentropy, nonuniform setting) Let X be a random variable. We say X has
(T, ε) nonuniform pseudoentropy at least k if there exists a random variable Y with H(Y) ≥ k such
that X and Y are (T, ε) nonuniformly indistinguishable.

If X = X(n) for a security parameter n, we say X has nonuniform pseudoentropy at least
k = k(n) if for every constant c, X(n) has (nc, 1/nc) nonuniform pseudoentropy at least k(n)−1/nc

for all sufficiently large n.

A natural generalization of pseudoentropy is the notion of conditional pseudoentropy.

Definition 2.10. (Conditional pseudoentropy, nonuniform setting) Let B be a random variables
jointly distributed with X. We say B has (T, ε) nonuniform (conditional) pseudoentropy at least
k (or pseudoentropy gap at least k − H(B|X)) given X if there exists a random variable C jointly
distributed with X such that the following holds:

• H(C|X) ≥ k;

• (X,B) and (X,C) are (T, ε)-indistinguishable.

If B = B(n) for a security parameter n, we say B has nonuniform conditional pseudoentropy at least
k = k(n) given X if for every constant c, B(n) has (nc, 1/nc) nonuniform conditional pseudoentropy
at least k(n)− 1/nc given X(n) for all sufficiently large n.

In the uniform setting (i.e. randomized algorithms instead of circuits), the right definitions
are more subtle to come by. It turns out that we must require indistinguishability even against
algorithms equipped with an sampling oracle. (See remark below for more discussion.)

Notation. For a distribution Z, let OZ denote the oracle that gives a random sample from Z when
queried.

Definition 2.11. (Pseudoentropy, uniform setting) Let n be a security parameter, T = t(n),
ε = ε(n), k = k(n), q = q(n). Let X be a [q]-valued random variable. We say X has (T, ε) uniform
pseudoentropy at least k if for all time T randomized oracle algorithm A there exists a random
variable Y jointly distributed5 with X such that the following holds for all sufficiently large n:

• H(Y) ≥ k;

• X, Y are indistinguishable by AOX,Y :∣∣Pr[AOX,Y (X) = 1]− Pr[AOX,Y (Y) = 1]
∣∣ ≤ ε

We say X has uniform pseudoentropy at least k = k(n) if for every constant c, X(n) has (nc, 1/nc)
uniform pseudoentropy at least k(n)− 1/nc.

The reason to give the distinguishers oracle access to OX,Y is to ensure that the definition
composes: if X1 and X2 are iid copies of X, we’d like to say that (X1, X2) has pseudoentropy at
least 2k. Indeed we’d want to say that (X1, X2) is indistinguishable from (Y1, Y2) where Y1, Y2 are
iid copies of Y . However, indistinguishability against uniform algorithms is not preserved under
taking multiple independent samples in general [GM98]. Requiring indistinguishability against
distinguishers with oracle access to OX,Y ensures that indistinguishability will be preserved under
taking multiple independent samples.

5In Definition 2.11, Y can be taken to be independent of X without loss of generality, but allowing dependence is
important in the definition of conditional pseudoentropy.

8

Definition 2.12. (Conditional pseudoentropy, uniform setting) Let n be a security parameter, T =
t(n), ε = ε(n), k = k(n), q = q(n). Let B be a [q]-valued random variable jointly distributed withX.
We say B has (T, ε) uniform (conditional) pseudoentropy at least k given X if for every randomized
oracle algorithm A computable in time T , there is a random variable C jointly distributed with
X,B such that the following holds for all sufficiently large n:

• H(C|X) ≥ k;

• (X,B) and (X,C) are indistinguishable by AOX,B,C :

|Pr[AOX,B,C (X,B) = 1]− Pr[AOX,B,C (X,C) = 1]| ≤ ε

We say B has uniform conditional pseudoentropy at least k = k(n) given X if for every constant c,
B(n) has (nc, 1/nc) uniform conditional pseudoentropy at least k(n)− 1/nc given X(n).

We give the distinguishers oracle access to OX,B,C for the same reason as we give oracle access
to OX,Y in Definition 2.11. However, a consequence of our results is that the definition with oracle
OX,B,C is equivalent to the definition with oracle OX,B provided B comes from a polynomial-sized
alphabet. In particular, if (X,B) is also polynomial-time samplable (which will be the case in our
applications), the definition is equivalent to one without oracle OX,B,C . (See Corollary 3.23.)

Finally, it is useful to talk about the total conditional pseudoentropy of a sequence of random
variables, called the next-block pseudoentropy :

Definition 2.13. Let n be a security parameter, k = k(n), and B(i) be a random variable for each
i = 1, . . . ,m = m(n). We say

(
B(1), B(2), . . .

)
has (non)uniform next-block (or next-bit, if each B(i)

is a bit) pseudoentropy at least k if B(I) has (non)uniform conditional pseudoentropy at least k/m
given B(1) . . . B(I−1), for I ∈R [m].

It is easy to see that next-bit pseudoentropy is a weaker notion than pseudoentropy. Therefore
we would like “blocks” to be small, ideally bits, to increase the next-block pseudoentropy. Note
that the next-bit pseudoentropy is sensitive to the order of the bits; for example, for any one-way
function f , (Un, f(Un)) does not have next-bit pseudoentropy n + 1, but (f(Un), Un) has next-bit
pseudoentropy at least n+Ω(log n) as we show in Section 3.

3 Characterizing Conditional Pseudoentropy

In this section, we show that a random variable B having conditional pseudoentropy given X, is
equivalent to B being KL-hard given X, which captures the hardness of generating B from X
in terms of KL divergence. We prove the equivalence in both nonuniform and uniform models of
computation.

To state the mains results precisely, we begin with basic conventions and definitions. We will
work with random variables taking values in [q], which are jointly distributed with a {0, 1}n-valued
random variable X. For any [q]-valued random variable C jointly distributed with X, we write
C(a|x) = Pr[C = a|X = x]. We will drop “jointly distributed with X” when it is clear from the
context.

For any function P : {0, 1}n × [q] → (0,+∞), we define CP to be the random variable jointly
distributed with X whose pmf is proportional to P (·, ·):

CP (a|x) =
P (x, a)∑
b P (x, b)

9

Definition 3.1. Let (X,B) be a {0, 1}n × [q]-valued random variable, and P : {0, 1}n × [q] →
(0,+∞) a deterministic function. We say that P is a δ-KL predictor of B given X if

KL(X,B||X,CP) ≤ δ

If P is randomized, we say that P is a δ-KL predictor of B given X if

E
p∼P

[KL(X,B||X,Cp)] ≤ δ

where we view P as a distribution over functions p : {0, 1}n × [q]→ (0,+∞).

Definition 3.2. (KL-hard, nonuniform setting) Let (X,B) be a {0, 1}n × [q]-valued random vari-
able. We say B is nonuniformly (t, δ) KL-hard given X if there is no circuit P of size t that is a
δ-KL predictor of B given X.

We say B is nonuniformly δ KL-hard given X if for every constant c, B is nonuniformly (nc, δ−
1/nc) KL-hard given X for all sufficiently large n.

Analogously to pseudoentropy, the nonuniform and uniform definitions differ in whether we
need to give a sampling oracle to the adversary.

Definition 3.3. (KL-hard, uniform setting) Let n be a security parameter, δ = δ(n) > 0, t =
t(n) ∈ N, q = q(n). Let (X,B) be a {0, 1}n × [q]-valued random variable. We say B is uniformly
(t, δ) KL-hard given X if for all time t randomized oracle algorithms P : {0, 1}n × [q] → (0,+∞)
and all sufficiently large n, POX,B is not a δ-KL predictor of B given X (where the randomness of
POX,B consists both of its internal coin tosses and the samples it gets from the oracle OX,B).

We say B is uniformly δ KL-hard given X if for every constant c, B is uniformly (nc, δ − 1/nc)
KL-hard given X.

Note that by letting P (x, a) = 1, we already get C = U[q] i.e. KL(X,B||X,C) = log q −
H(B|X) ≤ log q. Thus it only makes sense to talk about KL-hardness for δ ≤ log q.

The following related definition may be more natural, as a closer parallel to the familiar notion
of average-case hardness:

Definition 3.4. (KL-hard for sampling, nonuniform setting) Let (X,B) be a {0, 1}n × [q]-valued
random variable. We say B is nonuniformly (t, δ) KL-hard for sampling given X if for all size t
randomized circuits S : {0, 1}n → [q] it holds that KL(X,B||X,S(X)) > δ.

Definition 3.5. (KL-hard for sampling, uniform setting) Let n be a security parameter, δ =
δ(n) > 0, t = t(n) ∈ N, q = q(n). Let (X,B) be a {0, 1}n × [q]-valued random variable. We say B
is uniformly (t, δ) KL-hard for sampling given X if for all time t randomized oracle algorithms S,
for all sufficiently large n, it holds that KL(X,B||X,SOX,B (X)) > δ.

These two notions are equivalent up to a polynomial factor in t, provided that size of the
alphabet q is a polynomial:

Lemma 3.6. Let (X,B) be a {0, 1}n× [q]-valued random variable. If B is nonuniformly (t, δ) KL-
hard for sampling given X, then B is nonuniformly (Ω(t/q), δ) KL-hard given X. Conversely, if B
is nonuniformly (t, δ) KL-hard given X, then B is nonuniformly (t′, δ − ε) KL-hard for sampling
given X for t′ = t/poly(n, q, 1/ε), for every ε > 0.

10

Proof. Suppose B is not nonuniformly (t′, δ) KL-hard given X. That is, there exists a size t′

circuit P such that KL(X,B||X,CP) ≤ δ. Then we can sample S(x) = a w.p. CP (a|x) so that
KL(X,B||X,S(X)) ≤ δ. S has circuit size O(q ·t′). This contradicts the fact that B is nonuniformly
(t, δ) KL-hard for sampling, for t′ = Ω(t/q).

Conversely, suppose KL(X,B||X,S(X)) ≤ δ−ε for some size t′ circuit S. We will construct a size
t randomized δ-KL predictor P (so that it will be useful for the uniform setting, Lemma 3.7, as well)
as follows. We compute E(x, a) such that w.p. at least 1−γ, |Pr[S(x) = a]− E(x, a)| ≤ ε2/c2q for all
x, a, where c is a large enough constant. This is done by taking m = O (n+ log q + log(1/γ)) ·q2/ε4
samples of the randomness of S. We then output P (x, a) = max{E(x, a), ε/cq} ∈ (ε/cq, 1].

We view P as a distribution over functions p : {0, 1}n×[q]→ (ε/cq, 1]. Consider any p ∈ supp(P)
such that|Pr[S(x) = a]− E(x, a)| ≤ ε2/c2q for all x, a. Notice that

∑
b p(x, b) ≤ 1 + q · (ε/cq) =

1 + ε/c. If Pr[S(x) = a] > ε/cq, then

log
Pr[S(x) = a]

Cp(a|x)
≤ log

p(x, a) + ε2/c2

p(x, a)
+ log

∑
b

p(x, b) ≤ log(1 + ε/c) + log(1 + ε/c) ≤ ε

2

If Pr[S(x) = a] ≤ ε/cq, then

log
Pr[S(x) = a]

Cp(a|x)
= log

Pr[S(x) = a]

p(x, a)
+ log

∑
b

p(x, b) ≤ log(1 + ε/c) ≤ ε

2

Thus we get

KL(X,B||X,Cp) = KL(X,B||X,S(X)) + E
x∼X

[∑
a

B(a|x) log Pr[S(x) = a]

Cp(a|x)

]
≤ δ − ε+

ε

2

On the other hand, for every p : {0, 1}n × [q]→ (ε/cq, 1] it holds that

KL(X,B||X,Cp) = E

[∑
a

B(a|X) log (B(a|X)/Cp(a|X))

]
≤ max

x,a
log (1/Cp(a|x)) = O

(
log q + log

1

ε

)
Thus,

E
p∼P

[KL(X,B||X,Cp)] ≤ (1− γ) · (δ − ε

2
) + γ ·O

(
log q + log

1

ε

)
≤ δ

for an appropriate choice of γ = O(ε/(log q+log(1/ε))). Furthermore, P has circuit size O (t′m) = t.
Thus B is not nonuniformly (t, δ) KL-hard given X.

Lemma 3.7. Let n be a security parameter, δ = δ(n) > 0, t = t(n) ∈ N, p = p(n), ε = ε(n) > 0,
q = q(n) all computable in time poly(n). Let (X,B) be a {0, 1}n × [q]-valued random variable. If
B is uniformly (t, δ) KL-hard for sampling given X, then B is uniformly (Ω(t/(q+n)), δ) KL-hard
given X. Conversely, if B is uniformly (t, δ) KL-hard given X, then B is uniformly (t′, δ − ε)
KL-hard for sampling given X, for t′ = t/poly(n, q, 1/ε).

Proof. The proof for the second part is identical to Lemma 3.6. For the first part, suppose B is not
uniformly (t′, δ) KL-hard given X. That is, there is a time t′ oracle algorithm P such that when
POX,B is viewed as a distribution over functions p : {0, 1}n × [q]→ (0,+∞), for infinitely many n,

E
p∼POX,B [KL(X,B||X,Cp)] ≤ δ

11

Then we can sample S(x) = a w.p. Ep∼POX,B [Cp(a|x)], where we first pick p ∼ POX,B by fixing

the internal coin tosses of P and samples from oracle OX,B. By convexity of KL(X,B||X, ·),

KL(X,B||X,S(X)) = KL
(
X,B||X,C

P
OX,B

)
≤ E

p∼POX,B [KL (X,B||X,Cp)] ≤ δ

This contradicts the fact that B is uniformly (t, δ) KL-hard for sampling, for t′ = Ω(t/(q+n)).

In this section, it is more convenient to work with the first version of KL-hardness (i.e. not for
sampling). We show the following main results which establish equivalence between conditional
pseudoentropy and KL-hardness in both nonuniform and uniform settings.

Theorem 3.8. (Main Theorem, nonuniform setting) Let (X,B) be a {0, 1}n × [q]-valued random
variable, δ > 0, ε > 0.

1. If B is nonuniformly (t, δ) KL-hard given X, then for every ε > 0, B has nonuniform (t′, ε)
conditional pseudoentropy at least H(B|X) + δ − ε, for t′ = tΩ(1)/poly(n, log q, 1/ε).

2. Conversely, if B has nonuniform (t, ε) conditional pseudoentropy at least H(B|X)+δ, then for
every σ > 0, B is nonuniformly (t′, δ′) KL-hard given X, for t′ = min{tΩ(1)/polylog (1/σ) ,Ω(σ/ε)}
and δ′ = δ − σ.

Corollary 3.9. Let (X,B) be a {0, 1}n × [q]-valued random variable. Then B has nonuniform
conditional pseudoentropy at least H(B|X) + δ if and only if B is nonuniformly δ KL-hard given
X.

By letting B be independent of X, the polylog(q) dependence gives us a characterization of
nonuniform pseudoentropy for an n-bit random variables:

Corollary 3.10. An n-bit random variable B has nonuniform pseudoentropy at least H(B) + δ if
and only if B is nonuniformly δ KL-hard.

We now state the uniform versions of our results, which are analogous to the nonuniform versions
but have a polynomial rather than polylogarithmic dependence on q. (So we don’t have a uniform
analogue of Corollary 3.10.)

Theorem 3.11. (Main Theorem, uniform setting) Let n be a security parameter, δ = δ(n) > 0,
t = t(n) ∈ N, ε = ε(n) > 0, q = q(n), σ = σ(n) all computable in time poly(n). Let (X,B) be a
{0, 1}n × [q]-valued random variable.

1. If B is uniformly (t, δ) KL-hard given X, then B has uniform (t′, ε) conditional pseudoentropy
at least H(B|X) + δ − ε, for t′ = tΩ(1)/poly(n, q, 1/ε).

2. Conversely, if B has uniform (t, ε) conditional pseudoentropy at least H(B|X) + δ, then B
is uniformly (t′, δ′) KL-hard given X, for t′ = min{tΩ(1)/poly(n, log(1/σ),Ω(σ/ε)} and δ′ =
δ − σ.

Corollary 3.12. Let n be a security parameter, δ = δ(n) > 0, q = poly(n) computable in time
poly(n). Let (X,B) be a {0, 1}n × [q]-valued random variable. Then B has uniform conditional
pseudoentropy at least H(B|X) + δ if and only if B is uniformly δ KL-hard given X.

12

Distinguishers are a central object in studying conditional pseudoentropy. A distinguisher D is
a {0, 1}-valued randomized function, and D(x) denotes the probability that the function outputs 1
on input x ∈ {0, 1}∗. A generalized distinguisher D is a R+-valued randomized function, and D(x)
denotes the expectation of the output on input x. For generalized distinguishers D1 and D2, the
scaler multiple kD1 (k ≥ 0) and the sum D1 +D2 are also generalized distinguishers.

A generalized distinguisherD is said to have distinguishing advantage AdvD(X,Y) = E [D(X)]−
E [D(Y)] between random variables X,Y . Thus for random variables (X,B), (X,C):

AdvD((X,B), (X,C)) = E [D(X,B)−D(X,C)] = E
X

[∑
a

D(X, a)(B(a|X)− C(a|X))

]

A key idea in our argument is to analyze the random variable 2D for a generalized distinguisher
D, defined as

2D(a|x) = 2D(x,a)∑
b 2

D(x,b)

The reason we consider this particular random variable is that for any distinguisher D, it turns out
that C = 2kD (k ≥ 0) minimizes AdvD((X,B), (X,C)) among all C with H(C|X) ≥ r = H(2kD|X)
(This will be Lemma 3.18 below). Thus a lower bound on AdvD((X,B), (X,C)) for all C with
H(C|X) ≥ r is equivalent to a lower bound for C = 2kD.

In particular, we are able to relate AdvD((X,B), (X,2D)) to the KL divergence from (X,B) to
(X,2D) and the entropies of these random variables by the following key lemma:

Lemma 3.13. Let (X,B) be a {0, 1}n×[q]-valued random variable, D be a generalized distinguisher.
Then

KL(X,B||X,2D) = H(2D|X)−H(B|X)−AdvD((X,B), (X,2D))

Proof.

KL(X,B||X,2D)

= E
X

[∑
a

B(a|X) log
B(a|X)

2D(a|X)

]

= H(2D|X)−H(B|X) + E
X

[∑
a

(B(a|X)− 2D(a|X)) log
1

2D(a|X)

]

= H(2D|X)−H(B|X) + E
X

[∑
a

(B(a|X)− 2D(a|X))

(
log

(∑
b

2D(X,b)

)
−D(X, a)

)]

= H(2D|X)−H(B|X) + E
X

[
(1− 1) log

(∑
b

2D(X,b)

)
−
∑
a

D(X, a)(B(a|X)− 2D(a|X))

]
= H(2D|X)−H(B|X)−AdvD((X,B), (X,2D))

We note that with D(x, a) ≡ 0, this becomes the familiar KL(X,B||X,U[q]) = log q −H(B|X).

To quickly see why this lemma is useful: suppose D has good performance distinguishing 2D from
B, then we can use 2D to predict B within small KL divergence; this is essentially the idea why KL-
hardness implies conditional pseudoentropy, at least in the nonuniform setting (Part 1 of Theorem
3.8).

13

3.1 KL Hardness Implies Conditional Pseudoentropy, Nonuniform Setting

We begin with the main technical ingredient of conditional pseudoentropy implying KL-hardness.

Lemma 3.14. Let (X,B) be a {0, 1}n × [q]-valued random variable where H(B|X) ≤ log q − δ for
some δ ≥ 0. Let ε > 0, and D be a distinguisher such that AdvD((X,B), (X,C)) > ε for all C with
H(C|X) ≥ H(B|X) + δ. Then there exists k ∈ [0, (log q) /ε] such that KL(X,B||X,2kD) ≤ δ.

Proof. Let k0 = log q/ε. First we show there exists k ∈ [0, k0] such that H(2kD|X) = H(B|X) + δ.
By Lemma 3.13,

AdvD((X,B), (X,2k0D)) =
1

k0

(
H(2k0D|X)−H(B|X)−KL(X,B||X,2k0D)

)
≤ log q

k0
= ε

where we use nonnegativity of entropy and KL divergence. Thus, by assumption H(2k0D|X) <
H(B|X) + δ. Now we know (i) H(2k0D|X) < H(B|X) + δ, (ii) H(20|X) = log q ≥ H(B|X) + δ, and
(iii) H(2kD|X) is continuous as a funciton of k ∈ [0,+∞). By the Intermediate Value Theorem,
there exists k ∈ [0, k0] such that H(2kD|X) = H(B|X) + δ.

Given such k, applying Lemma 3.13 again we get:

KL(X,B||X,2kD) = H(2kD|X)−H(B|X)−AdvkD((X,B), (X,2kD))

= δ − kAdvD((X,B), (X,2kD))

≤ δ − kε ≤ δ

We now prove Part 1 of Theorem 3.8.

Theorem 3.15. (KL-hardness implies conditional pseudoentropy, nonuniform setting) Let (X,B)
be a {0, 1}n× [q]-valued random variable, δ > 0. If B is nonuniformly (t, δ) KL-hard given X, then
for every ε > 0, B has nonuniform (t′, ε) conditional pseudoentropy at least H(B|X) + δ − ε for
t′ = tΩ(1)/poly (n, 1/ε, log q).

Proof. Suppose for contradiction that B does not have nonuniform (t′, ε) conditional pseudoen-
tropy at least H(B|X)+ δ− ε. By definition, for any [q]-valued random variable C with H(C|X) ≥
H(B|X)+δ−ε, there is a size t′ distinguisherD between (X,B) and (X,C), with AdvD((X,B)(X,C)) >
ε.

Consider the following two player zero-sum game. Player 1 picks a [q]-valued random variable
C with H(C|X) ≥ H(B|X) + δ − ε. Player 2 picks a size t′ distinguisher D. The payoff for Player
2 is AdvD((X,B)(X,C)).

Player 1 has no mixed strategy to force Player 2 to achieve payoff at most ε, because a convex
combination of random variables with conditional entropy at least H(B|X)+δ−ε also has conditional
entropy at least H(B|X) + δ − ε. So, by the Min-Max Theorem, Player 2 has a mixed strategy
that achieves expected payoff greater than ε regardless of Player 1’s move. Rephrasing, there is a
convex combination D of size t′ distinguishers that is a universal distinguisher, in the sense that
AdvD((X,B), (X,C)) > ε for all C with H(C|X) ≥ H(B|X) + δ − ε.

By Lemma 3.14, there exists k ∈ [0, log q/ε] such that KL(X,B||X,2kD) ≤ δ − ε. In other
words, P (x, a) = 2kD(x,a) satisfies KL(X,B||X,CP) ≤ δ − ε.

14

Efficiency. P may not have small circuit size since D is a distribution on size t′ circuits. Thus
we replace D with D̃ which computes the mean of O

(
(n+ log q) /ε2

)
samples of D, such that

∀x, a,
∣∣∣D̃(x, a)−D(x, a)

∣∣∣ ≤ ε/2. As
∣∣AdvD̃((X,B), (X,C))−AdvD((X,B), (X,C))

∣∣ ≤ ε/2, D̃ is

an efficient universal ε/2-distinguisher. By Lemma 3.14 there exists k ∈ [0, O(log q/ε)] such that

KL(X,B||X,2kD̃) ≤ δ − ε. We then approximate k by some rational k̃ to Θ(ε/c) precision so that

∀x, a,
∣∣∣k̃D̃(x, a)− kD̃(x, a)

∣∣∣ ≤ ε/c, for a sufficiently large constant c. Since k̃D̃ is rational valued,

we can use Newton’s method to construct a circuit P̃ approximating 2k̃D̃. This can be done in
such a way that

KL
(
X,B||X,CP̃

)
≤ KL(X,B||X,2kD̃) + ε ≤ δ

and P̃ has size t = poly (t′, n, 1/ε, log q). See Lemma A.3 for details. This contradicts the hypothesis
that B is nonuniformly (t, δ) KL-hard given X.

3.2 KL-hardness Implies Conditional Pseudoentropy, Uniform Setting

To prove the uniform complexity version of Theorem 3.15, we replace the use of the Min-Max
Theorem in the proof of Theorem 3.15 with a Uniform Min-Max Theorem from our forthcoming
paper [VZ]. The Uniform Min-Max Theorem constructively builds a near-optimal strategy of the
first player in a 2-player game from several best-responses of the first player to strategies of the
second player.

KL projection. Let C be a non-empty closed convex set of Γ-valued random variables and let
N be a Γ-valued random variable. One can show that there exists a unique

M∗ = arg min
M∈C

KL(M ||N)

M∗ is called the KL projection of N on C.
A nice property of KL projection is the following geometric structure (see [CT06], Chap 11,

Section 6):

Theorem 3.16. (Pythagorean theorem) Let C be a non-empty closed convex set of Γ-valued random
variables. Let M∗ be the KL projection of N on C. Then for all M ∈ C,

KL(M ||M∗) + KL(M∗||N) ≤ KL(M ||N)

In particular,
KL(M ||M∗) ≤ KL(M ||N)

Assuming KL(M∗||N) is finite, then Pythagorean theorem implies the KL projection M∗ is
unique: for any M ∈ C which is also a KL projection, the theorem implies KL(M ||M∗) = 0, which
holds only when M = M∗.

Finding the exact KL projection is often computationally imfeasible, so we consider approximate
KL projection. We say M∗ is a σ-approximate KL projection of N on C, if M∗ ∈ C and for all
M ∈ C,

KL(M ||M∗) ≤ KL(M ||N) + σ

In our context, let Cr denote the set of distributions (X,C) over {0, 1}n × [q] for all C with
H(C|X) ≥ r. We state here the Uniform Min-Max Theorem specialized to the case where the

15

strategies for Player 2 are distinguishers:

Let C(1) = U[q], c a sufficiently large constant

for i← 1 to S do

Obtain an arbitrary D(i) with AdvD(i)((X,B), (X,C(i))) > cε

Weight Update: Let C(i)′ be such that C(i)′(a|x) ∝ eε·D
(i)(x,a) · C(i)(a|x)

(X,C(i+1))← an arbitrary σ-approximate KL projection of (X,C(i)′) on Cr
end

Let D∗ compute the average of D(1), . . . , D(S)

Algorithm 1: Finding Universal Distinguisher

Theorem 3.17. (Uniform Min-Max Theorem for distinguishers [VZ]) Consider the two-player
zero-sum game where V = Cr for some r, W is a set of randomized boolean circuits, and for
every (X,C) ∈ Cr, randomized circuit D ∈ W , f((x, a), D) = E[D(X,B)] − D(x, a) so that
F ((X,C), D) = AdvD((X,B), (X,C)). Then for any 0 < ε ≤ 1, σ = ε2, after

S = O

(
max

(X,C)∈Cr
KL(X,C||X,U[q])/ε

2

)
= O

(
(log q − r)/ε2

)
iterations Algorithm Finding Universal Distinguisher always outputs some D∗ such that for all
(X,C) ∈ Cr, AdvD∗((X,B), (X,C)) = Ω(ε).

We include the proof of Theorem 3.17 in Appendix B.3 for reference. To implement Algorithm
Finding Universal Distinguisher, in particular, we need to compute σ-approximate KL projections
on the conditional entropy ball Cr.

3.2.1 Approximate KL Projection on the Conditional Entropy Ball

In this section we describe how to efficiently find (X,C) as a σ-approximate KL projection of (X,C ′)
on Cr. We first describe the exact KL projection of random variable (X,C) on a conditional entropy
ball Cr, then show how to approximate it.

Recall that for a generalized distinguisher D : {0, 1}n × [q] → R+, k ∈ R, and a {0, 1}n-valued
random variable X, we define a [q]-valued random variable 2kD (jointly distributed with X) as
follows:

2kD(a|x) = 2kD(x,a)∑
b 2

kD(x,b)

We begin by showing that C = 2kD (k ≥ 0) minimizes AdvD((X,B), (X,C)) among all C
with H(C|X) ≥ H(2kD|X). While it was our motivation to consider the random variable 2kD, we
did not explicitly need it for the nonuniform theorem (Theorem 3.15). But why are distinguishers
relevant at all, when all we want is to KL-project an arbitrary (X,C) on some entropy ball? The
reason is that when viewing C as 2D for some generalized distinguisher D, Lemma 3.13 says we can
minimize KL by maximizing the distinguishing advantage, assuming that the entropy difference is
fixed. This will be clear in the proof of Lemma 3.19 below.

Lemma 3.18. For every C it holds that E
[
D(X,2kD)

]
≥ E [D(X,C)] for all k ≥ 0 such that

H(2kD|X) ≤ H(C|X).

Proof. Consider any C where H(C|X) ≥ H(2kD|X). If k = 0, then H(2kD|X) = log q, so C and
2kD must both be uniform on [q] given X and the result holds vacuously. Thus assume k > 0. By
Lemma 3.13,

H(2kD|X)−H(C|X)−AdvkD((X,C), (X,2kD)) = KL(X,C||X,2kD) ≥ 0

16

where we use nonnegativity of KL divergence. Thus,

E [D(X,C)]− E
[
D(X,2kD)

]
=

1

k

(
AdvkD((X,C), (X,2kD))

)
≤ 1

k

(
H(2kD|X)−H(C|X)

)
≤ 0

as desired.

Lemma 3.19. (KL projection on the conditional entropy ball) Let (X,C) be a {0, 1}n× [q]-valued
random variable such that C(a|x) 6= 0 for all x, a. Let (X,C∗) be the KL projection of (X,C) on
Cr, where 0 ≤ r < log q. Let

D(x, a) = log
C(a|x)

minb {C(b|x)}

Then C = 2D and C∗ = 2αD for some α ∈ (0, 1] such that H(2αD|X) ≥ r (in fact H(2αD|X) = r
whenever (X,C) /∈ Cr).

Proof. One can readily verify that D is a generalized distinguisher and C = 2D. Moreover, if
(X,C) ∈ Cr then the KL projection is (X,C) = (X,2D) itself, i.e. α = 1.

To find the KL projection for (X,C) /∈ Cr, we first note there exists α ∈ (0, 1) such that
H(2αD|X) = r (by the Intermediate Value Theorem, because H(2D|X) < r, H(20|X) = log q ≥ r
and H(2kD|X) is continuous as a function of k ∈ (0, 1)). By definition of KL projection, we want
to minimize KL(X,C ′||X,2D) over all C ′ where H(C ′|X) = r (as KL projection is always on the
boundary of Cr; see Lemma A.1). By Lemma 3.13,

KL(X,C ′||X,2D) = H(2D|X)−H(C ′|X)−AdvD((X,C ′), (X,2D))

Hence minimizing KL(X,C ′||X,2D) is equivalent to maximizing AdvD((X,C ′), (X,2D)) = E [D(X,C ′)]−
E
[
D(X,2D)

]
, and the result follows from Lemma 3.18.

Lemma 3.20. (Approximating KL projection on the conditional entropy ball) There exists a
poly(κ, n, q, 1/σ, log(1/γ)) time algorithm that given oracle access to D : {0, 1}n × [q] → [0, κ] and
OX , given σ > 0 and 0 ≤ r ≤ log q−σ, with probability 1−γ (over its internal randomness) outputs
some β ∈ (0, 1] of bit length log(κ/σ) + log log q +O(1) such that (X,2βD) is a σ-approximate KL
projection of (X,2D) on Cr.

Proof. We compute an estimate Hβ ∈ [H(2βD|X) ± σ/6] for a discrete β ranging from 0 to 1 in
steps of σ/(cκ log q) for some large enough constant c, and output D′ = βD for any β satisfying
Hβ ∈ [r + σ/6, r + 5σ/6]. This can be done in time poly(κ, n, q, 1/σ, log(1/γ)) and with success
probability 1− γ after a union bound over all cκ log q/σ values of β (see Lemma A.3). If we fail to
find such β, then we output β = 1. We now argue correctness of the algorithm.

If we fail to find such β, then it must be only because H(2D|X) ≥ r, in other words KL projection
of
(
X,2D

)
∈ Cr is simply itself. To see that, suppose H(2D|X) < r. Since any σ/(cκ log q) variation

in β causes at most σ/3 variation in H(2βD|X) (Lemma A.4), and that H(20D|X) = log q ≥ r+ σ,
H(21D|X) < r, a discrete Intermediate Value Theorem says there exists a discrete β ∈ [0, 1] with
H(2βD|X) ∈ [r + σ/3, r + 2σ/3]. In other words, we can find such β.

Hence WLOG assume we have found such β. Closeness of Hβ to both r and H(2βD|X) ensures
that

r ≤ H(2βD|X) ≤ r + σ

17

Thus (X,2βD) ∈ Cr. Recall that the exact KL projection of (X,2D) on Cr is (X,2αD) where α = 1
if (X,2D) ∈ Cr, or 0 < α < 1 and H(2αD) = r if (X,2D) /∈ Cr (Lemma 3.19). To prove (X,2βD) is
a σ-approximate KL projection, it suffices to show that for any (X,C) ∈ Cr,

KL(X,C||X,2βD)−KL(X,C||X,2αD) ≤ σ

Then we are done, as it will follow from Pythagorean Theorem (Theorem 3.16) that

KL(X,C||X,2βD) ≤ KL(X,C||X,2αD) + σ ≤ KL(X,C||X,2D) + σ

By Lemma 3.13,

KL(X,C||X,2βD)−KL(X,C||X,2αD)

= H(2βD|X)−H(2αD|X)−
(
AdvβD((X,C), (X,2βD))−AdvαD((X,C), (X,2αD))

)
≤ (r + σ)− r −

(
AdvβD((X,C), (X,2βD))−AdvαD((X,C), (X,2αD))

)
= σ + (α− β)E [D(X,C)] + β · E

[
D(X,2βD)

]
− α · E

[
D(X,2αD)

]
Note that α ≥ β, because either α = 1 ≥ β (when (X,2D) ∈ Cr), or H(2αD|X) = r ≤ H(2βD|X)
(when (X,2D) /∈ Cr) and it follows from monotonicity of H(2kD|X) as a function of k in [0,+∞)
(Lemma A.2). Thus by Lemma 3.18, (α− β)E [D(X,C)] ≤ (α− β)E

[
D(X,2αD)

]
, and the above

inequality becomes

KL(X,C||X,2βD)−KL(X,C||X,2αD) ≤ σ + β
(
E
[
D(X,2βD)

]
− E

[
D(X,2αD)

])
= σ + β ·AdvD((X,2βD), (X,2αD))

Now applying Lemma 3.13 again on 2αD and 2βD gives

AdvαD((X,2βD), (X,2αD)) = H(2αD)−H(2βD)−KL(X,2βD||X,2αD)

≤ H(2αD)−H(2βD) ≤ 0

where we used nonnegativity of KL divergence. Therefore

KL(X,C||X,2βD)−KL(X,C||X,2αD) ≤ σ

3.2.2 Putting it Together

We now have all the tools ready to prove Theorem 3.11 (KL hardness implies conditional pseu-
doentropy, uniform setting). We just will replace the use of the Min-Max Theorem in the proof
of Theorem 3.15 with the Uniform Min-Max Theorem for distinguishers (Theorem 3.17), using
Lemma 3.20 to implement the approximate KL projection. However, notice that H(B|X) hence
the “radius” of the conditional entropy ball Cr is unknown. We will simply try all radii (with
quantization) and pick the distinguisher that results in the best KL predictor, which can be tested
by sampling (X,B).

Theorem 3.21. (KL-hardness implies conditional pseudoentropy, uniform setting) Let n be a
security parameter, δ = δ(n) > 0, t = t(n) ∈ N, ε = ε(n) > 0, q = q(n) all computable in
time poly(n). Let (X,B) be a {0, 1}n × [q]-valued random variable. If B is uniformly (t, δ) KL-
hard given X, then B has uniform (t′, ε) conditional pseudoentropy at least H(B|X) + δ − ε, for
t′ = tΩ(1)/poly(n, q, 1/ε).

18

Proof. Suppose for contradiction that B does not have uniform (t′, ε) conditional pseudoentropy
at least H(B|X) + δ − ε. By definition, there is a time t′ randomized oracle algorithm D such that
for infinitely many n and every C with H(C|X) ≥ H(B|X) + δ − ε, DOX,B,C ε-distinguishes (X,B)
and (X,C).

Let Cr denote the entropy ball {(X,C) : H(C|X) ≥ r}. Let γ > 0 be an error parameter
to be fixed later. Assume that given any r ≥ H(B|X) + δ − ε/2, we can implement Algorithm
Finding Universal Distinguisher on C = Cr using oracle OX,B, to output a circuit D∗ of size
poly(t′, n, log q, 1/ε, log(1/γ)) w.p. at least 1− γ, in time poly(t′, n, q, 1/ε, log(1/γ)). We show how
to do in the end.

Let c be a large enough constant. We show that the following time t oracle algorithm P violates
the hypothesis that B is uniformly (t, δ) KL-hard given X:

INPUT: (x, a) ∈ {0, 1}n × [q]
ORACLE: OX,B

for r ← 0 to log q in steps of ε/c do
D∗ ← Run Algorithm Finding Universal Distinguisher on C = Cr using oracle OX,B

for k ← 0 to (log q)/ε in steps of ε/c do
Add the generalized distinguisher kD∗ to list L

end

end
for each generalized distinguisher D′ ∈ L do

Estimate KL(X,B||X,2D
′
) + H(B|X) within ε/c error using oracle OX,B

end

Let D̃ ∈ L have the lowest estimate
POX,B (x, a) outputs an approximation of 2D̃(a|x)

Algorithm 2: A predictor P violating the KL-hardness of B given X

To prove correctness, first we claim w.p. at least 1 − γ there exists a generalized distinguisher
kD∗ ∈ L satisfying

KL(X,B||X,2kD
∗
) ≤ δ − ε/3 + ε/c

Consider an iteration where r ∈ [H(B|X) + δ − ε/2,H(B|X) + δ − ε/3]. Recall that we as-
sume Algorithm Finding Universal Distinguisher can be implemented on C = Cr to output a
circuit D∗ of size poly(t′, n, log q, 1/ε, log(1/γ)) w.p. at least 1 − γ. Theorem 3.17 says that
AdvD∗((X,B), (X,C)) = Ω(ε) for all C with

H(C|X) ≥ H(B|X) + δ − ε/3 ≥ r

Lemma 3.14 says there exists k∗ ∈ [0, (log q)/ε] such that KL(X,B||X,2k
∗D∗

) ≤ δ − ε/3. Thus in
any inner iteration where k ∈ [k∗ − ε/c, k∗], it follows from Lemma A.4 that

KL(X,B||X,2kD
∗
) ≤ KL(X,B||X,2k

∗D∗
) + ε/c ≤ δ − ε/3 + ε/c

It turns out that by sampling, for each D′ ∈ L we can estimate KL(X,B||X,2D
′
) + H(B|X)

within ε/c error w.p. at least 1−γ/|L|, in time poly (t′, n, 1/ε, q, log(1/γ)) (See Lemma A.3). Thus,
w.p. at least 1− γ the generalized distinguisher D̃ : {0, 1} × [q]→ [0, (log q)/ε] in L with the least
estimate satisfies

KL(X,B||X,2D̃) ≤ KL(X,B||X,2kD
∗
) + 2ε/c

Finally, approximating 2D̃ can be done using Newton’s method to produce a predictor p : {0, 1}n×
[q]→ [1, q1/ε] such that w.p. at least 1− 3γ the random variable Cp satisfies

KL (X,B||X,Cp) ≤ KL(X,B||X,2D̃) + ε/c ≤ δ − ε/3 + 4ε/c ≤ δ − ε/4

19

and the total running time is t = poly (t′, n, 1/ε, log q, log(1/γ)). See Lemma A.3 for details.
We view POX,B as a distribution over functions p : {0, 1}n× [q]→ [1, q1/ε], and it remains show

that

E
p∼POX,B

[KL(X,B||X,Cp)] ≤ δ

By the earlier analysis we know that KL (X,B||X,Cp) < (δ − ε/4) with probability at least 1− 3γ
over p ∼ POX,B , and for every p : {0, 1}n × [q]→ [1, q1/ε],

KL(X,B||X,Cp) = E

[∑
a

B(a|X) log (B(a|X)/Cp(a|X))

]
≤ max

x,a
log (1/Cp(a|x)) = O(log q + 1/ε)

Thus

E
p∼POX,B

[KL(X,B||X,Cp)] ≤ (1− 3γ) · (δ − ε/4) + (3γ) ·O(log q + 1/ε) ≤ δ

for an appropriate choice of γ = Ω(ε/(log q + 1/ε)), as desired.

Implementing Finding Universal Distinguisher. Given any r ≥ H(B|X)+δ−ε/2 and oracle
access to OX,B, we show how to implement each of the S = O((log q)/ε2) iterations of Algorithm
Finding Universal Distinguisher on C = Cr efficiently and output a size poly(t′, n, log q, 1/ε, log(1/γ))
circuit D∗ w.p. at least 1− γ, in time poly(t′, n, q, 1/ε, log(1/γ)).

Let γ′ > 0 be an error parameter to be fixed later. For each iteration j ∈ [S], we will implement
C(j) in Algorithm Finding Universal Distinguisher by constructing a generalized distinguisher Dj

as a circuit of size poly(t′, n, log q, 1/ε, log(1/γ′)) such that C(j) = 2Dj . We do this for j = 1 by
setting D1 = 0. Assuming we have constructed Dj , we can construct Dj+1 in time poly(t′, n, q, 1/ε)
as follows:

1. We can obtain a size t′′ = poly(t′, n, log q, 1/ε, log(1/γ′)) distinguisher D(j) from Dj such that

AdvD(j)((X,B), (X,C(j))) > ε′ = cε

in time poly(t′, n, q, 1/ε) w.p. at least 1− 2γ′, where c is the constant in Algorithm Finding
Universal Distinguisher.
By using Newton’s method to approximate 2Dj , we can construct a circuit P̃ such that the
random variable C̃(a|x) = P̃ (x, a)/

∑
b P̃ (x, b) satisfies (i) H(C̃|X) ≥ H(C(j)|X) − ε/2; (ii)

For any distinguisher D′, AdvD′((X,B), (X,C(j))) ≥ AdvD′((X,B), (X, C̃))− ε/3. This can
be done in time poly(t′, n, log q, 1/ε, log(1/γ′)) w.p. at least 1− γ′ (See Lemma A.3).
We then generate m = O((log(1/γ′) + n + log q)/ε2) random samples of (X,B, C̃)t

′
and

Ut′ , where C̃ is samplable from X in time poly(t′, n, q, 1/ε, log(1/γ′)). Finally let D(j) be the
distinguisher that given (x, a), chooses I ∈R [m] and outputs DOX,B,C̃ (x, a) using the Ith copy
of (X,B, C̃)t

′
to answer oracle queries and the Ith copy of Ut′ as the internal randomness of

D. Note that the size of D(j) does not depend on the size of Dj (but the size of Dj+1 will
additively depend on the size of D(j)).
By a Chernoff bound and union bound, w.p. at least 1− γ′ for every (x, a) we have∣∣∣D(j)(x, a)−DOX,B,C̃ (x, a)

∣∣∣ ≤ ε/3

Thus, ∣∣∣AdvD(j)((X,B), (X, C̃))−Adv
D

O
X,B,C̃

((X,B), (X, C̃))
∣∣∣ ≤ ε/3

20

Since

H(C̃|X) ≥ H(C(j)|X)− ε/4 ≥ (H(B|X) + δ − ε/2)− ε/2 = H(B|X) + δ − ε

the conditional pseudoentropy of B guarantees that

AdvD(j)((X,B), (X,C(j))) ≥ AdvD(j)((X,B), (X, C̃))− ε/3

≥ Adv
D

O
X,B,C̃

((X,B), (X, C̃))− ε/3− ε/3

> ε− 2ε/3 = ε′

2. C(j+1)′ = 2Dj+(log e)ε·D(j)
. This is just the consequence of multiplicative weight update.

3. We can obtain a size poly(t′, n, log q, 1/ε, log(1/γ′)) generalized distinguisher Dj+1 such that
(X,2Dj+1) is an O(ε2)-approximate KL projection of (X,C(j+1)′) on Cr w.p. at least 1 − γ′,
in time poly(t′, n, q, 1/ε, log(1/γ′)).
Indeed, using Lemma 3.20 we can obtain an O(ε2)-approximate KL projection (X,2Dj+1)
where Dj+1 = βj+1 · (Dj + ε′/2 · D(j)) for some βj+1 ∈ (0, 1]. Notice that Dj + ε′/2 · D(j)

is a [0, O(Sε)]-valued generalized distinguisher as each iteration increases the range of Dj

by at most O(ε). Thus by Lemma 3.20, βj+1 is of bit length log(S/ε) + log log q + O(1).
Consequently, Dj+1 is of size poly(t′, n, log q, 1/ε), as each iteration increases size of Dj by at
most t′′ + poly(log(S/ε), log log q).

Let γ′ = γ/c′S for a large enough constant c′. By induction, w.p. at least 1−O(Sγ′) = 1− γ,
we can construct the required Dj for every j and every iteration is correctly implemented in time
poly(t′, n, q, 1/ε, log(1/γ)). Furthermore, D∗ which computes the average of D(j) has circuit size
O(S · t′′) = poly(t′, n, log q, 1/ε, log(1/γ)).

3.3 Conditional Pseudoentropy Implies KL-hardness

Theorem 3.22. (Conditional pseudoentropy implies KL-hardness, nonuniform and uniform set-
tings) Let n be a security parameter, δ = δ(n) > 0, t = t(n) ∈ N, ε = ε(n) > 0, q = q(n), σ = σ(n)
all computable in time poly(n). Let (X,B) be a {0, 1}n × [q]-valued random variable. If B has
(non)uniform (t, ε) conditional pseudoentropy at least H(B|X)+δ, then B is (non)uniformly (t′, δ′)
KL-hard given X, for t′ = min{tΩ(1)/poly(n, log(1/σ)),Ω(σ/ε)} and δ′ = δ − σ.

In the uniform case, this implication holds even for a weaker definition of conditional pseudoen-
tropy where we only require indistinguishability against distinguishers with oracle access to OX,B.

Proof. We shall prove the nonuniform version. Once so it will be clear that the uniform version
follows.

Suppose for contradiction that B is not nonuniformly (t′, δ − σ) KL-hard. Then there is a
(δ − σ)-KL predictor P : {0, 1}n × [q] → [1,+∞) as a circuit of size t′. We show that there is a
size poly(t′, log(1/σ)) ≤ t universal distinguisher D such that AdvD((X,B), (X,C)) > ε for every
C with H(C|X) ≥ H(B|X) + δ. Specifically, we show that if P is a λ-KL predictor of size t′, then
there is a size poly(t′, log(1/σ)) distinguisher D such that AdvD((X,B), (X,C)) ≥ (δ−λ−σ/2)/2t′

for every C with H(C|X) ≥ H(B|X) + δ.
We claim the following distinguisher D is a desired universal distinguisher:

D(x, a) =
1

2t′
(
logP (x, a) + t′

)
21

Note that D is a distinguisher i.e. D(x, a) ∈ [0, 1], because 2−t
′ ≤ P (x, a) ≤ 2t

′
. Moreover, one can

verify that 22t
′D = CP .

Now consider any C with H(C|X) ≥ H(B|X) + δ. Applying Lemma 3.13 twice, we obtain

H(22t
′D|X)−H(B|X)−Adv2t′D((X,B), (X,22t

′D)) = KL(X,B||X,22t
′D) ≤ λ

where the inequality by definition of λ-KL predictor, as well as

H(22t
′D|X)−H(C|X)−Adv2t′D((X,C), (X,22t

′D)) = KL(X,C||X,22t
′D) ≥ 0

where the inequality is by nonnegativity of KL divergence. Taking the difference yields

AdvD((X,B), (X,C)) = AdvD((X,B), (X,22t
′D))−AdvD((X,C), (X,22t

′D))

=
1

2t′

(
Adv2t′D((X,B), (X,22t

′D))−Adv2t′D((X,C), (X,22t
′D))

)
≥ 1

2t′
(H(C|X)−H(B|X)− λ)

≥ δ − λ

2t′

Efficiency. We approximate D by D̃, where logP (x, a) is computed to precision σ/2. Since
P (x, a) is represented as a rational p1/p2 where p1, p2 ≤ 2t

′
, the logarithm can be approxi-

mated to that precision in time poly(t′, log(1/σ)) using Taylor series. Thus D has circuit size
poly(t′, log(1/σ)) ≤ t. Moreover, for any C with H(C|X) ≥ H(B|X) + δ, we have

AdvD̃((X,B), (X,C)) ≥ AdvD((X,B), (X,C))− 1

2t′
· σ
2
≥ δ − λ− σ/2

2t′

This completes the proof for the nonuniform case.
At this point, the uniform version also follows quite naturally: Given P such that when POX,B

is viewed as a distribution over functions p : {0, 1}n × [q]→ (0,+∞),

E
p∼POX,B

[KL(X,B||X,Cp)] ≤ δ − σ

We let D be the randomized oracle algorithm such that DOX,B performs the above conversion from
a λ-KL predictor to a universal (δ − λ − σ/2)/2t′-distinguisher, replacing the P (x, a) there with
the output of simulating POX,B on (x, a) (using random coin tosses and OX,B). Thus for every C
with H(C|X) ≥ H(B|X) + δ,

E
[
Adv

D
OX,B ((X,B), (X,C))

]
≥ E

p∼POX,B

[
δ −KL(X,B||X,Cp)− σ/2

2t′

]
≥ σ

4t′
> ε

Furthermore, D runs in time poly(n, t′, log(1/σ)) ≤ t.

Since Theorem 3.22 only requires a weaker version of conditional pseudoentropy, we obtain the
following equivalence:

Corollary 3.23. Let n be a security parameter, δ = δ(n) > 0, q = q(n) computable in time poly(n).
Let (X,B) be a {0, 1}n × [q]-valued random variable that is polynomial-time samplable. Then the
following are equivalent:

22

1. B is uniformly δ KL-hard given X;

2. B has uniform conditional pseudoentropy at least H(B|X) + δ;

3. B has “weak” uniform conditional pseudoentropy at least H(B|X)+ δ: For every probabilistic
polynomial time algorithm A and every constant c, there is a random variable C jointly
distributed with X,B such that the following holds for all sufficiently large n:

• H(C|X) ≥ H(B|X) + δ − 1/nc

• (X,B) and (X,C) are indistinguishable by A:

|Pr[A(X,B) = 1]− Pr[A(X,C) = 1]| ≤ 1

nc

Proof. 1 ⇒ 2 by Theorem 3.21. 2 ⇒ 3 by definition. 3 ⇒ 1 by Theorem 3.22 and the fact that
(X,B) is polynomial-time samplable.

4 From One-way Function to Conditional Pseudoentropy

In this section, we show how to obtain a next-bit pseudoentropy generator from an arbitrary one-
way function f . One-way functions are functions easy to compute but hard to invert:

Definition 4.1. f : {0, 1}∗ → {0, 1}∗ is a (T, γ) one-way function for T = T (n), γ = γ(n) if f is
computable in polynomial time, and for every time T randomized algorithm A, for all sufficiently
large n, it holds that Pry∼f(Un)[f(A(y)) = y] < γ. We say f is one-way if f is (nc, 1/nc) one-way
for every constant c.

This section is structured as follows. Given a one-way function f , we first show that Un is KL-
hard for sampling given f(Un). By a chain rule for KL-hardness, we then argue it is KL-hard to
sample the next bit of Un given f(Un) and all previous bits of Un. Finally, we use the equivalences
between KL-hardness for sampling, KL-hardness, and conditional pseudoentropy (for small q) to
derive that (f(Un), Un) has a lot of total next-bit pseudoentropy.

Lemma 4.2. Let n be a security parameter, and f : {0, 1}n → {0, 1} be (t, γ) one-way, for t = t(n),
γ = γ(n). Then Un is uniformly (t′, log(1/γ)) KL-hard for sampling given f(Un), for t

′ = t/poly(n).

Proof. Suppose for contradiction that Un is not uniformly (t′, log(1/γ)) KL-hard for sampling given
f(Un), i.e. there exists a time t′ randomized oracle algorithm S such that

KL
(
f(Un), Un||f(Un), S

Of(Un),Un (f(Un))
)
≤ log

1

γ

Let g(y, x) be the indicator function that f(x) = y. Since applying a (deterministic) function does
not increase KL divergence (Lemma 2.6),

KL
(
g (f(Un), Un) ||g

(
f(Un), S

Of(Un),Un (f(Un))
))
≤ log

1

γ

where g(f(Un), Un) ≡ 1, and g
(
(f(Un), S

Of(Un),Un (f(Un))
)
equals 1 w.p. p = Pr[SOf(Un),Un (f(Un)) =

f(Un)]. Since the KL divergence from Bernoulli(1) to Bernoulli(p) is log(1/p), we must have p ≥ γ.
That is,

Pr[SOf(Un),Un (f(Un)) = f(Un)] ≥ γ

23

Since Of(Un),Un
can be simulated in time poly(n), this violates the fact that f is (t, γ) one-way for

t = t′ · poly(n).

Lemma 4.3. (Chain rule for KL-hardness) Let Y be a distribution over {0, 1}n, jointly distributed
with Z. If Y is uniformly (t, δ) KL-hard for sampling given Z, then YI is uniformly (t′, δ/n)
KL-hard for sampling given (Z, Y1, . . . , YI−1), for I ∈R [n], t′ = t/O(n).

Proof. Suppose YI is not uniformly (t′, δ/n) KL-hard for sampling given (Z, Y1, . . . , YI−1), that is
there exists a time t′ randomized oracle algorithm S such that

KL
(
Z, Y1, . . . , YI ||Z, Y1, . . . , YI−1, SOZ,Y1,...,YI (Z, Y1, . . . , YI−1)

)
≤ δ

n

Consider the time O(nt′) = t algorithm that samples W1, . . . ,Wn from Z using oracle OZ,Y ,
where Wi is inductively defined to be SOZ,Y1,...,YI (Z,W1, . . . ,Wi−1). By the chain rule for KL
divergence (Fact 2.5),

KL(Z, Y1, . . . , Yj ||Z,W1, . . . ,Wj)−KL(Z, Y1, . . . , Yj−1||Z,W1, . . . ,Wj−1)

= KL((Yj |Z, Y1, . . . , Yj−1)||(Wj |Z,W1, . . . ,Wj−1))

= KL(Z, Y1, . . . , Yj ||Z, Y1, . . . , Yj−1, S
OZ,Y1,...,YI (Z, Y1, . . . , Yj−1))

where the last equality follows from definition of conditional KL divergence. Telescoping over
j = 1, . . . , n,

KL(Z, Y ||Z,W1, . . . ,Wn) =

n∑
i=1

KL(Z, Y1, . . . , Yi||Z, Y1, . . . , Yi−1, SOZ,Y1,...,YI (Z, Y1, . . . , Yi−1))

= n ·KL(Z, Y1, . . . , YI ||Z, Y1, . . . , YI−1, SOZ,Y1,...,YI (Z, Y1, . . . , YI−1))

≤ n · δ
n
= δ

This violates Y being uniformly (t, δ) KL-hard for sampling given Z.

Now the remainder of showing next-bit pseudoentropy of (f(Un), Un) follows from (i) KL-
hard for sampling implies KL-hard; (ii) KL-hard implis conditional pseudoentropy (for small q).
Formally,

Theorem 4.4. Let n be a security parameter, t = t(n), γ = γ(n), ε = ε(n) all computable in
polynomial time. Let f : {0, 1}n → {0, 1} be (t, γ) one-way. Then (f(Un), Un) has (t′, ε) uniform
next-bit pseudoentropy at least n+ log(1/γ)− ε, for t′ = tΩ(1)/poly(n, 1/ε).

Proof. Let Z = f(Un), Y = Un and I ∈R [n]. By Lemma 4.2 and 4.3, YI is uniformly (t/poly(n), log(1/γ)/n)
KL-hard for sampling given (Z, Y1, . . . , YI−1). By Lemma 3.7, YI is uniformly (t/poly(n), log(1/γ)/n)
KL-hard given (Z, Y1, . . . , YI−1). By Theorem 3.21, YI has (t

′, ε) uniform conditional pseudoentropy
at least H(YI |Z, Y1, . . . , YI−1) + log(1/γ)/n − ε/n, for t′ = tΩ(1)/poly(n, 1/ε). Equivalently, (Z, Y)
has (t′, ε) uniform next-bit pseudoentropy at least H(Y, Z) + log(1/γ)− ε = n+ log(1/γ)− ε.

Remark 4.5. The argument in this section says that (f(Un), Un) has a lot of next-bit pseudoentropy
as long as Un is KL-hard to sample from f(Un). The KL-hardness of sampling Un from f(Un) is
similar to the notion of a distributional one-way function [IL89] which amounts to replacing KL
divergence with statistical distance.

24

For Un to be KL-hard to sample from f(Un), it is not necessary that f is one-way. For example,
given any one-way function h : {0, 1}n → {0, 1}n/2, define

f(x) =

{
x1,...,n/2 (xn/2+1,...,n = 0n/2)

h(x) (otherwise)

Clearly f is not one-way, but Un is still KL-hard to sample from f(Un). Thus, our construction
of next-bit pseudoentropy generators (and later on, pseudorandom generators) can be based on a
larger class of functions.

5 From Conditional Pseudoentropy to Pseudorandomness

In this section, for brevity, we always assume the uniform setting whenever referring to one-way
functions and computational notions of (conditional) entropy. Nonetheless, these results hold in
the nonuniform setting too, with little or no change in the argument.

5.1 The Construction

Haitner et al. show a construction of a pseudorandom generator from any next-bit pseudoentropy
generator Gnb. Their result can be stated as follows:

Theorem 5.1. [HRV10] Let n be a security parameter. Let ∆ = ∆(n) ∈ [1/poly(n), n], m = m(n),
κ = κ(n) ∈ [n/2] be polynomial time computable. For every polynomial time computable Gnb :
{0, 1}n → {0, 1}m such that Gnb(Un) has (T, ε) next-bit pseudoentropy at least n +∆, there exists
a (T − nO(1), nO(1) · (ε + 2−κ)) pseudorandom generator G : {0, 1}d → {0, 1}d·(1+Ω(∆/n)) with seed
length

d = O

(
m2n2κ log2 n

∆3

)
Moreover, G is computable in NC1 with O(d/n) (uniformly random) oracle calls to Gnb.

By Theorem 4.4, we can simply use Un → (f(Un), Un) as the next-bit pseudoentropy generator,
and obtain the following construction of PRG G from one-way functions f (illustrated in Figure
1), by applying the construction in Theorem 5.1:

f(Un), Un f(Un), Un

f(Un), Un f(Un), Un f(Un), Un

f(Un), Un

f(Un), Un f(Un), Un f(Un), Un

H
(·)

H
(·)

H
(·)

pseudorandom bits

t

(u− 1)(n+m)

01
..
.1

10
..
.1

10
..
.0

Figure 1: Simplified construction of
PRG from one-way function f :
{0, 1}n → {0, 1}m. Each row contains
iid copies of (f(Un), Un), shifted by a
random offset I ∈ [n + m]. To extract
pseudorandom bits, an arbitrary uni-
versal hash function H (with a proper
output length) is applied to all bits in
the same column.

25

Construction 1. On input {0, 1}d, G outputs

h, h(G1
1G

2
1 . . . G

l
1), h(G

1
2G

2
2 . . . G

l
2), . . .

where h is a universal hash function, and G1, G2 . . . , Gl are iid copies of G. Each copy of G consists
of t iid copies of (f(Un), Un), with the first I bits of the first copy and the last m + n − I bits of
the last copy discarded, for I ∈R [n+m] (using a new copy of I for each Gi).

By Theorem 4.4 and Theorem 5.1, it is immediate that if f is one-way, then G is a PRG with
seed length O(n2m2) and stretch Ω(log n/n).

The following corollary was pointed out to us by Yuval Ishai: If f is a one-way function with
exponential security and linear circuit size, by using universal hash functions that have linear
circuit size e.g. the ones in [IKOS08], we can obtain a PRG whose circuit complexity is linear in its
stretch. Such pseudorandom generators (with circuit complexity linear in their stretch) are useful
for cryptography with constant computational overhead [IKOS08].

Corollary 5.2. Suppose that there is a function f : {0, 1}n → {0, 1}n computable by uniform
circuits of size O(n) and such that for some constant α > 0 and every constant c, f is (nc, 2−αn)
one-way. Then there exists a pseudorandom generator G : {0, 1}d → {0, 1}2d computable by uniform
circuits of size O(d), for d = O(n · polylog(n)).

Proof. Fix any family of universal hash functions computable by uniform circuit of linear size e.g.
the one in [IKOS08]. Define Gnb(x) = (f(x), x). By Theorem 4.4, Gnb(Un) has uniform next-
bit pseudoentropy at least (1 + α)n. By Theorem 5.1, there exists a pseudorandom generator
G : {0, 1}d → {0, 1}d·(1+α) with seed length d = n log3 n. We then do iterative composition
[Gol06] d1/αe times to increase the stretch to d. Furthermore, G (as in the above construction) is
computable by uniform circuits of size O(d) since both Gnb and the hash functions are computable
by uniform circuits of linear size.

5.2 Saving Seed Length

In this section, we show how to save the seed length of [HRV10]’s construction of pseudorandom
generators from next-bit pseudoentropy generators, by a factor of Θ(n).

There are three steps in the construction:

1. Entropy equalization — discarding the first I bits of the first copy and the last m − I bits
of the last copy of Gnb. Since Gnb is highly unstructured, nothing can be said about the
conditional pseudoentropy in any fixed bit, yet by discarding a random prefix, each position
is now a random bit in Gnb. By taking many copies of Gnb, the amortized loss of next-bit
pseudoentropy is small.

Lemma 5.3. [HRV10] Let n be a security parameter, m = m(n) = poly(n) and ` = `(n) =
poly(n) be poly(n) time computable integer functions, where `(n) > 1. Let X be random vari-
able over {0, 1}m with (T, ε)-next-bit pseudoentropy at least k, for T = T (n), ε = ε(n) and k =

k(n). Let J be uniformly distributed over [m] and let X̃ = X
(1)
J , . . . , X

(1)
m , . . . , X

(`)
1 , . . . , X

(`)
J−1,

where X(i)’s are iid copies of X. Then every bit of X̃ has (T − O(` · m), ` · ε) conditional
pseudoentropy at least (`− 1)k/(`m), conditioned on previous bits of X̃ and J . 6

6This is slightly stronger than the version in [HRV10], which does not condition on J . However, it is easy to see
from their proof that one can additionally condition on J .

26

GZ

Ũσ

GZ̃

˜̃Uσ

SamplerUd

Figure 2: Iterative composition for Z-seeded PRG G

2. Converting conditional Shannon entropy to conditional min-entropy — taking multiple (par-
allel) copies. This generalizes the standard procedure of converting Shannon entropy to
min-entropy by taking sufficiently many copies. Conditional pseudo-min-entropy is defined
analogously to conditional pseudoentropy; see [HRV10].

Lemma 5.4. [HRV10] Let n be a security parameter, m = m(n) = poly(n) and t = t(n) =
poly(n) be poly(n) time computable integer functions. Let X be a random variable over {0, 1}m
where every bit of X has (T, ε) conditional pseudoentropy at least α, for T = T (n), ε = ε(n),

α = α(n). Then for every κ = κ(n) > 0 it holds that every block of (X
(1)
1 , X

(2)
1 , . . .), . . . , (X

(1)
m , X

(2)
m , . . .)

conditioned on previous blocks, has (T ′, ε′) conditional pseudo-min-entropy α′, where X(i)’s
are iid copies of X, and

• T ′ = T ′(n) = T −O(m · t)
• ε′ = ε′(n) = t2 · (ε+ 2−κ + 2−ct) for a universal constant c > 0, and

• α′ = α′(n) = t · α− Γ(t, κ), for Γ(t, k) ∈ O(
√
t · κ · log t)

3. Randomness extraction. This step is essentially a computational version of block source
extraction. At the previous step, the amount of next-bit pseudo-min-entropy in each block
is known. So we may choose hash functions of fixed output length to make the output
pseudorandom.

Lemma 5.5. [HRV10] Let n be a security parameter, m = m(n) = poly(n), t = t(n) =
poly(n), α = α(n) ∈ [t(n)] and κ = κ(n) ∈ [α(n)] be poly(n) time computable integer
functions. Let {hs : {0, 1}t → {0, 1}α−κ} be some family of universal hash functions. Let
X1, . . . , Xm be random variables over {0, 1}t such that every Xi conditioned on X1, . . . , Xi−1
has (T, ε) conditional pseudo-min-entropy α, for T = T (n) and ε = ε(n). Then (h, h(X1), . . . , h(Xm))
is (T −m · tO(1),m · (ε+ 2−κ/2)) pseudorandom, where h is a random hash function from the
family.

We refer to [HRV10] for the proofs and detailed explanation of intuition behind these steps.
The seed length blow up in [HRV10] comes from Step 1 (Entropy Equalization) and Step 2

(Converting to conditional min-entropy), as each involves repeating the current generator on many
independent seeds. We show how to save the blow up due to Entropy Equalization, by showing how
randomness from a “few” copies of Gnb can be used to generate more copies of Gnb, and iteratively.

Specifically, we show that the [HRV10] construction above, but taking only ` = 2 copies in
Entropy Equalization, gives rise to a “Z-seeded” PRG, one that given input distribution Z outputs
some (Z̃, Ũσ) indistinguishable from (Z,Uσ). (If Z were uniformly distributed in {0, 1}d, this
would be a standard PRG.) Then we apply iterative composition (just like iterative composition
for standard PRGs [Gol06]) to increase the number of pseudorandom bits (without changing the
seed distribution Z).

We begin by describing the iterative composition of Z-seeded PRGs, illustrated in Figure 2.

27

Lemma 5.6. Let n be a security parameter. Let σ = σ(n), ` = `(n) = poly(n) be poly(n) time
computable functions. Let Z = Z(n) be a distribution samplable in poly(n) time using d = d(n)
bits of randomness. Let G be a generator computable in poly(n) time such that G(Z) = (Z̃, Ũσ)
is (T, ε)-indistinguishable from (Z,Uσ), for T = T (n), ε = ε(n). Then there is a (T − poly(n), `ε)
pseudorandom generator G′ : {0, 1}d → {0, 1}`σ computable in poly(n) time.

Proof. Consider the following algorithm G`(z): If ` = 0 then output ε (the empty string). If ` ≥ 0
then let (z̃, ũ) = G(z) and output G`−1(z̃) ◦ ũ.

We claim that G`(Z) is pseudorandom, so we obtain the desired PRG G′ by composing G` with
algorithm that samples Z given d random bits. Clearly G′ runs in poly(n) time. We show the
pseudorandomness of G`(Z) by a hybrid argument.

Suppose for contradiction that G`(Z) is not (T ′, `ε)-pseudorandom, i.e. there exists a T ′ time
`ε-distinguisher D between G`(Z) and U`σ. For each 0 ≤ i ≤ ` define a hybrid distribution
Hi = (Gi(Z), U(`−i)σ). Thus H0 = U`σ and H` = G`(Z). Let I ∈R [`]. Then

E [D(HI)−D(HI−1)] =
1

`

∑̀
k=1

E [D(Hk)−D(Hk−1)] =
1

`
E[D(G`(Z))−D(U`σ)] > ε

We use this to break the pseudorandomness property of G. Denote G(Z) = (Z̃, Ũσ). We claim
that D′(z, u) = D(GI−1(z) ◦ u ◦ U(`−I)σ), where I ∈R [`] and |u| = σ, ε′-distinguishes (Z,Uσ)

from (Z̃, Ũσ). Notice that given (z̃, ũ) = G(z), we have (GI−1(z̃), ũ) = GI(z) by definition of G`.
Thus, D′(Z̃, Ũσ) = D(GI(Z)◦U(`−I)σ) = D(HI) whereas D

′(Z,Uσ) = D(GI−1(Z)◦Uσ ◦U(`−I)σ) =
D(HI−1). It follows that

E[D′(Z,Uσ)−D′(Z̃, Ũσ)] = E[D(HI)−D(HI−1)] > ε

Moreover, D′ is computable in T ′ + poly(n) time. For an appropriate T ′ = T − poly(n), this con-
tradicts that (Z,Uσ) and (Z̃, Ũσ) are (T, ε) indistinguishable. Therefore, G`(Z) is (T −poly(n), `ε)-
pseudorandom.

We now show how to construct a Z-seeded PRG G from any next-bit pseudoentropy generator
Gnb, as demonstrated in Figure 3. By applying iterative composition, this gives rise to a seed-
efficient construction of PRG from a pseudoentropy generator Gnb, illustrated in Figure 4. This
should be compared to the original construction illustrated in Figure 1.

Theorem 5.7. Let n be a security parameter. Let ∆ = ∆(n) ∈ [1/poly(n), n], m = m(n),
κ = κ(n) ∈ [n/2] be polynomial-time computable functions. For every polynomial-time computable
Gnb : {0, 1}n → {0, 1}m such that Gnb(Un) has (T, ε) next-bit pseudoentropy at least n + ∆ (for
T = T (n) and ε = ε(n)), there exists distribution Z = Z(n) and generator G such that:

1. Z is samplable in polynomial time using

d = O

(
m2nκ log2

(
nκ
∆

)
∆2

)
bits of randomness;

2. G is computable in polynomial time and G(Z) is (T −nO(1), nO(1) ·(ε+2−κ)) indistinguishable
from (Z,U), U being uniformly random string of length Ω(d ·∆/n).

Moreover, G is computable with O(d/n) (uniform and independent) oracle calls to Gnb.

28

Gnb(Un)

H
(·)

H
(·)

H
(·)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Ũσ tn bits

Figure 3: Construction of Z-seeded PRG G
from any next-bit pseudoentropy generator
Gnb. The grey area is the input Z. The bold
boxes contain the output G(Z) = (Ũσ, Z̃).
Each row contains 2 copies of Gnb(Un),
shifted by a random offset I ∈ [n + m]. To
extract pseudorandomness, an arbitrary uni-
versal hash function H (with a proper out-
put length) is applied to all bits in the same
column. We ignore H, J (1), . . . , J (t) in the
figure since they are the same in the input
and output of G.

Output of PRG

Gnb(Un)

H
(·)

H
(·)

H
(·)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Ũσ tn bits

Gnb(Un)

H
(·)

H
(·)

H
(·)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Ũσ tn bits

Figure 4: Seed-saving construction of PRG from
a next-bit pseudoentropy generator Gnb (e.g.
Gnb(Un) = (f(Un), Un) for an arbitrary one-way
function f) by applying iterative composition (Fig-
ure 2) to the Z-seeded PRG G (Figure 3). This
should be compared to the original construction in
Figure 1.

Proof. Let t be a parameter to be fixed later. Let J (1), . . . , J (t) be t iid copies of J ∈R [m], and
H ∈R {0, 1}t. Consider

Z =
(
H ◦ J (1) . . . J (t) ◦Gnb(U

(1))1,...,J(1)−1 . . . Gnb(U
(t))1,...,J(t)−1 ◦ U

(t+1) . . . U (2t)
)

where U (i)’s are iid copies of Un. Z is clearly samplable in polynomial time using d = t+ t · (logm+
2n) = O(tn) bits of randomness.

We now define G. Interpret G’s input as h ◦ j(1) . . . j(t) ◦ x(i)
1,...,j(1)−1 . . . x

(t)

1,...,j(t)−1 ◦ u
(1) . . . u(t),

where h, x(i), u(i) are strings of length t, logm and n respectively. G is defined as follows:

1. For each i ∈ [t] (that is, for each “row”), we set y(i) =
(
Gnb(u

(i))j(i),...,m ◦ x
(i)

1,...,j(1)−1

)
(Entropy

Equalization);

2. Apply a universal hash function h : {0, 1}t → {0, 1}t′ where t′ will be chosen later so that

t′m > tn, on y
(1)
j ◦ · · · ◦ y

(t)
j , for each j ∈ [m] (that is for each “column”). Let ũ be the output

of h; that is, let

ũ = h(y
(1)
1 , . . . , y

(t)
1) ◦ h(y(1)2 , . . . , y

(t)
2) ◦ · · · ◦ h(y(1)m , . . . , y(t)m)

3. Output

h ◦ j(1) . . . j(t) ◦Gnb(u
(1))1,...,j(1)−1 . . . Gnb(u

(t))1,...,j(t)−1 ◦ ũ1,...,tn ◦ ũtn+1,...,tm′

29

We now prove that G(Z) is computationally indistinguishable from (Z ◦Utm′−tn). Suppose we run
G(Z) to obtain

G(Z) =
(
H ◦W ◦ Ũ1,...,tn ◦ Ũtn+1,...,tm′

)
where

W =
(
J (1) . . . J (t) ◦Gnb(U

(t+1))1,...,J(1)−1 . . . Gnb(U
(2t))1,...,J(t)−1

)
In the following, we will show that G(Z) =

(
H ◦W ◦ Ũ1,...,tn ◦ Ũtn+1,...,tm′

)
is computationally in-

distinguishable from (H ◦W ◦ Utn ◦ Utm′−tn), which is clearly the same distribution as (Z ◦ Utm′−tn)
by simply noting that (i) U (i)’s and U (t+i)’s are iid; (ii) (Utn ◦ Utm′−tn) is independent of Z and
(H ◦W). It is essentially the same 3-step analysis as in Haitner et. al, with the tweak that the con-
ditional pseudoentropy is now additionally conditioned on W , the conditional pseudo-min-entropy
and finally indistinguishablility from uniform are now conditioned on W taking any value.

In Step 1, we set Y (i) = Gnb(U
(t+i))J(i),...,m ◦Gnb(U

(i))1,...,J(i)−1. Recall that Gnb(Un) has (T, ε)
next-bit pseudoentropy at least n + ∆. Applying Lemma 5.3 (Entropy Equalization) with ` = 2,
X(1) = Gnb(U

(t+i)) and X(2) = Gnb(U
(i)), we obtain that every bit of Y (i) conditioned on previous

bits of Y (i), Gnb(U
(t+i))1,...,J(i)−1 and J (i), has (T − O(m), 2ε) conditional pseudoentropy at least

(∆ + n)/m.
Recall that Y (1), . . . , Y (t) are t independent rows. By Lemma 5.4 (t-fold parallel repetition),

Y
(1)
j , . . . , Y

(t)
j has (T − O(mt), t2 · (2ε + 2−κ + 2−ct)) conditional pseudo-min-entropy at least α =

t(∆ + n)/m− O(
√
tκ log t), conditioned on W and all Y

(1)
k , . . . , Y

(t)
k where k < j. In other words,

Y
(1)
j , . . . , Y

(t)
j has (T − O(mt), t2 · (2ε + 2−κ + 2−ct)) conditional pseudo-min-entropy at least α =

t(∆+ n)/m−O(
√
tκ log t), conditioned on all Y

(1)
k , . . . , Y

(t)
k where k < i, and W taking any value.

In Step 2, we apply hashing to each “column”. By Lemma 5.5, if we set t′ = α − 2κ, then
(H ◦ Ũ1,...,tn ◦ Ũtn+1,...,tm′) and (H ◦ Utn ◦ Utm′−tn) are (T − O(mt) − mtO(1),mt2 · (2ε + 2−κ +
2−Ω(t)) +m · 2−κ) indistinguishable, conditioned on W taking any value. Thus we conclude that

G(Z) =
(
H ◦W ◦ Ũ1,...,tn ◦ Ũtn+1,...,tm′

)
is (T −O(mt)−mtO(1),mt2 · (2ε+ 2−κ + 2−Ω(t)) +m · 2−κ) indistinguishable from

(H ◦W ◦ Utn ◦ Utm′−tn) = (Z ◦ Utm′−tn)

We are left to set the parameters. We need to guarantee

Ω

(
∆

n
d

)
≤ t′m− tn =

(
t(∆ + n)

m
−O(

√
tκ log t)− 2κ

)
m− tn

where d = O(tn). Assuming κ ≤ O(t), this can be simplified to

√
t

log t
≥ O

(
m
√
κ

∆

)
which is guaranteed for an appropriate choice of

t = O

(
m2κ log2

(
mκ
∆

)
∆2

)

30

and consequently

d = O(tn) = O

(
m2nκ log2

(
mκ
∆

)
∆2

)
= O

(
m2nκ log2

(
nκ
∆

)
∆2

)

So (Z,U) and G(Z) are (T −O(ts)−mtO(1),mt2 · (2ε+2−κ+2−Ω(t))+m2−κ) = (T −nO(1), nO(1) ·
(ε+2−κ)) indistinguishable. Moreover, G makes O(d/n) uniformly random oracle calls to Gnb.

Combining Lemma 5.6 and Theorem 5.7, we obtain a seed length efficient construction of
pseudorandom generators:

Corollary 5.8. Let n be a security parameter. Let ∆ = ∆(n) ∈ [1/poly(n), n], m = m(n),
κ = κ(n) ∈ [n/2], ` = `(n) = poly(n) be computable in time poly(n). For every polynomial time
computable Gnb : {0, 1}n → {0, 1}m such that Gnb(Un) has (T, ε) next-bit pseudoentropy at least
n +∆ (for T = T (n) and ε = ε(n)), there exists a polynomial-time computable (T − nO(1), nO(1) ·
(ε+ 2−κ)) pseudorandom generator G : {0, 1}d → {0, 1}d·(`∆/n) with seed length

d = O

(
m2nκ log2

(
nκ
∆

)
∆2

)

Moreover, G is computable with O(`d/n) (uniformly random) oracle calls to Gnb.

Proof. By Theorem 5.7, there is a Z-seeded PRG G′ where Z is samplable in polynomial time from
Ud, and G′(Z) is (T − nO(1), nO(1) · (ε+ 2−κ)) indistinguishable from (Z,U). By Lemma 5.6 there
exists a pseudorandom generator G with the above parameters.

Thus, from a one-way function f : {0, 1}n → {0, 1}m−n we can construct a pseudorandom
generator of seed length d = O(m2n log n).

Acknowledgment

We thank Kai-Min Chung, Iftach Haitner, Yuval Ishai, Bruce Kapron, Omer Reingold, Jonathan
Ullman, and Udi Wieder for helpful discussions.

References

[BHK09] Boaz Barak, Moritz Hardt, and Satyen Kale, The uniform hardcore lemma via approx-
imate bregman projections, SODA ’09: Proceedings of the Nineteenth Annual ACM
-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA), Society for Indus-
trial and Applied Mathematics, 2009, pp. 1193–1200.

[BM82] Manuel Blum and Silvio Micali, How to generate cryptographically strong sequences of
pseudo random bits, 1982, pp. 112–117.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of information theory (2. ed.), Wiley,
2006.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith, Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data, SIAM J. Comput.
38 (2008), no. 1, 97–139.

31

[FS99] Yoav Freund and Robert E. Schapire, Adaptive game playing using multiplicative
weights, Games and Economic Behavior 29 (1999), 79–103.

[GL89] Oded Goldreich and Leonid A. Levin, A hard-core predicate for all one-way functions,
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing
(Seattle, Washington), 15–17 May 1989, pp. 25–32.

[GM84] Shafi Goldwasser and Silvio Micali, Probabilistic encryption, Journal of Computer and
System Sciences 28 (1984), no. 2, 270–299.

[GM98] Oded Goldreich and Bernd Meyer, Computational indistinguishability: algorithms vs.
circuits, Theoretical Computer Science 191 (1998), no. 1-2, 215–218. MR 1490574
(98h:68086)

[Gol06] Oded Goldreich, Computational complexity: A conceptual perspective, 2006.

[GV98] Oded Goldreich and Salil Vadhan, Comparing entropies in statistical zero knowledge
with applications to the structure of szk, In Proceedings of the Fourteenth Annual IEEE
Conference on Computational Complexity, IEEE Computer Society Press, 1998, pp. 54–
73.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby, A pseudoran-
dom generator from any one-way function, SIAM Journal on Computing 28 (1999),
no. 4, 1364–1396 (electronic). MR 2000b:65010

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin, Conditional computational entropy,
or toward separating pseudoentropy from compressibility, EUROCRYPT, 2007, pp. 169–
186.

[Hol05] Thomas Holenstein, Key agreement from weak bit agreement, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing (STOC), 2005, pp. 664–673.

[Hol06] , Pseudorandom generators from one-way functions: A simple construction for
any hardness, TCC, 2006, pp. 443–461.

[HRV10] Iftach Haitner, Omer Reingold, and Salil Vadhan, Efficiency improvements in construct-
ing pseudorandom generators from one-way functions, Proceedings of the 42nd Annual
ACM Symposium on Theory of Computing (STOC), 2010, pp. 437–446.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai, Cryptography with
constant computational overhead, STOC, 2008, pp. 433–442.

[IL89] Russell Impagliazzo and Michael Luby, One-way functions are essential for complexity
based cryptography, FOCS, 1989, pp. 230–235.

[Imp95] Russell Impagliazzo, Hard-core distributions for somewhat hard problems, 36th Annual
Symposium on Foundations of Computer Science (Milwaukee, Wisconsin), IEEE, 23–25
October 1995, pp. 538–545.

[KS99] Adam R. Klivans and Rocco A. Servedio, Boosting and hard-core sets, In Proceedings
of the Fortieth Annual Symposium on Foundations of Computer Science, 1999, pp. 624–
633.

32

[Sha49] Claude Shannon, Communication theory of secrecy systems, Bell System Technical Jour-
nal 28 (1949), no. 4, 656–715.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan, Pseudorandom generators without the
XOR lemma, Journal of Computer and System Sciences 62 (2001), 236–266.

[VZ] Salil Vadhan and Colin Jia Zheng, A uniform minmax theorem and its applications, In
preparation.

[Yao82a] Andrew C. Yao, Theory and applications of trapdoor functions, 1982, pp. 80–91.

[Yao82b] , Theory and applications of trapdoor functions (extended abstract), 23rd An-
nual Symposium on Foundations of Computer Science (Chicago, Illinois), IEEE, 3–5
November 1982, pp. 80–91.

A Information-Theoretic Facts and Approximation

Lemma A.1. The KL projection of any C on any convex set C 63 C is in the boundary of C.

Proof. Consider any C ′ in the interior of C. Let 0 < λ < 1 be such that λC ′ + (1 − λ)C ∈ C. By
convexity of KL(·||C), we have

KL(λC ′ + (1− λ)C||C) ≤ λ ·KL(C ′||C) + (1− λ) · 0

i.e. KL(λC ′ + (1− λ)C||C) < KL(C ′||C). Hence the KL projection must be on the boundary.

Lemma A.2. For every generalized distinguisher D, H(2kD|X) is monotone decreasing in k for
k ∈ [0,+∞).

Proof. Consider any k2 ≥ k1 ≥ 0. Applying Lemma 3.13 twice:

H(2k2D|X)−H(2k1D|X)−Advk2D

(
(X,2k1D), (X,2k2D)

)
= KL(X,2k1D||X,2k2D) ≥ 0

H(2k1D|X)−H(2k2D|X)−Advk1D

(
(X,2k2D), (X,2k1D)

)
= KL(X,2k2D||X,2k1D) ≥ 0

where we use nonnegativity of KL divergence. Scaling the inequalities by k1 and k2 resp. and taking
the sum gives

(k2 − k1)
(
H(2k1D|X)−H(2k2D|X)

)
≥ 0

i.e. H(2k1D|X) ≥ H(2k2D|X).

Lemma A.3. (Approximation Lemma)

1. There is a poly(t, n, log q, 1/σ, log(1/γ)) time algorithm P̃ : {0, 1}n × [q]→ [1, 2κ̃] that, given
a generalized distinguisher D̃ : {0, 1}n × [q]→ [0, κ̃] as a circuit of size t, σ > 0, γ > 0, with
probability 1− γ (over its internal randomness) the following holds: for the random variable

C̃(a|x) = P̃ (x, a)∑
b P̃ (x, b)

,

for any generalized distinguisher D where ∀x, a, |D(x, a) − D̃(x, a)| ≤ σ, and any D′ :
{0, 1}n → [0, κ]: ∣∣∣E [D′(X, C̃)

]
− E

[
D′(X,2D)

]∣∣∣ = κ ·O(σ)

33

∣∣∣KL(X,B||X, C̃)−KL(X,B||X,2D)
∣∣∣ = O(σ)∣∣∣H(C̃|X)−H(2D|X)

∣∣∣ = (H(2D|X) + 1
)
·O(σ)

2. There is a poly(t, n, q, 1/ε, log(1/γ)) time algorithm that given a generalized distinguisher
D : {0, 1}n × [q] → R+ as a circuit of size t, ε > 0, γ > 0, with probability 1 − γ (over its
internal randomness) estimates H(2D|X) within O(ε) additive error.

3. There is a poly(κ, t, n, q, 1/ε, log(1/γ)) time oracle algorithm that given a generalized distin-
guisher D : {0, 1}n × [q] → [0, κ] as a circuit of size t, ε > 0, γ > 0, for any {0, 1}n × [q]-
valued random variable (X,B), with probability 1−γ (over its internal randomness) estimates
AdvD((X,B), (X,2D)) and KL(X,B||X,2D) + H(B|X) within O(ε) additive error using or-
acle OX,B.

Proof. For Item 1, consider the following algorithm P̃ :

1. Compute E(x, a) ≥ 0 such that w.p. 1 − γ, for all x, a, |E(x, a) − D̃(x, a)| ≤ σ. To do so,
let E(x, a) be the mean of D̃(x, a) for m = O

(
(log(1/γ) + n+ log q) /σ2

)
samples of its coin

tosses; concentration follows from a Chernoff bound and union bound.

2. Compute P̃ (x, a) such that for all x, a,
∣∣∣2E(x,a) − P̃ (x, a)

∣∣∣ ≤ σ. To do so, we approximate

2E(x,a) ∈ [1, 2t] to precision ±σ using Newton’s method in time poly(t,m, log(1/σ)).

We now prove the required bounds. First we claim P̃ (x, a)/2D(x,a) ∈
[
2−O(σ), 2O(σ)

]
, because∣∣∣log P̃ (x, a)−D(x, a)

∣∣∣ ≤ ∣∣∣D̃(x, a)−D(x, a)
∣∣∣+ ∣∣∣E(x, a)− D̃(x, a)

∣∣∣+ ∣∣∣log P̃ (x, a)− E(x, a)
∣∣∣

≤ σ + σ +

∣∣∣∣∣log
(
1− 2E(x,a) − P̃ (x, a)

2E(x,a)

)∣∣∣∣∣
≤ 2σ +

∣∣∣log (1± σ

2E(x,a)

)∣∣∣
≤ 2σ + |log (1± σ)| = O(σ)

where we use 2E(x,a) ≥ 1 in the last inequality. With this, we can bound the following quantities:∣∣∣C̃(a|x)− 2D(a|x)
∣∣∣ = ∣∣∣∣∣ P̃ (x, a)∑

b P̃ (x, b)
− 2D(x,a)∑

b 2
D(x,b)

∣∣∣∣∣
≤

∣∣∣∣∣ 2D(x,a) · 2±O(σ)∑
b 2

D(x,b) · 2±O(σ)
− 2D(x,a)∑

b 2
D(x,b)

∣∣∣∣∣ (1)

≤ 2D(x,a)∑
b 2

D(x,b)

(
2O(σ) − 1

)
= 2D(a|x) ·O(σ)

and∣∣∣∣log 1

C̃(a|x)
− log

1

2D(a|x)

∣∣∣∣ ≤ ∣∣∣log P̃ (x, a)−D(x, a)
∣∣∣+ ∣∣∣∣∣log

(∑
b

P̃ (x, b)

)
− log

(∑
b

2D(x,b)

)∣∣∣∣∣
(2)

≤ O(σ) +

∣∣∣∣∣log
∑

b 2
D(x,b) · 2±O(σ)∑

b 2
D(x,b)

∣∣∣∣∣ = O(σ)

34

Using (1) and (2), we show the required bounds in turn:∣∣∣E [D′(X, C̃)
]
− E

[
D′(X,2D)

]∣∣∣ ≤ E
X

[
κ
∑
a

∣∣∣C̃(a|X)− 2D(a|X)
∣∣∣]

≤ E
X

[
κ

(∑
a

2D(a|x)

)
O(σ)

]
= κ ·O(σ)

where the last inequality follows from (1).∣∣∣KL(X,B||X, C̃)−KL(X,B||X,2D)
∣∣∣ = ∣∣∣∣∣EX

[∑
a

B(a|X) log
B(a|X)

C̃(a|X)

]
− E

X

[∑
a

B(a|X) log
B(a|X)

2D(a|X)

]∣∣∣∣∣
≤ E

X

[∑
a

B(a|X)

∣∣∣∣log 1

C̃(a|X)
− log

1

2D(a|X)

∣∣∣∣
]

≤ O(σ)

where the last inequality follows from (2).∣∣∣H(C̃|X)−H(2D|X)
∣∣∣

=

∣∣∣∣∣EX
[∑

a

C̃(a|X) log
1

C̃(a|X)

]
− E

X

[∑
a

2D(a|X) log
1

2D(a|X)

]∣∣∣∣∣
≤ E

X

∑
a

∣∣∣∣C̃(a|X) log
1

C̃(a|X)
− 2D(a|X) log

1

2D(a|X)

∣∣∣∣
= E

X

∑
a

∣∣∣∣C̃(a|X)

(
log

1

C̃(a|X)
− log

1

2D(a|X)

)
+ log

1

2D(a|X)

(
C̃(a|X)− 2D(a|X)

)∣∣∣∣
≤ E

X

∑
a

(
C̃(a|X) ·O(σ) + log

1

2D(a|X)
· 2D(a|X) ·O(c)

)
≤
(
H(2D|X) + 1

)
·O(σ)

where the second last inequality follows from (1) and (2).
For Item 2 and Item 3, first note that we only need to estimate H(2D|X) and AdvD((X,B), (X,2D))

within O(ε) error, since by Lemma 3.13

KL(X,B||X,2D) + H(B|X) = H(2D|X)−AdvD((X,B), (X,2D))

By Item 1 (where we set σ = O(ε/κ log q)), it suffices to estimate H(C̃|X) and AdvD((X,B), (X, C̃))
within O(ε) error. Recall that C̃(a|x) can be computed in time poly(t, n, q, 1/ε, log(1/γ)).

Consider H(C̃|X) = Ex∼X

[
H(C̃|X=x)

]
. For each x we can compute H(C̃|X=x) = −

∑
a C̃(a|x) log C̃(a|x)

within ε error in time poly(t, n, q, 1/ε, log(1/γ)), by approximating log C̃(a|x) to precision ε us-

ing Taylor series. We can then estimate Ex∼X

[
H(C̃|X=x)

]
, where H(C̃|X=x) ∈ [0, log q], from

O(log(1/γ)(log q/ε)2) random samples of x. By a Chernoff bound the estimate is within O(ε) error
w.p. at least 1− γ.

Similarly, we can estimate AdvD((X,B), (X, C̃)) = E
[
D(X,B)−D(X, C̃)

]
, where D(x, a) ∈

[0, κ], from O
(
log(1/γ)(κ/ε)2

)
random samples of (X,B, C̃). Note that (X,B) can be sampled

using OX,B, and C̃ from X in time poly(t, n, q, 1/ε, log(1/γ)). By a Chernoff bound the estimate is
within O(ε) error w.p. at least 1− γ.

35

Lemma A.4. For any generalized distinguishers D1, D2, any {0, 1}n× [q]-valued random variable
(X,B), ∣∣H(2D1 |X)−H(2D2 |X)

∣∣ = (H(2D2 |X) + 1
)
·O
(
max
x,a
|D1(x, a)−D2(x, a)|

)
∣∣KL(X,B||X,2D1)−KL(X,B||X,2D2)

∣∣ = O

(
max
x,a
|D1(x, a)−D2(x, a)|

)
Proof. Setting D̃ = D1, D = D2 and σ = maxx,a |D1(x, a)−D2(x, a)| in Lemma A.3, we obtain∣∣H(2D1 |X)−H(2D2 |X)

∣∣
≤
∣∣∣H(C̃|X)−H(2D1 |X)

∣∣∣+ ∣∣∣H(C̃|X)−H(2D2 |X)
∣∣∣

=
(
H(2D2 |X) + 1

)
·O
(
max
x,a
|D1(x, a)−D2(x, a)|

)
Setting D̃ = D1, D = D2 and σ = maxx,a |D1(x, a)−D2(x, a)| in Lemma A.3, we obtain∣∣KL(X,B||X,2D1)−KL(X,B||X,2D2)

∣∣
≤
∣∣∣KL(X,B||X, C̃)−KL(X,B||X,2D1)

∣∣∣+ ∣∣∣KL(X,B||X, C̃)−KL(X,B||X,2D2)
∣∣∣

= O (σ) = O

(
max
x,a
|D1(x, a)−D2(x, a)|

)

B A Uniform Min-Max Theorem

Here we present the proof of the Uniform Min-Max Theorem from our forthcoming paper [VZ].
Recall that it constructively builds a near-optimal strategy of the first player in a 2-player game
from several best-responses of the first player to strategies of the second player. Previously, a
constructive Min-Max Theorem was given by Freund and Schapire [FS99], with a complexity that
is O((logM)/ε2), where M is the number of pure strategies of the second player. In our context, the
strategies of the second player are all distributions C with H(C|X) ≥ H(B|X) + δ, of which there
are doubly-exponentially many (after discretization, since there are exponentially many conditional
distributions C|X=x to specify). Thus complexity O((logM)/ε2) is even too much for us. In our
min-max theorem, we allow the set of pure strategies of player 2 to be any convex set of distributions
on [N], and show that the complexity can then be O((logM)/ε2). This suffices for us, since N is
only exponentially large.

The proof of our Uniform Min-Max Theorem follows the proof of the Uniform Hardcore The-
orem of Barak, Hardt, and Kale [BHK09], constructing a sequence of strategies for player 2 by
multiplicative weight updating and projection to stay within the specified convex set. An advan-
tage of our formulation is that it is more modular, and is not specific to Hardcore Theorem —
indeed, it can be used for the original Hardcore Theorem, our characterization of pseudoentropy,
and a number of other applications (to be described in [VZ]).

Lemma B.1. (Multiplicative weight update decreases KL) Let A,B be distributions over [N] and
f : [N]→ [0, 1] any function. Define random variable A′ such that

A′(x) ∝ eε·f(x)A(x)

for 0 ≤ ε ≤ 1. Then KL(B||A′) ≤ KL(B||A)− (log e)ε (E[f(B)]− E[f(A)]− ε).

36

Proof. By definition,

KL(B||A)−KL(B||A′) =
∑
x

B(x)

(
log

B(x)

A(x)
− log

B(x)

A′(x)

)
=
∑
x

B(x) log
A′(x)

A(x)

=
∑
x

B(x)

(
log

eεD(x)∑
y e

εD(y)A(y)

)

= (log e)

(
εE[f(B)]− ln

(∑
y

eεD(y)A(y)

))

Applying the inequalities 1 + z ≤ ez, ez ≤ 1 + z + z2 for 0 ≤ z ≤ 1, and using 0 ≤ D(x) ≤ 1, we
have

KL(B||A)−KL(B||A′) ≥ (log e)

(
εE[f(B)]− ln

(∑
y

(
1 + εD(y) + ε2

)
A(y)

))
= (log e)

(
εE[f(B)]− ln

(
1 + εE[f(A)] + ε2

))
≥ (log e)

(
εE[f(B)]−

(
εE[f(A)] + ε2

))
= (log e)ε (E[f(B)]− E[f(A)]− ε)

Choose some initial V (1) ∈ Conv(V)
for i← 1 to S do

Obtain an arbitrary W (i) ∈ W
Weight Update: Let V (i)′ be such that V (i)′(x) ∝ e−ε·f(x,W

(i))/2k · V (i)(x)
V (i+1) ← an arbitrary σ-approximate KL projection of V (i)′ on Conv(V)

end

Let W ∗ be uniform over W (1), . . . ,W (S)

Algorithm 3: Finding Min-Max Strategy

Theorem B.2. (A Uniform Min-Max Theorem) Consider a two-player zero-sum game where the
sets of pure strategies for Player 1 and Player 2 are V ⊆ {distributions over [N]} and W, and
payoff to Player 2 is defined to be F (V,W) = Ev∼V [f(v,W)] for some function f : [N]×W → R.
Suppose f has range [−k, k]. Then for any 0 < ε ≤ 1, σ = ε2, after S = maxV ∈V KL(V ||V (1))/ε2

iterations Algorithm Finding Min-Max Strategy always outputs a mixed strategy W ∗ for Player 2
such that for all V ∈ V,

F (V,W ∗) ≥ Avgi

(
F (V (i),W (i))

)
−O(kε)

(This holds regardless of the arbitrary choice of W (i) and V (i+1) in the algorithm.)
In particular, we can take S = (logN −minV ∈V H(V)) /ε2 if we set V (1) = U[N] ∈ Conv(V).

We now describe how Theorem B.2 implies the original Min-Max Theorem, which says

max
W∈Conv(W)

min
V ∈V

F (V,W) = min
V ∈Conv(V)

max
W∈W

F (V,W)

37

We just takeW (i) to be Player 2’s best response to Player 1’s mixed strategy V (i), i.e. F (V (i),W (i)) =
maxW∈W F (V (i),W). Theorem B.2 says that for every λ = O(kε) > 0 there exists W ∗ ∈ Conv(W)
satisfying

min
V ∈V

F (V,W ∗) ≥ Avgi

(
F (V (i),W (i))

)
− λ

= Avgi max
W∈W

F
(
V (i),W

)
− λ

≥ min
V ∈Conv(V)

max
W∈W

F (V,W)− λ

where the last inequality holds because maxW∈W F
(
V (i),W

)
≥ minV ∈Conv(V)maxW∈W F (V,W)

for every i. Thus, for every λ > 0,

max
W∈Conv(W)

min
V ∈V

F (V,W) ≥ min
V ∈Conv(V)

max
W∈W

F (V,W)− λ

Taking λ→ 0 gives the Min-Max Theorem.

Proof of Theorem B.2. Consider any V ∈ V . It follows from Lemma B.1 that

KL(V ||V (i)′) ≤ KL(V ||V (i))− (log e)ε

(
F (V (i),W (i))− F (V,W (i))

2k
− ε

)
Since V (i+1) is a σ-approximate KL projection of V (i)′ on Conv(V),

KL(V ||V (i+1)) ≤ KL(V ||V (i)′) + σ

Therefore

KL(V ||V (i))−KL(V ||V (i+1)) ≥ (log e)ε

(
F (V (i),W (i))− F (V,W (i))

2k
− ε

)
− σ

Summing over i = 1, . . . , S and telescoping, we obtain

KL(V ||V (1))−KL(V ||V (S+1)) ≥ (log e)ε
S∑

i=1

(
F (V (i),W (i))− F (V,W (i))

2k
− ε

)
− Sσ

= (log e)Sε

(
Avgi

(
F (V (i),W (i))

)
− F (V,W ∗)

2k
− ε

)
− Sσ

Since KL(V ||V (S+1)) ≥ 0, rearranging gives

Avgi
(
F (V (i),W (i))

)
− F (V,W ∗)

2k
≤ KL(V ||V (1)) + Sσ

(log e)Sε
+ ε = O(ε)

for σ = ε2, S = maxV ∈V KL(V ||V (1))/ε2.

Let C(1) = U[q], c a sufficiently large constant

for i← 1 to S do

Obtain an arbitrary D(i) with AdvD(i)((X,B), (X,C(i))) > cε

Weight Update: Let C(i)′ be such that C(i)′(a|x) ∝ eε·D
(i)(x,a) · C(i)(a|x)

(X,C(i+1))← an arbitrary σ-approximate KL projection of (X,C(i)′) on Cr
end

Let D∗ compute the average of D(1), . . . , D(S)

Algorithm 4: Finding Universal Distinguisher

38

Theorem B.3. (Uniform Min-Max Theorem for distinguishers [VZ]) Consider the two-player
zero-sum game where V = Cr for some r, W is a set of randomized boolean circuits, and for
every (X,C) ∈ Cr, randomized circuit D ∈ W , f((x, a), D) = E[D(X,B)] − D(x, a) so that
F ((X,C), D) = AdvD((X,B), (X,C)). Then for any 0 < ε ≤ 1, σ = ε2, after

S = O

(
max

(X,C)∈Cr
KL(X,C||X,U[q])/ε

2

)
= O

(
(log q − r)/ε2

)
iterations Algorithm Finding Universal Distinguisher always outputs some D∗ such that for all
(X,C) ∈ Cr, AdvD∗((X,B), (X,C)) = Ω(ε).

Proof. Follows from Uniform Min-Max Theorem, except for the difference that here we update C(i)

instead of V (i), which does not alter the algorithm: Since we can write V (i)′ as (X(i)′ , gi(X
(i)′))

for the randomized function gi where Pr[gi(x) = a] ∝ eε·D
(i)(x,a)/2k · C(i)(a|x) for any x, the KL

projection of (X(i)′ , gi(X
(i)′)) on Cr is the same as the KL projection of (X, gi(X)) = (X,C(i)′) (See

Lemma B.4 below).

Lemma B.4. Let X, X ′ be distributions with supp(X) = supp(X ′), g a randomized function, and
C a convex set of joint distributions of the form (X,C) (where C may vary, but X is fixed). Then
the KL projection of (X, g(X)) on C is also the KL projection of (X ′, g(X ′)) on C.

Proof. Consider any (X,C) ∈ C. By the chain rule for KL divergence,

KL(X,C||X ′, g(X ′)) = KL(X||X ′) + KL((C|X)||(g(X ′)|X ′))
= KL(X||X ′) + KL((C|X)||(g(X)|X))

= KL(X||X ′) + KL(X,C||X, g(X))

Thus the KL projections are the same.

39

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

