
THE MULTIPARTY COMMUNICATION COMPLEXITY OF SET DISJOINTNESS
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ABSTRACT. We study the set disjointness problem in the number-on-the-forehead model.

(i) We prove that k-party set disjointness has randomized and nondeterministic com-
munication complexity˝.n=4k/1=4 and Merlin-Arthur complexity˝.n=4k/1=8:
These bounds are close to tight. Previous lower bounds (2007-2008) for k > 3 par-
ties were weaker than n1=.kC1/=2k

2
in all three models.

(ii) We prove that solving ` instances of set disjointness requires ` �˝.n=4k/1=4 bits of
communication, even to achieve correctness probability exponentially close to 1=2:
This gives the first direct-product result for multiparty set disjointness, solving an
open problem due to Beame, Pitassi, Segerlind, and Wigderson (2005).

(iii) We construct a read-once f^;_g-circuit of depth 3 with exponentially small dis-
crepancy for up to k � 1

2
logn parties. This result is optimal with respect to depth

and solves an open problem due to Beame and Huynh-Ngoc (FOCS ’09), who gave
a depth-6 construction. Applications to circuit complexity are given.

The proof technique of this paper departs significantly from previous work and is of inde-
pendent interest.

1. INTRODUCTION

In a seminal paper thirty years ago, Yao [50] introduced the two-party model of com-
munication complexity. In this model, two parties seek to evaluate a function f .x; y/ with
minimal communication, where the first party knows only x and the second party only y:
To capture communication among three or more parties, one considers a function f with
several arguments that are somehow distributed among the parties, possibly with overlap.
For a model to be meaningful, no party should know all the arguments (making communi-
cation necessary to evaluate f ), and every argument should be known to some party (mak-
ing communication sufficient). The number-on-the-forehead model of multiparty commu-
nication, due to Chandra, Furst, and Lipton [16], is the most powerful model that obeys
the two principles. This model features k parties and a function f .x1; x2; : : : ; xk/ with k
arguments. The i th party knows all the arguments except for xi—one can think of xi as
written on the i th party’s forehead, hence the name of the model. Communication occurs in
broadcast, a bit sent by any given party instantly reaching everyone else. The main research
question is whether f has low communication complexity, i.e., can be computed by a pro-
tocol in which the number of bits communicated is small on every input. We will primarily
be interested in randomized protocols, which are allowed to err with a small constant prob-
ability, as well as nondeterministic and Merlin-Arthur protocols. The multiparty model
is a natural computational model in its own right and has additionally found a variety of
applications, including streaming algorithms, circuit complexity, pseudorandomness, and
proof complexity [6, 51, 25, 41, 12].

The multiparty model draws its richness from the overlap in the parties’ inputs, which
makes it challenging to prove lower bounds. For this reason, several fundamental questions
in this model remain open despite much research. One such unresolved question is the
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2 A. A. SHERSTOV

communication complexity of set disjointness, arguably the most studied problem in the
area [3, 27, 4, 7, 40, 47, 31, 13, 49, 42, 46, 35, 19, 11, 14, 30]. In the k-party version of
set disjointness, the inputs are sets S1; S2; : : : ; Sk � f1; 2; : : : ; ng; and the i th party knows
all the inputs except for Si : The goal is to determine whether the intersection

Tk
iD1 Si is

empty. One also studies a promise version of this problem called unique set disjointness,
in which the input sets S1; S2; : : : ; Sk either have an empty intersection or intersect in a
unique element, i.e., either j

T
Si j D 0 or j

T
Si j D 1: It is common to represent set

disjointness in function form as

DISJn;k.x1; x2; : : : ; xk/ D
n̂

jD1

k_
iD1

xij ;

where the bit strings x1; x2; : : : ; xk 2 f0; 1gn are the characteristic vectors of the k sets.
Unique set disjointness UDISJn;k is represented by an identical formula, with the under-
standing that the strings x1; x2; : : : ; xk are legal inputs if and only if their bitwise conjunc-
tion x1 ^ x2 ^ � � � ^ xk has at most one nonzero bit. In communication complexity, set
disjointness plays a role closely similar to the role of satisfiability in computational com-
plexity. Outside of communication complexity the study of set disjointness is motivated
by a number of applications, which we will discuss shortly in the context of our results.

Previous work. In the model with two parties, the communication complexity of set dis-
jointness is thoroughly understood. One of the earliest results in the area is a tight lower
bound of n C 1 bits for deterministic protocols solving set disjointness. For randomized
protocols, a lower bound of ˝.

p
n/ was obtained by Babai, Frankl, and Simon [3] and

strengthened to a tight ˝.n/ by Kalyanasundaram and Schnitger [27]. Simpler proofs of
the linear lower bound were discovered by Razborov [39] and Bar-Yossef et al. [7]. All
three proofs [27, 39, 7] of the linear lower bound apply to unique set disjointness. Finally,
Razborov [40] obtained a tight lower bound of˝.

p
n/ on the bounded-error quantum com-

munication complexity of set disjointness and unique set disjointness, with a simpler proof
discovered several years later in [42]. Already in the two-party model, set disjointness has
been a driving force for various technical innovations, including ideas from combinatorics,
Kolmogorov complexity, information theory, matrix analysis, and Fourier analysis.

Progress on the communication complexity of set disjointness for k > 3 parties is
summarized in Table A. In a surprising result, Grolmusz [24] proved an upper bound
of O.log2 nC k2n=2k/ on the deterministic communication complexity of this problem.
Proving a strong lower bound, even for k D 3; turned out to be difficult. Tesson [47] and
Beame et al. [13] obtained a lower bound of ˝

�
1
k

logn
�

for randomized protocols. Four
years later, Lee and Shraibman [35] and Chattopadhyay and Ada [19] gave an improved
result. These authors generalized the two-party method of [43, 42] to k > 3 parties and
thereby obtained a lower bound of ˝

�
n1=.kC1/=22

k �
on the randomized communication

complexity of set disjointness. The only subsequent work of which we are aware is due
to Beame and Huynh-Ngoc [11], who proved a lower bound of 2˝.

p
logn=

p
k/=2k on the

randomized communication complexity. This improves on the previous bound for k suffi-
ciently large. For more than three years now, set disjointness has seen no progress. In what
follows, we state the new results of this paper on set disjointness and related questions.

Randomized communication complexity of set disjointness. To summarize Table A,
lower bounds on the k-party communication complexity of set disjointness prior to this
paper, both deterministic and randomized, were weaker than n1=.kC1/=2k

2
: In particular,
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no polynomial lower bounds were known for k D !.1/ parties. Our first result is the
following theorem, where R� denotes randomized communication complexity with error
probability �:

THEOREM 1.1. Set disjointness and unique set disjointness have randomized communica-
tion complexity

R1=3.DISJn;k/ > R1=3.UDISJn;k/ D ˝
� n
4k

�1=4
:

Theorem 1.1 comes close to matching Grolmusz’s longstanding upper bound and shows in
particular that the randomized communication complexity of set disjointness remains poly-
nomial for up to k � 1

2
logn parties. This is representative of the state of the art in multi-

party communication complexity in general: no explicit function F W .f0; 1gn/k ! f0; 1g is
currently known with nontrivial communication complexity for k > logn parties. Theo-
rem 1.1 subsumes all previous multiparty lower bounds, with a strict improvement starting
at k D 4: Finally, several restrictions of the number-on-the-forehead model have been con-
sidered [4, 47, 13, 49, 14, 30], including simultaneous message passing, one-way proto-
cols, and certain intermediate models. The strongest communication lower bound [47, 13]
in these restricted models was ˝.n1=.k�1/=k/; which is already weaker than Theorem 1.1
starting at k D 6:

XOR lemmas and direct product theorems. A natural question to ask of any computa-
tional model is how the resources needed to solve ` instances of a problem scale with `:
Suppose that solving a single instance of a given decision problem, with probability of
correctness 2=3; requires R units of a computational resource such as time, memory, com-
munication, or queries. How many units of the resource are needed to solve ` independent
instances of the problem? Common sense suggests that the answer should be˝.`R/:After
all, having less than �`R units overall, for a small constant � > 0; leaves less than �R units
per instance, intuitively forcing the algorithm to guess random answers for many of the in-
stances and resulting in overall correctness probability 2�˝.`/: Such a statement is called a

Bound Reference

O.log2 nC k2n=2k/ Grolmusz [24]

˝
�
1
k

logn
�

Tesson [47]

Beame, Pitassi, Segerlind, and Wigderson [13]

˝
�
n1=.kC1/=22

k �
Lee and Shraibman [35]

Chattopadhyay and Ada [19]

2˝.
p

logn=
p
k/=2k Beame and Huynh-Ngoc [11]

˝.n=4k/1=4 This paper

Table A: Bounds for the randomized number-on-the-forehead communication com-
plexity of set disjointness for k > 3 parties.
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strong direct product theorem. A related notion is an XOR lemma, which asserts that com-
puting the XOR of the answers to the ` problem instances requires ˝.`R/ resources, even
to achieve correctness probability 1

2
C 2�˝.`/: While intuitively satisfying, XOR lemmas

and strong direct product theorems are hard to prove and sometimes simply not true.
In communication complexity, the direct-product question has been studied for over

twenty years. We refer the reader to [30, 45] for an up-to-date overview of the literature,
focusing here exclusively on set disjointness. The direct-product question for two-party
set disjointness has been resolved completely and definitively [31, 13, 14, 26, 30, 45],
including classical one-way protocols [26], classical two-way protocols [13, 30], quantum
one-way protocols [14], and quantum two-way protocols [31, 45]. Starting at k D 3;

however, we are not aware of direct-product results of any kind for set disjointness. In fact,
obtaining such a result was posed as an open problem by Beame et al. [13, p. 426]. We
prove a direct-product result for up to k � 1

2
logn parties.

THEOREM 1.2. The following tasks require ` �˝.n=4k/1=4 bits of communication each:

(i) computing the XOR of ` independent instances of unique set disjointness UDISJn;k
with correctness probability 1

2
C 2�˝.`/I

(ii) solving with probability 2��` at least .1 � �/` among ` instances of unique set dis-
jointness UDISJn;k ; where � > 0 is a small enough constant.

Clearly, this result also holds for set disjointness, a problem harder than UDISJn;k :
Theorem 1.2 generalizes Theorem 1.1, showing that ˝.n=4k/1=4 is in fact a lower bound
on the per-instance cost of set disjointness. Note that by (ii), this lower bound remains valid
even if the protocol only needs to solve a 1� � fraction of the given ` instances, rather than
all ` instances. Results of this type are known as threshold direct product theorems.

Nondeterministic and Merlin-Arthur communication. Nondeterministic communica-
tion is a natural counterpart to determinism and randomization. Analogous to compu-
tational complexity, a nondeterministic protocol starts with a guess string, whose length
counts toward the protocol’s communication cost, and proceeds deterministically thence-
forth. A nondeterministic protocol for a given communication problem F is required to
output the correct answer for all guess strings when F D 0; and for some guess string
when F D 1: Observe that the complement of set disjointness has a highly efficient non-
deterministic protocol. Indeed, it suffices to guess an element i 2 f1; 2; : : : ; ng and verify
with two bits of communication that i 2 S1\S2\ � � �\Sk :We show that set disjointness,
unlike its complement, has high nondeterministic complexity.

THEOREM 1.3. Set disjointness has nondeterministic communication complexity

N.DISJn;k/ D ˝
� n
4k

�1=4
:

The best previous lower bound [23] on the nondeterministic complexity of set disjointness
was n˝.1=k/=22

k
:

We further consider Merlin-Arthur protocols [2, 5], a communication model that com-
bines the power of randomization and nondeterminism. As before, a Merlin-Arthur pro-
tocol for a given problem F starts with a guess string, whose length counts toward the
communication cost. From then on, the parties run an ordinary randomized protocol. The
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randomized phase in a Merlin-Arthur protocol must produce the correct answer with prob-
ability 2=3 for all guess strings when F D 0 and for some guess string when F D 1: We
prove that set disjointness has high Merlin-Arthur complexity, denoted MA:

THEOREM 1.4. Set disjointness has Merlin-Arthur communication complexity

MA.DISJn;k/ D ˝
� n
4k

�1=8
:

Theorem 1.4 can be viewed as a generalization of Theorems 1.1 and 1.3 on randomized and
nondeterministic communication, respectively. These lower bounds are close to optimal, in
view of Grolmusz’s deterministic upper bound. As with nondeterminism, the best previous
lower bound [23] on the Merlin-Arthur complexity of set disjointness was n˝.1=k/=22

k
:

Theorems 1.1, 1.3, and 1.4 shed new light on communication complexity classes, de-
fined in the seminal work of Babai, Frankl, and Simon [3]. An infinite family fFng1nD1;
where each FnW .f0; 1gn/k ! f0; 1g is a k-party number-on-the-forehead communication
problem, is considered to be efficiently solvable by a given class of protocols if Fn has
communication complexity at most logc n; for a large enough constant c > 1 and all
n > c: This convention allows one to define BPPk ; NPk ; coNPk ; and MAk as the classes
of families with efficient randomized, nondeterministic, co-nondeterministic, and Merlin-
Arthur protocols, respectively. In recent years, the relationships among these classes have
been almost fully determined [9, 35, 19, 22, 11, 10, 23]. It particular, for k 6 �.logn/; it
is known [10, 23] that coNPk is not contained in BPPk ; NPk ; or even MAk : As a corol-
lary to Theorem 1.4, we show that coNPk can be separated from all these classes by a
particularly simple function, set disjointness.

COROLLARY. For k 6 .1
2
� �/ logn; where � > 0 is any constant,

DISJn;k 2 coNPk n BPPk ;
DISJn;k 2 coNPk n NPk ;
DISJn;k 2 coNPk nMAk :

Prior to this paper, the separation DISJn;k 2 coNPk n BPPk was known to hold for up
to k 6 �.log1=3 n/ parties [11], with a much weaker lower bound on randomized commu-
nication complexity (see Table A). The other two separations were known to hold for up to
k 6 �.log logn/ parties [23], again with a much weaker lower bound on nondeterministic
and Merlin-Arthur communication complexity.

Discrepancy and circuit complexity. Theorem 1.1 rules out an efficient protocol that
solves set disjointness with correctness probability 2

3
: However, for any number of par-

ties k; set disjointness has a simple and efficient protocol with nonnegligible correctness
probability, 1

2
C n��.1/: In fact, such a protocol exists not just for set disjointness but any

function computable by a polynomial-size f^;_;:g-circuit of depth 2; regardless of how
the bits are assigned to the parties. We show that this phenomenon is special to depth 2;
by constructing a read-once f^;_g-circuit of depth 3 whose communication complexity
remains high even for correctness probability exponentially close to 1

2
:

THEOREM 1.5. There is a k-party communication problem Hn;k W .f0; 1g
n/k ! f0; 1g;

given by an explicit read-once f^;_g-formula of depth 3; such that solving Hn;k with
correctness probability 1

2
C exp.�˝.n=4k/1=7/ requires communication ˝.n=4k/1=7:
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To use a technical term, Theorem 1.5 shows that depth-3 circuits have exponentially
small discrepancy for up to k � 1

2
logn parties, i.e., exponentially small correlation with

low-cost communication protocols. As we mentioned in the previous paragraph, Theo-
rem 1.5 is optimal with respect to circuit depth. It is also qualitatively optimal with respect
to the number of parties k: by the results in [1, 25], every polynomial-size f^;_;:g-circuit
of constant depth admits a logc n-party protocol with communication logc n and correct-
ness probability 1

2
C2� logc n; where c > 1 is a suitably large constant. Theorem 1.5 solves

an open problem posed by Beame and Huynh-Ngoc [11], who constructed a similarly hard
depth-6 formula and asked whether the depth can be reduced. The communication lower
bound in Theorem 1.5 is stronger than in [11], where a lower bound of˝.n=231k/1=29 bits
is derived for correctness probability 1

2
C exp.�˝.n=231k/1=29/:

Theorem 1.5 has applications to circuit complexity, which we now pause to explain.
Circuits of majority gates are a biologically inspired computational model whose study
spans several decades and several disciplines. Research has shown that majority cir-
cuits of depth 3 already are surprisingly powerful. In particular, Allender [1] proved that
depth-3 majority circuits of quasipolynomial size can simulate all of AC0; the class of
f^;_;:g-circuits of constant depth and polynomial size. Yao [51] further proved that
depth-3 majority circuits of quasipolynomial size can simulate all of ACC; the class of
f^;_;:;mod mg-circuits of constant depth and polynomial size for an arbitrary but fixed
modulus m: For several years, it was open whether these simulations are optimal. Håstad
and Goldmann [25] showed that Yao’s simulation of ACC is optimal with respect to circuit
depth, by exhibiting a function in ACC whose simulation by a depth-2 majority circuit re-
quires exponential size. The analogous question for AC0 remained open [32]. It was solved
several years ago in [42, 43], where an AC0 function was constructed whose simulation
by depth-2majority circuits requires exponential size. The simulations of Allender [1] and
Yao [51] were thus shown to be optimal with respect to circuit depth.

Another natural parameter to study is the fan-in of a circuit’s bottom gates. The simu-
lations of Allender [1] and Yao [51] had bottom fan-in logO.1/ n: The paper of Håstad and
Goldmann [25] showed that this fan-in is not far from optimal, in that simulating ACC by
a depth-3 majority circuit with bottom fan-in� 1

2
logn requires exponentially many gates.

The analogous question for AC0 was considered by Chattopadhyay [17], who generalized
the method of [42, 43] to show that depth-3 majority circuits with constant bottom fan-in
require exponentially many gates to simulate AC0: More recently, Beame and Huynh-
Ngoc [11] proved an analogous result for bottom fan-in� 1

31
logn: It was thus shown that

the simulations of Allender [1] and Yao [51] are close to optimal in bottom fan-in.
The lower bounds surveyed in the previous paragraphs [25, 42, 43, 17, 11] apply not

only to majority circuits but all circuits of type MAJıSYMMıANY (with a majority gate
at the top, arbitrary symmetric gates at the middle level, and arbitrary gates at the bottom).
This line of research is summarized in Table B, with quantitative detail. Theorem 1.5 in
this paper implies the following new lower bound.

THEOREM 1.6. Let Hn;k W .f0; 1gn/k ! f0; 1g be the depth-3 read-once f^;_g-formula
constructed in Theorem 1.5. Then every circuit of type MAJ ı SYMM ıANY with bottom
fan-in at most k that computes Hn;kC1 has size

exp
�
1

k
�˝
� n
4k

�1=7�
:
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As Table B shows, Theorem 1.6 improves on previous AC0 constructions [17, 11] with
respect to all parameters: the function is simpler than those considered previously, whereas
the circuit lower bound is stronger and applies to MAJıSYMMıANY circuits with larger
fan-in. In particular, the construction in Theorem 1.6 has optimal depth because f^;_g-
circuits of depth 2 are clearly computable by MAJ ı SYMM circuits of the same size.

Using the method of random restrictions, Razborov and Wigderson [41] discovered
a way to convert lower bounds for MAJ ı SYMM ı ANY circuits with restricted fan-in
into lower bounds for MAJ ı SYMM ı AND without any fan-in restrictions. Using that
technique, we obtain the following consequence of Theorem 1.6.

THEOREM 1.7. Every circuit of type MAJ ı SYMM ı AND that computes the function

x 7!

n_
iD1

n̂

jD1

logn_
kD1

log2 nM
`D1

xi;j;k;`

has size n˝.log logn/:

Again, Theorem 1.7 improves on previous work [11], where the same lower bound was
derived for a more complicated, depth-8 AC0 function.

Additional results and generalizations. Theorem 1.1 on the randomized communica-
tion complexity of set disjointness and Theorem 1.2 on the direct product property are
proved here in greater generality. Specifically, our results apply to any k-party communi-
cation problem of the form F D f .UDISJr;k ;UDISJr;k ; : : : ;UDISJr;k/; i.e., an arbitrary
Boolean function f composed componentwise with independent instances of the k-party
set disjointness problem on a small number of variables r: We bound the �-error random-
ized complexity of F from below in terms of the �-approximate degree of f; defined as the

Function Circuit lower bound Reference
nM

jD1

kC1̂

iD1

xij exp
�
1

k
�˝
� n
4k

��
Håstad and Goldmann [25]

read-once depth-3
f^;_g-formula exp

�
˝
�
n1=3

��
for k D 1 Sherstov [42, 43]

depth-3
f^;_g-formula exp

�
˝
�
n

1

6k2k

��
Chattopadhyay [17]

read-once depth-6
f^;_g-formula exp

�
1

k
�˝
� n

231k

�1=29�
Beame and Huynh-Ngoc [11]

read-once depth-3
f^;_g-formula exp

�
1

k
�˝
� n
4k

�1=7�
This paper

Table B: Lower bounds for computing functions in ACC and AC0 by circuits of type
MAJ ı SYMM ı ANY with bottom fan-in k: All functions are on n.k C 1/ bits.
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least degree of a real polynomial that approximates f within � pointwise. The approximate
degree is a thoroughly studied quantity, with tight estimates known for various � and vari-
ous functions of interest to us. By taking � D 1=3; we derive lower bounds for bounded-
error communication, including the lower bound for set disjointness .f D AND/: Letting
� % 1=2; we obtain lower bounds for protocols with error exponentially close to random
guessing, including the discrepancy result for constant-depth circuits.

In the setting of bounded-error communication, we are further able to give a near-
optimal lower bound on the k-party communication complexity of every composition of
the form f .ORk _ ANDk ; : : : ;ORk _ ANDk/; where f is an arbitrary Boolean function.
The same holds for XOR lemmas and direct-product theorems. Finally, in this introduc-
tion and throughout the paper, we focus on randomized communication in the context of
classical multiparty protocols; however, by the results of [34, 15], our randomized lower
bounds carry over in full to the quantum model. We defer formal statements of the quan-
tum multiparty lower bounds and background on quantum multiparty protocols to the final
version of this paper.

Previous analyses. In a precise technical sense, our approach to set disjointness is the
opposite of previous multiparty analyses [17, 35, 19, 21, 22, 11]. In the overview that fol-
lows, we describe the limitations of previous analyses and how this paper overcomes them.
Let F W .f0; 1gn/k ! f0; 1g be a given k-party communication problem. A fundamental
fact [6] in communication complexity is that a cost-c deterministic protocol for F gives
a representation F D �1 C �2 C � � � C �2c ; where the �i are highly structured Boolean
functions called cylinder intersections. This fact immediately generalizes to randomized
communication since a cost-c randomized protocol is a probability distribution on cost-c
deterministic protocols. Specifically, a cost-c randomized protocol for F gives a repre-
sentation F �

P
� a��; where the sum is over cylinder intersections and

P
ja�j 6 2c :

How these representations arise is immaterial in this discussion; what matters is that proofs
of high communication complexity typically work by bounding the correlations of a rele-
vant function with cylinder intersections. The simplest such technique is the discrepancy
method [20, 6, 33], whereby one carefully chooses a probability distribution � on the
domain .f0; 1gn/k and argues that F has small correlation under � with all cylinder inter-
sections. This property of F is referred to as small discrepancy with respect to �; hence
the name of the technique. A more powerful technique is the generalized discrepancy
method [28, 40], whereby one constructs a real function 	 such that 	 is highly correlated
with F but almost uncorrelated with cylinder intersections.

Even in the two-party setting, it is difficult to construct the right � or 	 and analyze
the associated correlations. To illustrate, it was an open problem until recently whether
AC0 circuits have small two-party discrepancy with respect to some distribution. This
problem was solved in considerable generality four years ago in [43, 42]. The technique
developed in that work, called the pattern matrix method, automates the choice of � and 	
as well as the subsequent analysis of correlations for a class of communication problems.
The communication problems F to which the pattern matrix method applies are of the
following form. Let f W f0; 1gm ! f0; 1g be a given function, fixed once and for all. In the
two-party model, the first party receives a bit string x 2 f0; 1gn where n� m; the second
party receives a subset S � f1; 2; : : : ; ng of cardinality m; and their goal is to compute
F.x; S/ D f .xjS /: In other words, the answer only depends on a few of the input bits
x1; x2; : : : ; xn; the first party knows all the bits but does not know which ones are relevant,
whereas the second party knows which bits are relevant but does not know their values. For
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any f; the pattern matrix method uses a well-studied approximation-theoretic property—
namely, the impossibility of approximating f in the infinity norm by a real polynomial of
given degree d—to construct the desired � and 	: This results in a lower bound of ˝.d/
on the randomized communication complexity.

Originally formulated in [43, 42] for the two-party model, the pattern matrix method has
been adapted to three or more parties by several authors [17, 35, 19, 21, 22, 11], resulting
among other things in improved multiparty lower bounds for set disjointness. Analogous
to the two-party setting, one starts with a function f W f0; 1gm ! f0; 1g: In the case of k
parties, the inputs to the communication problem are Boolean strings x; y1; y2; : : : ; yk�1
and the goal is to compute F.x; y1; y2; : : : ; yk�1/ D f

�
xjS.y1;y2;:::;yk�1/

�
; where the

selector S.y1; y2; : : : ; yk�1/ is some mapping into cardinality-m subsets. In other words,
in the multiparty setting, the bit strings y1; y2; : : : ; yk�1 jointly determine to which bits f
is to be applied. What fundamentally differentiates the various multiparty extensions of the
pattern matrix method [17, 35, 19, 21, 22, 11] is the definition of the selector. The simpler
the selector, the more widely applicable the communication lower bounds—and the harder
they are to prove. Arguably the simplest meaningful selector is a small CNF or DNF
formula. This is the selector used in the original two-party pattern matrix method [43, 42]
as well as its first multiparty adaptations [17, 35, 19]. This selector is desirable in that it
embeds nicely in the disjointness function and thus directly gives communication lower
bounds for this problem. While the simple selector works well for k D 2 parties, the
situation changes qualitatively at k D 3; and the multiparty lower bounds degrade rapidly
with k: In the case of set disjointness, one obtains a lower bound of ˝.

p
n/ for k D 2

parties [42] and ˝.n1=.kC1/=22
k
/ for k > 3 parties [17, 35]. At the other extreme, one

can use the most complicated selector possible, namely, a random mapping. This is the
approach taken in [21]. The communication lower bounds for the random selector remain
very strong up to k � logn parties, which is excellent. The problem here, of course, is that
the random selector cannot be computed by any constant-depth circuit, let alone a small
CNF formula, and thus the communication lower bounds do not apply to set disjointness.
Finally, selectors of intermediate complexity were considered in [22, 11], using bounded
independence and XOR gates. These ideas were fruitful, giving an explicit separation of
NPk and BPPk in communication [22] and strong multiparty lower bounds for constant-
depth circuits [11]. However, a strong lower bound for set disjointness has remained off-
limits—the above approaches have not yielded a bound better than ˝.n1=.kC1/=2k

2
/ for

the problem.
At a technical level, previous approaches to multiparty set disjointness face the follow-

ing fundamental difficulty. Recall that the goal in multiparty lower bounds is to bound
correlations of relevant functions with cylinder intersections. For the past twenty-two
years [6], the maximum correlation of a given real function 	.x; y1; : : : ; yk�1/ with a
cylinder intersection is bounded in terms of the expected product of various subfunctions
of 	: Concretely, one bounds the correlation in terms of the quantity

�.	/ D

�
E

y0
1
;y00
1

E
y0
2
;y00
2

� � � E
y0
k�1

;y00
k�1

ˇ̌̌̌
ˇ̌ E
x

24 Y
´2f0;00gk�1

	.x; y
´1
1 ; y

´2
2 ; : : : ; y

´k�1
k�1

/

35ˇ̌̌̌ˇ̌
�1=2k�1

:
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In the pattern matrix method, the relevant function is of the form 	.x; y1; y2; : : : ; yk�1/ D

 .xjS.y1;:::;yk�1//; where the low-order Fourier coefficients of  are zero. This Fourier-
theoretic fact is what allows one to bound �.	/: Specifically, previous papers—starting
with the original two-party work [43, 42]—argue that the 2k�1-fold product will likely
have 0 for the constant Fourier coefficient and thus zero expectation. To handle the un-
likely complementary event, one needs to additionally control the growth of the 2k�1-fold
product. As the number of parties k grows, this argument requires an increasingly complex
selector.

Our proof. Our proof reverses the steps in the above argument: we first apply the Fourier-
theoretic property and then the correlation bound. In more detail, we first write  in terms
of its Fourier expansion  D

P
A
O .A/�A; where �A denotes a character of the Fourier

transform. We then observe that by linearity, the correlation of 	 with a cylinder intersec-
tion is bounded by

P
A j
O .A/j�.�A/: From then on, we work with the quantities �.�A/;

whereas previous multiparty papers work directly with �. /: Intuitively, the switch from
an arbitrary real function  to �A is motivated by the convenient multiplicative structure
of the characters and their global boundedness.

This leaves us with the challenge of proving a strong upper bound on �.�A/ with a
selector as weak as a small CNF formula. Prior to this paper, it was unclear whether it
could be done at all, let alone how to do it. Indeed, the “reverse” argument has been
widely known to researchers since 2007; it was introduced as a refinement [42] of the two-
party pattern matrix method and as part of another duality-based technique [46]. Previous
attempts to use the reverse argument in multiparty communication were unsuccessful. In
particular, it was shown in [18, p. 189] that its direct application gives a lower bound worse
than .n=kk/1=.2Ck2

k/ on the .k C 1/-party communication complexity of set disjointness,
which is substantially weaker than the lower bound [35, 19] obtained by following the
steps of the pattern matrix method in the original order.

We are nevertheless able to prove a strong, essentially exact bound on �.�A/ for a se-
lector which is computable by a small CNF formula and thus efficiently embeds in the
disjointness function. This part of the proof exploits metric properties of distributions
induced by set disjointness on the Boolean cube (such as conditional independence), in
contrast to the Fourier-theoretic content of previous work. Specifically, we use condition-
ing to make appropriate variables independent and thereby simulate XOR-like behavior
with an OR gate. This simulation is of course only approximate, and the bounding of error
terms is done via a different careful conditioning. The argument proceeds by induction on
the number of parties, the base case admitting a first-principles solution.

Once �.�A/ has been bounded, we are in a strong position to prove Theorem 1.1
and its generalization to arbitrary compositions and arbitrary error rates. To be more
precise, we give two alternate proofs of this result. One proof is based, like previous
work [43, 42, 46, 17, 35, 19, 21, 22, 11], on the dual view of the problem. The other
proof is quite different and works with the primal view, explicitly converting a low-cost
protocol for a given communication problem into a low-degree approximant for the given
Boolean function. In addition to being more intuitive, the primal approach allows us to
prove the direct product theorems and XOR lemmas for set disjointness (Theorem 1.2), by
reducing them to a corresponding direct product theorem and XOR lemma for polynomial
approximation and appealing to known results in that setting [45].

Once Theorem 1.1 has been established, we are able to use it almost like a black box
to obtain Theorems 1.3 and 1.4 on nondeterministic and Merlin-Arthur communication.
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Specifically, we are able to apply an earlier argument for these models, due to Gavinsky
and the author [23], using the new randomized lower bound of Theorem 1.1 in place of
earlier bounds.

2. PRELIMINARIES

From now on we will view Boolean functions as mappings f WX ! f�1;C1g for some
finite set X; where �1 and C1 correspond to “true” and “false,” respectively. A partial
function f on a set X is a function whose domain of definition, denoted domf; is a proper
subset of X: For emphasis, we will sometimes refer to functions with domf D X as
total. We use lowercase letters .x; y; u; v/ for vectors and Boolean strings, and uppercase
letters .A;B;X; Y / for real and Boolean matrices. The empty string is denoted ": The
complement of a set S is denoted S:

For a bit string x 2 f0; 1gn; we let jxj D x1 C x2 C � � � C xn: The componentwise
conjunction of x; y 2 f0; 1gn is denoted x^y D .x1^y1; : : : ; xn^yn/: In particular, jx^yj
refers to the number of components in which x and y both have a 1. The bitwise negation
of a string x 2 f0; 1gn is denoted x D .1� x1; : : : ; 1� xn/: For a string x D .x1; : : : ; xn/
and a set S � f1; 2; : : : ; ng; we adopt the shorthand xjS D .xi1 ; xi2 ; : : : ; xijSj/; where
i1 < i2 < � � � < ijS j are the elements of S: For convenience, we adopt the convention that
0=0 D 0: The symbol :D means “equal by definition.” The indicator function of a logical
condition C is given by

IŒC � D

(
1 if C holds,
0 otherwise.

The set membership sign 2; when used in the subscript of an expectation operator, means
that the expectation is taken over a uniformly random member of the indicated set. The
uniform distribution on f0; 1gn is denoted Un: The notation log x refers to the logarithm
of x to base 2: For a real function � on a finite set X; the support of � is the subset
supp� D fx 2 X W �.x/ ¤ 0g: For probability distributions � and � on finite sets
X and Y; respectively, the symbol � � � refers to the probability distribution on X � Y
given by .� � �/.x; y/ D �.x/�.y/: The total degree of a multivariate real polynomial p
is denoted degp: For (possibly partial) Boolean functions f and g on f�1;C1gn and X;
respectively, the symbol f ıg refers to the (possibly partial) Boolean function onXn given
by .f ıg/.x1; x2; : : : ; xn/ D f .g.x1/; g.x2/; : : : ; g.xn//: Clearly, the domain of f ıg is
the set of all .x1; x2; : : : ; xn/ 2 .domg/n for which .g.x1/; g.x2/; : : : ; g.xn// 2 domf:

The symbol f0; 1gn�k denotes the family of n�k matrices with entries 0; 1: The notation
.f0; 1gn/k refers to the set of vector sequences .x1; x2; : : : ; xk/; where each xi 2 f0; 1gn:
Throughout this paper, we identify the sets f0; 1gn�k and .f0; 1gn/k : This means that
.x1; x2; : : : ; xk/ can be viewed both as a sequence of vectors in f0; 1gn and as a ma-
trix of size n � k with columns x1; x2; : : : ; xk : Taking this convention a step further, we
view .X1; X2; : : : ; Xr / as an element of .f0; 1gn/k1C���Ckr � f0; 1gn�.k1C���Ckr / whenever
Xi 2 f0; 1g

n�ki .i D 1; 2; : : : ; r/:

For X 2 f0; 1gn�k ; the disjointness predicate D.X/ 2 f�1;C1g is defined as D.X/ D
�1 if and only if each row ofX has a 0 entry. By the convention of the previous paragraph,
this also gives meaning to the symbols D.X1; X2; : : : ; Xr / and D.x1; x2; : : : ; xk/; where
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Xi 2 f0; 1g
n�ki and xi 2 f0; 1gn: For example,

D.x1; x2; : : : ; xk/ D

(
�1 if x1 ^ x2 ^ � � � ^ xk D 0n;
1 otherwise.

By convention,

D."/ D �1:

For a Boolean matrix X D ŒXi;j � 2 f0; 1g
n�k and a string y 2 f0; 1gn; we let X jy

denote the submatrix of X obtained by keeping only those rows i for which yi D 1: More
formally,

X jy D

26664
Xi1;1 Xi1;2 : : : Xi1;k
Xi2;1 Xi2;2 : : : Xi2;k
:::

:::
: : :

:::

Xijyj;1 Xijyj;2 : : : Xijyj;k ;

37775
where i1 < i2 < � � � < ijyj are the indices with yi1 D yi2 D � � � D yijyj D 1: In particular,
X j0n D ": It is useful to keep in mind that

D.X; y/ � D.X jy/:

The familiar functions ANDn;ORn; and PARITYn on the Boolean hypercube f�1;C1gn

are given by ANDn.x/ D
Vn
iD1 xi ; ORn.x/ D

Wn
iD1 xi ; and PARITYn.x/ D

Ln
iD1 xi :

We also define a partial Boolean function AANDn on f�1;C1gn as the restriction of ANDn
to the set fx W jfi W xi D �1gj > n � 1g: In other words,

AANDn.x/ D

(
ANDn.x/ if jfi W xi D �1gj > n � 1;

undefined otherwise:

Analogously, we define a partial Boolean function fORn on f�1;C1gn as the restriction of
ORn to the set fx W jfi W xi D �1gj 6 1g:

Norms and products. For a finite setX; the linear space of real functions onX is denoted
RX : This space is equipped with the usual norms and inner product:

k�k1 D max
x2X
j�.x/j .� 2 RX /;

k�k1 D
X
x2X

j�.x/j .� 2 RX /;

h�; i D
X
x2X

�.x/ .x/ .�;  2 RX /:

The tensor product of � 2 RX and  2 RY is the function � ˝  2 RX�Y given by
.� ˝ /.x; y/ D �.x/ .y/: The tensor product � ˝ � ˝ � � � ˝ � (n times) is abbreviated
�˝n:When specialized to real matrices, the tensor product is the usual Kronecker product.
The pointwise (Hadamard) product of �; 2 RX is denoted � ı  2 RX and given by
.� ı  /.x/ D �.x/ .x/: Note that as functions, � ı  is a restriction of � ˝  : Tensor
product notation generalizes to partial functions in the natural way: if � and  are partial
real functions on X and Y; respectively, then � ˝  is a partial function on X � Y with
domain dom� � dom and is given by .� ˝  /.x; y/ D �.x/ .y/ on that domain.
Similarly, �˝n D � ˝ � ˝ � � � ˝ � (n times) is a partial function on Xn with domain
.dom�/n:
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The spectral norm of a real matrix A is given by kAk D maxx¤0 kAxk2=kxk2; where
k � k2 stands for the Euclidean norm on vectors. The spectral norm is multiplicative with
respect to tensor product: kA˝ Bk D kAk kBk:

Fourier transform. Consider the real vector space of functions f�1;C1gn ! R: For
S � f1; 2; : : : ; ng; define �S W f�1;C1gn ! f�1;C1g by �S .x/ D

Q
i2S xi : Then every

function �W f�1;C1gn ! R has a unique representation of the form � D
P
S
O�.S/ �S ;

where O�.S/ D 2�n
P
x2f�1;C1gn �.x/�S .x/: The reals O�.S/ are called the Fourier coeffi-

cients of �: The following fact is immediate from the definition of O�.S/:

PROPOSITION 2.1. For all �W f�1;C1gn ! R;

max
S�f1;2;:::;ng

j O�.S/j 6 2�nk�k1:

Approximation by polynomials. Let �WX ! R be given, for a finite subset X � Rn:
The �-approximate degree of �; denoted deg�.�/; is the least degree of a real polynomial
p such that k� � pk1 6 �: We generalize this definition to partial functions � on X by
letting deg�.�/ be the least degree of a real polynomial p with(

j�.x/ � p.x/j 6 �; x 2 dom�;

jp.x/j 6 1C �; x 2 X n dom�:
(2.1)

For a (possibly partial) real function � on a finite subset X � Rn; we define E.�; d/ to be
the least � such that (2.1) holds for some polynomial of degree at most d: In this notation,
deg�.�/ D minfd W E.�; d/ 6 �g:We will need the following dual characterization of the
approximate degree.

FACT 2.2. Let � be a .possibly partial/ real function on f�1;C1gn: Then deg�.�/ > d if
and only if there exists  W f�1;C1gn ! R such thatX

x2dom�

�.x/ .x/ �
X

x…dom�

j .x/j � �k k1 > 0;

and O .S/ D 0 for jS j 6 d:

Fact 2.2 follows from linear programming duality; see [45, 42] for details.
A related notion is the threshold degree deg˙.f /; defined for a .possibly partial/

Boolean function f as the limit deg˙.f / D lim�&0 deg1��.f /: Equivalently, deg˙.f /
is the least degree of a real polynomial p with f .x/ D sgnp.x/ for x 2 domf: We recall
two well-known results on the polynomial approximation of Boolean functions, the first
due to Minsky and Papert [37] and the second due to Nisan and Szegedy [38].

THEOREM 2.3 (Minsky and Papert). The function MPn.x/ D
Wn
iD1

V4n2

jD1 obeys

deg˙.MPn/ D n:

THEOREM 2.4 (Nisan and Szegedy). The functions ANDn and AANDn obey

deg1=3.ANDn/ > deg1=3.AANDn/ D �.
p
n/:
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Multiparty communication. An excellent reference on communication complexity is the
monograph by Kushilevitz and Nisan [33]. In this overview, we will limit ourselves to
key definitions and notation. The simplest model of communication in this work is the
two-party randomized model. Consider a (possibly partial) Boolean function F on X � Y;
whereX and Y are finite sets. Alice receives an input x 2 X; Bob receives y 2 Y; and their
objective is to compute F.x; y/ with high accuracy whenever .x; y/ 2 domF: To this end,
Alice and Bob share a communication channel and have an unlimited supply of shared ran-
dom bits. Alice and Bob’s protocol is said to have error � if on every input .x; y/ 2 domF ,
the computed output differs from the correct answer F.x; y/ with probability no greater
than �: The cost of a given protocol is the maximum number of bits exchanged on any in-
put. The �-error randomized communication complexity of F; denoted R�.F /; is the least
cost of an �-error protocol for F: The canonical quantity to study is R1=3.F /; where the
choice of 1=3 is largely arbitrary since the error probability of a protocol can be decreased
from 1=3 to any other positive constant at the expense of increasing the communication
cost by a constant factor.

A generalization of two-party communication is the multiparty number-on-the-forehead
model, due to Chandra, Furst, and Lipton [16]. Here one considers a (possibly partial)
Boolean function F on X1 � X2 � � � � � Xk ; for some finite sets X1; X2; : : : ; Xk : There
are k parties. A given input .x1; x2; : : : ; xk/ 2 X1 � X2 � � � � � Xk is distributed among
the parties by placing xi on the forehead of party i (for i D 1; 2; : : : ; k). In other words,
party i knows x1; : : : ; xi�1; xiC1; : : : ; xk but not xi : The parties communicate by writing
bits on a shared blackboard, visible to all. They additionally have access to a shared source
of random bits. Their goal is to devise a communication protocol that will allow them to
accurately predict the value of F everywhere on the domain of F: As before, an �-error
protocol for F is one which, on every input .x1; x2; : : : ; xk/ 2 domF; produces the correct
answer F.x1; x2; : : : ; xk/ with probability at least 1 � �: The cost of a communication
protocol is the total number of bits written to the blackboard on the worst-case input.
Analogous to the two-party case, the randomized communication complexity R�.F / is the
least cost of an �-error communication protocol for F in this model.

Let G be a (possibly partial) Boolean function on X1 � X2 � � � � � Xk ; represent-
ing a k-party communication problem, and let f be a (possibly partial) Boolean func-
tion on f�1;C1gn: We view the composition f ı G as a k-party communication prob-
lem on Xn1 � X

n
2 � � � � � X

n
k
: The primary problem of interest to us is set disjointness

DISJn;k W .f0; 1gn/k ! f�1;C1g; given by DISJn;k.x1; x2; : : : ; xk/ D D.x1; x2; : : : ; xk/:
We will also consider the partial Boolean function UDISJn;k on .f0; 1gn/k given by:
UDISJn;k.x1; x2; : : : ; xn/ D D.x1; x2; : : : ; xn/ when jx1 ^ x2 ^ � � � ^ xkj 6 1; and un-
defined otherwise. The k-party communication problem that corresponds to UDISJn;k is
known as unique set disjointness. In other words, unique set disjointness is a promise ver-
sion of set disjointness where the input matrix .x1; x2; : : : ; xk/ 2 f0; 1gn�k is guaranteed
to have at most one row consisting entirely of ones. It will be helpful to keep in mind
that for all positive integers r; s; one has DISJrs;k D ANDr ı DISJs;k and analogously
UDISJrs;k DAANDr ı UDISJs;k :

A k-dimensional cylinder intersection is a function �WX1 �X2 � � � � �Xk ! f0; 1g of
the form

�.x1; : : : ; xk/ D

kY
iD1

�i .x1; : : : ; xi�1; xiC1; : : : ; xk/;
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where �i WX1 � � � � � Xi�1 � XiC1 � � � � � Xk ! f0; 1g: In other words, a k-dimensional
cylinder intersection is the product of k functions with range f0; 1g; where the i th function
does not depend on the i th coordinate but may depend arbitrarily on the other k � 1 coor-
dinates. Cylinder intersections were introduced by Babai, Nisan, and Szegedy [6] and play
a fundamental role in the theory due to the following fact.

FACT 2.5. Let ˘ WX1 �X2 � � � � �Xk ! f�1;C1g be a deterministic k-party communi-
cation protocol with cost c: Then

˘ D

2cX
iD1

ai�i

for some cylinder intersections �1; : : : ; �2c with pairwise disjoint support and a1; : : : ; a2c 2
f�1;C1g:

Recall that a randomized protocol with cost c is a probability distribution on determin-
istic protocols of cost c: Therefore, Fact 2.5 immediately implies the following two results
on randomized communication complexity.

COROLLARY 2.6. Let F be a .possibly partial/ Boolean function onX1 �X2 � � � � �Xk :
If R�.F / D c; then

jF.x1; : : : ; xk/ �˘.x1; : : : ; xk/j 6
�

1 � �
; .x1; : : : ; xk/ 2 domF;

j˘.x1; : : : ; xk/j 6
1

1 � �
; .x1; : : : ; xk/ 2 X1 � � � � �Xk ;

where ˘ D
P
� a�� is a linear combination of cylinder intersections with

P
� ja�j 6

2c=.1 � �/:

COROLLARY 2.7. Let˘ be a randomized k-party protocol with domainX1�X2�� � ��Xk :
If ˘ has communication cost c bits, then

PŒ˘.x1; x2; : : : ; xk/ D �1� �
X
�

a��.x1; x2; : : : ; xk/

on X1 �X2 � � � � �Xk ; where the sum is over cylinder intersections and
P
� ja�j 6 2c :

Discrepancy and generalized discrepancy. For a communication problem F WX1�X2�

� � ��Xk ! f�1;C1g and a probability distributionP onX1�X2�� � ��Xk ; the discrepancy
of F with respect to P is defined as

discP .F / D max
�
jhF ı P; �ij;

where the maximum is over cylinder intersections. We generalize this definition to partial
functions as follows: for a partial Boolean function F on X1 � X2 � � � � � Xk and a
probability distribution P on X1 �X2 � � � � �Xk ;

discP .F / D
X

x…domF

P.x/Cmax
�

ˇ̌̌̌
ˇ X
x2domF

F.x/P.x/�.x/

ˇ̌̌̌
ˇ ;

where the maximum is again over cylinder intersections; this agrees with the previous
definition if domF D X1 � X2 � � � � � Xk : The least discrepancy over all distributions is
denoted disc.F / D minP discP .F /: Estimating the discrepancy is difficult and represents
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a central obstacle in multiparty communication complexity. In two-party communication,
the following method is frequently useful.

PROPOSITION 2.8 (see Kushilevitz and Nisan [33]). Fix a function F WX�Y ! f�1;C1g
and probability distribution P on X � Y: Define ˚ :

D ŒF .x; y/P.x; y/�x2X;y2Y : Then

discP .F / 6 k˚k
p
jX j jY j:

As Fact 2.5 suggests, upper bounds on the discrepancy give lower bounds on commu-
nication complexity. This technique is known as the discrepancy method. The original
treatment of the discrepancy method [20, 6, 33] was specialized to total Boolean functions.
In the theorem that follows, we extend the method to partial functions.

THEOREM 2.9 (Discrepancy method). Let F be a .possibly partial/ Boolean function on
X1 �X2 � � � � �Xk : Then

2R�.F / >
1 � 2�

disc.F /
:

Proof. (Based on [33, pp. 36–38].) Fix a probability distribution P such that disc.F / D
discP .F /: The distribution P 0 induced by P on domF satisfies discP 0.F / 6 discP .F /:
Thus, we may assume that suppP � domF to start with.

Now, suppose that F has a communication protocol with error � and cost c: Approxi-
mate F uniformly by ˘ D

P
� a�� as in Corollary 2.6. ThenX

domF

.F.x/ �˘.x//F.x/P.x/ 6

�
max
domF

jF.x/ �˘.x/j

� X
domF

P.x/

6
�

1 � �
:

On the other hand,X
domF

.F.x/ �˘.x//F.x/P.x/ D
X

domF

P.x/ �
X

domF

˘.x/F.x/P.x/

> 1 �
X
�

ja�j

ˇ̌̌̌
ˇ X
domF

�.x/F.x/P.x/

ˇ̌̌̌
ˇ

> 1 �
2c

1 � �
discP .F /:

The claimed lower bound on 2c follows.

A more general technique, originally applied by Klauck [28] in the two-party quantum
model and subsequently adapted to many other settings [40, 36, 42, 35, 19], is the general-
ized discrepancy method. Again, previous treatments focused on total Boolean functions.
In what follows, we derive a version of the method that applies to partial functions as well.

THEOREM 2.10 (Generalized discrepancy method). Let F be a .possibly partial/ Boolean
function on X1 �X2 � � � � �Xk : Then for every nonzero 	 WX1 �X2 � � � � �Xk ! R;

2R�.F / >
1 � �

max� jh�;	 ij

˚ X
x2domF

F.x/	.x/ �
X

x…domF

j	.x/j �
�

1 � �
k	k1

	
;

where the maximum is over cylinder intersections �:
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Proof. (Based on [40, 42, 35, 19]). Suppose that F has a communication protocol with
error � and cost c: Extend F to a total function GWX1 � � � � � Xk ! R by letting G D 0

outside domF: By Corollary 2.6, there is a linear combination of cylinder intersections
˘ D

P
� a�� such that

P
� ja�j 6 2c=.1 � �/ and ˘ approximates F in the sense that

k˘k1 6 1=.1 � �/ and jF �˘ j 6 �=.1 � �/ on the domain of F: It follows that

hG �˘;	 i 6
�

1 � �

X
x2domF

j	.x/j C
1

1 � �

X
x…domF

j	.x/j:

However,

hG �˘;	 i >
X

x2domF

F.x/	.x/ �
X
�

ja�j jh	; �ij

>
X

x2domF

F.x/	.x/ �
2c

1 � �
max
�
jh	; �ij:

Comparing these two estimates of hG �˘;	 i gives the claimed lower bound on 2c :

3. PREPARATORY WORK

For positive integers n; k; we let �n;k denote the uniform probability distribution on
those matrices in f0; 1gn�k that have exactly one row composed of all ones. Thus �n;k
is supported on n.2k � 1/n�1 matrices, each occurring with the same probability. For a
Boolean matrix Y D .y1; : : : ; yk�1/ 2 f0; 1gn�.k�1/;we consider the marginal probability
distribution

�n;k.Y /
:
D

X
u2f0;1gn

�n;k.Y; u/

D
jy1 ^ � � � ^ yk�1j 2

n�jy1^���^yk�1j

n.2k � 1/n�1
;(3.1)

and the conditional probability

�n;k.u j Y /
:
D
�n;k.Y; u/

�n;k.Y /
:(3.2)

Note that the argument to �n;k is a matrix of size either n�k or n� .k� 1/; depending on
the meaning intended. Finally, we let �n;k be the probability distribution on f0; 1gn�.k�1/�
f0; 1gn � f0; 1gn given by

�n;k.Y; u; v/
:
D �n;k.Y /�n;k.u j Y /�n;k.v j Y /:

In other words, �n;k corresponds to an experiment whereby one first chooses Y according
to the marginal distribution (3.1) and then, given Y; chooses u and v independently accord-
ing to the conditional distribution (3.2). The remainder of this section is devoted to estab-
lishing various metric properties of �n;k : The four lemmas that follow, Lemmas 3.1–3.4,
are independent and can be read in any order. We alert the reader that we will refer to the
distributions �n;k and �n;k in later sections as well, without restating the definitions just
given.
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LEMMA 3.1 (On decomposition). For each .Y; u; v/ in the support of �n;k and each x 2
f0; 1gn;

D.x; Y; u/D.x; Y; v/ D

(
D.x; Y; u ^ v/D.x; Y; u ^ v/ if D.Y; u; v/ D �1;
1 otherwise.

Proof. By definition of �n;k ; there is exactly one coordinate, call it i; where u and the
columns of Y all have a 1: Analogously, there is exactly one coordinate, call it j; where v
and the columns of Y all have a 1: When D.Y; u; v/ D 1; it follows that i D j and hence
D.x; Y; u/D.x; Y; v/ D .�1/xiCxj D 1: When D.Y; u; v/ D �1; we have

D.x; Y; u/ D D.x; Y; u; v/ ^D.x; Y; u; v/ D D.x; Y; u; v/;

D.x; Y; v/ D D.x; Y; u; v/ ^D.x; Y; u; v/ D D.x; Y; u; v/;

whence D.x; Y; u/D.x; Y; v/ D D.x; Y; u; v/D.x; Y; u; v/ as claimed.

LEMMA 3.2 (On conditional independence). Let .Y; u; v/ � �n;k : Conditioned on fixed
values of u; v; Y ju^v; and Y ju^v with D.Y ju^v/ D �1; the remaining parts Y ju^v and
Y ju^v are independent and distributed according to �ju^vj;k�1 and �ju^vj;k�1; respec-
tively.

Proof. Put Y D .y1; : : : ; yk�1/: By (3.1) and (3.2), the support of �n;k consists of tuples
.Y; u; v/ with

jy1 ^ � � � ^ yk�1 ^ uj D jy1 ^ � � � ^ yk�1 ^ vj D 1;(3.3)

each such tuple with probability

�n;k.Y; u; v/ D
2jy1^���^yk�1j

n.2k � 1/n�12n jy1 ^ � � � ^ yk�1j
:(3.4)

Now assign values to u; v; Y ju^v; and Y ju^v such that D.Y ju^v/ D �1: We are to deter-
mine the conditional distribution of the remaining variables Y ju^v and Y ju^v: It follows
from (3.3) that each of these two matrices will have exactly one row made up entirely of
ones. But by (3.4), any such assignment to Y ju^v and Y ju^v carries the same probability.
Hence, Y ju^v and Y ju^v are independent and have the claimed distributions.

LEMMA 3.3 (On expected intersection size). For �n;k defined above,

E
�n;k

"
IŒD.Y; u; v/ D �1�p
ju ^ vj ju ^ vj

#
6
4

n
�
2k � 1

2k � 2
:

Proof. By convexity,
1p

ju ^ vj ju ^ vj
6

1

2ju ^ vj
C

1

2ju ^ vj
:

It is clear by symmetry that the strings u^v and u^v have identical distributions, leading
to

E
�n;k

"
IŒD.Y; u; v/ D �1�p
ju ^ vj ju ^ vj

#
6 E
�n;k

�
IŒD.Y; u; v/ D �1�

ju ^ vj

�
:(3.5)

Let y1; : : : ; yk�1 denote the columns of Y: Recall that jy1 ^ � � � ^ yk�1 ^ uj D 1 on
the support of �n;k ; whence by symmetry the right member of (3.5) is unchanged after
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conditioning on y1 ^ � � � ^ yk�1 ^ u D 0n�11: But then the first n � 1 bits of u ^ v are
distributed independently, each taking on 1 with probability p :

D
2k�1�1

2k�1
�
1
2
; whereas the

nth bit of u^v takes on 1 wheneverD.Y; u; v/ D �1: These facts bound the right member
of (3.5) from above by

n�1X
iD0

 
n � 1

i

!
pi .1 � p/n�1�i

1

i C 1
D
1 � .1 � p/n

pn
6
4

n
�
2k � 1

2k � 2
:

LEMMA 3.4 (On the probability of disjointness). For �n;k defined above,

P
�n;k

ŒD.Y; u; v/ D 1� 6
2k � 1

n
:(3.6)

Proof. Conditioned on Y D .y1; : : : ; yk�1/; the probability that y1 ^ � � � ^ yk�1 ^ u ^ v
is not the zero vector is exactly 1=jy1 ^ � � � ^ yk�1j: Thus, the left member of (3.6) equalsX

y1;:::;yk�1

�n;k.y1; : : : ; yk�1/

jy1 ^ � � � ^ yk�1j

6
2nk

n.2k � 1/n�1
E

y1;:::;yk�12f0;1g
n

�
1

2jy1^���^yk�1j

�
D

2nk

n.2k � 1/n�1

�
1 �

1

2k

�n
D
2k � 1

n
;

where the inequality holds by (3.1).

4. A DISCREPANCY RESULT

The goal of this section is to analyze the k-party discrepancy of .UDISJn;k/˝m; the
XOR of m independent copies of the unique disjointness problem. In actuality, we will
derive a somewhat more general result. For positive integers n1; n2; : : : ; nm; define

�k.n1; n2; : : : ; nm/
:
D max

�

ˇ̌̌̌
ˇ E
.x1;W 1/;:::;.xm;Wm/

"
� �

mY
iD1

D.xi ; W i /

#ˇ̌̌̌
ˇ ;

where .xi ; W i / � Uni � �ni ;k independently for each i; and the maximum is taken over
all .k C 1/-dimensional cylinder intersections �W .f0; 1gn1Cn2C���Cnm/kC1 ! f0; 1g: Our
objective is to bound �k from above. The proof will use induction on k; the base case
corresponding to the following proposition.

PROPOSITION 4.1. For all positive integers n1; n2; : : : ; nm;

�1.n1; n2; : : : ; nm/ 6
1

p
n1n2 � � �nm

:
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Proof. DefineMi D Œ.�1/
xj �j;x ; where the indices range as follows: j D 1; 2; : : : ; ni and

x 2 f0; 1gni : Then kMik D
p
2ni ; whence by Proposition 2.8

�1.n1; n2; : : : ; nm/ 6

 mO
iD1

Mi

ni2ni


 

mY
iD1

ni2
ni

!1=2
D

1
p
n1n2 � � �nm

:

We now proceed to bound �k for all k: We will use the general technique of Babai,
Nisan, and Szegedy [6] to pass from .k C 1/-party discrepancy to k-party discrepancy.
Unlike the functions studied in [6], however, set disjointness does not have a multiplicative
structure. This complicates the passage from .k C 1/-party problems to k-party subprob-
lems. To overcome this difficulty, we use the metric properties of the distribution �n;k
established in the previous section. More concretely, we use conditional independence
among variables to simulate a multiplicative structure.

THEOREM 4.2. For all positive integers n1; n2; : : : ; nm; and k;

�k.n1; n2; : : : ; nm/ 6
.2k � 1/m
p
n1n2 � � �nm

:

Proof. We adopt the following notational shorthand: if X; Y are random variables with
some joint distribution and ˚.X; Y / is a real function, we abbreviate EX EY Œ˚.X; Y /�

:
D

EX EY Œ˚.X; Y / j X�: In other words, the inner expectation is always with respect to the
conditional probability distribution induced by the outer variable.

The proof will proceed by induction on k; the base case k D 1 having already been
established in Proposition 4.1. For the inductive step, fix k > 2 and consider a cylinder
intersection �W .f0; 1gn1C���Cnm/kC1 ! f0; 1g for which �k is achieved:

�k.n1; n2; : : : ; nm/ D

ˇ̌̌̌
ˇ E
.x1;Y 1;u1/;:::;.xm;Ym;um/

"
� �

mY
iD1

D.xi ; Y i ; ui /

#ˇ̌̌̌
ˇ ;(4.1)

where .xi ; .Y i ; ui // � Uni��ni ;k independently for each i; and the symbol � is shorthand
for �.x1; : : : ; xm; Y 1; : : : ; Y m; u1; : : : ; um/: Recall that one has the representation

(4.2) �.x1; : : : ; xm; Y 1; : : : ; Y m; u1; : : : ; um/

D �u1;:::;um.x
1; : : : ; xm; Y 1; : : : ; Y m/�.x1; : : : ; xm; Y 1; : : : ; Y m/;

where �u1;:::;um W .f0; 1gn1C���Cnm/k ! f0; 1g is a k-dimensional cylinder intersection for
each .u1; : : : ; um/; and � is some function into f0; 1g. Rearranging the right member of
(4.1) gives

�k.n1; : : : ; nm/ D

ˇ̌̌̌
ˇ E
.x1;Y 1/;:::;.xm;Ym/

E
u1;:::;um

"
� �

mY
iD1

D.xi ; Y i ; ui /

#ˇ̌̌̌
ˇ

6 E
.x1;Y 1/;:::;.xm;Ym/

ˇ̌̌̌
ˇ E
u1;:::;um

"
�u1;:::;um �

mY
iD1

D.xi ; Y i ; ui /

#ˇ̌̌̌
ˇ :
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We now apply the technique of Babai, Nisan, and Szegedy [6]. Squaring both sides and
using the Cauchy-Schwarz inequality, one arrives at

�k.n1; : : : ; nm/
2 6 E

.x1;Y 1/;:::;.xm;Ym/

24 E
u1;:::;um

"
�u1;:::;um �

mY
iD1

D.xi ; Y i ; ui /

#235
D E

"
�0 �

mY
iD1

D.xi ; Y i ; ui /D.xi ; Y i ; vi /

#
;(4.3)

where �0 :
D �u1;:::;um � �v1;:::;vm and the expectation in (4.3) is taken with respect to

.xi ; .Y i ; ui ; vi // � Uni � �ni ;k ; independently for each i: It is clear from (4.2) that with
u1; : : : ; um and v1; : : : ; vm fixed, �0 is a cylinder intersection on .f0; 1gn1C���Cnm/k :

We now need to analyze (4.3). It is here that similarities with Babai, Nisan, and
Szegedy [6] end, and we must exploit properties specific to set disjointness. To restate
Lemma 3.1,

D.xi ; Y i ; ui /D.xi ; Y i ; vi /(4.4)

D I
�
D
�
Y i jui^vi

�
D 1

�
C I

�
D
�
Y i jui^vi

�
D �1

�
D
�
.xi ; Y i /j

ui^vi

�
D
�
.xi ; Y i /j

ui^vi

�
on the support of �ni ;k : To bound (4.3), we will take advantage of conditioning. Specifi-
cally, using (4.4) and conditioning on ui ; vi ; Y i jui^vi ; and Y i j

ui^vi
for each i; we arrive

at the following expectation over the remaining variables xi ; Y i j
ui^vi

; and Y i j
ui^vi

:

E

"
�0 �

mY
iD1

D.xi ; Y i ; ui /D.xi ; Y i ; vi /

#
(4.5)

D

X
´2f�1;C1gm

E

24�0 � Y
i W´iD�1

D
�
.xi ; Y i /j

ui^vi

�
D
�
.xi ; Y i /j

ui^vi

�35
�

mY
iD1

I
�
D
�
Y i jui^vi

�
D ´i

�
:

The expectations in the right member of (4.5) admit direct analysis. By Lemma 3.2, con-
ditioning on any fixed value of ui ; vi ; Y i jui^vi ; Y

i j
ui^vi

with D.Y i jui^vi / D �1 makes
the remaining variables Y i j

ui^vi
and Y i j

ui^vi
independent and distributed according to

�
jui^vi j;k�1

and �
jui^vi j;k�1

; respectively. Since �0 is a cylinder intersection for fixed
u1; : : : ; um and v1; : : : ; vm; the inductive hypothesis applies to the right member of (4.5),
bounding it in absolute value by

X
´2f�1;C1gm

Y
i W´iD�1

.2k�1 � 1/2 I
�
D
�
Y i jui^vi

�
D �1

�q
jui ^ vi j jui ^ vi j

�

Y
i W´iD1

I
�
D
�
Y i jui^vi

�
D 1

�
:
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Passing to expectations, one concludes that �k.n1; n2; : : : ; nm/2 is bounded from above
by

X
´2f�1;C1gm

Y
i W´iD�1

E
�ni ;k

264 .2k�1 � 1/2 I
�
D
�
Y i jui^vi

�
D �1

�q
jui ^ vi j jui ^ vi j

375
�

Y
i W´iD1

P
�ni ;k

�
D
�
Y i jui^vi

�
D 1

�

D

mY
iD1

�

.2k�1 � 1/2 E
�ni ;k

264 I
�
D
�
Y i jui^vi

�
D �1

�q
jui ^ vi j jui ^ vi j

375C P
�ni ;k

�
D
�
Y i jui^vi

�
D 1

��
:

The probabilities and expectations in the final expression are given by Lemmas 3.3 and 3.4,
leading to �k.n1; n2; : : : ; nm/2 6 .2k � 1/2m=.n1n2 � � �nm/ and thereby completing the
inductive proof.

Notes. We are only interested in �k.n1; n2; : : : ; nm/ for n1 D n2 D � � � D nm: However,
the above inductive proof requires consideration of the more general quantity.

The base case, given by Proposition 4.1, could have been handled by a first-principles
argument analogous to Theorem 4.2. However, we find the above treatment more concise
and modular.

5. RANDOMIZED COMMUNICATION

Combining the technical work of the previous sections with additional ideas, we will
now derive a general lower bound on randomized communication complexity for com-
posed functions (Section 5.1). We will specifically be interested in compositions of the
form f ı UDISJr;k : In Sections 5.2 and 5.3, we will apply our findings to the bounded-
error and small-bias communication complexity of AC0 circuits, including set disjointness
itself.

5.1. Master theorem. We start with the main technical result of the section. We present
two different proofs for it, one based on the primal view of the problem and the other,
on the dual view. The primal proof appears more intuitive to this author, whereas the dual
proof is more versatile. Each of the proofs will be used in later sections to obtain additional
results.

THEOREM 5.1. Let f be a .possibly partial/ Boolean function on f�1;C1gn: Consider
the k-party communication problem F D f ı UDISJr;k : Then for �; ı > 0;

2R�.F / > .ı � �.1C ı//

�
degı.f /

p
r

2ken

�degı.f /

:(5.1)

The idea of the primal proof is to convert a communication protocol for F into a low-
degree polynomial approximating f in the infinity norm. The dual proof proceeds in the
reverse direction and manipulates explicit witness objects, in the sense of Fact 2.2 and The-
orem 2.10. More specifically, the dual proof converts a witness of f ’s inapproximability
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by polynomials to a witness of F ’s high communication complexity. The primal point of
view is original to this paper, whereas the dual approach is due to [42, 46].

Primal proof of Theorem 5.1. Define � D Ur � �r;k�1; a probability distribution on the
domain of UDISJr;k : Let ��1 and �C1 stand for the probability distributions induced by
� on UDISJ�1r;k.�1/ and UDISJ�1r;k.C1/; respectively. Consider the following averaging
operator M; which linearly sends real functions � on .f0; 1gr�k/n to real functions on
f�1;C1gn:

.M�/.´/
:
D E
X1��´1

� � � E
Xn��´n

Œ�.X1; : : : ; Xn/� :

When � is a k-dimensional cylinder intersection,

jbM�.S/j D
ˇ̌̌̌
ˇ E
´2f�1;C1gn

E
X1��´1

� � � E
Xn��´n

"
�.X1; : : : ; Xn/

Y
i2S

´i

#ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ E
X1;:::;Xn��

"
�.X1; : : : ; Xn/

Y
i2S

UDISJr;k.Xi /

#ˇ̌̌̌
ˇ

6 �k�1.

jS j

ŗ; r; : : : ; r/

6

�
2k�1
p
r

�jS j
;(5.2)

where the second equality uses the fact that � D .��1C�C1/=2; and the final step follows
by Theorem 4.2.

Fix a randomized protocol for F with error � and cost c :
D R�.F /: Approximate F as

in Corollary 2.6 by a linear combination of cylinder intersections ˘ D
P
� a��; whereP

� ja�j 6 2c=.1 � �/: We claim that M˘ is approximable by a low-degree polynomial.
Indeed, let d be a positive integer to be chosen later. Discarding the Fourier coefficients of
M˘ of order d and higher gives

E.M˘; d � 1/ 6 min

˚
1

1 � �
;
X
�

ja�j
X
jS j>d

jbM�.S/j
	

6 min

(
1

1 � �
;

2c

1 � �

nX
iDd

 
n

i

!�
2k�1
p
r

�i )

6
2c

1 � �

�
2ken
d
p
r

�d
;(5.3)

where the second step uses (5.2). On the other hand, recall from Corollary 2.6 that ˘
approximates F in the sense that k˘k1 6 1=.1 � �/ and jF � ˘ j 6 �=.1 � �/ on the
domain of F: It follows that kM˘k1 6 1=.1 � �/ and jf �M˘ j 6 �=.1 � �/ on the
domain of f; whence

E.f; d � 1/ 6
�

1 � �
CE.M˘; d � 1/:

Substituting the estimate from (5.3),

E.f; d � 1/ 6
�

1 � �
C

2c

1 � �

�
2ken
d
p
r

�d
:(5.4)
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For d D degı.f /; the left member of (5.4) must exceed ı; forcing the claimed lower
bound on 2c :

We now present an alternate proof, which combines the argument in [42, 46] with the
discrepancy result in this paper.

Dual proof of Theorem 5.1. As before, consider the distribution � D Ur � �r;k�1 on the
domain of UDISJr;k : For d :

D degı.f /; Fact 2.2 provides  W f�1;C1gn ! R withX
´2domf

f .´/ .´/ �
X

´…domf

j .´/j > ı;(5.5)

k k1 D 1;(5.6)

O .S/ D 0; jS j < d:(5.7)

Define 	 W .f0; 1gr�k/n ! R by

	.X1; : : : ; Xn/ D 2
n 

�
DISJr;k.X1/; : : : ;DISJr;k.Xn/

� nY
iD1

�.Xi /:

Since � places equal weight on UDISJ�1r;k.�1/ and UDISJ�1r;k.C1/; we have

k	k1 D 2
n E
´2f�1;C1gn

Œj .´/j� D 1(5.8)

and analogouslyX
domF

F.X1; : : : ; Xn/	.X1; : : : ; Xn/ �
X

domF

j	.X1; : : : ; Xn/j(5.9)

D

X
´2domf

f .´/ .´/ �
X

´…domf

j .´/j

> ı;

where the final step in the two derivations uses (5.5) and (5.6). It remains to bound the
inner product of 	 with a k-dimensional cylinder intersection �: By (5.7),

jh	; �ij 6 2n
X
jS j>d

j O .S/j

ˇ̌̌̌
ˇ E
X1;:::;Xn��

"
�.X1; : : : ; Xn/

Y
i2S

DISJr;k.Xi /

#ˇ̌̌̌
ˇ

6 2n
X
jS j>d

j O .S/j �k�1.

jS j

ŗ; r; : : : ; r/

6
X
jS j>d

�
2k�1
p
r

�jS j
;

where the final step uses Proposition 2.1 and Theorem 4.2. Combining this with the trivial
bound jh	; �ij 6 k	k1k�k1 D 1;

jh	; �ij 6 min

(
1;

nX
iDd

 
n

i

!�
2k�1
p
r

�i )
6

�
2ken
d
p
r

�d
:(5.10)

By (5.8)–(5.10) and Theorem 2.10, the proof is complete.
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5.2. Bounded-error communication. The general theorem that we have just proved al-
lows one to obtain lower bounds on bounded-error communication in terms of the 1=3-
approximate degree, as follows.

THEOREM 5.2. Let f be a .possibly partial/ Boolean function on f�1;C1gn: Let d D
deg1=3.f /: Then

R1=3

�
f ı UDISJ

4kC2d nd e
2
;k

�
> ˝.d/:

Proof. Let � D 1=5; ı D 1=3; r D 4kC2dn=de2 in Theorem 5.1.

In particular, we obtain the following lower bound on the randomized communication
complexity of set disjointness.

THEOREM 1.1 (restated). The k-party set disjointness problem obeys

R1=3.DISJn;k/ > R1=3.UDISJn;k/ D ˝
� n
4k

�1=4
:

Proof. Recall that UDISJnr;k DAANDnıUDISJr;k for all integers n; r: Theorem 2.4 shows
that deg1=3.AANDn/ > ı

p
n for some constant ı > 0: Thus, taking f DAANDn and d D

ı
p
n in Theorem 5.2 gives R1=3.UDISJ4kC2ndpn=ıe2;k/ D ˝.

p
n/; which is equivalent to

the claimed bound.

Theorem 5.2 gives a general lower bound on bounded-error communication complexity
for compositions f ıG; where G is a gadget on a relatively large number of variables. We
will now derive an alternate lower bound, in which the gadget G is essentially as simple as
possible and in particular depends on only 2k variables.

We recall some combinatorial complexity measures. Let f W f�1;C1gn ! f�1;C1g be
given. For a string x 2 f�1;C1gn and a subset S � f1; 2; : : : ; ng; let xS stand for the
string obtained from x by negating the bit positions in S; i.e.,

.xS /i D

(
�xi if i 2 S;
xi otherwise:

The block sensitivity of f; denoted bs.f /; is the maximum number of nonempty, pairwise
disjoint subsets S1; S2; S3; : : : � f1; 2; : : : ; ng such that f .x/ ¤ f .xS1/ D f .xS2/ D

f .xS3/ D � � � for some string x 2 f�1;C1gn: The sensitivity of f; denoted s.f /; is
defined analogously with the additional requirement that S1; S2; S3; : : : contain exactly
one element each. In other words, the sensitivity of f is the maximum of jfi W f .x/ ¤
f .x1; : : : ; xi�1;�xi ; xiC1; : : : ; xn/gj over all strings x 2 f�1;C1gn: The decision tree
complexity of f; denoted dt.f /; is the minimum depth of a decision tree for f: Surprisingly,
the quantities bs.f /; dt.f /; deg1=3.f / are polynomially related for every total Boolean
function [38]. Finally, a contraction of a Boolean function f W f�1;C1gn ! f�1;C1g is
any function gW f�1;C1gn ! f�1;C1g such that g.x/ � f .xi1 ; xi2 ; : : : ; xin/ for some
indices i1; i2; : : : ; in 2 f1; 2; : : : ; ng: Informally, a contraction is the result of replacing
groups of variables by a single variable (and possibly permuting the variables).

We are now in a position to prove the alternate lower bound on communication for
composed functions. We will study compositions of the form f ı .ORk _ ANDk/; where
ORk _ ANDk refers to the function .x1; : : : ; x2k/ 7! x1 _ � � � _ xk _ .xkC1 ^ � � � ^ x2k/:

It is clear that any such composition has a deterministic k-party communication protocol
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with cost 3 dt.f /: In what follows, we prove that this trivial upper bound is close to tight,
even for randomized protocols.

THEOREM 5.3. Let f W f�1;C1gn ! f�1;C1g be given, deg1=3.f / D d: Then

R1=3.f ı .ORk _ ANDk// > ˝

�
bs.f /
4k

�1=4
> ˝

�
dt.f /1=3

4k

�1=4
> ˝

�
d1=3

4k

�1=4
:

By symmetry, the theorem also holds with ORk ^ ANDk in place of ORk _ ANDk : Fi-
nally, note that the above result implies a lower bound of ˝.n=4k/1=4 on the randomized
communication complexity of set disjointness. However, this does not give a new proof of
Theorem 1.1 because Theorem 1.1 is actually used in a crucial way to prove Theorem 5.3.

Proof of Theorem 5.3. It is clear that d 6 dt.f /; and it is known [8, p. 791] that dt.f / 6
bs.f /3: Thus, it suffices to prove the lower bound in terms of bs.f /: We will actually
prove the following stronger result: for some fixed ´ 2 f�1;C1gn;

R1=3.f´ ı ANDk/ > ˝

�
bs.f /
4k

�1=4
;

where f´W f�1;C1gn ! f�1;C1g is defined by f´.x/ D f .´˚ x/:
Choose ´ such that f .´/ ¤ f .´S1/ D f .´S2/ D � � � D f .´Sbs.f // for some nonempty,

pairwise disjoint subsets S1; S2; : : : ; Sbs.f / � f1; 2; : : : ; ng: This means that f´.1/ ¤
f´.1S1/ D f´.1S2/ D � � � D f´.1Sbs.f //; where 1 D .1; 1; : : : ; 1/: But then there is a
contraction g of f´ such that

g.1; 1; : : : ; 1/ ¤ g.1; : : : ; 1;�1™
i

; 1; : : : ; 1/

for i D 1; 2; : : : ; bs.f /: Indeed, such a contraction can be obtained from f´ by replacing
the variables in each block Si by a single variable, and suitably permuting the resulting
variable set. In other words, fORbs.f / is a subfunction of g: Therefore, fORbs.f / ıANDk D
:UDISJbs.f /;k is a subfunction of gıANDk ; andR1=3.gıANDk/ D ˝.bs.f /=4k/1=4 by
Theorem 1.1. The same lower bound holds for f´ ı ANDk since passage to a contraction
cannot increase communication complexity.

It is tempting to go further and try to boundR1=3.f ıANDk/ from below in terms of the
approximate degree of f: Unfortunately, the gap between R1=3.f ıANDk/ and deg1=3.f /
can be as large as �.1/ versus �.

p
n/; simply take f D ANDn: As it turns out, the right

approach is to consider the maximum of the communication complexities of f ı ANDk
and f ı ORk :
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THEOREM 5.4. Let f W f�1;C1gn ! f�1;C1g be given, deg1=3.f / D d: Then

maxfR1=3.f ı ORk/; R1=3.f ı ANDk/g > ˝

�
bs.f /1=4

2k

�1=2
(5.11)

> ˝

�
dt.f /1=12

2k

�1=2
> ˝

�
d1=12

2k

�1=2
:

Proof. As in the previous proof, it suffices to prove the first inequality, and moreover we
may replace f in the left member of (5.11) by a contraction of f: The argument is closely
analogous to the one in [44] for two-party communication. Specifically, by [44, Lem. 3.3],
there is a contraction g of f such that s.g/ > ˛

p
bs.f / for some absolute constant ˛ > 0:

So, fix a subset S � f1; 2; : : : ; ng of size jS j > ˛
p

bs.f / and a string ´ 2 f�1;C1gn

such that g.´/ ¤ g.´1; : : : ; ´i�1;�´i ; ´iC1; : : : ; ´n/ for all i 2 S:We consider two cases.

(i) If ´jS has more “�1” entries than “C1” entries, then AANDjS j=2 is a subfunction of
g: As a result, UDISJjS j=2;k is a subfunction of g ıORk (up to negations of the input
variables), and the proof is complete in view of Theorem 1.1.

(ii) If ´jS has no more “�1” entries than “C1” entries, then fORjS j=2 is a subfunction of
g: As a result, :UDISJjS j=2;k is a subfunction of g ı ANDk ; and the proof is again
complete in view of Theorem 1.1.

5.3. Small-bias communication and discrepancy. The counterpart to bounded-error
communication is small-bias communication, when the protocol is only required to pro-
duce the correct output with probability vanishingly close to 1=2: Theorem 5.1 gives com-
munication lower bounds in this setting as well, in terms of the approximate degree with
an appropriate error parameter.

THEOREM 5.5. Let f be a .possibly partial/ Boolean function on f�1;C1gn: Then

R 1
2�

�
2

�
f ı UDISJ

4kC3dn= deg1� .f /e
2
;k

�
> deg1� .f / � log

1

� � 
;

R 1
2�

�
2

�
f ı UDISJ

4kC3dn= deg˙.f /e
2
;k

�
> deg˙.f / � log

1

�
:

Proof. The first lower bound follows by taking ı D 1�  and r D 4kC3dn= deg1� .f /e
2

in Theorem 5.1. The second lower bound follows from the first by letting  & 0:

Finally, Theorem 5.1 allows one to directly prove upper bounds on discrepancy, a com-
plexity measure of interest in its own right. We have:

THEOREM 5.6. Let f be a .possibly partial/ Boolean function on f�1;C1gn: Then for
every  > 0;

disc.f ı UDISJr;k/ <

 
2ken

deg1� .f /
p
r

!deg1� .f /

C :



28 A. A. SHERSTOV

In particular,

disc.f ı UDISJr;k/ 6
�

2ken
deg˙.f /

p
r

�deg˙.f /

:

Proof. The second bound follows from the first by letting  & 0: To prove the first bound,
take ı D 1 � ; d D degı.f /; and define 	 W .f0; 1gr�k/n ! R as in the dual proof
of Theorem 5.1. Then (5.8) shows that 	 D H ı P; where H is a sign tensor and P a
probability distribution. Letting F D f ı UDISJr;k ; we can restate (5.9) asX

domF

F.x/H.x/P.x/ � P.domF / > 1 � :(5.12)

For every cylinder intersection �;ˇ̌̌̌
ˇ X
domF

F.x/P.x/�.x/

ˇ̌̌̌
ˇ(5.13)

D

ˇ̌̌̌
ˇ̌hH ı P; �i C X

domF

.F.x/ �H.x//P.x/�.x/ �
X

domF

H.x/P.x/�.x/

ˇ̌̌̌
ˇ̌

6 discP .H/C
X

domF

jF.x/ �H.x/jP.x/C P.domF /

D discP .H/C P.domF / �
X

domF

F.x/H.x/P.x/C P.domF /

< discP .H/C P.domF / � 1C ;

where the last step uses (5.12). Maximizing over all cylinder intersections �;

discP .F / D max
�

ˇ̌̌̌
ˇ X
domF

F.x/P.x/�.x/

ˇ̌̌̌
ˇC P.domF /

< discP .H/C 

6

�
2ken
d
p
r

�d
C ;

where the second step uses (5.13) and the third uses (5.10).

As an application of the above results on small-bias computation, we exhibit a partic-
ularly hard multiparty communication problem F 2 AC0: This k-party communication
problem is given by an f^;_g-circuit of size kn and depth 3 and has exponentially small
discrepancy: disc.F / 6 exp.�˝.n=4k/1=7/: In particular, the communication complexity
of F remains high even to achieve an exponentially small advantage over random guessing.
A more detailed statement follows.

THEOREM 5.7. Consider the k-party communication problem Fn;k W
�
f0; 1g4

kn7
�k
!

f�1;C1g given by

Fn;k.x/ D

n_
iD1

4kn6^
jD1

.xi;j;1 _ xi;j;2 _ � � � _ xi;j;k/:
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Then

disc.F4n;k/ 6 2�n;

R 1
2�


2
.F4n;k/ > n � log

1


. > 0/:

This construction achieves optimal circuit depth because AC0 circuits of depth less
than 3 have multiparty discrepancy 1=nO.1/; regardless of how the bits are assigned to
the parties. The previous best construction, due to Beame and Huynh-Ngoc [11], was a
depth-6 circuit of size kn with discrepancy exp.�˝.n=231k/1=29/:

Proof of Theorem 5.7. Let MPn be given by Theorem 2.3, so that deg˙.MPn/ D n: Since
MPn ı DISJ4kC5n4;k is a subfunction of F4n;k (up to negations of the input variables),
Theorem 5.6 yields the discrepancy bound. The communication lower bound follows by
Theorem 2.9.

Theorem 5.7 settles Theorem 1.5 from the introduction.

6. XOR LEMMAS AND DIRECT PRODUCT THEOREMS

In Section 5, we proved that ˝.n=4k/1=4 bits of communication are required to solve
the set disjointness problem with probability of correctness 2=3: In this section, we con-
sider the task of simultaneously solving ` instances of set disjointness and prove that
` �˝.n=4k/1=4 bits of communication are necessary to even achieve advantage 2�˝.`/ over
random guessing. We prove an analogous result for computing the XOR of ` instances.
The theorems in this section hold in somewhat greater generality, applying to compositions
f ı G where f is an arbitrary function and G is an instance of set disjointness on a suit-
able number of variables. Our proof works by reducing these communication statements
to analogous statements about polynomial approximation. We then appeal to known direct
product theorems and XOR lemmas for the latter setting, which were recently obtained
in [45].

6.1. XOR lemmas. We start by proving the XOR lemma for set disjointness, which hap-
pens to admit a more intuitive and direct analysis than the corresponding direct product
theorem. We recall an analogous XOR lemma for polynomial approximation [45, Cor. 5.2].

THEOREM 6.1 (Sherstov). Let f be a .possibly partial/ Boolean function on f�1;C1gn:
Then for some absolute constant c > 0 and every `;

deg1�2�`�1. f ˝ � � � ˝ fš
`

/ > c` deg1=3.f /:

Using the small-bias version of the master theorem (Theorem 5.5), we are able to im-
mediately translate this result to communication.

THEOREM 6.2 (XOR lemma). Let f be a .possibly partial/ Boolean function on f�1;C1gn:
Define d D deg1=3.f /: Then for some absolute constant C > 1; the k-party communica-
tion problem

F D f ı UDISJ
4kdCnd e

2
;k



30 A. A. SHERSTOV

obeys

R 1
2�.

1
2 /
`C1. F ˝ � � � ˝ Fš

`

/ > ` �˝.d/:

Proof. Define g D f ˝`: Theorem 6.1 provides an absolute constant c > 0 such that
deg1�1=2`C1.g/ > c`d: Letting C D 8=c; Theorem 5.5 implies that the composition
g ı UDISJ4kdCn

d
e2;k D F

˝` obeys R1=2�1=2`C1.F
˝`/ D ` �˝.d/:

The desired XOR lemma for set disjointness, stated as Theorem 1.2(i) in the introduc-
tion, now falls out as a corollary.

COROLLARY 6.3. For every `;

R 1
2�.

1
2 /
`C1.UDISJn;k ˝ � � � ˝ UDISJn;k 

`

/ > ` �˝
� n
4k

�1=4
:

Proof. Theorem 2.4 shows that deg1=3.AANDn/ > �
p
n for a constant � > 0: Thus, letting

f DAANDn and d D �
p
n in Theorem 6.2 gives R1=2�1=2`C1

�
UDISJ4kndCpn=�e2;k

˝`
�
>

` �˝.
p
n/; which is equivalent to the claimed bound.

Using the argument of Theorem 5.3, we are now able to give an XOR lemma for arbi-
trary compositions of the form f ı .ORk _ANDk/: For this, we will use the combinatorial
complexity measures bs.f / and dt.f /; defined in Section 5.

THEOREM 6.4. Let f W f�1;C1gn ! f�1;C1g be given. Put F D f ı .ORk _ ANDk/:
Then for every `;

R 1
2�.

1
2 /
`C1.

`

¼
F ˝ F ˝ � � � ˝ F / > ` �˝

�
bs.f /
4k

�1=4
> ` �˝

�
dt.f /1=3

4k

�1=4
> ` �˝

�
deg1=3.f /

1=3

4k

�1=4
:

Recall from Section 5 that F has a deterministic protocol with cost 3 dt.f /; and thus F˝`

has a deterministic protocol with cost 3` dt.f /: In other words, Theorem 6.4 is reasonably
close to tight.

Proof of Theorem 6.4. The argument is essentially identical to that of Theorem 5.3. As
argued there, any communication protocol for f ı.ORk_ANDk/ also solves UDISJbs.f /;k ;

so that the first inequality is immediate from Corollary 6.3. The other two inequalities
follow from general relationships among bs.f /; dt.f /; and deg1=3.f /; see the proof of
Theorem 5.3.

6.2. Direct product theorems. Let F WX1 � X2 � � � � � Xk ! f�1;C1g be a given k-
party communication problem. We are interested here in the communication complexity of
simultaneously solving ` instances of F: More formally, the communication protocol now
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receives ` inputs x1; : : : ; x` 2 X1 �X2 � � � � �Xk and outputs a string f�1;C1g`; repre-
senting a guess at .F.x1/; : : : ; F .x`//: As usual, an �-error protocol is one whose output
differs from the correct answer with probability no greater than �; on any given input. The
least cost of such a protocol for solving ` instances of F is denoted R�.F; F; : : : ; F /;
where the number of instances will always be specified with an underbrace.

It is also meaningful to consider communication protocols that solve all but m of the `
instances (m for “mistake”), where the ratiom=` is a small constant. In other words, given
` input instances x1; : : : ; x`; the protocol is required to output, with probability at least
1 � �; a vector ´ 2 f�1;C1g` such that ´i D F.xi / for at least ` �m indices i: We let

R�;m.F; F; : : : ; F™
`

/

stand for the least cost of such a protocol. When referring to this formalism, we will
write that a protocol “solves with probability 1 � � at least ` � m of the ` instances.”
This setting corresponds to threshold direct product theorems, as opposed to the more
restricted notion of strong direct product theorems for which m D 0: All of our results
belong to the former category. The following definition from [45] analytically formalizes
the simultaneous solution of ` instances.

DEFINITION 6.5 (Approximants). Let f be a .possibly partial/ Boolean function on a
finite set X: A .�;m; `/-approximant for f is any system f�´g of functions �´WX` ! R;
´ 2 f�1;C1g`; such that for all x1; : : : ; x` 2 X;X

´2f�1;C1g`

j�´.x
1; : : : ; x`/j 6 1; x1; : : : ; x` 2 X;

X
´2f�1;C1g`

jfi W´iD�1gj6m

�.´1f .x1/;:::;´`f .x`//.x
1; : : : ; x`/ > �; x1; : : : ; x` 2 domf:

The following result [45, Cor. 5.7] on polynomial approximation is naturally regarded
as a threshold direct product theorem in that model of computation.

THEOREM 6.6 (Sherstov). Let f be a .possibly partial/ Boolean function on f�1;C1gn:
Let ˇ > 0 be a small enough absolute constant. Then every .2�ˇ`; ˇ`; `/-approximant
f�´g for f obeys

max
´2f�1;C1g`

fdeg�´g > ˇ` deg1=3.f /:

Using the technique of Theorem 5.1, we are able to translate this result to multiparty
communication complexity.

THEOREM 6.7 (Direct product theorem). Let ˛ > 0 be a sufficiently small absolute con-
stant. Let f be a .possibly partial/ Boolean function on f�1;C1gn with approximate
degree d D deg1=3.f /: Then the k-party communication problem

F D f ı UDISJ
4kd n˛d e

2
;k

obeys

R1�2�˛`;˛`.F; F; : : : ; F™
`

/ > ˛`d:
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Proof. Our proof strategy will be to convert a low-cost communication protocol for solving
` instances of F into a low-degree approximant for f; in the sense of Definition 6.5. Such
an approximant would be in contradiction to Theorem 6.6, thus ruling out the assumed low-
cost protocol. The critical part of the proof is the passage from communication protocols
to polynomials, to which end we will mimic the primal proof of Theorem 5.1.

Abbreviate r D 4k
˙
n
˛d

�2 and let � D Ur � �r;k�1; a probability distribution on the
domain of UDISJr;k : Let ��1 and �C1 stand for the probability distributions induced by
� on UDISJ�1r;k.�1/ and UDISJ�1r;k.C1/; respectively. Consider the following averaging
operator M; which linearly sends real functions � on .f0; 1gr�k/`n to real functions on
f�1;C1g`n:

.M�/.´/
:
D E
X1;1��´1;1

� � � E
X`;n��´`;n

�
�.X1;1; : : : ; X`;n/

�
:

Now fix a cost-c randomized protocol ˘ which solves, with probability 2�˛`; at least
.1 � ˛/` from among ` instances of F: We will take ˛ D ˛.ˇ/ > 0 small enough, where
ˇ > 0 is the constant from Theorem 6.6. Starting with the assumption that c < ˛`d; we
will arrive at a contradiction.

For ´ 2 f�1;C1g`; consider the protocol˘´ with Boolean output which on input from
.f0; 1gr�k/`n runs ˘ and outputs �1 if and only if ˘ outputs ´: Let �´W .f0; 1gr�k/`n !
Œ0; 1� be the acceptance probability function for ˘´: Then �´ D

P
a�� by Corollary 2.7,

where the sum is over k-dimensional cylinder intersections and
P
ja�j 6 2c : By the

argument in the primal proof of Theorem 5.1, for every positive integer D;

E.M�´;D � 1/ 6 2c
�
2ke`n
D
p
r

�D
:(6.1)

Observe that f�´g is a .2�˛`; ˛`; `/-approximant for F; and analogously fM�´g is a
.2�˛`; ˛`; `/-approximant for f: By (6.1), each M�´ can in turn be approximated by a
polynomial of degree less than ˇ`d to within 2˛`d .˛e=ˇ/ˇ`d : Taking ˛ D ˛.ˇ/ > 0

small enough, we arrive at a .2�ˇ`; ˇ`; `/-approximant for f of degree less than ˇ`d; in
contradiction to Theorem 6.6. Hence, c > ˛`d:

As a corollary, we obtain a direct product result for set disjointness, originally stated as
Theorem 1.2(ii) in the introduction.

COROLLARY 6.8. For some absolute constant ˛ > 0 and every `;

R1�2�˛`;˛`.UDISJn;k ; : : : ;UDISJn;kŸ
`

/ > ` �˝
� n
4k

�1=4
:

Proof. Theorem 2.4 shows that deg1=3.AANDn/ > �
p
n for a constant � > 0: As a result,

taking f DAANDn and d D �
p
n in Theorem 6.7 gives

R1�2�˛`;˛`
�
: : : ;UDISJ4kndpn=˛�e2;k ; : : : 

`

�
D ` �˝.

p
n/;

which is equivalent to the claimed bound.

Again, the above corollary readily generalizes to arbitrary compositions of the form
F D f ı .ORk _ ANDk/:
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THEOREM 6.9. Let f W f�1;C1gn ! f�1;C1g be given. Put F D f ı .ORk _ ANDk/:
Then for some absolute constant ˛ > 0 and every `;

R1�2�˛`;˛`.

`¹
F;F; : : : ; F / > ` �˝

�
bs.f /
4k

�1=4
> ` �˝

�
dt.f /1=3

4k

�1=4
> ` �˝

�
deg1=3.f /

1=3

4k

�1=4
:

Proof. Identical to Theorem 6.4, with Corollary 6.8 invoked in place of Corollary 6.3.

We have focused here on XOR lemmas and direct product theorems for ` instances of
the same communication problem. The results and proofs above generalize easily to `
distinct communication problems, by invoking, in place of Theorems 6.1 and 6.6, corre-
spondingly more general results from [45] on polynomial approximation.

7. NONDETERMINISTIC AND MERLIN-ARTHUR COMMUNICATION

In this section, we study the communication complexity of set disjointness in the non-
deterministic and Merlin-Arthur multiparty models. We will see that the lower bound of
Theorem 1.1 carries over. We will reinterpret our findings in terms of communication
complexity classes.

7.1. Definitions. We start by describing the nondeterministic k-party model of communi-
cation, which is similar in some ways and different in others from the randomized model.
As in the randomized model, one considers a function F WX1�X2� � � ��Xk ! f�1;C1g
for some finite sets X1; X2; : : : ; Xk : An input .x1; x2; : : : ; xk/ 2 X1 � X2 � � � � � Xk is
distributed among the k parties as before, giving the i th party all the arguments except
xi : Beyond this setup, nondeterministic computation proceeds as follows. At the start of
the protocol, c1 bits appear on the shared blackboard. Given the values of those bits, the
parties execute an agreed-upon deterministic protocol with communication cost at most c2:
A nondeterministic protocol for F is required to output the correct answer for at least one
nondeterministic choice of the c1 bits when F.x1; x2; : : : ; xk/ D �1 and for all possible
choices when F.x1; x2; : : : ; xk/ D C1. The cost of a nondeterministic protocol is defined
as c1 C c2. The nondeterministic communication complexity of F , denoted N.F /; is the
least cost of a nondeterministic protocol for F: The co-nondeterministic communication
complexity of F is the quantity N.�F /.

The Merlin-Arthur model [2, 5] combines the power of randomization and nondeter-
minism. Similar to the nondeterministic model, the protocol starts with a nondeterministic
guess of c1 bits, followed by c2 bits of communication. However, the communication
can be randomized, and the requirement is that the error probability be at most � for at
least one nondeterministic guess when F.x1; x2; : : : ; xk/ D �1 and for all possible non-
deterministic guesses when F.x1; x2; : : : ; xk/ D C1. The cost of a Merlin-Arthur pro-
tocol is defined as c1 C c2: The �-error Merlin-Arthur communication complexity of F ,
denoted MA�.F /, is the least cost of an �-error Merlin-Arthur protocol for F: Clearly,
MA�.F / 6 minfN.F /;R�.F /g for every F .
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7.2. Communication lower bounds. To analyze the nondeterministic and Merlin-Arthur
complexity of set disjointness, we start with a criterion for high communication complexity
in these models. It was derived recently by Gavinsky and the author [23, Thm. 4.1] and
builds on earlier work by Klauck [28, 29], including the generalized discrepancy method.

THEOREM 7.1 (Gavinsky and Sherstov). Let F WX ! f�1;C1g be a given k-party com-
munication problem, where X D X1 � X2 � � � � � Xk : Fix a function H WX ! f�1;C1g
and a probability distribution P on X: Put

˛ D P.F �1.�1/ \H�1.�1//;

ˇ D P.F �1.�1/ \H�1.C1//;

Q D log
˛

ˇ C discP .H/
:

Then

N.F / > Q;

MA1=3.F / > min
�
˝.
p
Q/; ˝

�
Q

log.2=˛/

��
:

A key technical ingredient in [23] is the following property of the AND function, which
we will use in a similar way in this paper.

THEOREM 7.2 (Gavinsky and Sherstov). There is a function  W f�1;C1gn ! R with

h ;ANDni >
1

3
;

k k1 D 1;

O .S/ D 0; jS j < deg1=3.ANDn/;

 .�1; : : : ;�1/ < �
1

6
:(7.1)

Proof (Gavinsky and Sherstov). The first three properties of  are guaranteed by Fact 2.2.
To establish the remaining property, note that h ; 1i D 0 because O .∅/ D 0: Thus,

�2 .�1; : : : ;�1/ D
X

´2f�1;C1gn

 .´/fANDn.´/ � 1g

D

X
´2f�1;C1gn

 .´/ANDn.´/

>
1

3
:

Two years ago, Gavinsky and the author [23] obtained a lower bound of n˝.1=k/=22
k

on the nondeterministic and Merlin-Arthur communication complexity of set disjointness.
The main result of this section, which we are about to establish, is an improved lower
bound of ˝.n=4k/1=4 for nondeterministic and ˝.n=4k/1=8 for Merlin-Arthur protocols.
Our proof closely follows the proof in [23], i.e., we use Theorem 7.2 to construct H and
P for Theorem 7.1. The main difference resides in the discrepancy calculation, for which
we turn to the master theorem in this paper on randomized communication complexity.
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THEOREM 7.3 (restatement of Theorems 1.3 and 1.4). The set disjointness problem obeys

N.DISJn;k/ > ˝
� n
4k

�1=4
;

MA1=3.DISJn;k/ > ˝
� n
4k

�1=8
:

Proof. Let r be a parameter to be set later. Put f D ANDn; d D deg1=3.ANDn/; and fix
 W f�1;C1gn ! R as in Theorem 7.2. Let F D f ıDISJr;k and define 	 W .f0; 1gr�k/n !
R as in the dual proof of Theorem 5.1, viz.,

	.X1; : : : ; Xn/ D 2
n 

�
DISJr;k.X1/; : : : ;DISJr;k.Xn/

� nY
iD1

�.Xi /;

where � D Ur ��r;k�1 as before. Then (5.8) shows that 	 D H ıP for some sign tensor
H and probability distribution P: In particular, (5.10) asserts that

discP .H/ 6
�
2ken
d
p
r

�d
:(7.2)

By (7.1), we have  .´/ < 0 whenever f .´/ D �1; so that

P.F �1.�1/ \H�1.C1// D 0:(7.3)

Also,

P.F �1.�1/ \H�1.�1// D P.F �1.�1// D j .�1; : : : ;�1/j >
1

6
;(7.4)

where the first step uses (7.3), the second step uses the fact that � places equal weight on
the sets DISJ�1r;k.�1/ and DISJ�1r;k.C1/; and the final inequality uses (7.1). By (7.2)–(7.4)
and Theorem 7.1,

N.F / D ˝

�
d log

�
d
p
r

2ken

��
; MA1=3.F / D ˝

�
d log

�
d
p
r

2ken

��1=2
:

Recall now from Theorem 2.4 that d > c
p
n for some constant c > 0: As a result, setting

r D 4kC2nd1=ce2 gives N.F / D ˝.
p
n/ and MA1=3.F / D ˝.n1=4/: It remains to note

that F D DISJ4kC2n2d1=ce2;k :

7.3. Applications to communication classes. Babai, Frankl, and Simon [3] defined ana-
logues of computational complexity classes in communication. We will only mention a
few of them, namely, those corresponding to efficient randomized, nondeterministic, and
Merlin-Arthur protocols. For a given number of parties k D k.n/; fix a family fFng1nD1
of k-party communication problems, where FnW .f0; 1gn/k ! f�1;C1g: The family fFng
is said to belong to the communication class BPPk if and only if R1=3.Fn/ 6 logc n for
some constant c > 1 and all n > c: Analogously, the family fFng is said to belong to
NPk and MAk if and only if the communication complexity of Fn in the nondetermin-
istic and Merlin-Arthur models, respectively, is at most logc n for some constant c > 1

and all n > c: The derived classes coNPk and coMAk have the usual definition, e.g.,
fFng 2 coNPk if and only if f�Fng 2 NPk :

A corollary to Theorem 7.3 is that set disjointness separates coNPk from NPk ; BPPk ;
and even MAk for k < .1

2
� �/ logn; where � > 0 is any constant.
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THEOREM 7.4. For k 6
�
1
2
� �

�
logn; where � > 0 is any constant,

DISJn;k 2 coNPk n NPk ;
DISJn;k 2 coNPk n BPPk ;
DISJn;k 2 coNPk nMAk :

Proof. It suffices to prove the final statement, since MAk contains NPk and BPPk :
Theorem 7.3 shows that DISJn;k … MAk : On the other hand, it is well-known that

N.�DISJn;k/ 6 dlogne C 2: Specifically, the parties choose i 2 f1; 2; : : : ; ng nondeter-
ministically and compute x1;i ^ � � � ^ xk;i with two bits of communication. As a result,
DISJn;k 2 coNPk :

8. APPLICATIONS TO CIRCUIT COMPLEXITY

We will now apply our results on small-bias communication to circuit complexity. We
start with a well-known connection between multiparty communication and circuits, due
to Håstad and Goldmann [25].

PROPOSITION 8.1 (Håstad and Goldmann). Let f be a Boolean function computable by a
MAJıSYMMıANY circuit, where the top gate has fan-inm; the middle gates have fan-in
at most s; and the bottom gates have fan-in at most k�1: Then the k-party communication
complexity of f obeys

R 1
2�

1
2.mC1/

.f / 6 kdlog.s C 1/e;

regardless of how the bits are assigned to the parties.

Proof (Håstad and Goldmann). The parties pick a random gateG at the middle level, eval-
uate it deterministically using kdlog.sC1/e bits of communication, and output the answer.
The deterministic computation is possible because every input to G can be computed by
some party without communication, which makes it possible to partition the bottom gates
among the parties and have each party report the sum of those inputs to G assigned to him.
Since G is symmetric, the sum of its inputs uniquely determines its output.

We arrive at the first result of this section, a lower bound on the size of MAJ ıSYMM ı
ANY circuits with small bottom fan-in computing a depth-3 formula.

THEOREM 8.2. Let Fn;k W f0; 1g4
kn7k ! f�1;C1g be the depth-3 read-once f^;_g-

formula defined in Theorem 5.7. Then any circuit of type MAJ ı SYMM ı ANY with
bottom fan-in at most k � 1 computing Fn;k has size 2˝.n=k/:

Proof. We interpret Fn;k as the k-party communication problem defined in Theorem 5.7.
Let C be a circuit of type MAJ ı SYMM ı ANY that computes Fn;k ; where the bottom
fan-in of C is at most k � 1: If C has size s; then the fan-in of the gates at the top and
middle levels is bounded by s; which in view of Proposition 8.1 gives

R 1
2�

1
2.sC1/

.Fn;k/ 6 kdlog.s C 1/e:

By Theorem 5.7, this leads to s > exp.˝.n=k//:

Theorem 8.2 establishes Theorem 1.6 from the introduction.
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Consider now a different computational model, that of MAJ ı SYMM ı AND circuits
without any fan-in restrictions. We will prove a superpolynomial lower bound in this model
as well. We will use a well-known argument due to Razborov and Wigderson [41] which
reduces the task of proving lower bounds for MAJ ı SYMM ı AND circuits to proving
lower bounds for MAJ ı SYMM ı ANY circuits with small bottom fan-in. This argument
has already been used by several authors [48, 11] in the context of proving lower bounds
for MAJ ı SYMM ı AND circuits computing AC0 functions.

THEOREM 8.3 (Razborov and Wigderson). Let ı > 0 be a sufficiently small absolute
constant, f W f0; 1gN ! f�1;C1g a given function. For � 2 .0; ı/; define

F� D f ı PARITY 1
� ln2N :

If F� is computable by a MAJ ı SYMM ı AND circuit C of size at most N �2 ln lnN ; then
f is computable by a MAJ ı SYMM ı AND circuit of the same size with bottom fan-in at
most � lnN:

For completeness, we include the short proof of this theorem. In what follows, we let
G� denote the result of applying a random restriction � to a gate or function G:

Proof of Theorem 8.3 (adapted from [41, 48, 11]). Let � be a random restriction that leaves
each variable unset independently with probability p :

D 2�= lnN; and otherwise sets it to
0 or 1 with equal probability. For a conjunction K; let jKj denote the number of literals in
K: We claim that for every conjunction K;

PŒjK�j > � lnN� 6 N��.� ln lnN/:(8.1)

Indeed, for jKj 6 lnN ln lnN;

PŒjK�j > � lnN� 6

 
jKj

� lnN

!
p� lnN 6 N��.� ln lnN/;

whereas for jKj > lnN ln lnN

PŒjK�j > � lnN� 6 PŒK� ¥ 1� D
�
1C p

2

�jKj
6 N��.ln lnN/:

Applying (8.1) with a union bound across the bottom gates of C; we find that with
probability 1� o.1/ the bottom fan-in of C� is at most � lnN: Furthermore, the probability
that � does not turn any parity gate in F� into a constant is at least 1 �N.1 � p/

1
� ln2N D

1 � o.1/: In particular, there is a random restriction � such that on the one hand, C� has
bottom fan-in at most � lnN; and on the other hand f is a subfunction of C�:

We are now in a position to prove the promised lower bound.

THEOREM 1.7 (restated). Every MAJ ı SYMM ı AND circuit that computes

Hn.x/ D

n_
iD1

n̂

jD1

logn_
kD1

log2 nM
`D1

xi;j;k;`

has size n˝.log logn/:

Proof. Without loss of generality, we may assume that n is a power of 2: Let Fn;k be the
depth-3 read-once f^;_g-formula constructed in Theorem 5.7. By Theorem 8.2, every
MAJ ı SYMM ı ANY circuit with bottom fan-in logn � 1 that computes Fn;logn has size
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2˝.n= logn/: As a result, Theorem 8.3 gives a lower bound of n˝.log logn/ on the size of any
MAJ ı SYMM ıAND circuit computing the composition H 0n D Fn;logn ı PARITYc log2 n;

where c > 1 is a sufficiently large constant. It remains to note that H 0n is a subfunction of
HnC for a large enough constant C D C.c/ > 1:
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