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Abstract

In this paper, we prove that most of the boolean functions, f : {−1, 1}n → {−1, 1}
satisfy the Fourier Entropy Influence (FEI) Conjecture due to Friedgut and Kalai
(Proc. AMS’96)[2]. The conjecture says that the Entropy of a boolean function is at
most a constant times the Influence of the function. The conjecture has been proven
for families of functions of smaller sizes. O’donnell, Wright and Zhou (ICALP’11)[8]
verified the conjecture for the family of symmetric functions, whose size is 2n+1. They
are in fact able to prove the conjecture for the family of d-part symmetric functions for
constant d, the size of whose is 2O(nd). Also it is known that the conjecture is true for
a large fraction of polynomial sized DNFs (COLT’10)[6]. Using elementary methods
we prove that a random function with high probability satisfies the conjecture with the
constant as (2 + δ), for any constant δ > 0.

1 Introduction

The Entropy Influence Conjecture due to Friedgut and Kalai [2] says that for every boolean
function f : {−1, 1}n → {−1, 1} the following holds,∑

S⊆[n]

f̂(S)2 log2

1

f̂(S)2
≤ C ·

∑
S⊆[n]

f̂(S)2|S|

for some universal constant C > 0 where f̂(S) is the coefficient of χS(x) in the Fourier
expansion of f . The conjecture is of profound importance because of its potential impacts
in areas like Learning Theory, Threshold Phenomena in monotone graph properties, metric
embeddings etc. For a detailed description of the impact and background of the FEI conjec-
ture the reader is recommended to read the Introduction section of [8] and the blog post by
Gil Kalai [4].

The conjecture can be verified for simple functions like AND, OR, MAJORITY, Tribes
etc. Although posed about 15 years back we are not aware of a significantly large (of
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doubly exponential size) family of functions which satisfies this conjecture. Klivans et al. [6]
proved recently that a large fraction of polynomial sized DNF formulae satisfy the Mansour’s
conjecture [7] which in turn implies that FEI conjecture is also true for those functions, a
class which has a size of 2poly(n). In a recent resurrection of the FEI conjecture, O’Donnell
et al. [8] proved the conjecture for the family of symmetric functions and d-part symmetric
functions for constant d. The sizes of these families are 2n+1 and 2O(nd) respectively, again
only exponential in size. They also verified it for read-once decision trees which are of
exponential size as well. Thus, one is not aware of an explicit or non-explicit family of
doubly exponential size that satisfies the conjecture. Very recently, in a note, Keller et al [5]
managed to prove a variant of the conjecture for functions which have low Fourier weight on
characters of large size.

2 Preliminaries

In this section we introduce the basic preliminaries of discrete Fourier Analysis which will
be of interest for us.

Definition 1. Let f : {−1, 1}n → {−1, 1} be a boolean function. The Fourier expansion of
f is written as

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where χS(x) = Πi∈Sxi.

Definition 2. Let f : {−1, 1}n → {−1, 1} be a boolean function. The entropy of f is defined
as

H(f) =
∑
S⊆[n]

f̂(S)2 log2

1

f̂(S)2

Notice by Parseval’s identity,
∑

S⊆[n] f̂(S)2 = 1 which implies that the Fourier coefficients

can be thought of as a probability distribution and hence H(f) gives us the entropy of that
distribution. The following fact (see page 40 of [3]) gives an upper bound on H(f) which
will be of use for us later.

Fact 1. For an arbitrary boolean function f , H(f) ≤ n.

Definition 3. For a boolean function f : {−1, 1}n → {−1, 1}, Infi(f), the Influence of
coordinate i is defined as

Infi(f) =
∑
S:i∈S

f̂(S)2

and the Influence of f , Inf(f), is defined as

Inf(f) =
n∑
i=1

Infi =
∑
S⊆[n]

f̂(S)2|S|
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An equivalent combinatorial interpretation of the influence of the ith coordinate is given
by Infi = Prx[f(x) 6= f(x(i))] where x(i) is x with the ith coordinate flipped.

We will also use the following well-known facts regarding the Fourier coefficients.

Fact 2. For a boolean function f : {−1, 1}n → {−1, 1}, the following holds for any subset
S ⊆ [n]

1. f̂(S) =
1

2n

∑
x

f(x)χS(x).

2.
∑
x

χS(x) = 0 if S 6= φ, and 2n if S = φ.

3 The Result

The main contribution of our paper is to prove that there is a large (non-explicit) family of
functions that satisfies the entropy influence conjecture. The size of this family is significantly
larger than the size of any of the known families for which the FEI conjecture is known to
be true. More precisely, we show that there is a family of functions whose size is[

1− 4

(
1 +

2

δ

)2
1

2n+1n

]
· 22n

satisfies the conjecture with C = 2 + δ for any constant δ > 0. It is worth mentioning here
is that there are functions which need the constant C to be at least 4.6 [8] so taking δ very
small will not work for some functions.

Theorem 1. A random function satisfies the FEI conjecture with high probability with C =
2 + δ, for any constant δ > 0.

Consider random function which puts values 1 or −1 independently on every point of
{1,−1}n with an equal probability of 1/2. Clearly, every function is obtained with a prob-
ability of 1

22n . Let Hr and Ir be random variables denoting the entropy and influence of a
randomly chosen function as above. We will prove Theorem 1 using a simple application
of Chebyshev Inequality. We will use the following two lemmas in our proof. A proof of
Lemma 1 and Lemma 2 via the notion of average sensitivity (which is same as the Influence)
is available in a technical report due to Bernasconi, Codenotti and Simon [1]. For the sake
of completeness we include slightly different proofs for these two lemmas.

Lemma 1. E[Ir] = n
2
.
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Proof.

E[Ir] = E

∑
S⊆[n]

f̂(S)2|S|


=

∑
S⊆[n]

E[f̂(S)2]|S|

=
∑
S⊆[n]

1

22n
E

[∑
x

f(x)2χS(x)2 +
∑
x 6=y

f(x)f(y)χS(x)χS(y)

]
|S|

=
1

22n

∑
S⊆[n]

(∑
x

1 +
∑
x 6=y

E [f(x)f(y)]χS(x)χS(y)

)
|S|

=
1

22n

∑
S⊆[n]

2n|S|+ 0 (this follows because for x 6= y, E[f(x)f(y)] = E[f(x)]E[f(y)] = 0 )

=
1

2n

n∑
k=0

(
n

k

)
k =

n2n−1

2n
=
n

2

Lemma 2. Var[Ir] = n
2n+1 .

Proof. We have already calculated E[Ir]. To calculate,

Var[Ir] = E[I2
r ]− (E[Ir])

2

we need to calculate E[I2
r ].

E[I2
r ] = E

∑
S⊆[n]

f̂(S)2|S|

2
= E

 ∑
S1,S2⊆[n]

f̂(S1)2f̂(S2)2|S1||S2|


=

∑
S1,S2⊆[n]

E
[
f̂(S1)2f̂(S2)2

]
|S1||S2|
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E
[
f̂(S1)2f̂(S2)2

]
=

1

24n
E

(∑
x

f(x)χS1(x)

)2(∑
x

f(x)χS2(x)

)2


=
1

24n
E

[ ∑
x1,y1,x2,y2

f(x1)f(y1)f(x2)f(y2)χS1(x1)χS1(y1)χS2(x2)χS2(y2)

]

=
1

24n

∑
x1,y1,x2,y2

E [f(x1)f(y1)f(x2)f(y2)]χS1(x1)χS1(y1)χS2(x2)χS2(y2)

To calculate the above sum, consider the following sets,

A1 = {(x1, y1, x2, y2)|x1 = y1, x2 = y2}
A2 = {(x1, y1, x2, y2)|x1 = x2, y1 = y2}
A3 = {(x1, y1, x2, y2)|x1 = y2, x2 = y1}

Notice the following properties of A1, A2, A3, |A1| = |A2| = |A3| = 22n, A1 ∩A2 = A2 ∩A3 =
A3 ∩A1 = A1 ∩A2 ∩A3 and |A1 ∩A2 ∩A3| = 2n. It is easy to verify that if (x1, y1, x2, y2) /∈
A1

⋃
A2

⋃
A3, then E [f(x1)f(y1)f(x2)f(y2)] = 0. Otherwise it is χS1(x1)χS1(y1)χS2(x2)χS2(y2).

Using the above properties and inclusion exclusion principle we have E
[
f̂(S1)2f̂(S2)2

]
equal

to

1

24n

[∑
A2

χS1(x1)χS1(y1)χS2(x2)χS2(y2) +
∑
A3

χS1(x1)χS1(y1)χS2(x2)χS2(y2)

]
+

1

24n

[∑
A1

χS1(x1)χS1(y1)χS2(x2)χS2(y2)

]
− 2 · 1

24n

[ ∑
A1∩A2∩A3

χS1(x1)χS1(y1)χS2(x2)χS2(y2)

]

=
1

24n

[∑
x,y

χS1(x)χS1(y)χS2(x)χS2(y) +
∑
x,y

χS1(x)χS1(y)χS2(y)χS2(x)

]
+

1

24n

[∑
x,y

χS1(x)χS1(x)χS2(y)χS2(y)

]
− 2 · 1

24n
· 2n

=
1

24n

[
2
∑
x,y

χS1∆S2(x)χS1∆S2(y) + 22n − 2 · 2n
]
.

Thus, using the fact that
∑

x χS1∆S2(x) = 0 if S1 6= S2 and 2n otherwise, we have

E
[
f̂(S1)2f̂(S2)2

]
=

{
1

24n · (22n − 2 · 2n) if S1 6= S2.
1

24n · (3 · 22n − 2 · 2n) otherwise.
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Therefore,

E[I2
r ] =

∑
S1,S2⊆[n]

E
[
f̂(S1)2f̂(S2)2

]
|S1||S2|

=
∑
S1=S2

E
[
f̂(S1)2f̂(S2)2

]
|S1||S2|+

∑
S1 6=S2

E
[
f̂(S1)2f̂(S2)2

]
|S1||S2|

=
∑
S1=S2

3 · 22n − 2 · 2n

24n
|S1||S2|+

∑
S1 6=S2

22n − 2 · 2n

24n
|S1||S2|

=
∑
S1=S2

2 · 22n

24n
|S1||S2|+

∑
S1,S2

22n − 2 · 2n

24n
|S1||S2|

=
2 · 22n

24n

n∑
k=0

(
n

k

)
k2 +

22n − 2 · 2n

24n

(
n∑
k=0

(
n

k

)
k

)2

=
2(n(n− 1)2n−2 + n2n−1)

22n
+

(
1

22n
− 2

23n

)
(n2n−1)2

=
n

2n+1
+
n2

4
.

Hence,

Var[Ir] =
n

2n+1
.

We are now ready to prove Theorem 1.

Proof. (Theorem 1) We will prove this using simple applications of Chebyshev inequality.
As mentioned earlier we pick a random function which puts values −1 or 1 independently
on every point of {−1, 1}n with an equal probability of 1/2. Recall that, Hr and Ir are
random variables denoting the entropy and influence of a randomly chosen function. Let us
define the event EFEI indicating that the randomly chosen boolean function satisfies the FEI
conjecture with the constant C = 2 + 2ε for ε > 0. More precisely, EFEI is the event that
Hr ≤ (2 + 2ε)Ir. Our aim is to prove that almost surely EFEI takes place. From Fact 1, we
have Hr ≤ n. Therefore,

Pr[Hr > n] = 0.

Consider the following events:
E1 := Hr > n

E2 := (2 + 2ε)Ir ≤ n

Now if Hr > (2 + 2ε)Ir, then either E1 or E2 happens. Therefore by union bound,

Pr[Hr > (2 + 2ε)Ir] ≤ Pr[E1] + Pr[E2]
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Since from Lemma 1, E[Ir] = n/2, E[(2 + 2ε)Ir] = (1 + ε)n. Now we upper bound Pr[E2].

Pr[E2] = Pr[(2+2ε)Ir ≤ n] = Pr[(2+2ε)Ir−(1+ε)n ≤ −εn] ≤ Pr[|(2+2ε)Ir−(1+ε)n| ≥ εn]

Using Chebyshev Inequality,

Pr[|(2 + 2ε)Ir − (1 + ε)n| ≥ εn] ≤ Var[(2 + 2ε)Ir]

ε2n2
= 4

(
1 +

1

ε

)2
Var[Ir]

n2
.

From Lemma 2, this in turn implies

Pr[Hr > (2 + 2ε)Ir] ≤ 4

(
1 +

1

ε

)2
1

2n+1n

Hence, it follows that Pr[EFEI ] ≥ 1 − 2
(
1 + 1

ε

)2 1
2nn

with constant C = 2 + 2ε for arbitrary
constant ε > 0.

4 Conclusion

In this paper we gave a simple proof of the fact a random function will almost surely satisfy
the FEI conjecture for C = 2 + δ for δ > 0. Although our proof is non-constructive, this is
the only doubly exponential sized family for which it is known that the FEI conjecture is
true.

It would be interesting to get a large (ω(2poly(n))) explicit family of functions that satisfy
FEI conjecture. One possible candidate is the class of functions f(x1, x2, . . . , xp) which are
invariant under the action of the cyclic permutation group Cp ≤ Sym(p) where p is prime. It

can be verified that the size of this class is 2
2p−2

p
+2. Because of the highly structured nature

of the functions which are invariant under Cp it might be plausible to verify the conjecture
for these functions.
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