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Abstract

We study the problem of obtaining efficient, deterministic, black-box polynomial identity
testing algorithms for depth-3 set-multilinear circuits (over arbitrary fields). This class of circuits
has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and
Shpilka [RS05]), but has no known such black-box algorithm. We recast this problem as a
question of finding a low-dimensional subspace H, spanned by rank 1 tensors, such that any non-
zero tensor in the dual space ker(H) has high rank. We obtain explicit constructions of essentially
optimal-size hitting sets for tensors of degree 2 (matrices), and obtain quasi-polynomial sized
hitting sets for arbitrary tensors (but this second hitting set is less explicit).

We also show connections to the task of performing low-rank recovery of matrices, which
is studied in the field of compressed sensing. Low-rank recovery asks (say, over R) to recover
a matrix M from few measurements, under the promise that M is rank ≤ r. In this work,
we restrict our attention to recovering matrices that are exactly rank ≤ r using deterministic,
non-adaptive, linear measurements, that are free from noise. Over R, we provide a set (of size
4nr) of such measurements, from which M can be recovered in O(rn2 + r3n) field operations,
and the number of measurements is essentially optimal. Further, the measurements can be
taken to be all rank-1 matrices, or all sparse matrices. To the best of our knowledge no explicit
constructions with those properties were known prior to this work.

We also give a more formal connection between low-rank recovery and the task of sparse
(vector) recovery : any sparse-recovery algorithm that exactly recovers vectors of length n and
sparsity 2r, using m non-adaptive measurements, yields a low-rank recovery scheme for exactly
recovering n× n matrices of rank ≤ r, making 2nm non-adaptive measurements. Furthermore,
if the sparse-recovery algorithm runs in time τ , then the low-rank recovery algorithm runs in
time O(rn2 + nτ). We obtain this reduction using linear-algebraic techniques, and not using
convex optimization, which is more commonly seen in compressed sensing algorithms.

Finally, we also make a connection to rank-metric codes, as studied in coding theory. These
are codes with codewords consisting of matrices (or tensors) where the distance of matrices A
and B is rank(A−B), as opposed to the usual hamming metric. We obtain essentially optimal-
rate codes over matrices, and provide an efficient decoding algorithm. We obtain codes over
tensors as well, with poorer rate, but still with efficient decoding.
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1 Introduction

We start with a motivating example. Let x and y be vectors of n variables each. Let M be an
n× n matrix (over some field, say R), and define the quadratic form

fM (x,y)
def
=x†My .

Suppose now that we are given an oracle to fM , that can evaluate fM on inputs (x,y) that we
supply. The type of question we consider is: how many (deterministically chosen) evaluations of
fM must we make in order to determine whether A is non-zero?

It is not hard to show that n2 evaluations to fM are necessary and sufficient to determine whether
A is non-zero. The question becomes more interesting when we are promised that rank(M) ≤ r.
That is, given that rank(M) ≤ r, can we (deterministically) determine whether M = 0 using � n2

evaluations of fM? It is not hard to show that there (non-explicitly) exist ≈ 2nr evaluations to
determine whether M = 0, and one of the new results in this paper is to give an explicit construction
of 2nr such evaluations (over R).

We also consider various generalizations of this problem. The first generalization is to move
from matrices (which are in a sense 2 dimensional) to the more general notion of tensors (which
are in a sense d-dimensional). That is, a tensor is a map T : [n]d → F and like a matrix we can
define a polynomial

fT (x1,1, . . . , x1,n, . . . , xd,1, . . . , xd,n)
def
=

∑
i1,...,id∈[n]

T (i1, . . . , id)
d∏
j=1

xj,ij .

As with matrices, tensors have a notion of rank (defined later), and we can ask: given that rank(T ) ≤
r how many (deterministically chosen) evaluations of fT are needed to determine whether T = 0.
As T = 0 iff fT = 0, we see that this problem is an instance of polynomial identity testing, which
asks: given oracle access to a polynomial f that is somehow “simple”, how many (deterministically
chosen) queries to f are needed to determine whether f = 0?

The above questions ask whether a certain matrix or tensor is zero. However, we can also ask
for more, and seek to reconstruct this matrix/tensor fully. That is, how many (deterministically
chosen) evaluations to fM are needed to determine M? This question can be seen to be related to
compressed sensing and sparse recovery, where the goal is to reconstruct a “simple” object from
“few” measurements. In this case, “simple” refers to the matrix being low-rank, as opposed to
a vector being sparse. As above, it is not hard to show that there exist ≈ 4nr evaluations that
determine M , and this paper gives an explicit construction of 4nr such evaluations, as well as an
efficient algorithm to reconstruct M from these evaluations.

We will now place this work in a broader context by providing background on polynomial
identity testing, compressed sensing and low-rank recovery, and the theory of rank-metric codes.

1.1 Polynomial Identity Testing

Polynomial identity testing (PIT) is the problem of deciding whether a polynomial (specified by an
arithmetic circuit) computes the identically zero polynomial. The obvious deterministic algorithm
that completely expands the polynomial unfortunately takes exponential time. This is in contrast
to the fact that there are several (quite simple) randomized algorithms that solve this problem quite
efficiently. Further, some of these randomized algorithms treat the polynomial as a black-box, so
that they only use the arithmetic circuit to evaluate the polynomial on chosen points, as opposed
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to a white-box algorithm which can examine the internal structure of the circuit. Even in the
white-box model, no efficient deterministic algorithms are known for general circuits.

Understanding the deterministic complexity of PIT has come to be an important problem in
theoretical computer science. Starting with the work of Kabanets and Impagliazzo [KI04], it has
been shown that the existence of efficient deterministic (white-box) algorithms for PIT has a tight
connection with the existence of explicit functions with large circuit complexity. As proving lower
bounds on circuit complexity is one of the major goals of theoretical computer science, this has led
to much research into PIT.

Stronger connections are known when the deterministic algorithms are black-box. For, any
such algorithm corresponds to a hitting set, which is a set of evaluation points such that any small
arithmetic circuit computing a non-zero polynomial must evaluate to non-zero on at least one point
in the set. Heintz and Schnorr [HS80], as well as Agrawal [Agr05], showed that any deterministic
black-box PIT algorithm very easily yields explicit polynomials that have large arithmetic circuit
complexity. Moreover, Agrawal and Vinay [AV08] showed that a deterministic construction of a
polynomial size hitting set for arithmetic circuits of depth-4 gives rise to a quasi-polynomial sized
hitting set for general arithmetic circuits. Thus, the black-box deterministic complexity of PIT
becomes interesting even for constant-depth circuits. However, currently no polynomial size hitting
sets are known for general depth-3 circuits. Much of recent work on black-box deterministic PIT
has identified certain subclasses of circuits for which small hitting sets can be constructed, and this
work fits into that paradigm. See [SY10] for a survey of recent results on PIT.

One subclass of depth-3 circuits is the model of set-multilinear depth-3 circuits, first introduced
by Nisan and Wigderson [NW96]. Raz and Shpilka [RS05] gave a polynomial-time white-box PIT
algorithm for non-commutative arithmetic formulas, which contains set-multilinear depth-3 circuits
as a subclass. However, no polynomial-time black-box deterministic PIT algorithm is known for set-
multilinear depth-3 circuits. The best known black-box PIT results for the class of set-multilinear
circuits, with top fan-in ≤ r and degree d, are hitting sets of size min(nd, poly((nd)r)), where the
first part of bound comes from a simple argument (presented in Lemma 3.11), and the second part
of the bound ignores that we have set-multilinear polynomials, and simply uses the best known
hitting sets for so-called ΣΠΣ(k) circuits as established by Saxena and Seshadhri [SS11]. For non-
constant d and r, these bounds are super-polynomial. Improving the size of these hitting sets is
the primary motivation for this work.

To connect PIT for set-multilinear depth-3 circuits with the above questions on matrices and
tensors, we now note that any such circuit of top fan-in ≤ r, degree d, on dn variables (and thus
size ≤ dnr), computes a polynomial fT , where T is an [n]d tensor of rank ≤ r. Conversely, any
such fT can be computed by such a circuit. Thus, constructing better hitting sets for this class of
circuits is exactly the question of finding smaller sets of (deterministically chosen) evaluations to
fT to determine whether T = 0.

1.2 Low-Rank Recovery and Compressed Sensing

Low-rank Recovery (LRR) asks (for matrices) to recover an n×n matrix M from few measurements
of M . Here, a measurement is some inner product 〈M,H〉, where H is an n × n matrix and the
inner product 〈·, ·〉 is the natural inner product on n2 long vectors. This can be seen as the natural
generalization of the sparse recovery problem, which asks to recover sparse vectors from few linear
measurements. For, over matrices, our notion of sparsity is simply that of being low-rank.

Sparse recovery and compressed sensing are active areas of research, see for example [CSw].
Much of this area focuses on constructing distributions of measurements such that the unknown
sparse vector can be recovered efficiently, with high probability. Also, it is often assumed that the
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sequence of measurements will not depend on any of the measurement results, and this is known
as non-adaptive sparse recovery. We note that Indyk, Price and Woodruff [IPW11] showed that
adaptive sparse recovery can outperform non-adaptive measurements in certain regimes. Much of
the existing work also focuses on efficiency concerns, and various algorithms coming from convex
programming have been used. As such, these algorithms tend to be stable under noise, and can
recover approximations to the sparse vector (and can even do so only if the original vector was
approximately sparse). One of the initial achievements in this field is an efficient algorithm for
recovery of a k-sparse1 approximation of n-entry vector in O(k log(n/k)) measurements [CRT05].

Analogous questions for low-rank recovery have also been explored (for example, see [lrr] and
references there in). Initial work (such as [CT09, CP09]) asked the question of low-rank matrix
completion, where entries of a low-rank matrix M are revealed individually (as opposed measuring
linear combinations of matrix entries). It was shown in these works that for an n×n rank ≤ r matrix
that O(nrpolylogn) noisy samples suffice for nuclear-norm minimization to complete the matrix
efficiently. Further works (such as [ENP11]) prove that a randomly chosen set of measurements
(with appropriate parameters) gives enough information for low-rank recovery, other works (such
as [CP11, RFP10]) giving explicit conditions on the measurements that guarantee that the nuclear
norm minimization algorithm works, and finally other works seek alternative algorithms for certain
ensembles of measurements (such as2 [KOH11]). As in the sparse recovery case, most of these
work seek stable algorithms that can deal with noisy measurements as well as matrices that are
only approximately low-rank. Finally, we note that some applications (such as quantum state
tomography) have additional requirements for their measurements (for example, they should be
easy to prepare as quantum states) and some work has gone into this as well [GLF+10, Gro09].

We now make a crucial observation which shows that black-box PIT for the quadratic form fM
is actually very closely related to low-rank recovery of M . That is, note that fM (x,y) = x†My =
〈M,x†y〉. That is, an evaluation of fM corresponds to a measurement of M , and in particular this
measurement is realized as a rank-1 matrix. Thus, we see that any low-rank-recovery algorithm
that only uses rank-1 measurement can also determine if M is non-zero, and thus also performs
PIT for quadratic forms. Conversely, suppose we have a black-box PIT algorithm for rank ≤ 2r
quadratic forms. Note then that for any M,N with rank ≤ r, M − N has rank ≤ 2r. Thus, if
M 6= N then fM−N will evaluate to non-zero on some point in the hitting set. As fM−N = fM−fN ,
it follows that a hitting set for rank ≤ 2r matrices will distinguish M and N . In particular, this
shows that information-theoretically any hitting set for rank ≤ 2r matrices is also an LRR set.
Thus, in addition to constructing hitting sets for the quadratic forms fM , this paper will also use
those hitting sets as LRR sets, and also give efficient LRR algorithms for these constructions.

1.3 Rank-Metric Codes

Most existing work on LRR has focused on random measurements, whereas the interesting aspect
of PIT is to develop deterministic evaluations of polynomials. As the main motivation for this
paper is to develop new PIT algorithms, we will seek deterministic LRR schemes. Further, we will
want results that are field independent, and so this work will focus on noiseless measurements (and
matrices that are exactly of rank≤ r). In such a setting, LRR constructions are very related to rank-
metric codes. These codes (related to array codes), are error-correcting codes where the messages
are matrices (or tensors) and the normal notion of distance (the Hamming metric) is replaced by
the rank metric (that is, the distance of matrices M and N is rank(M −N)). Over matrices, these

1A vector is k-sparse if it has at most k non-zero entries.
2Interestingly, [KOH11] use what they call subspace expanders a notion that was studied before in a different

context in theoretical computer science and mathematics under the name of dimension expanders [LZ08, DS08].
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codes were originally introduced independently by Gabidulin, Delsarte and Roth [GK72, Gab85b,
Gab85a, Del78, Rot91]. They showed, using ideas from BCH codes, how to get optimal (that
is, meeting an analogue of the Singleton bound) rank-metric codes over matrices, as well as how
to decode these codes efficiently. A later result by Meshulam [Mes95] constructed rank-metric
codes where every codeword is a Hankel matrix. Roth [Rot91] also showed how to construct rank-
metric codes from any hamming-metric code, but did not provide a decoding algorithm. Later,
Roth [Rot96] considered rank-metric codes over tensors and gave decoding algorithms for a constant
number of errors. Roth also discussed analogues to the Gilbert-Varshamov and Singleton bounds in
this regime. This alternate metric is motivated by crisscross errors in data storage scenarios, where
corruption can occur in bursts along a row or column of a matrix (and are thus rank-1 errors).

We now explain how rank-metric codes are related to LRR. Suppose we have a set of matrices H
which form a set of (non-adaptive, deterministically chosen) LRR measurements that can recover
rank ≤ r matrices. Define the code C as the set of matrices orthogonal to each matrix in H. Thus,
C is a linear code. Further, given some M ∈ C and E such that rank(E) ≤ r, it follows that
H(M + E) = HE (where we abuse notation and treat M and E as n2-long vectors, and H as an
|H| × n2 matrix). That H is an LRR set means that E can be recovered from the measurements
HE. Thus the code C can correct r errors (and has minimum distance ≥ 2r + 1, by a standard
coding theory argument, as encapsulated in Lemma 8.4). Similarly, given a rank-metric code C
that can correct up to rank ≤ r errors, the parity checks of this code define an LRR scheme. Thus,
a small LRR set is equivalent to a rank-metric code with good rate.

The previous subsection showed the tight connection between LRR and PIT. Via the above
paragraph, we see that hitting sets for quadratic forms are equivalent to rank-metric codes, when
the parity check constraints are restricted to be rank 1 matrices.

1.4 Reconstruction of Arithmetic Circuits

Even more general than the PIT and LRR problems, we can consider the problem of reconstruction
of general arithmetic circuits only given oracle access to the evaluation of that circuit. This is the
arithmetic analog of the problem of learning a function using membership queries. For more
background on reconstruction of arithmetic circuits we refer the reader to [SY10]. Just as with the
PIT and LRR connection, PIT for a specific circuit class gives information-theoretic reconstruction
for that circuit class. As we consider the PIT question for tensors, we can also consider the
reconstruction problem.

The general reconstruction problem for tensors of degree d and rank r was considered before
in the literature [BBV96, BBB+00, KS06] where learning algorithms were given for any value of
r. However, those algorithms are inherently randomized. Also of note is that the algorithms of
[BBB+00, KS06] output a multiplicity automata, which in the context of arithmetic circuits can
be thought of as an arithmetic branching program. In contrast, the most natural form of the
reconstruction question would be to output a degree d tensor.

1.5 Our Results

In this subsection we informally summarize our results. We again stress that our results handle
matrices of exactly rank ≤ r, and we consider non-adaptive, deterministic measurements. The cul-
minating result of this work is the connection showing that low-rank recovery reduces to performing
sparse-recovery, and that we can use dual Reed-Solomon codes to instantiate the sparse-recovery
oracle to achieve a low-rank recovery set that only requires rank-1 (or even sparse) measurements.
We find the fact that we can transform an algorithm for a combinatorial property (recovering sparse
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signals) to an algorithm for an algebraic property (recovering low-rank matrices) quite interesting.

Hitting Sets for Matrices and Tensors We begin with constructions of hitting sets for matri-
ces, so as to get black box PIT for quadratic forms. By improving a construction of rank-preserving
matrices from Gabizon-Raz [GR08], we are able to show the following result, which we can then
leverage to construct hitting sets.

Theorem (Theorem 5.1). Let n ≥ r ≥ 1. Let F be a “large” field, and let g ∈ F have “large”
multiplicative order. Let M be an n × n matrix of rank ≤ r over F. Let f̂M (x, y) = x†My be the
bivariate polynomial defined by the vectors x ∈ Fn and y ∈ Fn such that3 (x)i = xi and (y)i = yi.

Then M is non-zero iff one of the univariate polynomials f̂M (x, x), f̂M (x, gx), . . . , f̂M (x, gr−1x)
is non-zero.

Intuitively this says that we can test if the quadratic form fM is zero by testing whether each
of r univariate polynomials are zero. As these univariate polynomials are of degree < 2n, it follows
that we can interpolate them fully using 2n evaluations. As such a univariate polynomial is zero
iff all of these evaluations are zero, this yields a 2nr sized hitting set. While this only works for
“large” fields, we can combine this with results on simulation of large fields (see Section 6.3) to
derive results over any field with some loss. This is encapsulated in the next results for black-box
PIT, where the log factors are unnecessary over large fields.

Theorem (Corollaries 6.13 and 6.17). Let n ≥ r ≥ 1. Let F be any field, then there is a poly(n)-
explicit4 hitting set for n× n matrices of rank ≤ r, of size O(nr lg2 n).

Theorem (Corollary 6.18). Let n, r ≥ 1 and d ≥ 2. Let F be any field, then there is a
poly((nd)d, rlg d)-explicit hitting set for [n]d tensors of rank ≤ r, of size O(dnrlg d · (d lg(nd))d).

If F is large enough then the O((d lg(nd))d) term is unnecessary. In such a situation, this
is a quasi-polynomial sized hitting set, improving on the min(nd, poly((nd)r)) sized hitting set
achievable by invoking the best known results for ΣΠΣ(k) circuits [SS11]. However, this hitting
set is not as explicit as the construction of [SS11] since it takes at least nd time to compute, as
opposed to poly(n, d, r). Nevertheless, although it takes poly((nd)d, rlg d) time to construct the set,
the fact that it is of quasi-polynomial size is quite interesting and novel. Indeed, in general it is
not clear at all how to construct a quasi-polynomial sized hitting set for general circuits (or just for
depth-3 circuits), when one is allowed even an exp(nd) construction time (where n is the number
of variables, and d is the degree of the output polynomial). We note that this result improves on
the two obvious hitting sets seen in Lemmas 3.11 and 3.13. The first gives nd tensors in the hitting
set and is polylog(n, d, r)-explicit while the second gives a set of size ≈ dnr while not being explicit
at all. The above result non-trivially interpolates between these two results. Finally, we mention

that in Remark 6.9 we explain how one can achieve (roughly) a poly(r(dn)
√
d)-constructible hitting

set of the same size. As this is a somewhat mild improvement (this is still not the explicitness that
we were looking for) we only briefly sketch the argument.

Low-Rank Recovery As mentioned in the previous section, black-box PIT results imply LRR
constructions in an information theoretic sense. Thus, the above hitting sets imply LRR con-
structions but the algorithm for recovery is not implied by the above result. To yield algorithmic

3In this paper, vectors and matrices are indexed from zero, so x = (1, x, x2, . . . , xn−1)†.
4A n × n matrix is t-explicit if each entry can be (deterministically) computed in t steps, where field operations

are considered unit cost.
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results, we actually establish a stronger claim. That is, we first show that the above hitting sets
embed a natural sparse-recovery set arising from the dual Reed-Solomon code. Then we develop
an algorithm that shows that any sparse-recovery set gives rise to a low-rank-recovery set, and
that recovery can be performed efficiently given an oracle for sparse recovery. This connection (in
the context that any error-correcting code in the hamming metric yields an error-correcting code
in the rank-metric) was independently made by Roth [Rot91] (see Theorem 3), who did not give a
recovery procedure for the resulting LRR scheme. The next theorem, which is the main result of
the paper, shows this connection is also efficient with respect to recovery.

Theorem (Theorem 7.19). Let n ≥ r ≥ 1. Let V be a set of (non-adaptive) measurements for
2r-sparse-recovery for n-long vectors. Then there is a poly(n)-explicit set H, which is a (non-
adaptive) rank ≤ r low-rank-recovery set for n× n matrices, with a recovery algorithm running in
time O(rn2 + nτ), where τ is the amount of time needed to do sparse-recovery from V. Further,
|H| = 2n|V|, and each matrix in H is n-sparse.

This result shows that sparse-recovery and low-rank recovery (at least in the exact case) are
very closely connected. Interestingly, this shows that sparse-recovery (which can be regarded as a
combinatorial property) and low-rank recovery (which can be regarded as an algebraic property)
are tightly connected. Many fruitful connections have taken this form, such as in spectral graph
theory, and perhaps the connection presented here will yield yet further results.

Also, the algorithm used in the above result is purely linear-algebraic, in contrast to the convex
optimization approaches that many compressed sensing works use. However, we do not know if
the above result is stable to noise, and regard this issue as an important question left open by this
work.

When the above result is combined with our hitting set results, we achieve the following LRR
scheme for matrices (and an LRR scheme for tensors, with parameters similar to Corollary 6.18
mentioned above, and Corollary 8.6 mentioned below, is derived in Corollary 8.2).

Theorem (Corollary 7.26). Let n ≥ r ≥ 1. Over any field F, there is an poly(n)-explicit set H, of
O(rn lg2 n) size, such that measurements against H allow recovery of n × n matrices of rank ≤ r
in time poly(n). Further, the matrices in H can be chosen to be all rank 1, or all n-sparse.

We note again that over large fields these logarithmic factors are seen to be unneeded.
Some prior work [GK72, Gab85b, Gab85a, Del78, Rot91] on LRR focused on finite fields, and

as such based their results on BCH codes. The above result is based on (dual) Reed-Solomon codes,
and as such works over any field (when combined with results allowing simulation of large fields by
small fields). Other prior work [RFP10] on exact LRR permitted randomized measurements, while
we achieve deterministic measurements.

Further, we are able to do LRR with measurements that are either all n-sparse, or all rank-
1. As Roth [Rot91] independently observed, the n-sparse LRR measurements can arise from any
(hamming-metric) error-correcting code (but he did not provide decoding). Tan, Balzano and
Draper [TBD11] showed that random (n lg n)-sparse measurements provide essentially the same
low-rank recovery properties as random measurements. Thus, our results essentially achieve this
deterministically.

We further observe that a specific code (the dual Reed-Solomon code) allows a change of basis
for the measurements, and in this new basis the measurements are all rank 1. Recht et al. [RFP10]
asked whether low-rank recovery was possible when the measurements were rank 1 (or “factored”),
as such measurements could be more practical as they are simpler to generate and store in memory.
Thus, our construction answers this question in the positive direction, at least for exact LRR.
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Rank-Metric Codes Appealing to the connection between LRR and rank-metric codes, we
achieve the following constructions of rank-metric codes.

Theorem (Corollary 8.5). Let F be any field, n ≥ 1 and 1 ≤ r ≤ n/2. Then there are poly(n)-
explicit rank-metric codes with poly(n)-time decoding for up to r errors, with parameters [[n]2, (n−
2r)2 · O(lg2 n), 2r + 1]F, and the parity checks on this code can be chosen to be all rank-1 matrices,
or all n-sparse matrices.

Earlier work on rank-metric codes over finite fields [GK72, Gab85b, Gab85a, Del78, Rot91]
achieved [[n]2, n(n − 2r), 2r + 1]Fq rank-metric codes, with efficient decoding algorithms. These
are optimal (meeting the analogue of the Singleton bound for rank-metric codes). However, these
constructions only work over finite fields. While our code achieves a worse rate, its construction
works over any field, and over infinite fields the O(lg2 n) term is unneeded. Further, Roth [Rot91]
observed that the resulting [[n]2, (n − 2r)2, 2r + 1] code is optimal (see discussion of his Theorem
3) over algebraically closed fields (which are infinite).

We are also able to give rank-metric codes over tensors, which can correct errors up to rank
≈ nd/ lg d (out of a maximum nd−1), while still achieving constant rate. The rank-metric code
arising from the naive low-rank recovery of Lemma 3.11 never achieves constant rate, and prior
work by Roth [Rot96] only gave decoding against a constant number of errors.

Theorem (Corollary 8.6). Let F be any field, n, r ≥ 1 and d ≥ 2. Then there are poly((nd)d, rlg d)-
explicit rank-metric codes with poly((nd)d, rlg d)-time decoding for up to r errors, with parameters
[[n]d, nd −O(d2nrlg d lg(dn)), 2r + 1]F.

We note here that our decoding algorithm will return the entire tensor, which is of size nd.
Trivially, any algorithm returning the entire tensor must take at least nd time. In this case, the
level of explicitness of the code we achieve is reasonable. However, a more desirable result would
be for the algorithm to return a rank ≤ r representation of the tensor, and thus the nd lower
bound would not apply so that one could hope for faster decoding algorithms. Unfortunately, even
for d = 3 an efficient algorithm to do so would imply P = NP. That is, if an algorithm (even
one which is not a rank-metric decoding or low-rank recovery algorithm) could produce a rank ≤ r
decomposition for any rank ≤ r tensor, then one could compute tensor-rank by as it is the minimum
r such that the resulting rank ≤ r decomposition actually computes the desired tensor (this can
be checked in poly(nd) time). However, H̊astad [H̊as90] showed that tensor-rank (over finite fields)
is NP-hard for any fixed d ≥ 3. It follows that for any (fixed) d ≥ 3, if one could recover (even in
poly(nd)-time) a rank ≤ r tensor into its rank ≤ r decomposition, then P = NP. Thus, we only
discuss recovery of a tensor by reproducing its entire list of entries, as opposed to its more concise
representation.

Finally, we remark that in [Rot96] Roth discussed the question of decoding rank-metric codes of
degree d = 3, gave decoding algorithms for errors of rank 1 and 2, and wrote that “Since computing
tensor rank is an intractable problem, it is unlikely that we will have an efficient decoding algorithm
. . . otherwise, we could use the decoder to compute the rank of any tensor. Hence, if there is any
efficient decoding algorithm, then we expect such an algorithm to recover the error tensor without
necessarily obtaining its rank. Such an algorithm, that can handle any prescribed number of errors,
is not yet known.” Thus, our work gives the first such algorithm for tensors of degree d > 2.

1.6 Proof Overview

In this section we give proof outlines of the results mentioned so far.
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Hitting Sets for Matrices The main idea for our hitting set construction is to reduce the
question of hitting (non-zero) n × n matrices to a question of hitting (non-zero) r × r matrices.
Once this reduction is performed, we can then run the naive hitting set of Lemma 3.11, which
queries all r2 entries. This can loosely be seen in analogy with the kernelization process in fixed-
parameter tractability, where a problem depending on the input size, n, and some parameter, k,
can be solved by first reducing to an instance of size f(k), and then brute-forcing this instance.

To perform this kernelization, we first note that any n× n matrix M of rank exactly r can be
written as M = PQ†, where P and Q are n × r matrices of rank exactly r. To reduce M to an
r × r matrix, it thus suffices to reduce P and Q each to r × r matrices, denoted P ′ and Q′. As
this reduction must preserve the fact that M is non-zero, we need that P ′Q′ 6= 0. We enforce this
requirement by insisting that P ′ and Q′ are also rank exactly r, so that M ′ = P ′Q′ is also non-zero.

To achieve this rank-preservation, we turn to a lemma of Gabizon-Raz [GR08] (we note that
this lemma has been used before for black-box PIT [KS08, SS11]). They gave an explicit family
of O(nr2)-many r × n-matrices {A`}`, such that for any P and Q of rank exactly r, at least one
matrix A` from the family is such that rank(A`P ) = rank(A`Q) = r. Translating this result into

our problem, it follows that one of the r × r matrices A`MA†` is full-rank. The (i, j)-th entry of

A`MA†` is 〈M, (A`)i(A`)
†
j〉, where (A`)i is the i-th row of A`. It follows that querying each entry in

these r × r matrices corresponds to a rank 1 measurement of M , and thus make up a hitting set.
As there were O(nr2) choices of ` and r2 choices of (i, j), this gives a O(nr4)-sized hitting set.

To achieve a smaller hitting set, we use the following sequence of ideas. First, we observe that
in the above, we can always assume i = 0. Loosely, this is because A`MA†` is always full-rank, or

zero. Thus, only the first row of A`MA†` needs to be queried to determine this. Second, we improve
upon the Gabizon-Raz lemma, and provide an explicit family of rank-preserving matrices with size
O(nr). This follows from modifying their construction so the degree of a certain determinant is
smaller. To ensure that the determinant is a non-zero polynomial, we show that it has a unique
monomial that achieves maximal degree, and that the term achieving maximal degree has a non-
zero coefficient as a Vandermonde determinant (formed from powers of an element g, which has
large multiplicative order) is non-zero. Finally, we observe that the hitting set constraints can
be viewed as a constraints regarding polynomial interpolation. This view shows that some of the
constraints are linearly-dependent, and thus can be removed. Each of the above observations saves
a factor of r in the size of the hitting set, and thus produces an O(nr)-sized hitting set.

Low-Rank Recovery Having constructed hitting sets, Lemma 3.10 implies that the same con-
struction yields low-rank-recovery sets. As this lemma does not provide a recovery algorithm, we
provide one. To do so, we must first change the basis of our hitting set. That is, the hitting set
B yields a set of constraints on a matrix M , and we are free to choose another basis for these
constraints, which we call D. The virtue of this new basis is that each constraint is non-zero only
on some k-diagonal (the entries (i, j) such that i + j = k). It turns out that these constraints
are the parity checks of a dual Reed-Solomon code with distance Θ(r). This code can be decoded
efficiently using what is known as Prony’s method [dP95], which was developed in 1795. We give an
exposition in Section 7.1, where we show how to syndrome-decode this code up to half its minimum
distance, counting erasures as half-errors. Thus, given a Θ(r)-sparse vector (which can be thought
of as errors from the vector 0) these parity checks impose constraints from which the sparse vector
can be recovered. Put another way, our low-rank-recovery set naturally embeds a sparse-recovery
set along each k-diagonal.

Thus, in designing a recovery algorithm for our low-rank recovery set, we do more and show how
to recover from any set of measurements which embed a sparse-recovery set along each k-diagonal.
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In terms of error-correcting codes, this shows that any hamming-metric code yields a rank-metric
code over matrices, and that decoding the rank-metric code efficiently reduces to decoding the
hamming-metric code.

To perform recovery, we introduce the notion of a matrix being in (< k)-upper-echelon form.
Loosely, this says that M (<k), the entries (i, j) of the matrix with i + j < k, are in row-reduced
echelon form. We then show that for any matrix M in (< k)-upper-echelon form, the k-diagonal
is 2 rank(M)-sparse. As an example, suppose M (<k) was entirely zero. It follows then that M is
in (< k)-upper-echelon form. Further, the rows that have non-zero entries on the k-diagonal of M
are then linearly-independent, as they form a triangular system. It follows that the k-diagonal can
only have rank(M) non-zero entries. The more general case is slightly more complicated technically,
but not conceptually. Thus, this echelon-form translates the notion of low-rank into the notion of
sparsity.

The algorithm then follows naturally. We induct on k, first putting M (<k) into (< k)-upper-
echelon form (using row-reduction), and then invoking a sparse-recovery oracle on the k-diagonal
of M to recover it. This then yields M (≤k), and we increment k. However, as described so far,
the use of the sparse-recovery oracle is adaptive. We show that the row-reduction procedure can
be understood such that the adaptive use of the sparse-recovery oracle can be simulated using
non-adaptive calls to the oracle. More specifically, we will apply the measurements of the sparse-
recovery oracle on each k-diagonal of M (which may not be sparse), and show how to compute the
measurements of the adaptive algorithm (where the k-diagonals are sparse) from the measurements
made. Putting these steps together, this shows that exact non-adaptive low-rank-recovery reduces
to exact non-adaptive sparse-recovery. Instantiating this claim with our hitting sets from above
gives a concrete low-rank-recovery set, with accompanied recovery algorithm.

Hitting Sets and Low-Rank Recovery for Tensors The results for matrices naturally gen-
eralize to tensors in the sense that an JnK2d tensor can be viewed as an JndK2 matrix. How-
ever, we can do better. Specifically, the hitting set results were done via variable reduction, as
encapsulated by Theorem 5.1, which shows that a rank ≤ r bivariate polynomial fM (x, y) =
(1, x, x2, . . . , xn−1)M(1, y, y2, . . . , yn−1)† is zero iff a set of r univariate polynomials are all zero.
Further, the degrees of these polynomials is only twice the original degree. As each univariate
polynomial can be interpolated using O(n) measurements, this yields O(nr) measurements total.
This motivates the more general idea of treating a degree d tensor as a d-variate polynomial, and
showing that we can test whether this polynomial is zero by testing if a collection of d′-variate
polynomials are zero, for d′ < d. Recursing on this procedure then reduces the d-variate case to
the univariate case, and the univariate case is brute-force interpolated.

The recursion scheme we develop for this is to show that a d-variate polynomial is zero iff r
d/2-variate polynomials are zero, and this naturally leads to an O(dnrlg d)-sized hitting set. To
prove its correctness, we show that the bivariate case (corresponding to matrices) applied to two
groups of variables allows us to reduce to a single group of variables (with an increase in the number
of polynomials to test). Finally, since we saw how to do low-rank recovery for matrices, and the
tensor-case essentially only uses the matrix case, we can also turn this hitting set procedure into a
low-rank recovery algorithm.

Simulation of Large Fields by Small Fields Most all of the results mentioned require a field
of size ≈ poly(nd). When getting results over small fields, we show that, with some loss, we can
simulate such large fields inside the hitting sets. We break-up each tensor H in the original hitting
set into new tensors Hi such that for any F-tensor T , 〈T,H〉 can be reconstructed from the set of
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values {〈T, H̃i〉}i. To do so, we use the well-known representation of a extension field K of F as a
field of matrices over F. As the entries of a rank-1 tensor are multiplications of d elements of K, we
can expand these multiplications out as iterated matrix multiplications, which yields (dimFK)d+1

terms to consider, each of which corresponds to some H̃i.

Rank-Metric Codes The above techniques give the existence of low-rank-recovery sets (and
corresponding algorithms) for tensors, over any field. Via the connections presented in Section 1.3,
this readily yields rank-metric codes with corresponding parameters.

2 Notation

We now fix some notation. For a positive integer n we denote [n]
def
={1, . . . , n} and JnKdef={0, . . . , n−

1}. We use
(
S
k

)
to denote the set of all subsets of S of size k. Given a set S of integers, we denote

n − Sdef
={n − s : s ∈ S}. All logarithms will be base 2. Given a polynomial f ∈ F[x1, . . . , xm],

deg(f) will denote the total degree of f , and degxi(f) will denote the individual degree of f in the
variable xi. That is, the polynomial xy has total degree 2 and individual degree 1 in the variable x
and individual degree 0 in the variable z. Given a monomial xα, Cxα(f) will denote the coefficient
of xα in the polynomial f .

Vectors, matrices, and tensors will all begin indexing from 0, instead of from 1. The number
n will typically refer to the number of rows of a matrix, and m the number of columns. In will
denote the n×n identity matrix. Denote Ei,j to be the n×n square matrix with its (i, j)-th entry
being 1, and all other entries being zero. A vector is k-sparse if it has at most k non-zero entries.

Given a matrix A, A† will denotes its transpose. Given a vector x ∈ Fn, |x|def=n.
A list of n values in F is t-explicit if each entry can be computed in t steps, where we allow

operations in F to be done at unit cost.
Frequently throughout this paper we will divide a matrix into its diagonals, which we define

as the entries (i, j) where i+ j is constant. The following notation will make this discussion more
convenient.

Notation 2.1. Let M be an n×m matrix. The k-diagonal of M is the set of entries {Mi,j}i+j=k.
The (≤ k)-diagonals of M is the set of entries {Mi,j}i+j≤k. The (< k)-diagonals of M is the
set of entries {Mi,j}i+j<k

M (k), M (≤k) and M (<k) will denote the k-diagonal, (≤ k)-diagonals and (< k)-diagonals of M ,
respectively.

This notation will be frequently abused, in that a diagonal will refer to a set of positions in a
matrix in addition to referring to the values in those positions. However, the main diagonal of a
matrix will refer to the entries {(i, i)}i of that matrix.

3 Preliminaries

In this section we formally define tensors as well as the PIT and LRR problems. We first discuss
tensors, and their notion of rank. Rank-metric codes will be defined and discussed in Section 8.
Recall that we index starting at 0, so we will use the product space JnKd instead of [n]d for the
domains of tensors.

Definition 3.1. A tensor over a field F is a function T :
∏d
j=1JnjK→ F. It is said to have degree

d and size (n1, . . . , nd). If all of the nj are equal to n, then T is said to have size JnKd.
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Given two tensor T1, T2 of size
∏d
j=1JnjK, 〈T1, T2〉

def
=
∑

ij∈JnjK T1(i1, . . . , id)T2(i1, . . . , id).

Note that the above inner product is the natural inner product when regarding a
∏d
j=1JnjK

tensor as a vector of dimension
∏d
j=1 nj . We now define the notion of rank. Loosely, a tensor is

rank 1 if it can be “factored” along each dimension, and a tensor is rank ≤ r if it can be expressed
as the sum of ≤ r rank 1 tensors.

Definition 3.2. A tensor T :
∏d
j=1JnjK → F is rank-one if for j ∈ [d] there are vectors vj ∈

Fnj \ {0} such that T = ⊗dj=1vj. That is, for all ij ∈ [nj ], T (i1, . . . , id) =
∏d
j=1 vj(ij) where vj(ij)

denotes the ij-th coordinate of vj.

The rank of a tensor T :
∏d
j=1JnjK → F, is defined as the minimum number of terms in a

summation of rank-1 tensors expressing T , that is,

rankF(T ) = min

{
r : T =

r∑
`=1

⊗dj=1vj,`, vj,` ∈ Fnj
}
.

As one might hope, when d = 2 the above definitions reduce to the definition of a matrix, and
matrix-rank, respectively. Further, the inner-product is then their Frobenius inner product. That
is, 〈M1,M2〉 = Trace(M1M

†
2).

We now define the polynomial of a tensor.

Definition 3.3. Let T :
∏d
j=1JnjK → F be a tensor, and let x1, . . . ,xd be vectors of variables, so

xj = (xj,0, . . . , xj,nj−1) for all j ∈ [d]. Then define

fT (x1, . . . ,xd)
def
=

∑
ij∈JnjK

T (i1, . . . , id)
D∏
j=1

xj,ij = 〈T,x1 ⊗ · · · ⊗ xd〉 ,

and define the d-variate polynomial

f̂T (x1, . . . , xd)
def
=

∑
ij∈JnjK

T (i1, . . . , id)
D∏
j=1

x
ij
j = fT (x̂1, . . . , x̂d) ,

where (x̂j)i
def
=xij.

Note that the second equality in the first equation of the above definition follows from the
definition of the inner product over tensors. As a matrix M is also a tensor, we will also use

this notation when considering the polynomial fM (x,y)
def
=x†My, as the above definition readily

generalizes the notion of a quadratic form. Note that f̂T allows us to consider any d-variate
polynomial to be a tensor, and the rank of such a polynomial will simply be the rank of the
corresponding tensor.

We now show the connection of these polynomials fT to set-multilinear depth-3 circuits. We
do not seek to define all of the relevant terms in this notion, and instead refer the reader to the
recent survey [SY10], and will simply define the subclass we are interested in.

Definition 3.4. For j ∈ [d], let xj = (xj,0, . . . , xj,n−1) be vectors of variables. A degree d, set-
multilinear, ΣΠΣ circuit with top fan-in r, is a polynomial of the following form

C(x1, . . . ,xd) =

r∑
`=1

d∏
j=1

〈vj,`,xj〉

where each vj,` ∈ Fn.
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We now see the following connection between these circuits and tensors.

Lemma 3.5. The polynomials computed by degree d set-multilinear ΣΠΣ circuits, with top fan-in
≤ r, on dn variables, are exactly the polynomials fT , for tensors T : JnKd → F with rank ≤ r.

Proof. ⇐= : Suppose T is of rank ≤ r, so T =
∑r

`=1⊗dj=1vj,` for vj,` ∈ Fn. Then fT = 〈T,x1⊗· · ·⊗
xd〉 =

∑r
`=1〈⊗dj=1vj,`,x1 ⊗ · · · ⊗ xd〉 =

∑r
`=1

∏d
j=1〈vj,`,xj〉, and this final polynomial is computed

as a set-multilinear ΣΠΣ circuit.
=⇒ : This argument is simply the reverse of the above.

We also get the following result for the polynomial f̂T .

Lemma 3.6. For T : JnKd → F with rank ≤ r, f̂T (x1, . . . , xd) =
∑r

`=1

∏d
j=1 pj,`(xj), where

deg pj,` < n.

Proof. As T is rank ≤ r, T =
∑r

`=1⊗dj=1vj,` for vj,` ∈ Fn. Then f̂T = fT (x̂1, . . . , x̂d) =∑r
`=1

∏d
j=1〈vj,`, x̂j〉. Taking pj,`(xj)

def
= 〈vj,`, x̂j〉 yields the result.

Recall that, as discussed in the introduction, set-multilinear ΣΠΣ circuits have a white-box
polynomial-time PIT algorithm due to Raz and Shpilka [RS05] but no known polynomial-sized
black-box PIT algorithm. By the above connection, this is the same as creating hitting sets for
tensors, which we will now define.

Definition 3.7. Let K be an extension of F. A hitting set H for
∏d
j=1JnjK tensors of rank

≤ r over F is a set of points H ⊆
∏d
j=1(Knj ) such that for any T :

∏d
j=1JnjK→ F of rank ≤ r, T

is a non-zero iff there exists (a1, . . . ,ad) ∈ H such that fT (a1, . . . ,ad) 6= 0.

However, we saw in Definition 3.3 that evaluating fT is equivalent to taking an inner product
of T with a rank-1 tensor. This leads to the following equivalent definition.

Definition 3.8 (Reformulation of Definition 3.7). Let K be an extension of F. A hitting set H
for

∏d
j=1JnjK tensors of rank ≤ r over F is a set of rank-1 tensors H ⊆ K

∏d
j=1JnjK such that for

any T :
∏d
j=1JnjK→ F of rank ≤ r, T is a non-zero iff there exists H ∈ H such that 〈T,H〉 6= 0.

If H instead is not constrained to consist of rank-1 tensors, then we say H is an improper
hitting set.

As is common in PIT literature, we allow the use of the extension field K, and in our case
|K| ≤ poly(|F|) will be sufficient. However, the results of Section 6.3 will show how to remove the
need for K from our results (with some loss).

We now define our notion of a low-rank recovery set, extending Definition 3.8. Note that we
drop here the restriction that the tensors must be rank 1.

Definition 3.9. A set of tensors R ⊆ K
∏d
j=1JnjK is an r-low-rank-recovery set if for every

tensor T :
∏d
j=1JnjK → F with rank ≤ r, T is uniquely determined by y, where y ∈ KR is defined

by yR
def
= 〈T,R〉, for R ∈ R.

An algorithm performs recovery from R if, for each such T , it recovers T given y.

We now show that, despite low-rank recovery being a stronger notion than a hitting set, hitting
sets imply low-rank recovery with some loss in parameters, as seen by the following lemma.
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Lemma 3.10. If H is a (proper or improper) hitting-set for
∏d
j=1JnjK tensors of rank ≤ 2r, then

H is an r-low-rank-recovery set for
∏d
j=1JnjK tensors also.

Proof. Let A,B ∈ F
∏d
j=1JnjK be two tensors of rank ≤ r such that their inner products with the

tensors in H are the same. By linearity of the inner product, it follows then that the tensor A−B
has rank ≤ 2r and has zero inner product with each tensor in H. As H is a hitting set, it follows
that A − B = 0, and thus A = B. Therefore, tensors of rank ≤ r are determined by their inner
products with H and thus H is an r-low-rank-recovery set.

We now discuss some trivial LRR results. The first result is the obvious low-rank recovery
construction, which is extremely explicit but requires many measurements.

Lemma 3.11. For n ≥ 1, d ≥ 2, there is a polylog(n, d, r)-explicit r-low-rank-recovery set for JnKd

tensors, of size nd. Further, recovery of T is possible in poly(nd) time.

Proof. For i = (i1, . . . , id) ∈ JnK, let the rank 1 tensor Ri : JnKd → F be the rank 1 tensor, which is
the indicator function for the set {(i1, . . . , id)}. Thus, 〈T,Ri〉 = T (i1, . . . , id). It follows that T = 0
iff each such inner product is zero, and further that recovery of T is possible (in poly(nd) time).
The explicitness of the recovery set is also clear.

We now will show that, via the probabilistic method, one can show that much smaller low-rank
recovery sets exist. To do so, we first cite the following form of the Schwartz-Zippel Lemma.

Lemma 3.12 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let f ∈ F[x1, . . . , xm] be a non-zero poly-
nomial of total degree ≤ d, and S ⊆ F. Then Prx∈Sm [f(x) = 0] ≤ d/|S|.

We now give a (standard) probabilistic method proof that small hitting sets exist (over finite
fields). We present this not as a tight result, but as an example of what parameters one can hope
to achieve.

Lemma 3.13. Let Fq be the field on q elements. Let n ≥ 1 and q > d ≥ 2. Then there is a hitting
set for JnKd tensors of rank ≤ r, of size ≤ dnr/ logq(q/d)+1 ≈ dnr. Further, there is an r-low-rank
recovery set of size ≤ 2dnr/ logq(q/d) + 2.

Proof. For any non-zero tensor T : JnKd → F , fT has degree d, and thus by the Schwartz-Zippel
Lemma, for a random a ∈ Fnq , fT (a) = 0 with probability at most d/q. There are at most qdnr

such non-zero tenors. By a union bound, it follows that k random points are not a hitting set for
rank ≤ r tensors with probability at most qdnr(d/q)k, which is < 1 if k > dnr/ logq(q/d). The
low-rank-recovery set follows from Lemma 3.10.

We now briefly remark on the tightness of the above result. The general case of tensors is not
well understood, as it is not well-understood how many tensors there are of a given rank. For
matrices, the situation is much more clear. In particular, Roth [Rot91] showed (using the language
of rank-metric codes) that over finite fields the best (improper) hitting set for n × n matrices of
rank ≤ r is of size nr, and over algebraically closed fields the best (improper) hitting set is of size
(2n−r)r. As we will aim to be field independent, the second bound is more relevant, and we indeed
match this bound (as seem in Theorem 5.10) with a proper hitting set.

Clearly, the above lemma is non-explicit. However, it yields a much smaller hitting set than the
nd result given in Lemma 3.11. Note that previous work (even for d = 2) on LRR and rank-metric
codes did not focus on requiring that the measurements are rank-1 tensors, and thus cannot be

13



used for PIT. Given this lack of knowledge, this paper seeks to construct proper hitting sets, and
low-rank-recovery sets, that are both explicit and small.

We remark that any explicit hitting set naturally leads to tensor rank lower bounds5. The follow-
ing lemma, which can be seen as a special case of the more general results of Heintz-Schnorr [HS80]
and Agrawal [Agr05], shows this connection more concretely.

Lemma 3.14. Let H be a hitting set for JnKd tensors of rank ≤ r, such that |H| < nd. Then there
is a poly(nd, |H|)-explicit tensor of rank > r.

Proof. Consider the constraints imposed on a tensor T by the system of equations 〈T,H〉 = 0.
There are |H| constraints and nd variables. It follows that there is a non-zero T solving this
system. By the definition of a hitting set, it follows that rank(T ) 6≤ r. That T is explicit follows
from Gaussian Elimination.

For d = 2, the above is less interesting, as matrix rank is well understood and we know many
matrices of high rank. For d ≥ 3, tensor rank is far less understood. For d = 3, the best known
lower bounds for the rank of explicit tensors, over arbitrary fields, due to Alexeev, Forbes, and
Tsimerman [AFT11], are 3n − O(lg n) (over F2, a lower bound of 3.52n is known, essentially due
to Brown and Dobkin [BD80]). More generally, for any fixed d, no explicit tensors are known with
tensor rank ω(nbd/2c). The above lemma shows that constructing hitting sets is at least as hard
as getting a lower bound on any specific tensor. In particular, constructing a hitting set for JnKd

tensors of rank ≤ r of size O(dnrk) with k < 2 would yield new tensor rank lower bounds for odd
d, in particular d = 3. Such lower bounds would imply new circuit lower bounds, using the results
of Strassen [Str73] and Raz [Raz10]. Our results give a hitting set with k ≈ lg d, and we leave open
whether further improvements are possible.

We will mention the definitions and preliminaries of rank-metric codes in Section 8.

3.1 Paper Outline

We briefly outline the rest of the paper. In Section 4 we give our improved construction of rank-
preserving matrices, which were first constructed by Gabizon-Raz [GR08]. In Section 5 we then use
this construction to give our reduction from bivariate identity testing to univariate identity testing
(Section 5.1), which then readily yields our hitting set for matrices (Section 5.2). In Section 5.3 we
show an equivalent hitting set, which is more useful for low-rank-recovery.

Section 6 extends the above results to tensors, where Section 6.1 reduces d-variate identity
testing to univariate identity testing, and Section 6.2 uses this reduction to construction hitting
sets for tensors. Finally, Section 6.3 shows how to extend these results to any field.

Low-rank recovery of matrices is discussed in Section 7. It is split into two parts. Section 7.1
shows how to decode dual Reed-Solomon codes, which we use as a sparse-recovery oracle. Sec-
tion 7.2 shows how to, given any such sparse-recovery oracle, perform low-rank-recovery of matrices.
Instantiating the oracle with dual Reed-Solomon codes gives our low-rank-recovery construction.

Section 8 shows how to extend our LRR algorithms to tensors, and how to use these results to
construct rank-metric codes. Finally, Section 9 discusses some problems left open by this work.

5This connection, along with the connection to rank-metric codes mentioned earlier, can be put in a more broad
setting: hitting sets (and thus lower-bounds) for circuits from some class C are in a sense equivalent to C-metric linear
codes. That is, codes where dist(x, y) is defined as the size of the smallest circuit whose truth table is the string
x− y. We do not pursue this idea further in this work.
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4 Improved Construction of Rank-preserving Matrices

In this section we will give an improved version of the Gabizon-Raz lemma [GR08] on the con-
struction of rank-preserving matrices. The goal is to transform an r-dimensional subspace living
in an n-dimensional ambient space, to an r-dimensional subspace living in an r-dimensional ambi-
ent space. We will later show (see Theorem 5.1) how to use such a transformation to reduce the
problem of PIT for n ×m matrices of rank ≤ r to the problem of PIT for r × r matrices of rank
≤ r.

We first present the Gabizon-Raz lemma ([GR08], Lemma 6.1), stated in the language of this
paper.

Lemma (Gabizon-Raz ([GR08], Lemma 6.1)). Let 1 ≤ r ≤ n. Let M ∈ Fn×r be of rank r. Define
Aα ∈ Fr×n by (Aα)i,j = αij. Then there are ≤ nr2 values α ∈ F such that rank(AαM) < r.

Our version of this lemma gives a set of matrices parameterized by α where there are only nr
values of α that lead to rank(AαM) < r. This extra factor of r allows us to achieve an O((n+m)r)-
sized hitting set for matrices instead of a O((n+m)r2)-sized hitting set. We comment more on the
necessity of this improvement in Remark 5.3. We now state our version of this lemma. Our proof
is very similar to that of Gabizon-Raz.

Theorem 4.1. Let 1 ≤ r ≤ n. Let M ∈ Fn×r be of rank r. Let K be a field extending F, and
let g ∈ K be an element of order ≥ n. Define Aα ∈ Kr×n by (Aα)i,j = (giα)j. Then there are
≤ nr −

(
r+1
2

)
< nr values α ∈ K such that rank(AαM) < r.

Proof. We will now treat α as a variable, and thus refer to Aα simply as A. The matrix AM is an
r × r matrix, and thus the claim will follow from showing that det(AM) is a non-zero polynomial
in α of degree ≤ nr −

(
r+1
2

)
. As r ≥ 1, nr −

(
r+1
2

)
< nr.

To analyze this determinant, we invoke the Cauchy-Binet formula.

Lemma (Cauchy-Binet Formula, Lemma A.1). Let m ≥ n ≥ 1. Let A ∈ Fn×m, B ∈ Fm×n. For
S ⊆ JmK, let AS be the n× |S| matrix formed from A by taking the columns with indices in S. Let
BS be defined analogously, but with rows. Then

det(AB) =
∑

S∈(JmK
n )

det(AS) det(BS)

so that
det(AM) =

∑
S∈(JnK

r )

det(AS) det(MS)

For S = {k1, . . . , kr},

det(AS) =

∣∣∣∣∣∣∣∣∣
(α)k1 · · · (α)kr

(gα)k1 · · · (gα)kr

...
. . .

...
(gr−1α)k1 · · · (gr−1α)kr

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 · · · 1
gk1 · · · gkr

...
. . .

...
(gk1)r−1 · · · (gkr)r−1

∣∣∣∣∣∣∣∣∣ · α
∑r
`=1 k`

= α
∑r
`=1 k`

∏
1≤i<j≤r

(gkj − gki)

By assumption the order of g is ≥ n, so the elements (gk)0≤k<n are distinct, implying that the
above Vandermonde determinant is non-zero.
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Further, we observe that degα det(AS) =
∑

k∈S k. As S ∈
(JnK
r

)
, it follows that

∑
k∈S k ≤∑n−1

k=n−r k = nr −
(
r+1
2

)
, and thus degα det(AM) ≤ nr −

(
r+1
2

)
also.

We now show det(AM) is not identically zero, as a polynomial in α. We show this by showing
that there is no cancellation of terms at the highest degree of det(AM). That is, there is a unique
set S ∈

(JnK
r

)
maximizing

∑
k∈S k subject to det(MS) 6= 0. This is proven by the following lemma.

Lemma 4.2. Let m ≥ n ≥ 1. Let M be a n ×m matrix of rank n. For S ⊆ JmK, denote MS as
the n × |S| matrix formed by taking the columns in M (in order) whose indices are in S. Denote

w(S)
def
=
∑

s∈S s. Then there is a unique set S ∈
(JmK
n

)
that maximizes w(S) subject to det(MS) 6= 0.

Proof. The proof uses the ideas of the Steinitz Exchange Lemma. That is, recall the following facts
in linear algebra. If sets S1, S2 are both sets of linearly independent vectors, and |S1| > |S2|, then
there is some v ∈ S1 \S2 such that S2∪{v} is linearly independent. Thus, if S1, S2 are both sets of
linearly independent vectors and |S1| = |S2| then for any w ∈ S2 \ S1 there is a vector v ∈ S1 \ S2
such that (S2 \ {w}) ∪ {v} is linearly independent.

Now suppose (for contradiction) that there are two different sets S1, S2 ⊆ JmK that maximize
w(S) over the sets such that det(MS) 6= 0, so that |S1| = |S2| = n. Pick the smallest index k
in the (non-empty) symmetric difference (S2 \ S1) ∪ (S1 \ S2). Without loss of generality suppose

k ∈ S2\S1. It follows that there is an index l ∈ S1\S2 such that the columns in S3
def
= (S2\{k})∪{l}

are linearly independent (by the Steinitz Exchange Lemma), and thus det(MS3) 6= 0 as |S3| = n by
construction.

By choice of k and construction of l, k 6= l and thus k < l. Thus, w(S3) = w(S2)+l−k > w(S2).
However, this contradicts that S2 was a maximizer to w(S) subject to det(MS) 6= 0. Thus, the
assumption of non-unique maximizers is false; there must be a unique maximizer.

Thus det(AM) is a non-zero polynomial of degree ≤ nr−
(
r+1
2

)
in α, so there are at most that

many values such that det(AM) = 0.

We remark that Lemma 4.2 can be seen as a special case of a more general result about matroids,
which states that if each element in the ground set has a unique (positive) weight, then there is
a unique independent set with maximal weight. However, as we index matrix columns starting at
0 this general fact does not immediately apply. Rather, we implicitly use that all bases in vector
matroids have the same number of vectors. In such a case, the weight function can be shifted by
an additive constant without affecting the property of having a unique maximizer.

We now extend the above result to the case when the rank of the n× r matrix may be less than
r. This will be useful when studying hitting sets for rank ≤ r matrices, for then we do not know
the true rank of the unknown matrix, and only have the bound of “≤ r”.

Corollary 4.3. Let 1 ≤ s ≤ r ≤ n. Let M ∈ Fn×r′ be of rank s, for r′ ≥ s. Let K be a field
extending F, and let g ∈ K be an element of order ≥ n. Define Aα ∈ Kr×n by (Aα)i,j = (giα)j.
Then there are ≤ nr −

(
r+1
2

)
< nr values α ∈ K such that the first s rows of AαM have rank < s.

Proof. Consider M ′ ∈ Fn×s to be a matrix formed from s basis columns of M . It follows, from
Theorem 4.1, that there are at most ns −

(
s+1
2

)
values of α such that the s × n matrix A′α has

rank(A′αM
′) < s. As rank(AM ′) = rank(AM) holds for any A, there are at most ns−

(
s+1
2

)
many

values of α such that rank(A′αM) < s. Also, as ns−
(
s+1
2

)
≤ nr−

(
r+1
2

)
for s ≤ r ≤ n, it also holds

that there are ≤ nr −
(
r+1
2

)
values of α such that rank(A′αM) < s. Finally the claim follows by

observing that, by construction, A′αM is exactly the first s rows of AαM .
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5 Identity Testing for Matrices

The previous section showed how we can map an r-dimensional subspace of an n-dimensional
ambient space to an r-dimensional subspace of an r-dimensional ambient space. In this section,
we will use this map to reduce the PIT problem for rank ≤ r matrices of size n ×m to the PIT
problem from rank ≤ r matrices of size r×r. This will be done by applying the dimension reduction
twice, once to the rows and once to the columns. Further, the r × r version can be solved in r2

evaluations, using the naive approach of Lemma 3.11 in querying each entry in the matrix. When
phrased this way, one can show that this gives a Θ((n+m)poly(r))-sized hitting set. This reduction
idea is analogous to the kernelization technique used in fixed-parameter tractability, but we do not
develop this connection further. While this idea demonstrates the feasibility of the rough bound
cited above, we actually achieve a Θ((n+m)r)-sized hitting set via tighter analysis.

5.1 Variable Reduction

Before giving the hitting set construction and its analysis, we first present the main theorem used
in the analysis. While its statement seems unrelated to the intuition presented above, the proof
will exploit this intuition. When interpreting the result, recall that we index entries in matrices
(and vectors) starting at 0, as well as recalling the definition of f̂T from a tensor T .

Theorem 5.1. Let m ≥ n ≥ r ≥ 1. Let K be an extension of F such that g ∈ K has order ≥ m. Let
M be an n×m matrix of rank ≤ r over F. Then M is non-zero (over F) iff one of the univariate
polynomials f̂M (x, x), f̂M (x, gx), . . . , f̂M (x, gr−1x) is non-zero (over K).

Proof. (⇐= ) : If M is zero then so must all f̂M (x, gix) be as well. Taking the contrapositive yields
this direction.

( =⇒ ) : Say rank(M) = s. By assumption 0 < s ≤ r. Recall that putting M into reduced

row-echelon form yields a decomposition M = PQ†, such that P ∈ Fn×s and Q ∈ Fm×s such that
rank(P ) = rank(Q) = s. We remark that it is crucial for our proof that we have “rank(P ) =
rank(Q) = s” here. Invoking the bound “rank(P ), rank(Q) ≤ s”, which one gets directly via the
definition of rank of M , is insufficient.

We now exploit the kernelization idea mentioned above. Consider the matrices Aα ∈ Kr×n and
Bα ∈ Kr×m defined by (Aα)i,j = (giα)j and (Bα)i,j = (giα)j . Now consider AαP and BαQ, which

have sizes r× s each. Write them in block notation as

(
P ′α
P ′′α

)
and

(
Q′α
Q′′α

)
such that P ′α and Q′α are

both s× s matrices.
By our refinement of the Gabizon-Raz lemma [GR08], our Corollary 4.3, it follows that there

are < nr values of α such that rank(P ′α) < s and < mr values of α such that rank(Q′α) < s. By
the union bound, there are < (n+m)r values such that rank(P ′α) < s or rank(Q′α) < s. Let H be
an extension field of K, such that |H| ≥ (n + m)r. It follows that there is some α ∈ H such that
rank(P ′α) = s and rank(Q′α) = s. Fix this as the value of α, and we now drop α from our notation.

Via block multiplication we see that

AMB† = AP (BQ)† =

(
P ′

P ′′

)(
Q′ Q′′

)
=

(
P ′Q′ P ′Q′′

P ′′Q′ P ′′Q′′

)
As rank(P ′) = s and rank(Q′) = s, it follows that rank(P ′Q′) = s. We remark that it is here where
the naive bound “rank(P ), rank(Q) ≤ s” is insufficient, and we crucially use that “rank(P ) =
rank(Q) = s”.
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As rank(P ′Q′) = s, and P ′Q′ is an s × s matrix, it follows that some entry in its first row
(which has index 0, by our notation) is non-zero. As P ′Q′ is a principal minor of AMB†, it follows
that some entry in the first row of AMB† is non-zero. Denote row i of A as Ai, and row j of B
as Bj . As the first row of AMB† is A0MB†, it follows then there is some 0 ≤ ` ≤ r − 1 such that

A0MB†` 6= 0. Expanding this evaluation out, we see that

A0MB†` = 〈M,A0B
†
` 〉 =

n−1,m−1∑
i=0,j=0

Mi,j · (A0)i(B`)j

=

n−1,m−1∑
i=0,j=0

Mi,jA0,iB`,j

=

n−1,m−1∑
i=0,j=0

Mi,j(g
0α)i(g`α)j

= f̂M (α, g`α)

Thus, we see that f̂M (x, g`x) has a non-zero point over the field H. It follows that it is a non-zero
polynomial over H. As it has coefficients over K, f̂M (x, g`x) is non-zero over K as well.

Remark 5.2. We now remark on how to implement the kernelization idea, mentioned in the in-
troduction to this section, in a more straight-forward sense. One can see that rank(P ′Q′) = s
shows that AMB† 6= 0. As AMB† is of size r × r, we can then run the naive r2-size hitting set of
Lemma 3.11 for r × r-sized matrices, which checks each individual entry. Noting that the (i, j)-th

entry of AMB† is equal to 〈M,AiB
†
j 〉 we see that we can implement this naive hitting set as a

hitting set for n×m matrices.
Thus, for each α there are r2 rank-1 matrices to test, and we need at most (n+m)r choices of

α (where here we assume K is at least this big). It follows that there exists an explicit hitting set
of size (n+m)r3.

Remark 5.3. We briefly discuss the necessity of our version of the Gabizon-Raz lemma for the above
proof. The above proof does not invoke our version of the lemma in the fullest, in the sense that
the nr bound on the number of “bad” α was only used in the sense that it was a finite bound.
Thus, given that our version of the lemma “only” improves the nr2 bound of Gabizon-Raz to nr,
it may be unclear why our version is needed here.

The crucial use of our version of the lemma is keeping the degree low. That is, if one invoked
the original Gabizon-Raz lemma, one would result in “M is non-zero iff one of the univariate
polynomials f̂M (x, x), f̂M (x, x2), . . . , f̂M (x, xr) is non-zero”. While this is correct, it will lead to a
larger hitting set as one needs to interpolate r polynomials, each of degree ≈ rn, which will give a
Θ(nr2)-sized set instead of the Θ(nr)-sized set we are able to achieve.

We also state an equivalent version of this result, which will be useful for higher-degree tensors.

Corollary 5.4. Let m ≥ n ≥ r ≥ 1. Over the field F, consider the bivariate polynomial f(x, y) =∑r
i=1 pi(x)qi(y) such that deg(pi) < n and deg(qi) < m for all i. Let K be an extension of F such

that g ∈ K has order ≥ m.
Then f is non-zero (over F) iff one of the univariate polynomials

f(x, x), f(x, gx), . . . , f(x, gr−1x) is non-zero (over K).
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5.2 The Hitting Set for Matrices

In this subsection we use the theorem of the last subsection to construct hitting sets for matri-
ces. First, recall our notion of a hitting set for matrices, as given in Definition 3.8. Now recall
that Theorem 5.1 shows that for any M of rank ≤ r, M is non-zero iff one of the polynomials in
{f̂M (x, g`x)}0≤`<r is non-zero. In the preliminaries it was seen that evaluating one of these poly-
nomials at a point α is equivalent to taking an inner product 〈M,A〉 with a rank-1 matrix A. This
leads naturally to the following idea: interpolate each of the r polynomials in {f̂M (x, g`x)}0≤`<r.
As each polynomial is of degree ≤ n+m−2, this will lead to (n+m−1)r inner products. Then M
is non-zero iff one of these inner products is non-zero. This is the exact idea, which we now make
formal.

Construction 5.5. Let m ≥ n ≥ r ≥ 1. Let K be an extension of F such that g ∈ K is of order
≥ m and α0, . . . , αn+m−2 ∈ K are distinct. Let Bk,` ∈ Kn×m to be the rank-1 matrix defined by

(Bk,`)i,j = αik(g
`αk)

j, and let Br,n,m
def
={Bk,`}0≤`<r,0≤k≤n+m−2.

We now give the analysis for this hitting set.

Theorem 5.6. Let m ≥ n ≥ r ≥ 1. Then Br,n,m, as defined in Construction 5.5, has the following
properties:

1. Br,n,m is a hitting set for n×m matrices of rank ≤ r over F.

2. |Br,n,m| = (n+m− 1)r

3. Br,n,m can be computed in poly(m) operations, where operations (including a successor func-
tion in some enumeration of K) over K are counted at unit cost.

Proof. |Br,n,m| = (n+m− 1)r: This is by definition.

Br,n,m can be computed in poly(m) operations: We assume here an enumeration of elements in
K such that the successor in this enumeration can be computed at unit cost. We also will assume
testing whether an element is zero, as well as arithmetic operations in the field, are done at unit
cost.

First observe that there are at most m solutions to xm − 1 over K, so if we enumerate m + 1
elements of K, then we can find a g ∈ K with order ≥ m. This is in poly(m) operations. Similarly,
the enumeration will give us n+m−1 distinct elements which yield the desired αk. Then, computing
each Bk,l can be done in poly(m) steps, and there are poly(m) of them. Thus, all of Br,n,m can be
computed in this many operations.
Br,n,m is a hitting set: Br,n,m is a set of rank-1 matrices by construction, so it remains to prove

that it hits each low-rank matrix. Let M be n×m matrix of rank ≤ r in F. By Theorem 5.1, we see
that M is non-zero iff one of the polynomials {f̂M (x, g`x)}0≤`<r is non-zero. Thus, f̂M (αk, g

`αk) =∑
0≤i<n,0≤j<mMi,jα

i
k(g

`αk)
j = 〈M,Bk,`〉. As each f̂M (x, g`x) is of degree ≤ n + m − 2 and we

evaluate each polynomial at n+m−1 points, each f̂M (x, g`x) is fully determined by these evaluations
via the polynomial interpolation map. Specifically, if f̂M (x, g`x) is non-zero then it must have a
non-zero evaluation for some αk. As some f̂M (x, g`x) is non-zero by Theorem 5.1, it follows that
〈M,Bk,`〉 6= 0 for some 0 ≤ ` < r and 0 ≤ k ≤ n+m− 2.

One deficiency with this construction is that for large r it is suboptimal by a factor of 2.
That is, in the regime where n = m and r = n − 1 this construction gives a hitting set of size
(2n − 1)(n − 1) ≈ 2n2. However, the naive hitting set yields an n2-sized setting. In the next
subsection we show that this is an artifact of the analysis. That is, by pruning unneeded matrices
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from the hitting set, one can show that our construction always (for r < n) does better than the
naive construction. This result proven in Theorem 5.10.

5.3 An Alternate Construction

In the previous subsections we saw that a low-rank matrix M is non-zero iff one of the polynomials
{f̂M (x, g`x)} was non-zero. To construct a hitting set, we then interpolated each f̂M at enough
points to determine which, if any, were non-zero. However, we are interpolating many “related”
polynomials all on the same points, so it is natural to wonder if there are some redundancies in
this process.

To phrase things differently, observe that testing a matrix M against a hitting set H is really
asking of M ∈ kerH. The promise that M is low-rank ensures that M ∈ kerH iff M is zero. The
number of tests done is |H|, but the number of actual tests is rank(H), where we consider H as
vectors in the vector space Knm. That is, some of the matrices in H may be linearly dependent,
and these are redundancies that can be pruned.

The aim of this section is to present hitting sets (and improper hitting sets) that have linearly
independent test matrices. The initial motivation is to observe that the point of the evaluations of
the {f̂M (x, g`x)} was to interpolate the coefficients. Thus, instead of doing these evaluations, we
can express the coefficients of the {f̂M (x, g`x)} directly as linear combinations of the entries in M .
This will lead to the following improper hitting set.

Construction 5.7. Let m ≥ n ≥ r ≥ 1. Let K be an extension of F such that g ∈ K is of order
≥ m. Let Dk,` ∈ Kn×m be the matrix defined be

(Dk,`)i,j =

{
g`j if i+ j = k

0 else

Define Dr,n,m
def
={Dk,`} 0≤k≤n+m−2

0≤`<r
, and D′r

def
={Dk,`} 0≤k≤n+m−2

0≤`<min(r,k+1,(n+m)−(k+1))
.

We now analyze this construction.

Theorem 5.8. Let m ≥ n ≥ r ≥ 1. Then Dr,n,m, as defined in Construction 5.7, has the following
properties:

1. Dr,n,m is an improper hitting set for n×m matrices of rank ≤ r over F.

2. Span(Dr,n,m) = Span(Br,n,m) (as vectors in Knm)

3. |Dr,n,m| = (n+m− 1)r

4. Each matrix in Dr,n,m is n-sparse.

5. Dr,n,m can be computed in poly(m) operations, where operations (including a successor func-
tion in some enumeration of K) over K are counted at unit cost.

and D′r,n,m, as defined in Construction 5.7, has the following properties:

1. D′r,n,m is an improper hitting set for n×m matrices of rank ≤ r over F.

2. D′r,n,m is linearly independent (as vectors in Knm) and Span(Dr,n,m) = Span(D′r,n,m)

3. |D′r,n,m| = (n+m− r)r
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4. Each matrix in D′r,n,m is n-sparse.

5. D′r,n,m can be computed in poly(m) operations, where operations (including a successor func-
tion in some enumeration of K) over K are counted at unit cost.

Proof. |Dr,n,m| = (n+m− 1)r: This is by definition.
Sparsity of Dr,n,m: Each matrix in the hitting set has support in some k-diagonal, and each

diagonal has at most n non-zero entries.
Dr,n,m can be computed in poly(m) operations: The details are very similar to the proof that

Br,n,m can be computed in poly(m) operations, as seen in Theorem 5.6, so we omit the specifics.
Dr,n,m is an improper hitting set: Let M be n ×m matrix of rank ≤ r in F. By Theorem 5.1,

we see that M is non-zero iff one of the polynomials {f̂M (x, g`x)}0≤`<r is non-zero. Recall the

notation that Cxk(f) denotes the coefficient of f on xk. Thus, Cxk(f̂M (x, g`x)) =
∑

i+j=kMi,jg
`j =

〈M,Dk,`〉. Thus, it follows that some f̂M (x, g`x) is non-zero iff one the inner products 〈M,Dk,`〉 is
non-zero. Invoking Theorem 5.1 completes this claim.

This can also be seen from the fact Span(Dr,n,m) = Span(Br,n,m). Thus, a for a matrix M ,
M ∈ kerDr,n,m ⇐⇒ M ∈ kerBr,n,m.

Span(Dr,n,m) ⊇ Span(Br,n,m): For any M (not just those of rank ≤ r) we have that 〈M,Dk,`〉 =

Cxk(f̂M (x, g`x)) and 〈M,Bk,`〉 = f̂M (αk, g
`αk) and thus 〈M,Bk,`〉 =

∑n+m−2
k′=0 αk

′
k 〈M,Dk′,`〉. By

taking M for each element in some basis, it follows that Bk,` =
∑n+m−2

k′=0 αk
′
k Dk′,`

Span(Dr,n,m) ⊆ Span(Br,n,m): Similar to the above case, we get that for any M ,

〈M,Dk,`〉 =
n+m−2∑
k′=0

Cxk′

∏
k′′ 6=k

x− αk′
αk′′ − αk′

 〈M,Bk′,`〉

via Lagrange interpolation. As the coefficients of this linear dependence are independent of M
(they only depend on the αk), by taking M for each element of some basis it follows that the same
linear dependence for Dk,` and {Bk′,`}k′ exists, giving the claim.
D′r,n,m can be computed in poly(m) operations: As with Dr,n,m, these details are omitted.

Sparsity of D′r,n,m: Each matrix in the hitting set has support in some k-diagonal, and each

diagonal has at most n non-zero entries.
D′r,n,m is an improper hitting set: This follows from showing that Dr,n,m ⊆ Span(D′r,n,m), as

this implies that for a matrix M , M ∈ kerDr,n,m ⇐⇒ M ∈ kerD′r,n,m. Thus, as Dr,n,m is an
improper hitting set so is D′r,n,m.

Span(Dr,n,m) ⊇ Span(D′r,n,m): This is clear, as Dr,n,m ⊇ D′r,n,m.

Span(Dr,n,m) ⊆ Span(D′r,n,m): Begin by observing that Dk,` is non-zero only on the k-diagonal

and the k-diagonal has min(k + 1, n, (n + m) − (k + 1)) entries. Further, the k-diagonals of the
matrices {Dk,`}0≤`<r form the rows of a r×min(k+1, n, (n+m)−(k+1)) Vandermonde matrix. This
Vandermonde matrix is formed by taking powers of ≤ n consecutive powers of g, which by the order
of g are distinct. It follows that the first min(r,min(k+1, n, (n+m)−(k+1))) of the {Dk,`}0≤`<r form
a basis for the rest. As r ≤ n, min(r,min(k+1, n, (n+m)−(k+1))) = min(r, k+1, (n+m)−(k+1)),
so {Dk,`}0≤`<min(r,k+1,(n+m)−(k+1)) are a basis for {Dk,`}0≤`<r (recall that we start indexing from
zero). Ranging over all k shows that the claim holds.
D′r,n,m is linearly independent: Notice that Dk,` and Dk′,`′ have disjoint support if k 6= k′. The

previous paragraph shows {Dk,`}0≤`<min(r,k+1,(n+m)−(k+1)) are linearly independent for each k, and
the fact about disjoint support for differing k shows that taking the union over k does not introduce
any linearly dependencies.
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|D′r,n,m| = (n+m− r)r: For r ≤ k+1 ≤ (n+m)−r we see that r = min(r, k+1, (n+m)−(k+1)),

so D′r,n,m offers no savings in this regime. For 0 ≤ k < r, D′r,n,m takes r−(k+1) fewer matrices then
Dr,n,m. For n+m > k+ 1 ≥ (n+m)− r, D′r,n,m takes r− ((n+m)− (k+ 1)) fewer matrices then
Dr,n,m. It follows that |D′r,n,m| = |Dr,n,m| − r(r− 1) = (n+m− 1)r− r(r− 1) = (n+m− r)r.

We sketch another proof of this result in Remark 7.24.
The above results also imply that rank(Br,n,m) = (n+m−r)r, which is better than the analysis

given in Theorem 5.6. This immediately gives that there are explicit (n + m − r)r-sized (proper)
hitting sets for n×m matrices of rank ≤ r, as we can (in poly(m) steps) find a basis for Br,n,m. This
basis will consist of rank-1 matrices, and also be the desired hitting set. However, in the interest
of being more explicit, we present the following construction.

Construction 5.9. Let m ≥ n ≥ r ≥ 1. Let K be an extension of F such that g ∈ K is of order
≥ m and α0, . . . , αn+m−2 ∈ K are distinct. Let B′k,` ∈ Kn×m to be the rank-1 matrix defined by

(B′k,`)i,j = αik(g
`αk)

j, and let B′r,n,m
def
={Bk,`}0≤`<r,0≤k≤(n+m−2)−2`.

We now give the analysis for this hitting set.

Theorem 5.10. Let m ≥ n ≥ r ≥ 1. Then B′r,n,m, as defined in Construction 5.9, has the following
properties:

1. SpanB′r,n,m = SpanBr,n,m, where Br,n,m is defined in Construction 5.5.

2. B′r,n,m is a hitting set for n×m matrices of rank ≤ r over F.

3. |B′r,n,m| = (n+m− r)r

4. B′r,n,m is linearly independent (as vectors in Knm)

5. B′r,n,m can be computed in poly(m) operations, where operations (including a successor func-
tion in some enumeration of K) over K are counted at unit cost.

Proof. |Br,n,m| = (n+m− r)r: The size is equal to
∑r−1

`=0((n+m−1)−2`) = (n+m−1)r−2
(
r
2

)
=

(n+m− r)r.
B′r,n,m can be computed in poly(m) operations: The details are very similar to the proof that

Br,n,m can be computed in poly(m) operations, as seen in Theorem 5.6, so we omit the specifics.
B′r,n,m is an hitting set: This follows from showing that Br,n,m ⊆ Span(B′r,n,m), as this implies

that for a matrix M , M ∈ kerBr,n,m ⇐⇒ M ∈ kerB′r,n,m. Thus, as Br,n,m is an hitting set so is
B′r,n,m.

SpanB′r,n,m ⊆ SpanBr,n,m: This is clear as B′r,n,m ⊆ Br,n,m.

SpanB′r,n,m ⊇ SpanBr,n,m: We will actually show Dr,n,m ⊆ SpanB′r,n,m, which by Theorem 5.8

is sufficient. Let M be any matrix (even of rank > r). We will show that the inner-products
〈M,B′r,n,m〉 determine the inner-products 〈M,Dr,n,m〉. Then we show that this implies the claim.

Recall that the inner-product of a matrix D ∈ Dr,n,m is simply a coefficient Cxk(f̂M (x, gix)) for
some 0 ≤ k ≤ n + m − 2 and 0 ≤ i < r. So to prove the claim we will speak of these coefficients
determining other such coefficients.

Now observe that for any k ∈ {0, . . . , r − 1}, the coefficients Cxk(f̂M (x, x)), Cxk(f̂M (x, gx)),
. . . ,Cxk(f̂M (x, gr−1x)) are linear combinations of the k + 1 ≤ r elements in {Mi,j}i+j=k. Just as
in the analysis of D′r,n,m in Theorem 5.8, the first k + 1 of these linear combinations are rows
of a Vandermonde matrix over distinct numbers, and thus these linear combinations span all
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vectors. Thus, it follows that the coefficients {Cxk f̂M (x, gix)}0≤i<k+1 determine the coefficients

{Cxk f̂M (x, gix)}0≤i<r.
Similarly, for any k ∈ {(n + m) − (r + 1), . . . , (n + m) − 2} the coefficients

{Cxk f̂M (x, gix)}0≤i<(n+m)−(k+1) determine the coefficients {Cxk f̂M (x, gix)}0≤i<r. We now use these
facts in the following claim.

Claim 5.11. The coefficients of f̂M (x, gk+1x) are determined by the coefficients of
f̂M (x, x), f̂M (x, gx), . . . , f̂M (x, gkx) and the evaluations of f̂M (x, gk+1x) to any (n+m−1)−2(k+1)
distinct points.

Proof. By the above reasoning, the coefficients Cxk′ (f̂M (x, gk+1x)) with k′ ∈ {0, . . . , k}∪{(n+m−
2)− k, . . . , (n+m)− 2} are already determined by the coefficients given.

Now, consider the polynomial

h(x)
def
=
f̂M (x, gk+1x)−

∑k
k′=0 Cxk′ (f̂M (x, gk+1x))xk

′ −
∑n+m−2

k′=(n+m−2)−k Cxk′ (f̂M (x, gk+1x))xk
′

xk+1

By construction, h of degree ≤ (n+m− 2)− 2(k + 1), and evaluation of h is possible given oracle
access to f̂M (x, gk+1x) as the relevant coefficients referenced are already determined.

Thus, it follows that h is determined by interpolation at any (n + m − 1) − 2(k + 1) distinct
points. Once h is determined, the above equation determines the as yet undetermined coefficients
of f̂M (x, gk+1x).

Thus, to determine all of the coefficients of the polynomials {f̂M (x, g`x)}0≤`<r we first interpo-

late f̂M (x, x) at n+m−1 distinct points. The above claim then shows how to interpolate f̂M (x, gx)
using (n+m−1)−2 evaluations to f̂M (x, gx), given access to the coefficients of f̂M (x, x). Inducting
on the above claim shows we can interpolate all of the coefficients in {f̂M (x, g`x)}0≤`<r from the

evaluations {f̂M (αk, g
`αk)}0≤`<r,0≤k≤(n+m−2)−2`. Rephrasing this, we see that the inner-products

〈M,Dr,n,m〉 are determined by the inner-products 〈M,B′r,n,m〉.
Now consider a matrix B /∈ SpanB′r,n,m. It follows that the dual space of B′r,n,m is strictly larger

than the dual space of B′r,n,m∪{B}, so that there is a non-zero matrix M0 such that 〈M0,B′r,n,m〉 = 0
but 〈M0, B〉 6= 0. But as 〈0n×m,B′r,n,m〉 = 0 and 〈0n×m, B〉 = 0, it follows that the inner-product
〈M0,B′r,n,m〉 does not determine the inner-product 〈M0, B〉. As 〈M,B′r,n,m〉 determines 〈M,Dr,n,m〉,
it must be that Dr,n,m ⊆ SpanB′r,n,m.
B′r,n,m is linearly independent: As Span(B′r,n,m) = Span(D′r,n,m), |B′r,n,m| = |D′r,n,m|, and D′r,n,m

is linearly independent, it follows that B′r,n,m is also.

Thus, we achieve an explicit hitting set of size (n + m − r)r. For r = n we see that this
equals nm, matching the naive bound. For r ≤ n − 1, (n + m − r)r is increasing with r, so
(n+m− r)r ≤ (n+m− (n− 1))(n− 1) = (m+ 1)(n− 1) = nm+ n−m− 1 < nm. Thus, we see
that our hitting set is always smaller than the naive hitting set, for r < n.

6 Identity Testing for Tensors

In this section we show how to construct hitting sets for JnKd tensors of arbitrary degree d. We will
only discuss tensors of shape JnKd for simplicity. The proof technique will be to use the results for
d = 2 as a black-box as a way to induct on d. That is, Corollary 5.4 shows that one can test identity
of degree < n, rank ≤ r bivariate polynomials by testing the identity of r univariate polynomials,
each of degree < 2n. This effectively reduces the d = 2 case to the d = 1 case, while increasing the
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number of polynomials to test by a factor of r. As degree < 2n univariate polynomials can be fully
interpolated cheaply, this shows that this is a viable base case for recursion.

Intuitively, it seems like this variable reduction process should be able to be continued so that
a rank ≤ r d-variate polynomial can be identity tested by testing identity of ≈ rd univariate
polynomials each of degree ≈ dn. This is indeed possible. However, we are able to do better here
by using a reduction process that reduces a d-variate polynomial to a d/2-variate polynomial while
only increasing the number of polynomials to test by a factor of r. Thus, a d-variate polynomial
can identity tested by testing ≈ rlg d univariate polynomials, each of degree < dn. Unfortunately,
this set of polynomials will require ≈ (dn)d time to construct.

The section will be split into two parts. The first will state the variable reduction theorem that
was mentioned above. The second part will detail the hitting set arising from this theorem.

6.1 Variable Reduction

As with the d = 2 case, will need a variable reduction result in order to construct our hitting set.
We detail this result in this subsection. We first illustrate some lemmas about variable reduction.

Lemma 6.1. Let f(x1, . . . , xd) be a d-variate polynomial. Let π : [d]→ [d] be a permutation. Then,
f(x1, . . . , xd) = 0 iff f(xσ(1), . . . , xσ(d)) = 0.

Proof. Consider the map Nd → Nd defined by (i1, . . . , id) 7→ (iσ(1), . . . , iσ(d)). This is exactly the
action on the degrees of monomials over the variables x1, . . . , xd when performing the substitution
xi 7→ xσ(i). Note that this map is bijective.

Thus, when mapping f(x1, . . . , xd) to f(xσ(1), . . . , xσ(d)) we see that there can be no cancella-
tions, as distinct monomials are mapped to distinct monomials. Thus, the two polynomials have
the same number of non-zero coefficients. In particular, they are either both zero or non-zero.

The above lemma is most useful in conjunction with the next lemma, which shows a simple
d-variate to (d− 1)-variate reduction.

Lemma 6.2. Let f(x, y, z1, . . . , zd) be a (d + 2)-variate polynomial such that degx(f) < n. Then
for any m ≥ n, f(x, y, z1, . . . , zd) = 0 iff f(x, xm, z1, . . . , zd) = 0.

Proof. Consider the map Nd+2 → Nd+1 defined by (i1, i2, i3, . . . , id+2) 7→ (i1 + mi2, i3, . . . , id+2).
This is exactly the action on the degrees of monomials over the variables x, y, z1, . . . , zd when
performing the substitution y 7→ xm.

Notice that this map is injective when restricted to JnK×Nd+1, as n ≤ m. That is, if i+mj =
i′+mj′ with (i, j), (i′, j′) ∈ JnK×Z then i ≡ i′ mod m which means i = i′, and thus j = j′ as well.

Thus, when mapping f(x, y, z1, . . . , zd) to f(x, xm, z1, . . . , zd) we see that there can be no cancel-
lations, as distinct monomials are mapped to distinct monomials. Thus, the two polynomials have
the same number of non-zero coefficients. In particular, they are either both zero or non-zero.

The above lemmas show that we can “reshape” our polynomials, in the sense that we have fewer
variables but larger individual degrees. To perform our d-variate variable reduction, we will reshape
our polynomial into a bivariate polynomial, such that the individual degrees are now ≈ nd/2. We
can then apply our bivariate variable reduction to get a univariate polynomial of degree ≈ nd/2.
One can then reverse the reshaping, to yield a d/2-variate polynomial, with individual degrees ≈ n.
One then recurses appropriately.

In order to understand the recursion pattern sketched above, we will introduce the following
function.
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Definition 6.3. Let n ≥ 1, b ≥ 0. Let 0 ≤ k < 2d. Define

Ln,b(k, i1, . . . , id) =
∑

1≤j≤d
bk/2j−1c≡1 mod 2

ij(n2b)bk/2
jc

We now observe that it obeys the following properties.

Proposition 6.4. Let n ≥ 1, b ≥ 0, with 0 ≤ k < 2d. Then

1.

Ln,b(k, i1, . . . , id) =


0 if k = 0

i1(n2b)bk/2c + Ln,b(bk/2c, i2, . . . , id) k ≡ 1 mod 2

Ln,b(bk/2c, i2, . . . , id) else

2. For b ≥ 1, L2n,b−1(k, i1, . . . , id) = Ln,b(k, i1, . . . , id)

3. Ln,b(k, i1, . . . , id) ≤ (n2b)bk/2c
∑

j∈[d] ij

4. Ln,b(k, i1, . . . , id) can be computed in time poly(|n|, b, d, k, |i1|, . . . , |id|), where | · | is the length,
in bits, of a number.

Proof. (1): We first note that bbk/2jc/2j′c = bk/2j+j′c, which is most easily seen by observing that
these operations bit truncate (on the right) the binary representation of k. If k = 0 then in both
formulas Ln,b(k, i1, . . . , id) = 0. If k ≡ 1 mod 2, then

Ln,b(k, i1, . . . , id) = i1(n2b)bk/2c +
∑

2≤j≤d
bk/2j−1c≡1 mod 2

ij(n2b)bk/2
jc

= i1(n2b)bk/2c +
∑

1≤j≤d−1

bk/2j−2c≡1 mod 2

ij+1(n2b)bk/2
j−1c

= i1(n2b)bk/2c +
∑

1≤j≤d−1

bbk/2c/2j−1c≡1 mod 2

ij+1(n2b)bbk/2c/2
jc

= i1(n2b)bk/2c + Ln,b(bk/2c, i2, . . . , id)

which is exactly the above recursion. The case k ≡ 0 mod 2 is analogous.
(2): The definition of Ln,b only depends on n2b. Thus, as 2n · 2b−1 = n · 2b, this is immediate.
(3): This is immediate.
(4): The natural way of computing the formula Ln,b(k, i1, . . . , id) is done in the given time

bound.

We will now prove our multi-variate variable reduction theorem. We prove here the case when
the number of variables is a power of 2, for simplicity. The general case, with some loss, will follow
as a corollary. The following notation will make the presentation simpler.

Notation 6.5. Let f(〈h1(j), . . . , hk(j)〉rj=1) denote

f(h1(1), . . . , hk(1), h1(2), . . . , hk(2), . . . , h1(r), . . . , hk(r))
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We will use this notation heavily in the following proof.

Theorem 6.6. Let n ≥ 1, d ≥ 1 and b ≥ d − 1. Let K be an extension of F such that g ∈ K
has order ≥ (n2b)2

d−1
. Let T : JnK2d → F be a tensor of rank ≤ r. Let f̂T (x0, . . . , x2d−1) =∑r

`=1

∏2d−1
i=0 pi,`(xi), where deg pi,` < n.

Then f̂T is non-zero (over F) iff one of the univariate polynomials in the set

{f̂T (gLn,b(0,i1,...,id)x, gLn,b(1,i1,...,id)x, . . . , gLn,b(2
d−1,i1,...,id)x)}0≤i1,...,id<r

is non-zero (over K).

Proof. The proof will be by induction. For simplicity we write f for f̂T .
d = 1: Note that Ln,b(0, i1) = 0 and Ln,b(1, i1) = i1, so this case follows from Corollary 5.4.
d > 1: We will first reshape f into a bivariate polynomial, and appeal to the d = 1 case. We

will then un-reshape this polynomial into a 2d−1-variate polynomial, and then appeal to induction.
By induction on Lemma 6.2 (and appealing to Lemma 6.1 to see that Lemma 6.2 applies to

any two variables, not just the first) we see that

f(〈xj〉2
d−1
j=0 ) = 0 iff f(〈x(n2

b)j

0 , x
(n2b)j

1 〉2d−1−1
j=0 ) = 0 (1)

(where so far we only need that b ≥ 1).
We split the rest of the proof into two claims. The first claim shows how we can, using the

bivariate case, test identity of the right-hand-side of Equation (1) by testing identity of a set of
r polynomials, each of 2d−1 variables. The second claim shows how testing identity of these new
polynomials can be reduced to testing identity of univariate polynomials, where we use the induction
hypothesis.

Claim 6.7.
f(〈x(n2

b)j

0 , x
(n2b)j

1 〉2d−1−1
j=0 ) = 0

iff

{f(〈xj , gi1(n2
b)jxj〉2

d−1−1
j=0 )}0≤i1<r = 0

Proof. First observe that

f ′(x0, x1)
def
=f(〈x(n2

b)j

0 , x
(n2b)j

1 〉2d−1−1
j=0 )

= f(x0, x1, x
n2b

0 , xn2
b

1 , x
(n2b)2

0 , x
(n2b)2

1 , . . . , x
(n2b)2

d−1−1

0 , x
(n2b)2

d−1−1

1 )

=

r∑
`=1

2d−1−1∏
j=0

p2j,`(x
(n2b)j

0 )

2d−1−1∏
j=0

p2j+1,`(x
(n2b)j

1 )


so we can apply Corollary 5.4 to see that f ′(x0, x1) = 0 iff {f ′(x0, gi1x0)}0≤i1<r = 0, which, when
expanded, is equivalent to

{f(〈x(n2
b)j

0 , gi1(n2
b)jx

(n2b)j

0 〉2d−1−1
j=0 )}0≤i1<r = 0

using that the order of g is ≥ (n2b)2
d−1

> degx0 f
′, degx1 f

′. Using that 2b ≥ 2d−1 ≥ 2, we can

undue the variable substitutions xj 7→ x
(n2b)j

0 . That is, applying Lemma 6.2 in reverse, we see that
the above set of polynomials is zero iff

{f(〈xj , gi1(n2
b)jxj〉2

d−1−1
j=0 )}0≤i1<r = 0

which is exactly the claim.
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Claim 6.8.
f(〈xj , gi1(n2

b)jxj〉2
d−1−1
j=0 ) = 0

iff

{f(〈gLn,b(j,i1,...,id)x〉2d−1j=0 )}0≤i2,...,id<r = 0

Proof. First observe that

f ′(x0, x1, . . . , x2d−1−1)
def
=f(〈xj , gi1(n2

b)jxj〉2
d−1−1
j=0 )

=

r∑
`=1

2d−1−1∏
j=0

p2j,`(x2j) · p2j+1,`(g
i1(n2b)jx2j)

so f ′ is 2d−1-variate, having individual degrees < 2n. Thus, applying induction to the theorem for
the 2d−1-variate case (and using b− 1 instead of b, noticing that b− 1 ≥ (d− 1)− 1 also holds), we
get that f ′(x0, x1, . . . , x2d−1−1) = 0 iff

{f ′(〈gL2n,b−1(j,i2,...,id)x〉2d−1−1
j=0 )}0≤i2,...,id<r = 0

or in terms of f ,

{f(〈gL2n,b−1(j,i2,...,id)x, gi1(n2
b)j+L2n,b−1(j,i2,...,id)x〉2d−1−1

j=0 )}0≤i2,...,id<r = 0

where we have used that the order of g ≥ (n2b)2
d−1 ≥ (2n·2b−1)2(d−1)−1

. Invoking Proposition 6.4.(2)
and Proposition 6.4.(1) we see that the above polynomials being zero is equivalent to

{f(〈gLn,b(2j,i1,...,id)x, gLn,b(2j+1,i1,...,id)x〉2d−1−1
j=0 )}0≤i2,...,id<r = 0

and reindexing, this is equivalent to

{f(〈gLn,b(j,i1,...,id)x〉2d−1j=0 )}0≤i2,...,id<r = 0

which is the claim.

Chaining together Equation 1 and the above two claims, yields the theorem.

Remark 6.9. Let D = 2d. In the above proof we use a recursion scheme that reduces to the problem
when D → 2 and D → D/2. This gives rise to the recursion T (D) ≤ T (2) + T (D/2), where T (D)
is the minimum number such that a D-variate rank ≤ r polynomial can be identity tested using
rT (D) univariate polynomials. There is also the recursion S(D) ≤ r(Dn)D/2 +S(D/2), where S(D)
is the maximum degree of g seen in this reduction to the univariate case.

One can do slightly better than this scheme by using the “square root trick”, where we break
up the D-variate case into two copies of the

√
D-variate case. This yields the recursions T (D) ≤

2T (
√
D) and S(D) ≤ r(Dn)

√
D ·S(

√
D) +S(

√
D). This yields the same solution to T , but has now

that S(D) = O(r(Dn)O(
√
D)) instead of r(Dn)D/2. While this is an improvement, it is somewhat

mild.
Similarly, one can give other recursion schemes that minimize S (so it is poly(n,D,R)), but at

the cost of making T (D) ≈ D.
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6.2 The Hitting Set for Tensors

In this subsection we use the variable reduction theorem of the last subsection to construct hitting
sets for tensors. First, recall our notion of a hitting set for tensors from Section 3, as well as the
definitions of the polynomial fT and f̂T associated with T . As C

x
i1
1 ···x

id
d

(f̂T ) = T (i1, . . . , id) we see

that T = 0 iff f̂T = 0. Theorem 6.6 shows that f̂T = 0 iff a set of univariate polynomials are all
zero. Thus, to test if T is zero we can interpolate each of these polynomials. As these polynomials
are defined via f̂T , these interpolations can be realized as inner-products with T . This will yield
our hitting set, which we now make formal.

Construction 6.10. Let n, r ≥ 1 and d ≥ 2. Let K be an extension of F such that g ∈ K is of
order ≥ (2dn)d and α1, . . . , αdn ∈ K are distinct. Let Bk,`1,...,`dlg de : JnKd → K to be the rank-1
tensor defined by

Bk,`1,...,`dlg de(i1, . . . , id)
def
=

d∏
j=1

(gLn,dlg de(j,`1,...,`dlg de)αk)
ij

and let Bd,n,r
def
={Bk,`1,...,`dlg de}0≤`1,...,`dlg de<r,1≤k≤dn.

We now give the analysis for this hitting set.

Theorem 6.11. Let n, r ≥ 1 and d ≥ 2. Then Bd,n,r, as defined in Construction 6.10, has the
following properties:

1. Bd,n,r is a hitting set for JnKd tensors of rank ≤ r over F.

2. |Bd,n,r| = dnrdlg de

3. Bd,n,r can be computed in poly((2dn)d, rdlg de) operations, where operations (including a suc-
cessor function in some enumeration of K) over K are counted at unit cost.

Proof. |Bd,n,r| = dnrdlg de: This is by definition.

Bd,n,r can be computed in poly((2dn)d, rdlg de) operations: We assume here an enumeration of
elements in K such that the successor in this enumeration can be computed at unit cost. We also
will assume testing whether an element is zero, as well as the field elements, are done at unit cost.

First observe that there are at most (2dn)d solutions to x(2dn)
d − 1 over K, so if we enumerate

(2dn)d + 1 elements of K, they we can find a g ∈ K with order ≥ (2dn)d. This is in poly((2dn)d)
operations. Similarly, the enumeration will give us dn distinct elements which yield the desired αk.

By Proposition 6.4, Ln,dlg de(j, `1, . . . , `dlg de) can be computed in poly(d, n, r) steps, and this

number is ≤ (2dn)d, so computing gLn,dlg de(j,`1,...,`dlg de) will take at most poly((2dn)d, r) operations.
Computing the powers of αk will take poly(d, r) time. Thus, each Bk,`1,...,`dlg de can be done in

poly((2dn)d, rdlg de) steps. As there are poly(dnrdlg de) of them, all of Br,n,m can be computed in
poly((2dn)d, rdlg de) operations.
Bd,n,r is a hitting set: By construction Bd,n,r is a set of rank-1 tensors, so it remains to show that

it hits each low-rank tensor. Consider any T : JnKd → F of rank ≤ r. We now apply Theorem 6.6 to
f̂T , where we consider f̂T as a 2dlg de-variate polynomial of rank ≤ r (by padding f̂T with dummy
variables), individual degrees < n, and taking b = dlg de. This shows that f̂T = 0 iff

{f̂T (gLn,dlg de(0,`1,...,`dlg de)x, gLn,dlg de(1,`1,...,`dlg de)x, . . . , gLn,dlg de(d−1,`1,...,`dlg de)x)}0≤`1,...,`dlg de<r = 0
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(over K). Each of the above univariate polynomials has degree ≤ d(n − 1), so interpolating them
at dn ≥ d(n− 1) + 1 points will completely determine them. In particular, the above polynomials
are zero iff all the evaluations at any dn are zero.

Now we observe, just as in the matrix case, that evaluating the (`1, . . . , `dlg de)-th polynomial
in the above set at the point αk is exactly the same as the inner product 〈T,Bk,`1,...,`dlg de〉. Thus,

T = 0 iff f̂T = 0 iff all of these inner-products is zero. This exactly means that Bd,n,r is a hitting
set.

We remark that this hitting set is of quasi-polynomial size as a rank ≤ r tensor T : JnKd → F
can be represented using dnr field elements. However, its construction time is exponential in d.
We leave it as an open question as to whether the construction time can be made to match (up to
polynomial factors) the size of the hitting set.

6.3 Identity Testing for Tensors over Small Fields

Thus far we have assumed the existence of an element g ∈ K of large order. In doing so, all of
our hitting sets are tensors over the field K instead of the base field F. While this is a common
assumption when the polynomials of interest are of high degree, the polynomials arising from JnKd

tensors on dn variables are of degree ≤ d, so hitting sets still exist for when F is O(d) sized (as seen
in Lemma 3.13). In this section, we explore this question and show how to transform hitting sets
over K to hitting sets over F, with some loss. Combining this with the above results, we construct
explicit hitting sets over any F.

We first detail a field simulation result that produces improper hitting sets.

Proposition 6.12. Let K be an extension of F, with k = dimFK. For ` ∈ JkK, let ϕ` : K → Fk
denote the k projection maps to the standard basis coordinates of K.

Let H ⊆ KJnKd be an improper hitting-set for JnKd tensors of rank ≤ r. For H ∈ H define H̃` by

(H̃`)i1,...,id = ϕ`(Hi1,...,id)

and define
H̃ = {H̃`}H∈H,`∈JkK

Then

1. If all tensors in H are s-sparse, then so are all tensors in H̃.

2. |H̃| = k · |H|.

3. H̃ is an improper hitting set for JnKd tensors of rank ≤ r.

Proof. (1): If Hi1,...,id = 0 then it follows that (H̃`)i1,...,id = 0 for all `.
(2): This is by construction.
(3): Let α0, . . . , αk−1 be the standard basis for K as a F-vector-space. Then it follows that

H =
∑

`∈JkKH` α`.

Consider some tensor T : JnKd → F of rank ≤ r. Then we know that there is some H ∈ H such
that 〈T,H〉 6= 0. It follows that there must be some ` with 〈T,H`〉 6= 0.

We now apply this to our hitting set results.

Corollary 6.13. Let m ≥ n ≥ r ≥ 1. Over any field F, there is an poly(m)-explicit improper
hitting set for n×m matrices of rank ≤ r, of size O(rm lgm). Further, each matrix in the hitting
set is O(n)-sparse.
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Proof. If F has an element of order ≥ m, then Theorem 5.8 suffices.
If not, let K be an extension field of F such that dimFK = Θ(lgm), and thus there is an element

of order ≥ m in K. Such an extension can be explicitly described by an irreducible polynomial over
F of degree Θ(lgm), which can found in poly(m) time, in which time we can also find g. Using
Theorem 5.8 to get an n-sparse (improper) hitting-set over K for these F-matrices, and applying
Proposition 6.12 yields the result.

Corollary 6.14. Let n, r ≥ 1, d ≥ 2. Over any field F, there is an poly((2nd)d, rO(lg d))-explicit
improper hitting set for JnKd-tensors of rank ≤ r, of size O(dnrO(lg d) · (d lg 2dn)).

Proof. If F has an element of order ≥ (2nd)d, then Theorem 6.11 suffices.
If not, let K be an extension field of F such that dimFK = Θ(d lg(2nd)), and thus there is an

element of order ≥ (2nd)d in K. Such an extension can be explicitly described by an irreducible
polynomial over F of degree Θ(d lg 2nd), which can found in poly((2nd)d) time, in which time we
can also find g. Using Theorem 6.11 to get a hitting-set over K for these F-matrices, and applying
Proposition 6.12 yields the result.

The above results only yield improper hitting sets. We now show how to preserve the rank-1
property of the original hitting set, and thus get proper hitting sets over small fields. To do, we
first recall a standard fact in algebra showing that K is isomorphic to a subring of F-matrices.

Lemma 6.15. Let K be an extension of F, and let k = dimFK < ∞ so that K = Fk as vector
spaces. For any α ∈ K define the linear map µα : Fk → Fk given by the multiplication map x 7→ αx.
Let Mα ∈ Fk×k be the associated matrix. Then the map M(·) : K → Fk×k is an isomorphism as
F-algebras.

Proof. The map is clearly well-defined. To see the additive homomorphism, note that as (α+β)γ =
αγ + βγ for any α, β, γ ∈ K, it follows that Mα+β · γ = Mαγ +Mβγ for any γ ∈ Fk = K (where we
abuse notation by writing γ to denote an element in K as well as its representation as a vector in
Fk). Taking γ for each vector in some basis shows that Mα+β = Mα +Mβ.

Similarly, to see the multiplicative homomorphism note that for any α, β, γ ∈ K we have that
(αβ)γ = α(βγ). Thus it must be that MαMβγ = αβγ = Mαβγ. Again, taking γ over each vector
in a basis determines a linear operator. Thus it must be that MαMβ = Mαβ.

Noting that for α ∈ F we have that Mα = αIk we then gain F-linearity of the map.
If α 6= 0 then Mα ·Mα−1 = M1 = Ik, so Mα is invertible. Thus, if Mα = Mβ then Mα−β = 0k,

which implies that α− β = 0 (as else Mα−β would be invertible) and thus α = β. This implies the
map is injective.

As a map is surjective onto its image by definition, this establishes the F-algebra homomorphism.

We now show how to use this alternate representation of K as a way to simulate hitting sets
defined over K by hitting sets defined over F.

Proposition 6.16. Let K be an extension of F, with k = dimFK. Let H ⊆ KJnKd be a hitting-set
for JnKd tensors of rank ≤ r. For H = ⊗dj=1vj ∈ KJnKd define ṽj,`0,...,`d ∈ Fn by

(ṽj,`0,...,`d)i = (M(vj)i)`j−1,`j

where M(·) : K→ Fk×k is the isomorphism of Lemma 6.15 and define

H̃`0,...,`d =

d⊗
j=1

ṽj,`0,...,`d
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and define
H̃ = {H̃`0,...,`d−1,0}H∈H,0≤`0,...,`d−1<k

Then

1. H̃ is a set of rank-1 F-tensors of shape JnKd.

2. |H̃| = kd · |H|.

3. H̃ is a hitting set for JnKd tensors of rank ≤ r.

Proof. (1): This is by construction.
(2): This is by construction.

(3): Consider some tensor T : JnKd → F of rank ≤ r. Then we know that there is some H ∈ H
with H = ⊗dj=1vj , such that 〈T,H〉 6= 0. Then we see that (we now abuse notation, by writing µ
now to denote the map M(·))

µ(〈T,H〉)`0,`d = µ

 ∑
i1,...,id∈JnK

T (i1, . . . , id)
d∏
j=1

(vj)ij


`0,`d

=
∑

i1,...,id∈JnK

T (i1, . . . , id)

 d∏
j=1

µ
(
(vj)ij

)
`0,`d

fully expanding the matrix multiplication of d matrices, each k × k,

=
∑

i1,...,id∈JnK

T (i1, . . . , id)
∑

`1,`1,...,`d−1∈JkK

d∏
j=1

µ
(
(vj)ij

)
`j−1,`j

=
∑

`1,`1,...,`d−1∈JkK

∑
i1,...,id∈JnK

T (i1, . . . , id)
d∏
j=1

µ
(
(vj)ij

)
`j−1,`j

=
∑

`1,`1,...,`d−1∈JkK

〈T, H̃`0,...,`d〉

So it follows that if µ(〈T,H〉)`0,`d 6= 0 then there is some `1, . . . , `d−1 ∈ JkK such that 〈T, H̃`0,...,`d〉 6=
0.

Let γ0 denote the element in K corresponding to e0 ∈ Fk (the standard basis vector with a 1 in
the zero position). Note that γ0 6= 0. Then it follows that for any α ∈ K that Mαe0 = Mαγ0 = αγ0
(where we abuse notation by writing αγ0 to denote an element in K as well as the vector representing
αγ0 in Fk). Thus, α is fully recoverable from Mαe0, and in particular, α = 0 iff Mαe0 = 0.

Thus, to test if 〈T,H〉 = 0 (over K) it is enough to test if µ(〈T,H〉)`0,0 = 0 (over F) for all
`0 ∈ JkK. Combining this with the above we see that 〈T,H〉 = 0 (over K) iff 〈T, H̃〉 = 0.

We now use the above result to get hitting sets for matrices and tensors over any field.

Corollary 6.17. Let m ≥ n ≥ r ≥ 1. Over any field F, there is an poly(m)-explicit hitting set for
n×m matrices of rank ≤ r, of size O(rm lg2m).
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Proof. If F has an element of order ≥ m, then Theorem 5.6 suffices.
If not, let K be an extension field of F such that dimFK = Θ(lgm), and thus there is an element

of order ≥ m in K. Such an extension can be explicitly described by an irreducible polynomial over
F of degree Θ(lgm), which can found in poly(m) time, in which time we can also find g. Using
Theorem 5.6 to get a hitting-set over K for these F-matrices, and applying Proposition 6.16 yields
the result.

Corollary 6.18. Let n, r ≥ 1, d ≥ 2. Over any field F, there is an poly((2nd)d, rO(lg d))-explicit
hitting set for JnKd-tensors of rank ≤ r, of size O(dnrO(lg d)(d lg 2dn)d).

Proof. If F has an element of order ≥ (2nd)d, then Theorem 6.11 suffices.
If not, let K be an extension field of F such that dimFK = Θ(d lg(2nd)), and thus there is an

element of order ≥ (2nd)d in K. Such an extension can be explicitly described by an irreducible
polynomial over F of degree Θ(d lg 2nd), which can found in poly((2nd)d) time, in which time we
can also find g. Using Theorem 6.11 to get a hitting-set over K for these F-matrices, and applying
Proposition 6.16 yields the result.

7 Explicit Low Rank Recovery of Matrices

Thus far we have discussed identity testing for matrices (and tensors). There the main concern is to
(deterministically) determine whether the matrix is identically zero. However, we may also ask for
more, in that we may want to (deterministically) reconstruct the entire matrix. Throughout this
section we will only discuss deterministic measurements which are linear (so are inner products with
the unknown matrix or vector), non-adaptive (so the measurements are independent of the unknown
matrix or vector) and noiseless. The focus on deterministic measurements differs from prior work,
which typically focuses on showing that certain distributions of measurements allow recovery with
high probability. That the measurements are restricted to be linear is a common assumption in
compressed sensing. Non-adaptiveness is also a common assumption, but it is important to note
that recent work [IPW11] shows that adaptivity in (noisy) sparse-recovery can be more powerful
than non-adaptivity. Finally, we assume our matrices are exactly rank ≤ r, not just close to
some matrix that is rank ≤ r, and we assume that our measurements are noiseless. This is not
quite practical for compressed sensing, but some previous work also makes this assumption [GK72,
Gab85b, Gab85a, Del78, Rot91, Rot96, RFP10]. Further, the noiseless case is more natural for our
applications to rank-metric codes, and allows the results to be field independent.

We begin by noting that low-rank recovery (recall Definition 3.9, which we consider in this
section only for matrices) generalizes the notion of sparse-recovery, which is the defined formally
as the following.

Definition 7.1. A set of vectors V ⊆ Kn is an s-sparse-recovery set if for every vector x ∈ Fn
with at most s non-zero entries, x is uniquely determined by y, where y ∈ KV is defined by

yv
def
= 〈x,v〉, for v ∈ V.
An algorithm performs recovery from R if, for each such x, it recovers that x given y.

That LRR generalizes the sparse-recovery is formalized in the following claim.

Lemma 7.2. Given an r-low-rank recovery set R for n × n matrices, there is a set V ⊆ Fn,
efficiently constructible from R, with |V| = |R|, such that V is an r-sparse-recovery set.
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Proof. Given an r-sparse vector x ∈ Fn construct the diagonal matrix Λ ∈ Fn×n with x on its
diagonal. Thus, Λ is rank ≤ r. Thus, if we can perform r-low-rank-recovery we can also do r-sparse
recovery. Each such measurement of Λ can be seen to also be a linear measurement of x, so this
yields V.

The purpose of this section is to show that the two problems (when concerned with non-
adaptive, exact measurements) are essentially equivalent. That is, one can (efficiently) perform
low-rank-recovery given any construction of a sparse-recovery set.

To motivate the reduction from low-rank-recovery to sparse-recovery, we will show that our
above hitting set results already imply low-rank-recovery results, and that these hitting sets can be
seen as being constructed from a well-known sparse-recovery construction. We begin by recalling
Lemma 3.10 (standard) fact that any hitting set family yields a low-rank-recovery family, so in
particular our results do so. Combining the above with our constructions of hitting sets, we derive
the following corollary.

Corollary 7.3. The sets B2r,n,m, D2r,n,m, D′2r,n,m, and B′2r,n,m (from Construction 5.5, Construc-
tion 5.7 and Construction 5.9) are r-low-rank-recovery sets.

However, the above results are non-constructive. That is, they show that recovery is
information-theoretically possible from this set of matrices, but do not give any insight how to
perform this recovery efficiently. The purpose of this section is to show that we can strengthen
Corollary 7.3 such that the recovery can be efficiently performed.

To motivate our recovery algorithm, let us first discuss the r-low-rank-recovery set D2r,n,m. For
an n × m matrix M , consider the constraints that the system 〈M,D2r,n,m〉 = 0 imposes on M .
By construction of D2r,n,m, we see that each k-diagonal of M has 2r constraints imposed on it.
If we write the k-diagonal of M as x, we can express the constraints on x as Ax = 0, where A
is of size 2r × |x|, where |x| denotes the size of the k-diagonal. Further, A has the format (when
2r ≤ k + 1 ≤ n) 

1 1 1 · · · 1

1 g g2 · · · g|x|−1

1 g2 g4 · · · g2(|x|−1)

...
...

...
. . .

...

1 g2r−1 g2(r−1) · · · g(2r−1)(|x|−1)

 (2)

which is important because of the following claim.

Lemma 7.4. Let x be an r-sparse F-vector. Let g be of order ≥ |x| in some extension K of F, and
let A be an 2r × |x| sized matrix of the form in Equation (2). Then x is determined by Ax.

Proof. Suppose x and y are two r-sparse vectors such that Ax = Ay. By linearity we then have
that A(x− y) = 0, so that A has a linear dependence on ≤ 2r of the columns.

However, as the order of g is ≥ |x|, each 2r×2r minor of A is a Vandermonde matrix on distinct
entries, and so is full-rank. In particular, any linear dependence on ≤ 2r of the rows must be zero.
So x− y = 0, so x = y. Thus, x is determined by Ax.

Note that the row-space of the above matrix is a Reed-Solomon code, and so the above lemma
shows the standard fact that the dual Reed-Solomon code has good distance. In particular, we can
do error correction for up to r errors. This is exactly the question of r-sparse recovery (when we
are correcting errors from the 0 codeword).
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This lemma shows that at each k-diagonal, D2r,n,m embeds an r-sparse-recovery set. Thus,
it seems plausible that a low-rank-recovery algorithm for D2r,n,m might only use this fact in its
construction, and thus show low-rank-recovery can be done whenever each of the k-diagonals are
measured according to an r-sparse-recovery set. Indeed, this is what is shown by Theorem 7.19.

The reduction from low-rank-recovery to sparse-recovery is detailed in the following two sub-
sections. The first subsection details a slightly stronger notion of sparse-recovery, which we call
advice-sparse-recovery. This notion requires sparse-recovery when supplied with some advice on the
support of the unknown vector. This is the correct notion of sparse-recovery when attempting to do
low-rank-recovery, but the standard notion is sufficient with some loss in parameters. We describe a
well-known algorithm, known as Prony’s method, for efficiently performing the recovery illustrated
in Lemma 7.4, and show that this method can be modified to also achieve advice-sparse-recovery.

The second subsection gives the reduction from low-rank-recovery to sparse-recovery. Combin-
ing this with our modifications to Prony’s method, we conclude that the low-rank-recovery shown
in Corollary 7.3 can also be performed efficiently.

7.1 Prony’s Method and Syndrome Decoding of Dual Reed-Solomon Codes

In this section we detail an algorithm for efficiently performing the sparse-recovery demonstrated
in Corollary 7.4. While our discovery of the algorithm was independent of prior work, it was
original detailed by Prony [dP95] in 1795 and is well-known in the signal-processing community
(see [PCM88] and references there-in). It can also be seen as syndrome decoding of the dual to
the Reed-Solomon code. What we detail here is not exactly the original method, as we seek an
advice-sparse-recovery set, which is a slightly stronger condition which will be useful in our low-
rank-recovery algorithm. In coding theory terminology, we are seeking to syndrome decode the
dual Reed-Solomon code in the presence of erasures. We now define this stronger notion.

Definition 7.5. A set of vectors V ⊆ Fn is an s-advice-sparse-recovery set if for every S ∈( JnK
≤2s
)
, and vector x ∈ Fn with ≤ s− |S|/2 non-zero entries outside of S, x is uniquely determined

by S and y, where y ∈ FV is defined by yv
def
= 〈x,v〉, for v ∈ V.

An algorithm performs recovery from V if, for each such x, it recovers that x given S and y.

Note that the vector y can also be defined as y = V x, where V ∈ FV×n is the matrix whose
rows are those vectors in V.

The motivation for this new definition is to capture situations where x is known to have sparse
support overall, and further some of its support is already known and given by the set S. The
results below show that exploiting this knowledge allows |V| to be smaller. To see why this might
be intuitively plausible, one can count degrees of freedom. In an s-sparse vector x, there are
intuitively 2s degrees of freedom: it takes s degrees to determine Supp(x), and it takes s degrees
to determine (xi)i∈Supp(x).

In the above definition of a s-advice-sparse-recovery set, the unknown vector x can have a
support of size 2s (when |S| = 2s). If one ignores the set S, there would be 4s degrees of freedom,
by the above argument, leading one to expect a lower bound of “|V| ≥ 4s”. However, if one
exploits this knowledge, then there are only s − |S|/2 degrees of freedom to determine Supp(x),
and |S|+(s−|S|/2) degrees of freedom to determine (xi)i∈Supp(x), which gives a total of 2s degrees
of freedom.

Thus we see that using the information given in S can reduce the degrees of freedom in x, and
below we match this intuition by recovering x from 2s measurements. This intuition is the same
intuition in coding theory that an erasure is a “half error”, but specialized to syndrome decoding.
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In the next subsection, we will see that r-low-rank-recovery reduces to the problem of r-advice-
sparse-recovery. When S = ∅ then r-advice-sparse-recovery is exactly the notion of an r-sparse-
recovery. However, we will need S to have size up to 2r. Note that regardless of the size of S, x
will be 2r-sparse. Thus the following lemma is immediate.

Lemma 7.6. Let V be a 2s-sparse-recovery set. Then V is also a s-advice-sparse-recovery set.

To our knowledge, the existing work on Prony’s method gives an algorithm for perform sparse-
recovery. However, in our reduction advice-sparse-recovery is more natural. The above lemma shows
that these notions are equivalent, up to a loss in parameters. However, to get better constructions we
detail how to modify Prony’s method to achieve advice-sparse-recovery without a loss in parameters.

Algorithm 1 Prony’s method with an advice set

1: procedure PronysMethod(n,s,S,y,{g0, . . . , gn−1})
2: if |S| odd then
3: Enlarge S by 1 position
4: end if
5: t

def
= |S|/2

6: Construct A ∈ F(s+t)×(s+t+1), Ai,j
def
=

{
gikj if i < |S|
yi+j−|S| else

. for S = {k0, . . . , k|S|−1}

7: Convert A to row-reduced echelon form
8: Let r ∈ Js+ tK be the largest number so the r × r leading principal minor of A is full rank.
9: Let c ∈ Fr+1 be a non-zero vector in the nullspace of leading r × (r + 1) minor of A.

10: Define p(x)
def
=
∑r

i=0 cix
i

11: T
def
={k|p(gk) = 0} . T will be Supp(x)

12: D ∈ F2s×T , Di,k
def
= gik, for k ∈ T

13: Solve Dz = y for z (using Gaussian Elimination)

14: Define x ∈ Fn, as xk =

{
zk if k ∈ T
0 else

15: return x
16: end procedure

Theorem 7.7. Let F be a field, and let g0, . . . , gn−1 ∈ F be distinct. Let vi ∈ Fn be the vector

with entries (vi)j
def
= gij. Then the set V = {vi}2s−1i=0 is an s-advice-sparse-recovery set. Further,

PronysMethod(n, s, S, V x, {g0, . . . , gn−1}) (Algorithm 1) recovers x in O(s3 + sn) operations
(where operations over F are counted at unit cost), where V ∈ F2s×n is the matrix with the vectors
in V as its rows.

In particular, if g ∈ F has order at least n, we can take gj = gj.

Proof. As above, define V ∈ F2s×n to be the matrix whose rows are those vectors vi. That
is, Vi,j = gij . As the gj are distinct, it follows that every 2s × 2s minor of V is an invertible
Vandermonde matrix. It follows that each subset of ≤ 2s columns of V are linearly independent.

Define gj ∈ F2s by (gj)i
def
= gij . It follows that the gj are the columns of V . For a vector a ∈ Fm,

define a[`,k] ∈ Fk−`+1 to be the vector with entries a`, . . . , ak.
V is a s-advice-sparse-recovery set: Consider a set S ∈

( JnK
≤2s
)

and vectors x,w ∈ Fn where each
have at most s − |S|/2 non-zero entries outside of S. Suppose that V x = V y. By linearity, this
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yields the vector x−w such that V (x−w) = 0 and x−w has at most 2(s−|S|/2) non-zero entries
outside of S. In total, x − w has at most |S| + 2(s − |S|/2) = 2s non-zero entries. However, as
mentioned above, each subset of ≤ 2s columns of V are linearly independent. As 0 = V (x−w) is
a linear combination of ≤ 2s columns of V , it follows that x−w = 0. Thus, any such x is uniquely
determined by S and V x.

Algorithm 1 performs recovery: Consider a set S ∈
( JnK
≤2s
)
, with S = {k0, . . . , k|S|−1}. For any

vector x the condition that | Supp(x) \ S| ≤ s− |S|/2 implies that |Supp(x) \ S| ≤ s− d|S|/2e by
integrality. It follows that we may assume the set S has even size, as we can always enlarge it by
one position without changing the above constraints on the support of x. (If S = JnK prior to this
enlargement, we simulate n+ 1 long vectors). Now define t so |S| = 2t.

Consider vector x ∈ Fn with at most ν ≤ s − |S|/2 = s − t non-zero entries outside of S. By
construction of y (recall y = V x),

y =
∑
k∈S

xkgk +
∑

k∈Supp(x)\S

xkgk (3)

The aim of this analysis will be to show that we can determine Supp(x) and then leverage this to
solve the above equation for x.

We now establish some theory to analyze the algorithm. The above equation can be refined to
see that

y[`,`′] =
∑
k∈S

xkg
[`,`′]
k +

∑
k∈Supp(x)\S

xkg
[`,`′]
k =

∑
k∈S

xkg
`
kg

[0,`′−`]
k +

∑
k∈Supp(x)\S

xkg
`
kg

[0,`′−`]
k (4)

We note here that the rows of A involving y can be written as y[0,s+t], . . . ,y[s−t−1,2s−1]. As y has
2s entries, each of these vectors is well-defined, and each entry in y is used in A.

We now establish some claims about A using that ν = |Supp(x) \ S|.

Claim 7.8. The (|S|+ ν + 1)× (|S|+ ν + 1) leading principal minor of A is singular.

Proof. Denote this leading minor by M . The rows of M are of the form g
[0,|S|+ν]
kj

for j < |S|,
and y[`,|S|+ν+`] for 0 ≤ ` < ν. Trivially, for each j < |S|, g

[0,|S|+ν]
kj

∈ Span{g[0,|S|+ν]
k }k∈Supp(x)∪S .

Further, Equation 4 shows that y[`,|S|+ν+`] ∈ Span{g[0,|S|+ν]
k }k∈Supp(x)∪S . Thus, the |S|+ν+1 rows

of M each lie in a ≤ (|S|+ ν)-dimensional subspace, implying that M is singular.

Claim 7.9. The (|S|+ ν)× (|S|+ ν) leading principal minor of A is invertible.

Proof. Denote this leading minor by M . We will show that M = BC, for B,C ∈ F(|S|+ν)×(|S|+ν)

both invertible, which implies the claim.

Let the rows of C be the vectors g
[0,|S|+ν−1]
k , for each k ∈ Supp(x) ∪ S. We will index the rows

by the gk, and assume that the first |S| such gk are those with k ∈ S. This is a Vandermonde
matrix, and as such is invertible.

Let B be defined by

Bi,gk =


1 if i = k < |S|
0 if i 6= k, i < |S|
xkg

i−|S|
k else

It follows from Equation 4 that M = BC. Note that B has the form[
I|S| 0

EX1 FX2

]
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where X1 ∈ F|S|×|S| is the diagonal matrix with diagonal entries xk, for k ∈ S (ordered to match
C), X2 ∈ Fν×ν is the diagonal matrix with diagonal entries xk, for k ∈ Supp(x) \ S (ordered to

match C), E ∈ Fν×|S| is the Vandermonde matrix with entries Ei,gk
def
= gik, for k ∈ S, and F ∈ Fν×ν

is the (invertible) Vandermonde matrix with entries Fi,gk
def
= gik for k ∈ Supp(x) \ S.

Note that X1 might entirely be zero, but X2 must be invertible by assumption that x has
exactly ν non-zero entries outside of S. As F is invertible, it follows that FX2 is invertible, and
thus B is also invertible.

Thus, M = BC with B and C both invertible matrices. The claim follows.

As the first |S| rows of A are rows of a Vandermonde matrix, it follows that the first |S| leading
principal minors are all invertible. This, along with the above two claims, thus show that |S| + ν
is the minimum r such the (r+ 1)× (r+ 1) leading principal minor of A is singular. It follows that
in Algorithm 1 the r value chosen in Step 8 is in fact |S|+ ν.

We now show that the c chosen by the algorithm also has significance.

Claim 7.10. Let p(x)
def
=
∏
k∈Supp(x)∪S(x− gk) =

∑|S|+ν
i=0 cix

i. Then the vector c ∈ F|S|+ν+1 defined
by those coefficients ci is in the nullspace of the (|S|+ ν)× (|S|+ ν + 1) leading minor of A.

Proof. Denote this leading minor by M .

Note that for any gk with k ∈ Supp(x) ∪ S has that 〈g[0,|S|+ν]
k , c〉 = 0, as this simply says that

p(gk) = 0. Thus, we see that c is orthogonal to the first |S| rows of M .
Now observe that Equation 4 shows that the last ν rows of M are all in the span of the vectors

g
[0,|S|+ν]
k for k ∈ Supp(x) ∪ S. As c is orthogonal to each of these vectors by construction, we see

that it must also be orthogonal to the last ν rows of M .
Thus, c is orthogonal to each row of M , and thus is in its nullspace.

The algorithm chooses some c that is in the nullspace of the (|S|+ν)×(|S|+ν+1) leading minor
of A. However, as the (|S|+ ν)× (|S|+ ν) leading principal minor of A is invertible, it follows that
the (|S|+ ν)× (|S|+ ν + 1) leading minor of A has a nullspace of dimension 1. Thus, the c chosen
by the algorithm must be a (non-zero) multiple of the coefficient vector of

∏
k∈Supp(x)∪S(x − gk).

It follows that the set T is equal to Supp(x) ∪ S.
Thus, Equation 3 gives a linear system for y with ≤ 2s variables, and 2s equations, where x

(restricted to Supp(x)∪S) is a solution. The system is full-rank, so x is the only solution. Further,
x can be recovered via Gaussian Elimination, and this is exactly what Algorithm 1 does. Thus,
correctness is also established in this case.

Algorithm 1 runs in O(s3 + sn) operations: Constructing the matrix A takes O(s2) operations,

as that is the size of the matrix and each entry can be computed in O(1) operations (the gik are
computed with i increasing). Converting A to reduced-row echelon form takes O(s3) operations.
Determining the number r in Step 8 also takes O(s) operations, as r = max{i|Ai,i 6= 0}. Deter-
mining the vector c takes O(s) because the r× (r+ 1) minor is row-reduced echelon form. That is,
for 1 ≤ i ≤ r, ci = −Ai,r+1 and cr+1 = 1. Constructing p and T takes O(sn) time, as we just test
if p(gk) = 0 for each k, and p is of degree O(s). D is a Vandermonde matrix with at most O(s2)
entries, and so constructing D takes O(s2) steps. Solving for z takes O(s3) steps, and determining
the final x takes O(n) steps.

This theorem provides us with an s-advice-sparse-recovery set, using 2s measurements. We will
now leverage this in the next subsection to get a full algorithm for low-rank-recovery.
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7.2 Low Rank Recovery

In this subsection we describe how the problem of (exact, non-adaptive) r-low-rank-recovery de-
terministically reduces to the problem of (exact, non-adaptive) r-advice-sparse-recovery. We will
first define a normal form for a matrix which we call (< k)-upper-echelon form, which (recalling
the notation of Section 2) is roughly defined as saying that a matrix M has M (<k) in reduced
row-echelon form. We then show that for any matrix M in this form, the diagonal M (k) is sparse.
Thus, using sparse-recovery we can then recover this diagonal. This process is then continued by
using row-reduction to put M in (≤ k)-upper-echelon form, and then recovering M (k+1) and so on.

The above process uses the sparse-recovery oracle in an adaptive way. The algorithm we detail
below will actually use the sparse-recovery oracle non-adaptively. The measurements made to the
matrix M will be the sparse-recovery oracle applied to each k-diagonal. While these diagonals
are not themselves sparse, we show that the row-reduction of M (that makes M into upper-
echelon form) acts such that we can simulate the adaptive measurements from the non-adaptive
measurements by computing the suitable corrections.

We now begin by describing some structural properties of matrices, which we will apply to
understand upper-echelon form.

Definition 7.11. Let M be an n ×m matrix. The entry (i, j) is a leading non-zero entry, if
Mi,j 6= 0 and Mi,j′ = 0 for j′ < j.

Denote LNE(M) to be the set of all such leading non-zero entries. If S is a subset of entries in

M , denote LNE(S)
def
= LNE(M) ∩ S.

Denote LNER(S) to be set containing the rows of the coordinates in LNE(S), and denote
LNEC(S) to be the multi-set containing the columns of the coordinates in LNE(S).

It is clear that each row can have at most one leading non-zero entry, and possibly none. A
column could be associated with several leading non-zero entries.

Definition 7.12. An n × m matrix M is in (< k)-upper-echelon form if, for each (i, j) ∈
LNE(M (<k)), Mi′,j = 0 for all i < i′ < k − j.

Note that a matrix is (< k)-upper-echelon if it is (< k′)-upper-echelon and k′ ≥ k, and that
every matrix is vacuously in (≤ 0)-upper-echelon form.

We now recall the following standard linear-algebraic fact about triangular systems, phrased in
the language of leading non-zero entries.

Lemma 7.13. Let M be an n × m matrix with all non-zero rows, such that LNEC(M) has no
repetitions. Then the rows of M are linearly independent.

Proof. Denote the column of the leading non-zero entry of row i by ji. Each row must have such a
value as each row is non-zero. As linear independence is invariant under permutation, we assume
without loss of generality that the rows are ordered such that the ji are strictly increasing with i.
This is possible as the ji are assumed to be distinct. Write these rows as vectors v(i). Now consider
any non-trivial linear combination

∑
i civ

(i). Pick i0 to be the least number such that ci0 6= 0. As
the ji are strictly increasing, it follows that the ji0-th entry of v(i) is zero for i > i0. Thus, we now
expand out the i0-th index of the above summation

(
∑
i

civ
(i))ji0 =

∑
i<i0

ci · v(i)
ji0

+ ci0v
(i0)
ji0

+
∑
i0<i

ci · v(i)
ji0

=
∑
i<i0

0 · v(i)
ji0

+ ci0v
(i0)
ji0

+
∑
i0<i

ci · 0 = ci0v
(i0)
ji0
6= 0

Thus we see that this linear combination is non-zero, and as this was any non-trivial linear combi-
nation it follows these rows are linearly independent.
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We now show that matrices in upper-echelon form cannot have many leading non-zero entries.

Lemma 7.14. Let M be an n × m matrix of rank ≤ r. If M is (< k)-upper-echelon, then
|LNE(M (<k))| ≤ r. Further, LNEC(M (<k)) has no repetitions.

Proof. Given (i, j) ∈ LNE(M (<k)), (< k)-upper-echelon form implies that Mi′,j = 0 for any i′ with
i < i′ < k − j. It follows that given two distinct entries (i, j), (i′, j) ∈M (<k) at most one can be a
leading non-zero entry. Thus we see that LNEC(M (<k)) has no repetitions.

Lemma 7.13 then implies that the rows in LNER(M (<k)) are linearly independent. Thus,
|LNE(M (<k))| ≤ rank(M) ≤ r.

The next lemma is the key insight of the algorithm. It shows that, for any matrix in (< k)-
upper-echelon form, the k-diagonal must be sparse. Further, the sparseness is bounded by twice
the rank of the matrix (the lemma presents a more refined statement).

Lemma 7.15. Let M be an n ×m matrix with rank ≤ r, such that M is in (< k)-upper-echelon

form with 0 ≤ k ≤ n+m− 2. Let s
def
= |LNE(M (<k))|, Idef= LNER(M (<k)), J

def
= LNEC(M (<k)).

Then M (k) has ≤ r− s non-zero entries with columns outside S
def
= (k− I)∪ J , and thus M (k) is

(r + s)-sparse.

Proof. Note that by Lemma 7.14 we have that s ≤ r, so that r − s ≥ 0 and r + s ≤ 2r.
Let I ′ be the rows that contain non-zero entries in M (k), whose columns lie outside S. We

will show that the rows in I ∪ I ′ are linearly independent. This will complete the claim as |I ′| ≤
rank(M)− |I| ≤ r − s, and observing that |S| ≤ 2s.

Now consider the columns of the leading non-zero entries of the rows in I ′. Any row i ∈ I
intersects M (k) at column k − i ∈ S. This means that row i cannot contain a non-zero entry in
M (k) with column outside of S, so I and I ′ are disjoint.

Any row i with a non-zero entry in M (<k) must have a leading non-zero entry in M (<k), and
thus any such i is contained in I. Thus, as I and I ′ are disjoint, it follows that any row i′ ∈ I ′ only
has zero entries within M (<k). As such a row i′ has a non-zero entry on M (k), it follows that the
leading non-zero entry of a row i′ ∈ I ′ is (i′, k − i′). This implies that the columns of the leading
non-zero entries of the rows in I ′ are distinct (and outside of S by construction).

The rows in I have leading non-zero entries in J ⊆ S and by Lemma 7.14, J has no repetitions.
Thus, it follows that the rows I ∪ I ′ all have distinct columns for their leading non-zero entries,
which, by Lemma 7.13, implies that these rows are linearly independent. Invoking the rank bound,
as mentioned above, completes the proof.

This lemma motivates the following idea for low-rank reconstruction. Iteratively, convert (using
row-reduction) the matrix into (< k)-upper-echelon form and then reconstruct, using any sparse-
recovery method, the k-th diagonal. This is exactly the algorithm we will present. However, to
establish correctness, we need to first understand how to convert a matrix into (< k)-upper-echelon
form, even in situations when M (≥k) is unknown.

To do this, we will use row-reduction, as implemented by left-multiplication by lower-triangular
matrices. The following lemma shows that such multiplication can be computed on the partial
matrices M (<k).

Lemma 7.16. Let M be an n × m matrix, and L be an n × n lower-triangular matrix. Then
(LM)(<k) is computable in O(min(n, k) min(m, k)k) arithmetic operations from L and M (<k).
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Proof. An entry (LM)i,j , for i + j < k, is equal to
∑n

l=0 Li,lMl,j , which equals
∑i

l=1 Li,lMl,j as
L is lower-triangular. Further, this sum is computable from L and the (< k)-diagonals of M as
l+j ≤ i+j < k. The time bound is the obvious bound on computing each of O(min(n, k) min(m, k))
sums of ≤ k terms.

We now establish a useful property on composing left-multiplication of special types of lower-
triangular matrices.

Lemma 7.17. Let L,L′ be n× n invertible, lower-triangular matrices, with all 1’s along the main
diagonal. Then LL′ is an invertible, lower-triangular matrix, with all 1’s along the main diagonal,

Further, if both L − In and L′ − In only have non-zero entries in a subset J of the columns,
then LL′ − In also has this property.

Proof. That facts that LL′ is an invertible, lower-triangular matrix and has all 1’s along the main
diagonal, are each straightforward.

We now prove the desired property of LL′ − In. Consider some entry (i, j) in LL′, with j /∈ J
and i > j. It is then that

(LL′)i,j =
∑
k∈JnK

Li,kL
′
k,j =

∑
i≥k≥j

Li,kL
′
k,j = Li,iL

′
i,j +

∑
i>k>j

Li,kL
′
k,j + Li,jL

′
j,j

= 1 · L′i,j +
∑
i>k>j

Li,kL
′
k,j + Li,j · 1

Observe that as i > j and j /∈ J , L′i,j = L′k,j = Li,j = 0 (for any k > j). Thus, the above sum is
zero. Hence, the desired entries (i, j) with i > j and j /∈ J are zero, proving the claim.

We now use these lemmas to analyze Algorithm 2, which gives a way to transform a matrix in
(< k)-upper-echelon into one which is (≤ k)-upper-echelon, and does so efficiently.

Algorithm 2 Transform a (< k)-upper-echelon matrix into (≤ k)-upper-echelon form

1: procedure MakeUpperEchelon(M ,n,m,k)
2: L← In
3: for all (i, j) ∈ LNE(M (<k)) do

4: L← (In −
Mk−j,j
Mi,j

Ek−j,i) · L . Mi,j 6= 0 as (i, j) is leading non-zero entry in row i

5: end for
6: return L
7: end procedure

Claim 7.18. Let M be an n×m matrix of rank ≤ r, such that M is in (< k)-upper-echelon form,
for 0 ≤ k ≤ n+m− 2. Then the procedure MakeUpperEchelon(M,n,m, k) (Algorithm 2) runs
in O(rn) time and returns an invertible n×n lower-triangular matrix L computed only from M (≤k),
such that LM is (≤ k)-upper-echelon and (LM)(<k) = M (<k).

Also, L is the product of ≤ r elementary matrices and each main diagonal entry is equal to 1.
Further, L− In only has non-zero entries with columns in LNER(M (<k)).

Proof. (LM)(<k) = M (<k): We argue that the identity (LM)(<k) = M (<k) is invariant. As L = In
initially, the identity holds at the beginning of the algorithm. We now proceed by induction.

In each run of Line 4, we add a multiple of row i to row k−j in LM , where (i, j) ∈ LNE(M (<k))
and thus i + j < k. Thus, row i in M has the first j − 1 entries being zero. By induction on the
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identity (LM)(<k) = M (<k), the first j − 1 entries in row i of LM are also zero when Line 4 is run.
It follows that the only action of this update to (LM)(≤k) is to set (LM)k−j,j = 0. Thus, (LM)(<k)

is unchanged, so (LM)(<k) = M (<k) still holds.
LM has (≤ k)-upper-echelon form: As (LM)(<k) = M (<k) throughout the algorithm, and M is

in (< k)-upper-echelon form, it follows that LM is in (< k)-upper-echelon form at termination. To
show LM is in (≤ k)-upper-echelon form upon termination, it suffices to show that (LM)k−j,j = 0
for all j ∈ LNEC(M (<k)). As running Line 4 has exactly this effect (and these updates are disjoint
and idempotent, thus do not conflict), and this line is run for all (i, j) ∈ LNE(M (<k)), it follows
that LM is in (≤ k)-upper-echelon form on termination.

L computable from the (≤ k)-diagonals of M : This is straightforward, as each query to M is
within the (≤ k)-diagonals.

L is the product of ≤ r elementary matrices: Each update to L by Line 4 left-multiplies L by

an elementary matrix. By Lemma 7.14, |LNE(M (<k))| ≤ r, so the loop of the algorithm is run at
most r times.

Structure of L: By construction, L is the product of matrices of the form In + cEk−j,i, where
i + j < k and (i, j) ∈ LNE(M (<k)). Regardless of the value of c, such a matrix is invertible,
lower-triangular, with main diagonal entries all 1, and all non-zero entries of (In + cEk−j,i) − In
have columns in LNER(M (<k)). By Lemma 7.17 it follows that L also has these properties.

Complexity: Left-multiplication by an elementary matrix can be done in O(n) steps, and by the
above analysis, there are ≤ r such multiplications. Further, by storing the leading non-zero entries
in each row, the pairs (i, j) can be determined in O(n) time. Thus the time is O(rn) overall.

We now present the low-rank recovery algorithm, and its analysis.

Algorithm 3 Reconstruct a matrix from inner-products {〈M,R〉}R∈Rk,0≤k≤n+m−2
1: procedure LowRankRecovery(n,m,{〈M,R〉}R∈Rk,0≤k≤n+m−2)
2: L← In
3: N ← 0n×m

4: P ← 0n×m

5: for 0 ≤ k ≤ n+m− 2 do
6: A← 0n×m

7: A(k) ← ((L− In)N)(k)

8: S ←
(
k − LNER((P (<k)))

)
∪ LNEC(P (<k))

9: P (k) ← SRk({〈M,R〉+ 〈A,R〉}R∈Rk , S)
10: N (k) ← P (k) −A(k)

11: Lk ←MakeUpperEchelon(P, n,m, k)
12: P (k) ← (LkP )(k) . Update LNE(P (≤k))
13: L← LkL
14: end for
15: end procedure

Theorem 7.19. Let m ≥ n ≥ r ≥ 1. For 0 ≤ k ≤ n + m − 2, let Rk be sets of n ×m matrices
such that

1. For k′ 6= k, R(k′) = 0 for R ∈ Rk

2. {R(k)}R∈Rk forms a min(r, k + 1, (n+m)− (k + 1))-advice-sparse-recovery set.
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Then R =
⋃
kRk is an r-low-rank-recovery set.

If, for each k, the set {R(k)}R∈Rk has an min(r, k+ 1, (n+m)− (k+ 1))-advice-sparse-recovery
algorithm SRk running in time tk, then Algorithm 3 performs r-low-rank-recovery for R in time
O
(
rnm+

∑n+m
k=2 (tk + n|Rk|)

)
.

Proof. We will first show thatR is an r-low-rank-recovery set by showing that Algorithm 3 performs
recovery, assuming oracle access to r-advice-sparse-recovery oracles SRk. We will then analyze the
run-time.

Claim 7.20. The following invariants hold at Line 14, at the end of the loop.

1. N (≤k) = M (≤k)

2. P (≤k) = (LM)(≤k)

3. P is in (≤ k)-upper-echelon form

4. L is lower-triangular, invertible , main diagonal is all 1’s, and L − In only has non-zero
entries with columns in LNER(P (<k))

Proof. The proof will be by induction.
k = 0: The loop begins with L = In, N = 0n, P = 0n. It follows that A = 0n in this run of

the loop, and that S = ∅. Thus, P (0) is set to SR0({〈M,R〉}R∈R0 , ∅). As r ≥ 1, we get that R(0)
0

is a 1-advice-sparse-recovery set and as M (0) has at most 1 element, it follows that SR0 recovers
it correctly and thus P (0) = M (0) after Line 9. As A = 0n it follows that N (≤0) = M (≤0) also,
satisfying Invariant 1.

Now observe that the procedure MakeUpperEchelon, when run on k = 0, will always return
In. Thus, Lk, and L, are both In at the end of the loop, satisfying Invariant 4. Invariant 3 is
vacuously true as any matrix is in 1-upper-echelon form. Finally, using that L = Lk = In, we see
that P is unchanged after Line 9 and so P (≤0) = (LM)(≤0), satisfying Invariant 2.

k > 0: Using that the invariants held at k−1, we now establish them at k. As P (<k) = (LM)(<k)

and P is in (< k)-upper-echelon form, it follows that LM is in (< k)-upper-echelon form. By
Lemma 7.15, it follows (LM)(k) has at most r − s/2 non-zero entries with columns outside of
S = (k − LNER((LM)(<k))) ∪ LNEC((LM)(<k)), where s = |LNE((LM)(<k))| and |S| ≤ 2s.
However, using again that P (<k) = (LM)(<k) it follows that (LM)(k) has at most r − |S|/2 non-
zero entries with columns outside of S, where S is as constructed in Line 8. As (LM)(k) has
min(k+ 1, (n+m)− (k+ 1), n) non-zero entries total, and Rk is an min(r, k+ 1, (n+m)− (k+ 1))-
advice-sparse-recovery set, it follows (as r ≤ n) that SRk({〈LM,R〉}R∈Rk , S) successfully recovers
(LM)(k). That is, if r 6= min(r, k + 1, (n + m) − (k + 1)) then we have enough measurements to
fully recover (LM)(k) regardless of its sparsity and the value of S(and the oracle will perform this
recovery), and if r = min(r, k+ 1, (n+m)− (k+ 1)) then we use the advice-sparse-recovery oracle.

We now use the following claim to show how the {〈LM,R〉} can be computed.

Claim 7.21. At the beginning of the loop in Line 5, (LM)(k) = M (k) + ((L− In)N)(k)

Proof. As LM = M + (L− In)M , it is enough to show that ((L− In)M)(k) = ((L− In)N)(k).
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By induction on the above invariants, L is lower-triangular, with all 1’s along the main diagonal,
and N (<k) = M (<k). Thus, (L− In)i,` = 0 for i ≤ `, and Ml,j = N`,j for ` < k − j. For any j ≤ k,

((L− In)M)k−j,j =
∑
`∈JnK

(L− In)k−j,`M`,j =
∑
`<k−j

(L− In)k−j,`M`,j =
∑
`<k−j

(L− In)k−j,`N`,j

=
∑
`∈JnK

(L− In)k−j,`N`,j = ((L− In)N)k−j,j

Thus ((L− In)M)(k) = ((L− In)N)(k), giving the claim.

The above claim shows that at Line 9 we have that 〈LM,R〉 = 〈M,R〉+ 〈A,R〉, for all R ∈ Rk,
using that R(k′) = 0 for k′ 6= k. This shows that Line 9 correctly implements advice-sparse-
recovery of (LM)(k), and thus sets P (k) to this value. It follows that at the end of this line that
P (≤k) = (LM)(≤k).

Invariant 1: Using the identity proved in the above claim, and the just proven fact that P (≤k) =
(LM)(≤k) at the end of Line 9, it follows that at the end of Line 10 that N (k) = M (k), and thus
N (≤k) = M (≤k). As N is not changed further, this establishes Invariant 1.

Invariant 3: We now examine Lines 11–13. As P has only changed in its k-diagonal, it is still in
(< k)-upper-echelon form. Thus, Line 11 returns Lk such that LkP is in (≤ k)-upper-echelon form,
by Claim 7.18. Further (LkP )(≤k) only differs from P (≤k) along the k-diagonal, so it follows that
after the update in Line 12 that P is in (≤ k)-upper-echelon form. As P is not further modified,
this establishes Invariant 3.

Invariant 2: Further, as we take L← LkL in Line 13 and previously had that P (≤k) = (LM)(≤k),
it follows that at the end of Line 13 we have that P (≤k) = (LM)(≤k) still, as both P and LM have
been multiplied by Lk. This establishes Invariant 2.

Invariant 4: In Line 11, Claim 7.18 shows that Lk is a lower-triangular and invertible matrix,
with main diagonal entries all 1’s, and Lk − In only has non-zero entries in columns LNER(P (<k)).
As P (<k) is not modified further, this remains true at the end of the loop at Line 14. By induction,
at Line 5 we have that L is lower-triangular, invertible, with main diagonal entries all 1’s, and
L − In only has non-zero entries in columns LNER(P (<(k−1))). As P (<(k−1)) remains unchanged
throughout this iteration of the loop, this is also true at the beginning of Line 13. By Lemma 7.17,
it follows that after Line 13 L still has the properties of being lower-triangular, invertible, main
diagonal entries being 1’s, and L− In only has non-zero entries in LNER(P (<k)). This establishes
Invariant 4

Thus, each of the invariants are established for this value of k given that they hold for k − 1,
so the invariants hold for all k by induction.

The above claim shows that at the end of the algorithm, N (≤k) = M (≤k) for k = n + m − 2.
But this implies N = M , and thus M is reconstructed successfully.

Run-time Analysis: We now bound the run-time of Algorithm 3. The steps outside the for-loop
take O(nm), so it suffices to bound each step of the loop. We will show that each step of the loop
takes O(rn+ tk + n|Rk|) steps. As there are n+m such iterations of the loop, the quoted bound
follows.

We begin by noting that the algorithm will not recompute LNE(P (<k)) at each stage. Instead,
this will be maintained throughout the algorithm. As each row of P can have at most one leading
non-zero entry, this is easily stored and indexed. Further, as P (<k) = (LM)(<k) and the rank bound
on M shows, via Lemma 7.14, that |LNE((LM)(<k))| ≤ r, it follows that if the set LNE(P (<k)) is
maintained as a linked list, that traversing it entirely takes O(r) time.
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Note that we do not need to modify LNE(P (<k)) when running MakeUpperEchelon, and
can defer modification to after Line 12. At that point P (≤k) has been determined, and can be used
to compute LNE(P (<(k+1))) = LNE(P (≤k)) in O(n) time. Thus, LNE(P (<k)) can be maintained
within the quoted time bounds, and accessed as a O(r) sized linked list.

We now analyze the lines of the loop. As written, Line 6 takes Θ(nm) time, which is above the
quoted run-time bounds. However, one can observe that A is only ever accessed at the values A(k),
when noting that R ∈ Rk is only non-zero on its k-diagonal. Thus, Line 6 is actually superfluous
and can be omitted.

Line 7 takes O(rn) steps. For, the above invariants show that L− In only has non-zero entries
in the columns LNER(P (<k)), and as discussed above this set has at most r elements. Thus, each
of the ≤ n) elements of A(k) is the sum of ≤ r elements of N . Thus A(k) can be computed in O(rn)
steps.

Line 8 takes O(r) steps, as LNER(P (<k)) is pre-computed.
Line 9 takes O(tk + n|Rk|) steps. For, each inner product 〈A,R〉 takes O(n) steps (as each

matrix is only non-zero on the k-diagonal, which has at most n entries), and there are |Rk| such
inner-products. Running SRk takes tk steps, by definition.

Line 10 takes O(n) steps, as the k-diagonal has at most this many entries.
Line 11 takes O(rn) steps by Claim 7.18.
Lines 12 takes O(rn) steps, for as used above, Lk − In has only non-zero entries with columns

in LNER(P (<k)), so each entry in (LkP )(k) is the sum of at most r + 1 products of entries in Lk
and P , and these products are determined by LNER(P (<k)). As there are at most n such entries,
the bound follows.

Line 13 takes O(rn) steps. This is because Lk, by Claim 7.18, is the product of ≤ r elementary
matrices, and left-multiplication by an elementary matrix takes O(n) steps. As MakeUpperEch-
elon computes Lk as a product of elementary matrices, the computation of LkL can also use this
decomposition and thus is compute in O(rn) steps.

Thus, the entire loop runs in O(rn+ tk + n|Rk|) steps, and there are at most n+m iterations
of the loop, giving the bound.

We now apply this reduction to our hitting set D′2r,n,m, which embeds the sparse-recovery
measurements corresponding to the dual Reed-Solomon code.

Corollary 7.22. Let 1 ≤ r ≤ n/2, m ≥ n ≥ 1. Then D′2r,n,m (from Construction 5.7) has

1. |D′2r,n,m| = 2(n+m− 2r)r

2. Each matrix in D′2r,n,m is n-sparse.

3. D′2r,n,m is a r-low-rank-recovery set

4. Algorithm 3, combined with Algorithm 1, performs low-rank-recovery for D′2r,n,m in time

O(rnm+ (n+m)r3)

Proof. (1): This is by construction.
(2): Each matrix in D′2r,n,m has its support contained in some k-diagonal, and each k-diagonal

has at most n elements.
(3): We will first show that the measurements that D′2r,n,m performs on each k-diagonal comprise

a min(2r, k + 1, (n+m)− (k + 1))-advice-sparse-recovery set.
First consider the case when k+1 < 2r ≤ n. Then min(2r, k+1, (n+m)− (k+1)) = k+1, and

D′2r,n,m places k + 1 constraints on this k-diagonal M (k), which has k + 1 entries. The constraint
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matrix V is of size (k + 1)× (k + 1) with V`,j = g`j . As g has order ≥ n, the elements 1, g, . . . , gk

are distinct. So these constraints form an invertible Vandermonde system and so M (k) (regardless
of the rank of M) can be completely recovered from these measurements. In particular, V forms a
(k + 1)-advice-sparse-recovery set. As the Vandermonde system can be inverted in O(k3) = O(r3)
time, we see that (k + 1)-advice-sparse-recovery can be performed in this time.

Similarly, now consider the case when (n + m) − (k + 1) < 2r ≤ n (so it follows that m ≤ k).
Then min(2r, k + 1, (n+m)− (k + 1)) = (n+m)− (k + 1), and D′2r,n,m places (n+m)− (k + 1)

constraints on this k-diagonal M (k), which has (n+m)− (k+ 1) entries. The constraint matrix V
is of size ((n+m)− (k + 1))× ((n+m)− (k + 1)) with V`,j = g`(k−(m−1)+j). As g has order ≥ n,
the elements gk−(m−1), gk−(m−1)+1, . . . , gn−1 are distinct. So these constraints form an invertible
Vandermonde system and so M (k) (regardless of the rank of M) can be completely recovered from
these measurements. In particular, V forms a ((n + m) − (k + 1))-advice-sparse-recovery set. As
the Vandermonde system can be inverted in O(((n + m) − (k + 1))3) = O(r3) time, we see that
((n+m)− (k + 1))-advice-sparse-recovery can be performed in this time.

Now consider the general case when 2r ≤ k + 1, (n + m) − (k + 1). Then min(2r, k + 1, (n +
m)− (k + 1)) = 2r, and D′2r,n,m places 2r constraints on this k-diagonal M (k), which has min(k +
1, n, (n+m)−(k+1)) entries. The constraint matrix V is of size 2r×min(k+1, n, (n+m)−(k+1))
with V`,j = g`(max(0,k−(m−1))+j). As g has order ≥ n, the elements

gmax(0,k−(m−1)), gmax(0,k−(m−1))+1, . . . , gmax(0,k−(m−1))+min(k+1,n,(n+m)−(k+1))−1

are distinct. Thus, it follows from Theorem 7.7 that V is a r-advice-sparse-recovery set, and that
recovery can be done in O(r3 + n) steps.

Thus, by Theorem 7.19, it follows that D′2r,n,m is a r-low-rank-recovery set.
(4): By the analysis done for (3), we see that Theorem 7.19 shows that Algorithm 3 (along with

the r-advice-sparse-recovery performed by Algorithm 1) yields a O(rnm+(n+m)r3)-time recovery
algorithm for D′2r,n,m.

Remark 7.23. We briefly note that for r > n/2 we have that |D′2r,n,m| ≥ nm (one cannot use the
formula “|D′2r,n,m| = 2(n+m−2r)r” here, but the bound |D′2r,n,m| ≤ |D2r,n,m| = 2(n+m−1)r is still
valid). Thus, for r > n/2 there is no gain from using D′2r,n,m over the obvious nm low-rank-recovery
set that queries each entry in the matrix.

Remark 7.24. One can also use Algorithm 3 to reprove Theorem 5.8, that is, to reprove that Dr,n,m
is a hitting set (note that we use r and not 2r here). To do so, note that Lemma 7.15 shows that
for a rank ≤ r matrix M , if M (<k) = 0 then M (k) is r-sparse.

Thus, if 〈M,Dr,n,m〉 = 0 then this implies that for each k, 〈M (k),Rk〉 = 0, where Rk is the
r-sparse-recovery set formed from the dual Reed-Solomon code. So if M (k) is r-sparse then by the
properties of Rk it must be that M (k) = 0.

Combining the two observations above, we see that M (<k) = 0 =⇒ M (k) = 0, and thus
M (<k) = 0 =⇒ M (≤k) = 0. Inducting on k shows that M = 0n×m. Thus, if M 6= 0 and M is rank
≤ r then 〈M,Dr,n,m〉 6= 0, showing that Dr,n,m is a hitting set.

Given that D′2r,n,m admits efficient low-rank-recovery, we can recall the above results that show
that these measurements are equivalent to the B′2r,n,m measurements. Thus, we also get that this
second set admits efficient low-rank-recovery.

Corollary 7.25. Let 1 ≤ r ≤ n/2, m ≥ n ≥ 1. Then B′2r,n,m (from Construction 5.9) has

1. |B′2r,n,m| = 2(n+m− 2r)r
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2. Each matrix in B′2r,n,m is rank 1.

3. B′2r,n,m is a r-low-rank-recovery set

4. Algorithm 3, combined with Algorithm 1, performs low-rank-recovery for B′2r,n,m in time

O(rm2 +mr3)

Proof. (1): This is by construction.
(2): This is also by construction.
(3): By Theorem 5.10 and Theorem 5.8 we see have that SpanD′r,n,m = SpanB′r,n,m. In partic-

ular, the measurements 〈M,D′r,n,m〉 can be reconstructed from the measurements 〈M, SpanB′r,n,m〉.
As the above corollary shows that D′r,n,m is r-low-rank-recovery set, it follows that B′r,n,m is also.

(4): The analysis given in Theorem 5.10 gives an algorithm for reconstructing the measurements
〈M,D′r,n,m〉 from the measurements 〈M, SpanB′r,n,m〉, and does so interpolating r polynomials of
degree ≤ n+m. As evaluations of these polynomials takes O(r) steps, and polynomial interpolation
takes O(m2) steps for polynomials of this degree, we see that we can complete this interpolation in
O(rm2 + r2m) = O(rm2) steps. Once the measurements 〈M,D′r,n,m〉 are computed, we can appeal
to the above corollary.

The above results only work over fields when we have an element g of large order. However,
the results of Subsection 6.3 show that we can simulate these results over small fields. Indeed, this
is also the case here.

Corollary 7.26. Let m ≥ n ≥ r ≥ 1. Over any field F, there is an poly(m)-explicit r-low-rank-
recovery set for n ×m matrices, which has size O(rm lgm) and is such that each recovery matrix
is O(n)-sparse. There is also an poly(m)-explicit r-low-rank-recovery set for n×m matrices, which
has size O(rm lg2m) and is such that each recovery matrix is rank 1. Further, recovery from either
of these low-rank-recovery sets can be performed in poly(m) time.

Proof. We begin by noting that both Proposition 6.12 and Proposition 6.16 preserve the property
of being a low-rank-recovery set, not just that of being a hitting set. That is, each of these
propositions take a K-matrix H in the original low-rank-recovery set and construct some family
of F-matrices {H̃`,`′}`,`′ such that for any matrix M , 〈M,H〉 can be efficiently recovered from the
sums {

∑
` α`〈M, H̃`〉}`′ , for some coefficients α` ∈ K. Thus the measurements 〈M,H〉 are efficiently

recoverable from the measurements 〈M,H〉.
Finally, appealing to the constructions of low-rank-recovery sets as given in Corollary 7.22

(to which Proposition 6.12 is applied) and Corollary 7.25 (to which Proposition 6.16 is applied)
completes the claim.

8 Rank-Metric Tensor codes

We now discuss low-rank-recovery of tensors, for any d, and apply our results to the construction
of rank-metric codes. We begin with showing that the matrix low-rank-recovery algorithm can be
extended to the d > 2 case.

Theorem 8.1. Let n, r ≥ 1 and d ≥ 2. Then Bd,n,2r, as defined in Construction 6.10, has

1. |Bd,n,2r| ≤ O(dn(2r)O(lg d))

2. Bd,n,2r is an r-low-rank-recovery set, and recovery can be performed in time
poly((2dn)d, (2r)O(lg d))
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Proof. (1): This is by construction.
(2): The hitting set allows us to interpolate the polynomials stated in the hypothesis of The-

orem 6.6. Once we have the coefficients of this polynomial, we can undo the reductions used in
the proof of Theorem 6.6. That is, that proof uses Lemmas 6.1 and 6.2 to reshape polynomials
by merging their variables. This is clearly efficiently reversible. More crucially, the proof uses the
bivariate variable reduction of Theorem 5.1 for rank ≤ r matrices, but when we take 2r distinct
powers of g. However, Corollary 7.22 shows that one can recover f̂M (x, y) from the polynomials
{f̂M (x, gix)}i∈J2rK in poly(degx(f̂M ),degy(f̂M ), r) steps. As the degrees involved in Theorem 6.6

are only up to (2dn)d, this is within the stated time bounds. Thus, we can also reverse the bivari-
ate variable reduction steps used in Theorem 6.6. Combining these steps shows that we can fully
recover the entire polynomial f̂T (x1, . . . , xd), which gives the tensor T .

We next observe that, just as with Corollary 7.26, we can perform this low-rank-recovery over
small fields, when incurring a loss.

Corollary 8.2. Let n, r ≥ 1 and d ≥ 2. Over any field F, there is an poly((2nd)d, rO(lg d))-explicit
r-low-rank-recovery set for JnKd tensors, which has size O(dn(2r)O(lg d) ·(d lg 2dn)d) and is such that
each recovery tensor is rank 1. Further, there is an poly((2nd)d, rO(lg d))-explicit r-low-rank-recovery
set for JnKd tensors, which has size O(dn(2r)O(lg d) ·d lg 2dn). Further, recovery from either of these
low-rank-recovery sets can be performed in poly((2nd)d, rO(lg d)) time.

Proof. Like Corollary 7.26, we apply Propositions 6.16 and 6.12 to a low-rank-recovery set, where
here we use the above set from Theorem 8.1. As Propositions 6.16 and 6.12, as well as Theorem 8.1,
are efficiently implementable, so are the resulting low-rank-recovery sets.

We now apply these results to create error correcting codes over the rank-metric, which we now
define. We will restrict our attention to linear codes in this work.

Definition 8.3. A [JnKd, k, r]F rank-metric code C is a k-dimensional subspace of FJnKd (the
space of JnKd tensors) such that for all T1 6= T2 ∈ C, rank(T1 − T2) ≥ r. Denote r as the distance
of the code.

An algorithm Dec corrects e errors against C if for any T ∈ C and E ∈ FJnKd with rank(E) ≤ e
it is such that Dec(T + E) = T .

Thus this is the natural definition for error-correcting codes when we use the rank-metric (notice
that rank-distance is in fact a metric) as the notion of distance. As we are interested in linear codes
T1 − T2 ∈ C also, so an equivalent definition to the above would say that r ≤ rank(T ) for all
0 6= T ∈ C. Just as with the Hamming-metric, if we have a distance 2r + 1 code C then it is
information theoretically possible to decode up to r errors. The converse is shown below.

Lemma 8.4. Let C be a [JnKd, k, r′]F rank-metric code that can correct up to r errors. Then
r′ ≥ 2r + 1.

Proof. Suppose not for contradiction. Then there are two tensors T1 6= T2 ∈ C such that rank(T2−
T1) ≤ 2r. But then T2−T1 = S1 + · · ·+S2r, where these Si are all rank-1 (or rank-0) tensors. Then
it follows that T1 +S1 + · · ·+Sr is r-close to both T1 and T2, which is impossible as the correctness
of the decoding procedure indicates that there should be a unique tensor that T1 + S1 + · · ·+ Sr is
r-close to.

Corollary 8.5. Let F be a field, m ≥ n ≥ r ≥ 1. Then there are poly(m)-explicit rank-metric codes
with poly(m)-time decoding for up to r errors, with parameters:
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1. [JnK× JmK, nm− 2(n+m− 2r)r, 2r + 1]F, if |F| > m, and the parity checks on this code can
be either all rank-1 matrices, or all O(n)-sparse matrices.

2. [JnK× JmK, nm− 2(n+m− 2r)r · O(lgm), 2r+ 1]F, any F, and the parity checks on this code
are all O(n)-sparse matrices.

3. [JnK× JmK, nm− 2(n+m− 2r)r ·O(lg2m), 2r+ 1]F, any F, and the parity checks on this code
are all rank-1 matrices.

Proof. We first generically show how to define an [nm, nm− |H|, 2r+ 1]F rank-metric code C from
an r-low-rank-recovery set H and how to use the low-rank-recovery algorithm for H to decode C
up to r errors. The corollary is then immediate by using the results of Corollaries 7.25, 7.22, 7.26,
and invoking the efficiency of their low-rank-recovery.

Define C to be the matrices in the nullspace of H. That is, C = {M : 〈M, C〉 = 0}. It is clear
that C is a subspace (and assuming that the matrices in H are linearly independent, which is true
for the low-rank-recovery sets D′2r,n,m and B′2r,n,m) and has dimension nm− |H|.

Now consider some T ∈ C and matrix E with rank(E) ≤ r. Abusing notation, consider T and
E as nm-long vectors, and H as a |H| × nm matrix. It follows that H(T +E) = HE as T ∈ C. As
H is an r-low-rank-recovery set, it follows that we can recover E from HE, and thus can recover T ,
performing successful decoding of up to r errors. By Lemma 8.4 we see that the minimum distance
of this code is ≥ 2r + 1.

We now separately state the result for tensors, which is proved exactly as the above corollary,
but using the relevant low-rank-recovery results for tensors.

Corollary 8.6. Let F be a field, n, r ≥ 1 and d ≥ 2. Then there are poly((2nd)d, (2r)O(lg d))-explicit
rank-metric codes with poly((2nd)d, (2r)O(lg d))-time decoding for up to r errors, with parameters:

1. [JnKd, nd − dn(2r)dlg de, 2r + 1]F, if |F| > (2nd)d, and the parity checks on this code are all
rank-1 tensors,

2. [JnKd, nd − dnrdlg de · O(d lg(2dn)), 2r + 1]F, any F,

3. [JnKd, nd − dnrdlg de · O((d lg(2dn))d), 2r + 1]F, any F, and the parity checks on this code are
all rank-1 tensors.

9 Discussion

We briefly discuss some directions for further research.

Reducing Noisy Low-Rank Recovery to Noisy Sparse Recovery We showed in Theo-
rem 7.19 that low-rank-recovery of matrices can be done using any sparse-recovery oracle. This
reduction was for non-adaptive measurements, and was done in the presence of no noise. As much
of the compressed sensing community is interested in the noisy case (so M is only close to rank
≤ r) the main open question of this work is whether the reduction extends to the noisy case.
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Smaller Hitting Sets While the observations of Roth [Rot91] show that our hitting set for
matrices is optimal over algebraically closed fields, our results (Corollary 6.18) over tensors with
d > 2 are much larger than the existential bounds of Lemma 3.13. Can these hitting sets be
improved to size O(poly(d)nrk) for k = O(1)? As mentioned in the preliminaries (Lemma 3.14),
any such hitting set with k < 2 would yield improved tensor-rank lower bounds (and thus circuit
lower bounds) for odd d such as d = 3. However, as the best tensor-rank lower bounds for d = 3
are Θ(n) and our hitting set (over infinite fields) yields this bound (with a smaller constant),
even improving our hitting set for d = 3 by constant factors could yield interesting new results.
Specifically, for d = 3 can one construct (say over infinite fields) a hitting set of size ≤ nr2/10 for
JnK3 tensors of rank ≤ r?

Better Variable Reduction Theorem 5.1 shows that a bivariate polynomial with bounded
individual degrees can be identity tested by identity testing a collection of univariate polynomials,
where the size of this collection depends on the rank of bivariate polynomial. This naturally led to
our hitting sets for matrices. We generalized this to d-variate polynomials in Theorem 6.6, but the
collection of univariate polynomials has a size with a much worse dependence on the tensor-rank
of the d-variate polynomial and is much less explicit. Can the size of the collection be reduced, or
can the explicitness of this set be only polynomially larger than its size? We note that according to
Lemma 3.14 a more explicit hitting set will yield lower bounds on tensor rank, however for tensors
of high degrees such lower bounds are known [NW96].

Large Field Simulation The results of Section 6.3 show that hitting sets (and low-rank recovery
sets) that involve tensors over an extension field imply hitting sets (and LRR sets) over the base
field. While Proposition 6.16 shows that we can preserve the rank-1 property of these tensors while
doing so, it introduces an exp(d) factor in the size of the hitting set. Can this be improved?
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A Cauchy-Binet Formula

For completeness we give the proof of the Cauchy-Binet formula here.

Lemma A.1 (Cauchy-Binet Formula). Let m ≥ n ≥ 1. Let A ∈ Fn×m, B ∈ Fm×n. For S ⊆ JmK,
let AS be the n × |S| matrix formed from A by taking the columns with indices in S. Let BS be
defined analogously, but with rows. Then

det(AB) =
∑

S∈(JmK
n )

det(AS) det(BS)

Proof. Let C be an m×m diagonal matrix with the variables x1, . . . , xm on the diagonal. Define

the polynomial f(x1, . . . , xm)
def
= det(ACB), so that f(1, . . . , 1) = det(AB). Every entry of ACB is

a homogeneous linear function in x1, . . . , xm, which implies (as the determinant is homogeneous of
degree n) that f is homogeneous of degree n, or zero. Let S ∈

(JmK
n

)
and consider all monomials

only containing variables in {xi | i ∈ S}. Note that also consider monomials with individual degrees
above 1. Each monomial of degree n (and thus each monomial with non-zero coefficient in f) must
be associated with some such S.

Define ρS to be the vector of variables when the substitution xi 7→ 0 is performed for i /∈ S.
It follows then that f(ρS) = det(ASCSBS) = det(AS) det(BS) ·

∏
i∈S xi, where the last equality

follows as AS , BS and CS are all n×n matrices. By the above reasoning, this implies that the only
monomials with non-zero coefficients in f are monomials of the form

∏
i∈S xi and such monomials

have coefficient det(AS) det(BS). Thus f =
∑

S∈(JmK
n ) det(AS) det(BS)

∏
i∈S xi, and so det(AB) =

f(1, . . . , 1) =
∑

S∈(JmK
n ) det(AS) det(BS), yielding the claim.
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