
Time-Space Tradeoffs in Resolution:

Superpolynomial Lower Bounds for Superlinear Space

Paul Beame∗

University of Washington
beame@cs.washington.edu

Chris Beck†

Princeton University
cbeck@princeton.edu

Russell Impagliazzo‡

Institute for Advanced Study
and the University of California, San Diego

russell@cs.ucsd.edu

November 4, 2011

Abstract

We give the first time-space tradeoff lower bounds for Resolution proofs that apply to su-
perlinear space. In particular, we show that there are formulas of size N that have Resolution
refutations of space and size each roughly N log2N (and like all formulas have Resolution refu-
tations of space N) for which any Resolution refutation using space S and length T requires
T ≥ (N0.58 log2N/S)Ω(log logN/ log log logN). By downward translation, a similar tradeoff applies
to all smaller space bounds.

We also show somewhat stronger time-space tradeoff lower bounds for Regular Resolution,
which are also the first to apply to superlinear space. Namely, for any space bound S at most

2o(N
1/4) there are formulas of size N , having clauses of width 4, that have Regular Resolution

proofs of space S and slightly larger size T = O(NS), but for which any Regular Resolution
proof of space S1−ε requires length TΩ(log logN/ log log logN).

1 Introduction

For many modern SAT solvers, memory use is as much a bottleneck as time. Earlier DPLL-based
SAT-solvers used very little memory, just needing to keep track of the stack in recursion. However,
a major reason for the improved performance of recent SAT solvers is the inclusion of clause
learning [18], which adds a large number of derived clauses to the input clauses. Clause learning
uses considerable extra space corresponding to the number (and size) of derived clauses that are
active at any one time. This creates opportunities for finding smaller refutations of unsatisfiable
formulas, but at the cost of potentially requiring huge amounts of memory. Balancing these two

∗Research supported by NSF grants CCF-0830626, DMS-0835373, and by the Ellentuck Fund. Much of this
research was done at the Institute for Advanced Study, Princeton.
†Research supported by NSF grant CCF-0832797.
‡Research supported by NSF grants DMS-0835373, CNS-071 6790, and CCF-0832797.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 149 (2011)

factors is an art that determines the success of the SAT-solver. (See e.g, [29] for a discussion of
how one successful SAT-solver handles this.)

This raises the question of whether such tradeoffs between total time and memory is an inherrent
limitation, or just an artifact of the known algorithms. To make this question precise while also
being general enough to handle the wide variety of SAT-solving algorithms, we can use the well-
known correspondence between these algorithms and the Resolution proof system. All of the
DPLL-based SAT solvers, when run on unsatisfiable formulas, implicitly or explicitly find resolution
refutations of the input formulas. Thus, the minimum size of such a refutation is a lower bound
on the time taken by any such algorithm. This observation has been part of the motivation for
proof complexity studies of resolution for many years. More recently, an analogous measure of the
space of a resolution proof has been introduced, which lower bound the number of derived clauses
that must be remembered throughout the algorithm, and hence bounds the memory requirements
of resolution-based SAT solvers.

If we use a pure backtracking approach to SAT-solving, like many of the earlier generation of
SAT-solvers did, the proofs generated have at most linear space. Thus, we cannot hope to prove
a super-linear space lower bound in isolation. Our goal is instead to show that the small space
of these proofs come at the expense of being substantially larger than proofs using more space,
i.e., to give time-space tradeoffs for proof complexity. There has been substantial work devoted to
understanding space in proof complexity, proving almost linear lower bounds on the space required,
and giving sharp time-space tradeoffs for refutations. However, previous work always hit a barrier
at linear space. Until this current paper, no known time-space trade-off lower bound for proof
complexity was meaningful when the space allowed was greater than that of the input formula.
Since SAT solvers have ample memory to hold the input formulas, this meant that such work
was not of direct benefit to understanding time-memory trade-offs for SAT-solvers. Ben-Sasson
(see [22, 21]) posed the question of whether such trade-offs existed as follows: do all CNF formulas
have resolution proofs of linear space that are at most polynomially larger than the resolution proof
length possible when space is unrestricted?

We give a strong negative answer to this question. We give explicit CNF tautologies of size
N that have proofs of size TUB ≤ NO(log2 N) (and hence space at most TUB), but when space is

restricted to SLB ≤ T
1/2
UB , any resolution proof requires size TLB ≥ (TUB)Ω(log logN/ log log logN). In

other words, restricting memory to any polynomial in the input formula size has a super-polynomial
cost in terms of time the SAT-solver will take. Our formulas are Tseitin graph tautologies for
complete bipartite graphs connected along a path and so are totally explicit, as are the proofs in
the upper bound on TUB. In fact, [2] has shown that proofs of such tautologies are derivable by
standard SAT-solving techniques in time proportional to TUB, so the trade-off applies to actual
SAT-solvers, not just the theoretical optimal SAT-solver.

We obtain an even stronger tradeoff for Regular Resolution, a subclass of Resolution proofs
that includes most natural Resolution proofs. Using Tseitin formulas on a family of grid graphs,
we show that for any integer m, there is a size N = O(m4) formula with unbounded space regular
resolution proof size at most TUB = poly(m)2m so that any space SLB ≤ 2m(1−Ω(1)) proof requires
size TLB ≥ (TUB)Ω(log logm/ log log logm). This is an improvement over the previous result in that
space restrictions provably cost in terms of size even for (weak) exponential amounts of space.
Furthermore, the lower bound holds for space almost equal to the upper bound on total size.
Finally, the tautologies where we prove this lower bound are constant width.

These results show that restricting space can increase size by more than a polynomial amount.

2

It seems possible that space restrictions could have an exponential cost; however, that would require
a different kind of tautology than the ones we consider. The quasipolynomial time-space tradeoff
lower bound we achieve for Resolution proofs of these Tseitin tautologies is qualitatively not far from
optimal. In particular, the Tseitin tautologies to which our bounds apply have Regular Resolution

refutations of space O(log TUB log n) and size T
O(logn)
UB . A recent result [12] shows a general purpose

resolution based SAT algorithm which finds this proof as well, answering a question of [2]; see also
[4]. [12] also gives an algorithm for high space which finds a refutation matching our high space
refutation – this is also achieved by the algorithm of [2].

1.1 History and Related Work

Much initial work on proof space concentrated on the space required by Resolution proofs as a
parameter on its own. Early work [13] showed that every unsatisfiable formula has a Resolution
refutation in which the total space required is at most the number of variables (plus one), and
the focus moved to finding matching space lower bounds. Atserias and Dalmau [3] showed that
Resolution space is at least Resolution width, the length of the longest clause in any Resolution
proof, for which Ω(n) lower bounds were already known for many formulas because width lower
bounds are the most widely used method for proving Resolution proof size lower bounds [10].
(Despite its utility, Resolution width alone can be far from characterizing Resolution space [19].)

Lately, there has been great theoretical interest in understanding the interplay between the
resources of Resolution proof length (time) and space [22, 7], and in showing tradeoffs between
them [8]. For example, an argument initially given by Hertel and Pitassi [16], later simplified by
Nordström [20], shows that there are formulas with constant space and linear size Resolution proofs
but for which reducing space by as little as three clauses increases the length required to exponential.
(Hertel and Pitassi used related ideas to prove that determining the minimum space required for
Resolution proofs is PSPACE-hard.) At higher space levels, Ben-Sasson and Nordström [8] recently
showed the existence of families of formulae that have linear size (and hence linear space) proofs,
but which require exponentially large proofs when the space is constrained to be O(n/ log n).

1.2 Overview of our techniques

Many of the earlier papers on bounds for sub-linear space proofs modified arguments taken from
time-space tradeoffs for pebbling games. We also use arguments based on time-space tradeoffs for
straight-line programs such as [27, 23]. In such a bound, one typically defines a notion of “progress”,
and divides up the program into intervals called “epochs”. Then one shows that, starting from any
given point in the program, on a random input, one is unlikely to make significant progress in a
short amount of time. The conclusion is that either there are many values that are in memory at
those points, or the length of epochs is large, giving a time-space trade-off.

We follow a similar strategy, combined with a “bottleneck counting” argument as introduced
in [15]. We consider the time steps to be the derived clauses in order, and divide these into equal
sized intervals, or epochs. We consider the sets of clauses in memory at the start and end of epochs.
We use a simple measure of the complexity of clauses, akin to those in [15, 10], the number of
vertices of the graph G associated with the input clauses of the Tseitin formula that are required to
derive them. The input clauses have complexity 1, the final contradiction has complexity |V (G)|,
and each resolution step can at most double the complexity. Thus, clauses of each approximate

3

(to within factors of 2) complexity between 1 and |V (G)| must occur in the proof. The current
complexities of clauses in memory is our measure of progress.

We show that clauses of intermediate complexities involve many variables and are hence in-
tuitively are “unlikely” to be false, and we show that the likelihoods of very different clauses are
in some sense independent. Because of the small space, the clauses in memory at the frontiers of
epochs are “bottlenecks” ; it is unlikely that clauses of many distinct complexities are in memory
at these times. If this does not happen, we must make a great deal of progress during some epoch,
in that the largest complexity of a clause in memory has increased substantially. We then apply
the argument recursively to that epoch.

While this intuitive picture is the same for the two lower bounds, the techniques used to formalize
them are quite different. For general resolution, we formalize “likelihood” by looking at the proof
after a random restriction. We show that if we apply a restriction to a Tseitin formula on a suitable
graph G, then the probability that a clause has medium complexity after the restriction is quite
small, and the probability that k clauses simultaneously have different intermediate complexities
is a Θ(k)-th power of this small probability. We use this to show that, with high probability, there
are not many distinct complexities in memory at the frontiers of epochs after the restriction. Thus,
after the restriction, there is one epoch that contains clauses of many approximate complexities
within a large interval. We then use a recursive version of the same argument to show that this is
also unlikely.

In the case of regular resolution, we define a probabilistic process that works its way backwards
from the contradiction to one of the input clauses. It always visits clauses of each approximate
complexity. “Likelihood” is then the probability of being visited in this process. We show that this
probability is small for intermediate complexity clauses, and, with a few exceptions, uncorrelated for
clauses of very different complexities. A bottleneck counting argument then shows that it is unlikely
that this process visits many different clauses of distinct complexities that are each in memory at
the frontiers of epochs, and thus must almost always visit a large interval of complexities within
some epoch. The argument is repeated recursively within the chosen epoch.

2 Basic Definitions and Notation

We consider Boolean formulas over a set of variables X = {x1, ..xn}. As usual, a literal is a Boolean
variable or its negation, a clause is a disjunction of literals, and a CNF is a conjunction of clauses.
We think of clauses as being specified by their sets of literals, and CNFs as specified by their sets
of clauses. For a clause C, we write vars(C) to be the set of variables appearing in C. The width
w(C) of a clause C is |vars(C)| and the width of a set or sequence of clauses F , is the maximum
width of clauses in F . The size of a CNF formula F is the total number of literal occurrences in
the formula, i.e.,

∑
C∈F w(C).

One of the simplest and most widely studied propositional proof systems is resolution which
operates with clauses and has one rule of inference, the resolution rule: A∨x B∨ x

A∨B . We say that
the variable x is resolved in this instance of the resolution rule. A resolution refutation of a CNF
formula (a set of clauses) is a sequence of clauses ending in the unsatisfiable empty clause ⊥, each
of which is either a clause of from the formula (an “axiom”) or follows from two previous clauses
via the resolution rule. (The term resolution proof is used more generally to refer to any inference
of this sort that may not necessarily result in ⊥.) Every resolution proof naturally corresponds
to a directed acyclic graph (DAG), known as the proof DAG, in which every clause derived via

4

the resolution inference rule has a directed edge “backwards” from a derived clause to each of
its antecedents. (Note that, formally, a resolution proof corresponds to one of possibly many
topological sorts of its proof DAG.)

A resolution proof is regular if along each path in the proof DAG, each variable is resolved at
most once. (Regular) resolution is sound and complete in that every CNF formula is unsatisfiable
if and only if it has a regular resolution refutation.

The size or length of a resolution proof is the total number of clauses in the proof. The usual
definition of the space (clause space) used by a resolution proof is the maximum number of clauses
which need to be held in memory at any one time when carrying out the proof. Say that a clause
is active at time step t if it has been derived before t but is still needed for an inference step to be
made at time t or later. Then the clause space is the maximum number of clauses active at any
time step. In the most straightforward model, the initial clauses are made available at t = 0. To
consider sublinear space, this model is modified, and the input clauses become available only as
needed, accessed by “axiom download” steps, and may be cleared from local memory and derived
again later, in analogy with the usual off-line definition of Turing machine space. In our results,
we will be considering superlinear space and hence it is unnecessary to treat the input clauses this
way. Doing so does not increase the space bound by even a constant factor. We allow clauses to be
derived multiple times in a proof, since that may allow fewer clauses to be active at any one time.

A restriction is a mapping ρ : X → {0, 1, ?}. Restrictions on X can be identified with partial
assignments on V by viewing unassigned inputs as being mapped to ? and vice versa. We will
use the two terms interchangeably, depending on the context. Given two partial assignment π and
ρ that are compatible, i.e., they agree on dom(π) ∩ dom(ρ), we use ρ ∪ π to denote the partial
assignment that applies both assignments. The restriction of a clause C by ρ, denoted by C|ρ is
the clause obtained from C by setting the value of each x ∈ ρ−1({0, 1}) to ρ(x), and leaving each
x ∈ ρ−1(?) as a variable. The restriction of a set of clauses is defined by restricting each one.

2.1 Tseitin Tautologies

Following [28] we use the following formula to represent the principle that every undirected graph
has even total degree.

Definition 2.1. Let G = (V,E) be an undirected graph, and χ : V → {0, 1} an odd charge
function, i.e. one such that

⊕
v∈V χ(v) is odd. For each edge e ∈ E, we have a variable xe. For

v ∈ V, ε ∈ {0, 1}, let

PARITYv,ε :=
∧
{
∨
e∼v

xa(e)
e |

⊕
e

(a(e)⊕ 1) 6≡ ε}

be the CNF representation of the parity constraint
⊕

e∼v xe ≡ ε. The Tseitin tautology on (G,χ)
is defined by the conjunction

τ(G,χ) :=
∧
v

PARITYv,χ(v) .

Also, independent of whether or not G is connected and χ has odd charge, the resulting formula
is known as a Tseitin formula. Frequently we will suppress reference to χ, since when G is connected,
any two odd charge functions χ give essentially equivalent formulae.

By a simple counting argument, if charge function χ is odd, then the parity constraints cannot
all be satisfied – this would correspond to an undirected graph such that the sum of its degrees is
odd.

5

Observation 2.2. When χ is odd, τ(G,χ) is unsatisfiable.

When the degree of the graph is d, each constraint can be written as a CNF formula of O(2d)
clauses of width d. It is easy to see that the formula τ(G) has size O(2d|V |).

Definition 2.3. Let G = (V,E) be a graph. For E′ ⊂ E let G|E′ denote the graph G = (V,E −
E′). When π is a partial assignment to E, we overload the notation G|π to mean G|dom(π).
(Alternatively, if ρ is a restriction then G|ρ denotes G|ρ−1({0, 1}).)

Definition 2.4. If χ is a charge function on a graph G = (V,E) and π is a partial assignment to E
then let χ⊕ π denote the new charge function χ′ on V given by χ′(v) = χ(v)⊕

⊕
v∈e∈dom(π) π(e).

The following formalizes how restrictions affect Tseitin formulas.

Proposition 2.5. If τ(G,χ) is a Tseitin formula and ρ is a restriction on the edges of G, then
τ(G,χ)|ρ is τ(G|ρ, χ⊕ ρ), and the parity of χ and χ⊕ ρ are the same.

2.2 Resolution refutations of Tseitin formulas

For the graphs we will consider, some generic resolution refutations of odd charged Tseitin formulas
follow from bounds on their cut width. We give two such refutations. One uses large space and
implies that our lower bound results yield tradeoffs of the form that restricting the space does
increase the minimum proof length required. The other uses a very small amount of space (indeed,
exponentially less) and shows that there is a quasi-polynomial upper limit on the kind of tradeoff
one can prove for the formulas we consider.

Definition 2.6. The cut width of a graph G is the smallest W such that there is a linear ordering
of the vertices v1, . . . , vn such that, for every 1 ≤ t ≤ n, there are no more than W edges crossing
the cut ({v1, . . . , vt}, {vt+1, . . . , vn}).

Lemma 2.7. Let G be a graph with n vertices, maximum degree d, and cut width W . Then there
is a regular resolution refutation of a Tseitin tautology on G using ≤ n ·2d ·2(W−1) resolution steps,
and space ≤ 2 · 2(W−1) + d, plus space for the initial axioms.

Note that the number of resolution steps is within a constant factor of the proof size.
This refutation described by this lemma works by maintaining clauses corresponding to parities

of the edges in the cuts and slowly moving those cuts from one end to the other end of the graph.
It mirrors a refutation for similar formulas given in [11]. A detailed proof is given in the appendix.

The following lemma shows that for the graphs we consider here, even radically restricted space
can only increase the size required for Tseitin tautologies with small cut width by an O(log n)
power.

Lemma 2.8. Under the same conditions as Lemma 2.7, the Tseitin tautology on τ(G) has a
tree-like Resolution refutation using space W dlog ne and 2W dlogne resolution steps.

The refutation in this case involves simulating a binary search for a charge violation over the
vertex ordering that achieves the cut width. At each cut in the search, the proof maintains all the
clauses in the parities of the edges crossing that cut. A detailed proof is given in the appendix.

Though the graphs we consider all have small cutwidth, there are versions of both these upper
bounds that can be expressed in terms of a smaller and more precise parameter, carving width.
Moreover, some of these refutations can also be found algorithmically with similar complexity.
Details are in the appendix.

6

2.3 A measure of complexity of clauses

First we need some preliminary definitions.

Definition 2.9. Consider assignments to the variables of a Tseitin formula τ . A critical assignment
is a total assignment that violates exactly one clause of τ . The vertex associated with that constraint
is said to be its bad vertex. For any partial assignment π, we denote by Crit(π) the set of critical
assignments extending π.

Definition 2.10. Given a partial assignment π to a Tseitin formula τ over graph G, we say that a
vertex v is a critical vertex for π iff v is bad for some critical assignment to the edges of G consistent
with π. We define critτ (π) to be the set of critical vertices for π. We drop the subscript τ when
it is understood from the context. We also define critical vertices for clauses by letting crit(C) be
the set of critical vertices of the partial assignment associated with ¬C.

Fortunately, for Tseitin tautologies, the set Crit(π) has a nice, well-known characterization:

Proposition 2.11. Crit(π) is non-empty if and only if G|π has exactly one component of odd
charge, in which case Crit(π) is equal to that component.

Let S be a subset of nodes. We write δ(S) for the edges on the boundary of set S.

Corollary 2.12. If π is a partial assignment with crit(π) = S, then every edge on the boundary
of S is assigned by π.

Finally, we note how partial assignments impact critical sets.

Proposition 2.13. Let τ(G,χ) be a Tseitin formula and ρ be a restriction (partial assignment) on
the edges of G. Then for any partial assignment π compatible with ρ, critτ(G,χ)ρ(π) = critτ(G,χ)(π∪
ρ).

Proof. This follows immediately from the fact that the set of critical assignments for τ(G,χ) that
are consistent with ρ is precisely the set of critical assignments for τ(G,χ)ρ with assignment ρ
appended.

We use |crit(C)| as a measure of the complexity of clause C.

Proposition 2.14. Fix any odd-charged Tseitin formula τ over a connected graph G.

(a) |critτ (⊥)| = |V (G)| where ⊥ is the empty clause.

(b) For any clause C of τ , |critτ (C)| = 1.

(c) If clause C follows from clauses C1, C2 by resolution then |critτ (C)| ≤ |critτ (C1)|+|critτ (C2)|.

Proof. Part (a) and (b) follow immediately from Proposition 2.11. Part (c) follows from the sound-
ness of resolution since any critical assignment that falsifies C must falsify either C1 or C2, hence
Crit(C) ⊆ Crit(C1) ∪ Crit(C2).

Subadditivity of |crit(C)| from Proposition 2.14(c), immediately implies the following.

Corollary 2.15. For any t, any resolution derivation of a clause D with |crit(D)| > 2t from a
collection of clauses C having |crit(C)| ≤ t, must contain a clause C ′ such that t < |crit(C ′)| ≤ 2t.

Proof. If not, then at the first point where such a D is derived, it must be derived from two clauses
with complexity ≤ t, contradicting subadditivity.

7

3 Time-Space Tradeoff for General Resolution

To show lower bounds in General Resolution, we consider Tseitin tautologies on a graph G = (V,E)
that is a path of length ` of complete bipartite graphs Kn,n, where the left side of one is the right
side of the next. Equivalently, this is the tensor product of the complete graph Kn with the path
graph P`. For c > 0 an absolute constant, our results hold for any 2cn > ` > n4, but are most
impressive for larger `. We picture the vertices of this graph as lying in an n × ` grid, with each
column corresponding to a vertex of P`. We let Vi denote the set of vertices in the i-th column,
and Ei denote the edges between the i-th column and the (i+ 1)-st column.

Proposition 3.1. Any Tseitin tautology over G = Kn ⊗ P` has (regular) resolution size at most
O(2n

2+2nn`).

Proof. It is easy to see that G has cut width n2 so this is immediate from Lemma 2.7.

The main result of this section is the following time-space tradeoff lower bound for general
resolution.

Theorem 3.2. If n is sufficiently large and 2n4 ≤ ` < (4n)−1
(

9
8

)n
for any resolution refutation of

a Tseitin tautology on the graph G = Kn ⊗ P` of size T and space S

T ≥

(
20.58n2

S

) log2 L
log2 log2 L

where L = log2(`/(2n3)).

Corollary 3.3. There is a c > 0 such that for sufficiently large N and any S satisfying N ≤
S ≤ N

1
9

log2N , there is a CNF formula of size N that has a resolution refutation of size at most
TUB ≤ N ·S and space at most S such that any resolution refutation using space S1/2 requires size

TLB ≥ T
c log2 log2 N/ log2 log2 log2N
UB .

Proof. Choose the largest n such that 2n
2 ≤ S. Since N ≤ S ≤ N

1
9

log2 N , we must have 23n ≤ N ≤
2n

2
and hence log2 log2N is Θ(log n). Set ` = 2n/8 < (9/8)n/(4n). With this value of `, L is at

least n/9 for N sufficiently large and hence log2 L/ log2 log2 L is Θ(log logN/ log log logN). Since
the Tseitin formula for Kn ⊗ P` has size at most `n22n < N . We can pad this formula by dummy
clauses until it has N clauses. Applying the above theorem to this formula with space S1/2 instead
of S yields the claimed lower bound.

We use the “progress argument” sketched in the introduction, together with a bottleneck count-
ing based on random restrictions. One subtle point is that, although our argument is applied
recursively, we only apply the random restriction once, not after each step of the recursion.

We use the complexity measure on clauses defined in the previous section, which is 1 for the
input clauses, is |V (G)| for the final contradiction ⊥, and grows slowly throughout a resolution
proof (possibly not monotonically). We define many different medium complexity levels of clauses.

Definition 3.4. Let t0 = n4. Define Li = {C ∈ Π : 2it0 < |crit(C)| ≤ 2i+1t0} for 0 ≤ i <
log2(`n/t0) − 1. Each Li represents a different complexity level. We say that a clause of Π has
medium complexity if it is in one of the Li.

8

We will use the fact that the restriction of a proof of a Tseitin tautology is itself a proof of a
Tseitin tautology on a subgraph of the original graph; hence the proof for a graph G contains proofs
of Tseitin tautologies for all of the subgraphs of G. We choose such a restriction randomly from a
suitable distribution that is overwhelmingly likely to keep the complexity of the final contradiction
high.

Following standard notation, let R1/3 be the probability distribution on restrictions ρ : E →
{0, 1, ∗} such that for each e independently, Prρ∼R1/3

[ρ(e) = 0] = Prρ∼R1/3
[ρ(e) = 1] = Prρ∼R1/3

[ρ(e) =
∗] = 1/3.

After we apply a random ρ ∼ R1/3 to a refutation of τ(G,χ), we get a refutation of the Tseitin
formula on the smaller graphG|ρ with properties as in Proposition 2.5. We will measure the progress
of the proof using the medium complexity levels of its clauses. We therefore will compute bounds
on the probability that a clause becomes a medium complexity clause for the Tseitin tautology on
the graph G|ρ after such a restriction; we will do the same for the probability that a set of clauses
have different medium complexity levels after restriction.

The graph G|ρ and the charge χ ⊕ ρ that results from applying the restriction ρ to τ(G,χ)
is not fixed. Therefore, it is easier to analyze the critical sets and complexity of the restricted
clauses using Proposition 2.13 which says that for any partial assignment π compatible with ρ,
critτ(G,χ)ρ(π) = critτ(G,χ)(π ∪ ρ). For any clause C over G, this means that

critτ(G,χ)ρ(C|ρ) = critτ(G,χ)(C ∨ ρ)

where ρ is the clause that is falsified precisely on those assignments consistent with ρ. This allows
us simply to work with clauses C ∨ρ defined over the original graph G, so for the remainder of this
section we write crit for critτ(G,χ).

Now, we view a refutation of total size T and space S as ordered into epochs and sub-epochs as
follows: Let L be the number of different medium complexity levels, L = log2((n`)/(2t0)) ≥ log2 n.
Let k = blog2 Lc − 1 and h = blog2 L/ log2 log2 Lc < (k + 2)/ log2 k. With these values we have
(k + 1)kh−1 < L. Now choose

m ≤

⌊
(3/2)n

2
`−1L−12−4n

S

⌋1−3/ log2 k

.

One can easily verify that m ≥ max(8, 20.58n2
/S) for sufficiently large n.

The theorem follows immediately if T ≥ mh so assume, by contradiction, that T < mh. An
epoch at the leaf level is an interval of m consecutive clauses in the proof, beginning at a time step
that is a multiple of m. We consider all clauses in the leaf level epoch to be frontier clauses. An
epoch at level 2 ≤ i ≤ k is an interval of mi consecutive clauses in the proof, beginning at a time
step that is a multiple of mi. Its sub-epochs are the epochs of level i − 1 within the epoch, and
the frontier clauses for the epoch are the ones that are active at the end of any of its sub-epochs.
Thus, leaf level epochs have m frontier clauses and higher level epochs have at most mS frontier
clauses, since at most S clauses are active at each of the m times when a sub-epoch ends.

Lemma 3.5. For any refutation of a Tseitin tautology on a connected graph with n` nodes, at
least one epoch has k frontier clauses of distinct medium complexity levels.

Proof. Assume that no such epoch exists, at any level of epochs. We will inductively find an epoch
Ej at level k − j and medium complexity levels imin and imax ≥ imin + L/kj so that all active

9

clauses at the start of E have complexity at most that of medium complexity level imin and some
clause at the end of E has complexity at least that of complexity level imax.

At the start, we can choose E0 to be the entire proof, since at the beginning, we have only clauses
of complexity 1 (input clauses) and at the end, we have only the empty clause, ⊥, of complexity
n`.

Assume that we have Ej , imin and imax as above. Consider the partition of Ej into m sub-
epochs at level k− j− 1. Because there are at most k− 1 distinct complexities among Ej ’s frontier
clauses, there must be a sub-interval i′min to i′max of length at least (imax − imin)/k ≥ L/kj+1

where no frontier clause is of medium complexity level between i′min and i′max. Consider the first
sub-epoch of Ej that ends with an active clause of medium complexity level at least i′max; since Ej
ends with a clause of medium complexity level imax ≥ i′max, such a sub-epoch must exist. Since no
clause of medium complexity level at least i′max was active at the start of this sub-epoch, and no
clause of medium complexity level between i′min and i′max is active at the start of any sub-epoch,
we can choose this first sub-epoch as Ej+1.

Inductively, we get a leaf-level epoch Eh−1 and an interval imin to imax of length at least
L/kh−1 ≥ k + 1 so that all active clauses at its start have complexity at most that of medium
complexity level imin and at least one clause has medium complexity level imax or greater at the
end. Then clauses of all k medium complexity levels between imin and imax appear in the leaf-level
epoch. Since all lines in a leaf-level epoch are frontier clauses, this is a contradiction.

To use the above to get a contradiction, we show that, for G = Kn ⊗ P`s, the graph is very
likely to stay connected after a random restriction, and any small set of clauses is very unlikely to
contain many different medium complexity levels of clauses after the restriction. We then apply
the above lemma to the restricted proof.

The following lemmas, proved in the next section, summarize our bounds on these probabilities.

Definition 3.6. Let CONN(ρ) denote the event that each bipartite graph (Vi, Vi+1, Ei \ dom(ρ))
is connected.

Proposition 3.7. Prρ[¬CONN(ρ)] ≤ ` · 2(n− 1)(8/9)n.

Lemma 3.8. For k ≤ 1/3L, any k clauses C1 . . . Ck, and any k medium complexity levels `1, . . . , `k
with `i+1 ≥ `i + 3 for 1 ≤ i ≤ k − 1,

Pr
ρ∼R1/3

[CONN(ρ) ∧ ∀i, (Ci ∨ ρ) ∈ L`i] ≤
(
` · 24n · (2/3)n

2
)k

Corollary 3.9. Let C be a collection of at most M clauses. The probability that C|ρ contains k

clauses of distinct medium complexity levels is at most
(
ML(2/3)n

2
`24n

)dk/3e
.

Proof. If there are k distinct medium complexity levels, a subset of dk/3e of them are mutually
separated by 3. There are at most Ldk/3e choices for this subset of medimum complexity levels
`1, .., `dk/3e, and for each element of the subset, at most M choices for a clause Ci ∈ C to become
this complexity. Since the complexity of Ci|ρ is the same as that of Ci∨ρ we can apply the previous
lemma with a union bound to get the probability bound in the corollary.

Proof of Theorem 3.2. Assume that m, k, and h are defined as above and that there is a refutation
of the Tseitin tautology on Kn ⊗ P` of space S and size T < mh. Under any restriction ρ, either

10

G|ρ is disconnected, or after the restriction ρ some epoch in the proof contains frontier clauses of
k distinct medium complexity levels. By proposition 3.7, the first probability is < 1/2. There are
fewer than 2mh−1 epochs in all, and each has a frontier set of size at most M = mS. Thus, from
the above corollary, the probability that there is an epoch that has k distinct medium complexity
levels among the restriction of its frontier clauses is at most

2mh−1
(
mSL(2/3)n

2
`24n

)dk/3e
<

1

2
·
(
m1+3/ log2 kSL(2/3)n

2
`24n

)dk/3e
since m ≥ 8 and h < (k + 2)/ log2 k

≤ 1

2
·

((3/2)n
2
`−1L−12−4n

S

)1−9/ log2
2 k

SL(2/3)n
2
`24n

dk/3e ≤ 1

2
.

This is a contradiction to Lemma 3.5 and the theorem follows.

3.1 Medium complexity clauses and random restrictions

In this section, we prove the lemmas about the effect of random restrictions on Tseitin tautology
clauses. We begin with the proof of Proposition 3.7 that the graph remains connected after a
random restriction is applied.

Proof of Proposition 3.7. We apply a union bound over the columns and compute an explicit bound
for the well-known connectivity properties of random bipartite graphs G(n, n, 1

3).
Consider the left side of G(n, n, 1/3). For any two vertices here, the probability that they are not

connected with a two-step path in G(n, n, 1/3) is at most (8/9)n, since there are n possible disjoint
two-step paths. By a union bound, the left side and right side are both connected to themselves
except with probability 2(n − 1)(8/9)n. Since these imply that an edge exists, the G(n, n, 1/3) is
connected except with this probability.

Note that the condition ` < (4n)−1 (9/8)n implies Prρ[¬CONN(ρ)] < 1/2.

Lemma 3.10. For every clause C and every fixed set of edges E′ ⊆ E, the probability over
ρ ∼ R1/3 that C ∨ ρ is non-trivial and E′ ⊆ vars(C ∨ ρ) is at most (2/3)|E

′|.

Proof. For C ∨ ρ to be non-trivial, ρ must not set any edge to falsify C. In particular, this applies
to each edge in E′ that appears in vars(C). In order for E′ ⊆ vars(C ∨ ρ), each edge in E′ not
in vars(C) must be set by ρ. For each edge in E′, these successes happen with probability 2/3
and the probabilities are independent, so the total probability that E′ ⊆ δ(crit(C ∨ ρ)) is at most
(2/3)|E

′|.

To prove a non-trivial tradeoff lower bound using our outline above, we need a stronger lower
bound than the upper bound for unrestricted space of roughly 2n

2
given in Proposition 3.1. There-

fore, we need to be able to argue that after such a restriction the probability that a clause will
become a medium complexity clause is exponentially small in n2.

Intuitively, a set of vertices S of size at least n2 and less than `n/2 will have a boundary of size
at least n2 for the following reasons. If it has as many as n “partial columns” in which it contains
some, but not all, of the vertices, then each such column will contribute at least n boundary edges.

11

If it has fewer than n partial columns, it must contain a full column and an empty column, and its
not hard to see that deleting the elements in the partial columns cannot decrease the size of the
boundary, so this configuration has a boundary of at least n2 as well.

By Corollary 2.12, for every clause C, crit(C∨ρ) = S ⊂ V only if δ(S) ⊆ vars(C∨ρ). Therefore,
by Lemma 3.10, Prρ∼R1/3

[crit(C ∨ ρ) = S] ≤ (2/3)n
2

for any C and any S of size between n2 and
`n/2. Though the bound for a single S is of the form we want, the number of such S is huge, so a
simple union bound over all choices of S is insufficient to derive the bound we need. Nonetheless,
we can show a bound very close to this one for the probability that crit(C ∨ ρ) is any medium
sized set. We also generalize it to show bounds on the probability that, after applying ρ, k clauses
appear from k different Li
Definition 3.11. Let S denote a connected subset of the vertices V . Define Si := S ∩ Vi and
si := |Si|/|Vi|. We say that

• i is a full column of S if si = 1, an empty column if si = 0, and a partial column otherwise;

• i is a transition point of S if i − 1, i, i + 1, i + 2 ∈ {1, . . . , `} are columns, and either both
si ≥ 1/2 and si+1 ≤ 1/2, or both si ≤ 1/2 and si+1 ≥ 1/2;

• S has a transition point with signature (i, A0, A1, A2, A3) if i is a transition point of S, Si−1 =
A0, Si = A1, Si+1 = A2, and Si+2 = A3.

The transition point concept is useful because of the following lemma which says that the
existence of a transition point for a set S implies that S has a large boundary.

Lemma 3.12 (Transition Point Lemma). If i is a transition point of S, then |δ(S)| ≥ n2. Moreover,
for any signature (i, A0, A1, A2, A3), there exists a set of at least n2 edges, E∗ ⊆ Ei−1 ∪ Ei ∪
Ei+1, depending only on (i, A0, A1, A2, A3), such that if S has a transition point with signature
(i, A0, A1, A2, A3) then E∗ ⊆ δ(S).

There are only ` · 2O(n) possible signatures, but, by this lemma, the probability that crit(C ∨ ρ)
has a transition point with a specific signature is at most 2−Ω(n2) for any particular C, so this will
allow us to obtain a very strong upper bound on the probability that C has any transition point
at all.

Proof of Transition Point Lemma. Let S be a connected set of vertices and have a transition point
with signature (i, A,B,C,D). We would like to find, from this information only, a set of E∗ edges
on the boundary of S. We write a = |A|/n, b = |B|/n, c = |C|/n and d = |D|/n. Without loss of
generality we can assume that b ≥ 1/2, c ≤ 1/2.

We will find a set of n2 edges in the columns Ei−1, Ei, Ei+1 on the boundary of any S with
this signature. Since the signature determines exactly which edges in these columns are boundary
edges, and the graph between each pair of layers is the complete bipartite graph, only the numbers
(a, b, c, d) matter. The number of boundary edges may be computed exactly as

n2(a(1− b) + b(1− a) + b(1− c) + c(1− b) + c(1− d) + d(1− c)) .

However,

a(1− b) + b(1− a) = a(1− 2b) + b

= 1− b+ (2b− 1)(1− a)

≥ 1− b since b ≥ 1/2

12

and

c(1− d) + d(1− c) = c+ d(1− 2c)

≥ c since c ≤ 1/2.

So, the expression above is at least

n2(1− b+ b(1− c) + c(1− b) + c) = n2(1 + 2c− 2bc)

= n2 + n22c(1− b)
≥ n2

as claimed.

In the informal argument that medium sized sets of vertices have at least n2 edges on their
boundaries, we identified two cases to handle – those with many partial columns and those with
few. If the set is in the right size range and has few partial columns, it can be shown to have both
a full column and an empty column, and it is easy to see that such sets must have a transition
point somewhere between the full and empty column. We handle the other case, with many partial
columns, by showing that it holds conditioned on the graph being connected.

Lemma 3.13. For any clause C and restriction ρ, if CONN(ρ) holds then |C| is at least the
number of partial columns in crit(C ∨ ρ).

Proof. Let S = crit(C ∨ ρ). If i is a partial column of S, then both Si ∪ Si+1 and its complement
in Vi ∪ Vi+1 are nonempty. If CONN(ρ) holds, then these two sets of vertices are adjacent, and in
fact there is an edge between them that is not assigned by ρ. By Corollary 2.12, all edges on the
boundary of the critical set must be assigned, so C must assign some edge in Ei. Thus C contains
at least one edge for each partial column of S.

Now we will show our bound for the probability that multiple clauses come to occupy many
separated medium complexity levels. We will use the separation in complexity levels to argue that
there must be many transition points for these clauses rather than just one. This will be based on
bounding the number of distinct endpoints of sets of intervals of increasing size on a line or circle
for which we will use the following lemma proved in Section 4.

Lemma 3.14. Suppose that we have k points of the n point circle ai ∈ Zn, and k natural numbers
di ≤ n/2, determining k intervals on the circle (ai, bi = ai + di) each of length di. Let U denote the
set of endpoints of these intervals; i.e., U :=

⋃
i{ai, bi}. It follows that

1. if ∀i, di+1 ≥ 2di, and 1 ≤ d1, dk ≤ n/2 then |U | ≥ k + 1.

2. Further, if for some a, k · a < d1, then there exists a subset U ′ of U such that |U ′| ≥ k + 1
and any two points of U ′ are at distance greater than a from each other.

The same argument we give can also be used to prove a more general statement, but we limit
ourselves to the following for simplicity.

13

Proof of Lemma 3.8. If any Ci is as large as kn2, it has probability at most (2/3)kn
2

to survive the
restriction and we are done, so suppose that this is not the case. Using Lemma 3.13, we can restrict
attention to candidate critical sets Si that have fewer than kn2 ≤ n3/3 partial columns, containing
fewer than n4/3 vertices. Because t0 = n4, for each Si there must be many full columns. There
are also many empty columns since the largest critical sets in medium complexity levels have size
at most `n/2.

So, we can already see that each Si has a transition point. What we would like to see is that
there must be at least k transition points among all of them, and that these transition points are
all far apart from each other. We use Lemma 3.14 for this.

For each Si, let ai denote the first column from the left so that |Siai | ≥ n/2, and let bi similarly
denote the first such column from the right. So long as bi is not one of {1, 2, `−1, `}, it is a transition
point, and the same is true for ai−1. So, it suffices to prove that |

⋃
i{ai − 1, bi} \ {1, 2, `− 1, `}| ≥ k.

In fact it suffices to meet the requirements for the strong form of Lemma 3.14 with a ≥ 3, since
then at most one point of U ′ is in the set {1, 2, `− 1, `}.

Let di denote the difference bi− (ai− 1). Since Ci has medium complexity level `i, di is at least
the number of full columns, i.e., di ≥ 2`it0/n−n3/3. We can also upper bound the total number of
full and partial columns as 2`i+1t0/n+n3/3, which is an upper bound on di, since Si is connected.
Since `i+1 ≥ `+ 3 and t0 ≥ n3, we have 2`i+1 ≥ 4 · 2`i+1 and

di+1

di
≥

4− 1
3

1 + 1
3

> 2 .

Further, dk ≤ `n/4 + n3/3 < `n/2, as required, and d1 ≥ 2
3n

3, while k < n/3 implies 3k + 1 <
n + 1 << d1. Therefore, Lemma 3.14 may be applied to say that there are k distinct transition
points that are far apart.

If we fix a particular sequence of signatures for these transition points then the Transition Point
Lemma implies that there is a fixed set E′ of kn2 edges, which depends only on the signatures,
contained in

⋃k
i=1 δ(Ci∨ρ), consisting of the union of the k disjoint sets of edges for each transition

point. As in the proof of Lemma 3.10, any such edge must either be set by ρ, or appear in some Ci
and hence cannot be set by ρ to violate that Ci. Each such event occurs with probability at most
2/3 and therefore, by the independence over edges, the total probability is at most (2/3)kn

2
. The

number of sequences of k signatures is at most (` · 24n)k and the bound follows.

4 Endpoints of Intervals on a Line

This section is devoted to the proof of Lemma 3.14 which we restate below.
Suppose that we have a collection of k intervals sitting on the line. How many distinct endpoints

are there? If nothing else is known about the intervals, there can be as few as O(
√
k) endpoints.

However, if each interval is at least twice as long as the interval before it, then intuitively the
intervals cannot be packed together so nicely; we will see that under this assumption there are at
least k + 1 distinct endpoints.

Although we only care about the line, it is more convenient to state the lemma for the circle.

Lemma 4.1 (Lemma 3.14). Suppose we have k points of the n point circle ai ∈ Zn, and k natural
numbers di ≤ n/2, determining k intervals on the circle (ai, bi = ai + di) each of length di. Let U

14

denote the set of endpoints

U :=
⋃
i

{ai, bi} .

It follows that

1. if ∀i, di+1 ≥ 2di, and 1 ≤ d1, dk ≤ n/2 then |U | ≥ k + 1.

2. Further, if for some a, k · a < d1, then there exists a subset U ′ of U such that |U ′| ≥ k + 1
and any two points of U ′ are at distance greater than a from each other.

Proof. Let us define a graph G on vertex set is U , and for each i, an edge from ai to bi. Thus there
are k total edges. For the first claim, the strategy is to show that this graph is a forest, and hence
has at least k + 1 vertices. To show the second claim, we will show a process which constructs an
acceptable set of k + 1 vertices.

We will still use the terms “distance” and “displacement” to refer to distances in the circle.
Consider any walk in G which does not use any edges more than once. (Note that this is not

the same as a path, as it may include cycles.) The total displacement as we move along from vertex
to vertex can be written ∑

i∈S
±di

where S is the set of indices corresponding to edges appearing on the walk.
By induction on |S|, we see that for any nonempty S∑

i∈S,i<maxS

di ≤ dmaxS − d1.

The base case is trivial, and if the claim holds for S, we may add dmaxS to both sides, and we can
apply the assumption 2dmaxS ≤ dmaxS+1 ≤ ds′ for any s′ > maxS, and so deduce the claim for
S ∪ {s′}, thus the inductive hypothesis also holds.

Suppose S is nonempty. By the triangle inequality,

d1 ≤

∣∣∣∣∣∑
i∈S
±di

∣∣∣∣∣ ≤ 2dmaxS − d1 ≤ n− d1 ,

using the dk ≤ n/2 assumption.
Now we can deduce the first claim. Suppose the graph contains a cycle. Then there is a walk

in G as before which starts and ends at the same vertex, thus the total displacement is 0 mod n.
But since the 1 ≤ d1, the above inequality contradicts this. Thus G contains no cycles and hence
is a forest with k edges – this implies there are at least k + 1 vertices, or |U | ≥ k + 1 as desired.

To see the second claim, we will show a greedy algorithm to find U ′.

1. Begin with U ′ := ∅. We will process the components of the graph in some order. The first
one we can just add entirely to U ′.

2. While a component we have not yet processed contains some vertex v within a of anything
in U ′, choose such a v and add every other vertex in that component Cv to U ′.

3. If all of the remaining components have every vertex at distance greater than a from U ′, call
the algorithm recursively on the remaining unprocessed components.

15

Our first observation is that the algorithm omits at most one vertex from any component from
U ′, and for at least one component omits none. Since a forest on k edges and c components has at
least k + c vertices, U ′ will always contain at least k + c− (c− 1) = k + 1 vertices at the end.

It suffices to show the algorithm never adds any two vertices at distance less than a to U ′. Call
such a pair of vertices an “unsafe pair”. The idea is that when d1 > k · a, the argument before
that G is cycle-free will hold even if we add as many as k unsafe pairs as edges to the graph G,
since these new edges can only change the sum above by at most k · a, and d1 is large enough that
we can tolerate that. Our strategy is to view the (k − 1) unsafe pairs identified in step 2 as edges
which we add to G. For any vertices of U ′ which become connected by this, we will argue that
the path connecting them contains at least one original edge of G and so the previous calculation
shows their distance is at least a. For any vertices which were not connected by this, we will see
that they could not have formed an unsafe pair – this can only happen when step 3 occurs, and we
will handle this scenario as follows.

It suffices to assume that step (3) never happens. When step 3 happens, there are no unsafe pairs
between the remaining components and the U ′ obtained from the components processed already.
If the algorithm didn’t add any unsafe pairs when run just on the first group of components, and
also doesn’t add any unsafe pairs when just run on the second group of components, it will succeed
when run on all of the components, so we may break up the current instance of the problem into two
subinstances and restrict attention to these subinstances. Appealing to this argument sufficiently
many times, it suffices to show correctness in cases where step (3) never occurs. (To make this
completely precise, one could remove the arbitrary choice in the definition of the algorithm by
assigning a priority to each component, and specify that the algorithm deterministically chooses to
process the highest priority component with an unsafe pair to U ′. Then, when we split an instance
on which step (3) occurs into two subinstances, the subinstances inherit a priority ordering, and the
U ′ returned by the algorithm on the initial instance will be exactly the union of the U ′’s returned
by the algorithm on the two subinstances, so correctness indeed follows from correctness of the runs
on the two subinstances.)

Therefore without loss, step 1 occurs once and then step 2 occurs k − 1 times. When step 2
occurs, by definition there is some vertex u ∈ U ′ and some vertex v which is chosen so that uv is
an unsafe pair, and component Cv is the next processed component. Let G′ be the graph G, plus
an edge for each such uv. The edge uv connects the component Cv to the previously processed
components. When we start, G is a forest, and at the end, every component has been processed,
so G′ is a tree.

Now consider a walk in G′ which does not use any edge more than once. As long as it contains
at least one edge of G, by the triangle inequality the total displacement is between d1 − (k − 1) · a
and n − (d1 − (k − 1) · a), so since d1 > k · a, the start and end point of such a walk do not form
an unsafe pair.

The tree G′ contains a path connecting every u, u′ ∈ U ′, so it suffices to see that this path
contains at least one edge of G. What vertices are connected using only the edges of G′ that don’t
appear in G? By construction this set of edges forms a collection of stars with vertices of U ′ at the
centers, since for each unsafe pair found in step 2, the vertex v corresponds to a distinct component,
and v may not be chosen as u at some later step since it is not added to U ′. Thus for no two distinct
points of U ′ does the unique path in G′ consist only of unsafe pair edges – each such pair has a
path in G′ with at least one edge of G, so they do not form an unsafe pair.

16

5 Time-Space Tradeoffs for Regular Resolution

For regular resolution, it is possible to use a fairly different argument to get super-polynomial size
lower bounds for space that is polynomially large for Tseitin formulas on a family of constant-degree
graphs (and hence constant clause size) in contrast to the large degree of the graphs we used in
the general case. Though not qualitatively different, the tradeoffs themselves are slightly sharper
than in the general case and also apply in the case of substantially larger space bounds (up to
sub-exponential space rather than up to quasipolynomial space).

To achieve this, the random restriction argument from the case of general resolution is replaced
with a random adversary argument and the analysis now takes a top-down flavor. This gives
much more freedom in the choice of hard graphs since we no require connectivity under random
restrictions that we needed in the general resolution case. We still must use graphs that are “long
and skinny” as before. For simplicity and for applicability to a wider range of space bounds than
for the graphs we used previously, we will choose the n×` grid graph, Gn,` of n rows and ` columns.

We first note that the Tseitin tautologies over grid graphs have short regular resolution refuta-
tions.

Proposition 5.1. Any Tseitin tautology over Gn,` has a regular resolution refutation size at most
32`n · 2n and space at most 2n+1 + 5 + |{axioms}|, and |{axioms}| ≤ 8`n.

Proof. Gn,` has cut width n + 1 and maximum degree 4 so this follows from Lemma 2.7. The
number of axioms is easily counted as ≤ 2d−1|V |.

By contrast, the main result that we will prove in this section is that if the space allowed is
reduced significantly below 2n, and ` is not too large then such a formula requires regular resolution
refutations of superpolynomial size.

Theorem 5.2. For any ` such that n3 ≤ ` < 2n, any size T and space S regular resolution
refutation of the Tseitin tautology on a n by ` grid must satisfy

T ≥

(
2(1−o(1))n

S

) log2 L
2 log2 log2 L

where L = log2(`/(4n2)).

To prove Theorem 5.2, we will begin with a regular resolution refutation Π, and repeatedly
subdivide Π into polynomially many epochs, at each point choosing an epoch in which enough
“progress” happens that we may continue subdividing the epoch. The process peters out after

O
(

logL
log logL

)
subdivisions.

In the next three subsections we develop the main technical tools that allow us to derive this
lower bound. In section 5.1 we modify the complexity measure for clauses from general resolution
to a complexity measure specific to regular resolution. This measure has the advantage of growing
monotonically with the inferences in the proof, which makes it a much more precise tool. We use
this measure to define the complexity levels that are the indicators for progress through the proof.
In section 5.2 we describe a probabilistic adversary that follows the inferences in the proof. One
can think of this adversary as observing the progress of the proof. We show that the probability
that adversary reaches a clause (or set of clauses) can be analyzed in terms of a potential function

17

Φ applied to a set of edges associated with that clause (or set of clauses). Φ turns out to be the
rank function of a certain matroid and we characterize several properties of Φ that we need in the
overall argument. In section 5.3, we give fairly straightforward proofs that the potential Φ will be
large for sets that correspond to clauses of many different medium complexity levels.

In section 5.4, we put the pieces together and give the inductive argument that yields Theo-
rem 5.2. The base case shows simply that any sub-epoch in the proof in which the adversary has
a reasonable probability of visiting clauses of many different complexity levels must have length
exponential in the width n of the grid graph. The inductive step shows that if one divides an epoch
of the proof through which the adversary passes into sub-epochs then either the adversary visits
clauses of many different complexity levels at the boundaries between sub-epochs or the adversary
sees a large fraction of the overall progress in complexity levels within a single sub-epoch. If the
space is small then the first case is very unlikely; if the second case holds then we can subdivide
that sub-epoch and apply the argument recursively.

5.1 Read-once branching programs and common information

It is well known (cf. [17]) that a resolution refutation yields a branching program for the “clause
search problem” and this branching program is read-once if and only if the resolution refutation is
regular. In this construction, we start with the proof DAG and labeled the edges by the following
rule: If C ∨D is derived by resolving C ∨ x with D ∨ ¬x, then the node for clause C ∨D is also
labeled by a query to x, the edge directed from C ∨ D to C ∨ x is labeled x = 0, and the edge
from C ∨ D to D ∨ ¬x is labeled x = 1. Like the proof DAG, the single-source, or root, of the
branching program is the contradiction ⊥ and the sinks, or leaves, are the input clauses or axioms.
Note that paths p in this branching program correspond to partial assignments. We identify a
regular resolution proof with both its DAG and its associated branching program. The following
is immediate from the definition.

Proposition 5.3. Every node reached by an assignment starting at the root of the branching
program for any regular resolution proof Π is labeled by a clause that is falsified by that assignment.

For purposes of a top-down analysis, more relevant than the literals appearing in a clause (node)
in a proof is a closely related concept we call its common information. A similar definition has
appeared previously, e.g. in [24].

Definition 5.4. For C a clause in a regular resolution refutation Π, define the (common) infor-
mation at C in Π to be a partial assignment IC,Π in terms of the proof Π as follows:

If every directed path in Π from the contradiction ⊥ to C contains the label x = 1, then IC,Π
assigns x = 1; if every such path contains the label x = 0, then IC,Π assigns x = 0; Otherwise IC,Π
does not assign x.

Note that, by definition, IC,Π assigns C to false since every literal in C must be made false on
any path between C and ⊥. The regularity assumption permits us to prove the following crucial
consistency lemma.

Lemma 5.5. Let τ be a Tseitin tautology on graph G with regular resolution refutation Π. If a
clause C is reachable from the root ⊥ by a path p in Π consistent with a critical assignment, then
critτ (IC,Π) = critτ (p), and p and IC,Π assign all edges incident to this critical set identically.

18

Proof. Let p be such a path from ⊥ to C, consistent with a critical assignment σ with bad vertex
b. Let e be any edge incident to b, and p′ be any other path in Π from ⊥ to C. Then we claim that
p, p′ assign e identically.

The assignment σ corresponds to a root-to-leaf path in Π extending p. Let q denote the portion
of this path which occurs after it reaches C, so that pq is the entire root-to-leaf path. By the
regularity assumption, p′q is also consistent with some assignment, and by correctness of the proof,
p′q violates the axiom labeling the leaf that p′q and pq both reach, which is also violated by pq. e
is a variable of this axiom, so p′q(e) = pq(e), and both do assign e. If p assigns e, then q does not
assign e, so p′ must assign e, and in the same way as p does. If p does not assign e, then q must,
so p′ cannot, by the regularity assumption.

By definition of IC,Π, we conclude that IC,Π and p assign all edges incident to critτ (p) identically,
and so critτ (IC,Π) ⊆ critτ (p) since IC,Π and p assign the boundary of critτ (p) in the same way and
with the same parity. But since p also extends IC,Π then critτ (p) ⊆ critτ (IC,Π), and so they are
equal.

For the rest of this section we will drop the subscript τ because there will be one fixed τ for our
arguments. For regular resolution, our measure of complexity for a clause C will be |crit(IΠ,C)|.

Definition 5.6. Let L∗i = {C ∈ Π : 2in3 < |crit(IΠ,C)| ≤ 2i+1n3} for 0 ≤ i ≤ log2(`/(4n2)) − 1.
Each L∗i represents a different complexity level. We say that a clause of Π has medium complexity
if it is in one of the L∗i .

The following is a key property that makes regular resolution refutations much each easier
for us to analyze than general resolution ones, namely that the complexity of clauses decreases
monotonically throughout the proof, insofar as the critical assignments are concerned.

Lemma 5.7. Let Π be a regular resolution refutation of a Tseitin tautology. If there is a path
consistent with a critical assignment from the root to clause C toD in Π then crit(ID,Π) ⊆ crit(IC,Π)

Proof. By Lemma 5.5, crit(IC,Π) = crit(p) for any path p from the root to C consistent with a
critical assignment. Let q be any path from C to D in Π. Again, crit(ID,Π) = crit(pq), and the
result follows immediately from the fact that by definition crit is monotonically decreasing over
partial assignments and that pq extends p.

5.2 A probabilistic adversary

For this section we fix a connected graph G = (V,E), a Tseitin tautology τ over G, and a regular
resolution refutation Π of τ . Rather than fix a distribution over partial assignments or total
assignments depending only on G as we did for general resolution, for regular resolution we can use
a probabilistic adversary which navigates Π to define a distribution on assignments that depends
on Π itself.

Definition 5.8. The probabilistic adversary AΠ responds to the queries in the proof Π in the
following way. Let σ be the assignment that the adversary has given to the queries already asked,
and suppose that Π queries edge e at the proof node reached by following the path labeled σ,

• If e is not a cut edge of G|σ, then the adversary responds randomly.

19

• If e is a cut edge of G|σ, then the adversary responds so as to maximize the size of the critical
vertex set, breaking ties arbitrarily. More precisely, letting σ0 and σ1 denote the extensions
of σ that assign 0 or 1 to e, respectively, the adversary answers according to the larger of
|crit(σ0)| and |crit(σ1)|.

It is notable that our adversary strategy is very similar to one used in studying Prover-Delayer
games and lower bounds for tree-like resolution as in [6, 26, 25].

The sizes of the critical sets associated with the clauses visited by the adversary satisfy some
basic properties analogous to ones shown in Proposition 2.14 and Lemma 2.15 for general resolution,
as well as an extra monotonicity property.

Proposition 5.9. Let p be any root-leaf path in Π in the support of the distribution induced by
AΠ and let C0 = ⊥, C1, . . . , Cr be the clauses labeling the nodes of p in order.

1. crit(I⊥,Π) = V .

2. |crit(ICr,Π)| = 1.

3. |crit(ICi+1,Π)| ≤ |crit(ICi,Π)| for every i with 0 ≤ i < r.

4. |crit(ICi+1,Π)| ≥ |crit(ICi,Π)|/2 > 0 for every i with 0 ≤ i < r.

Proof. Let pi be the partial assignment given by the length i prefix of path p. Observe that
crit(ICi,Π) = crit(pi). The first two are immediate, the third follows immediately because by
definition crit is monotone decreasing over partial assignments and the fourth follows from sub-
additivity of crit and the maximizing choice of the adversary.

Corollary 5.10. For any t with 1 ≤ t ≤ |V |/2, the path taken by adversary Aπ must pass through
a clause C with t < |crit(IC,Π)| ≤ 2t. In particular, the path taken by Aπ must pass through a
clause from every L∗i .

To make use of the probability distribution given by the adversary, we will need to understand
the probability that the adversary reaches a given in Π, as well as the conditional probability of
reaching a clause given that the adversary has already followed some partial path Π. The following
measure will allow us to bound these probabilities.

Definition 5.11. Let #(H) denote the number of connected components of a subgraph H of G.
Define a function Φ on (pairs of) subsets of the edges E of G by

• Φ(A|B) = |A\B| −#(G|(A ∪B)) + #(G|B), for A, B ⊆ E, and

• Φ(A) = Φ(A|∅) for A ⊆ E.

For ρ, σ, both partial assignments to the edges of G, we write Φ(ρ|σ) for Φ(dom(ρ)|dom(σ)).

The following gives some simple intuition about Φ.

Proposition 5.12. Let A ⊆ E. For any edge set A and edge e 6∈ A,

Φ(A ∪ {e})− Φ(A) =

{
0 if e cuts G|A
1 if not.

20

Proof. By definition,

Φ(A ∪ {e})− Φ(A) = |A ∪ {e}| − |A| −#(G|A ∪ {e}) + #(G|A)

= 1−#(G|A ∪ {e}) + #(G|A).

and the result follows immediately.

Definition 5.13. We call a set of edges in G independent if and only if their removal from G does
not increase the number of connected components of G.

Corollary 5.14. Φ(A) is the maximum size of an independent set A′ ⊆ A.

Proof. Apply the Proposition 5.12 inductively starting with Φ(∅) and adding the edges in A one at
a time beginning with the edges in A′.

Remark 5.15. Φ(A) is the rank of edge set A in the cut matroid (also known as on the bond
matroid) of the graph G. This is the dual of the more well-known cycle matroid of G. The
independent sets of the cut matroid are those sets of edges that do not separate any component of
the graph, as in our definition. The rank of a set of edges A in the cut matroid is the the cardinality
of the largest independent A′ ⊆ A. In the literature, Φ(·|·) is called the conditional rank of the cut
matroid.

Our reason for using this definition is the following lemma, which is the key to understanding
the distribution on assignments given by our probabilistic adversary arguments. Though the for-
mulation looks fairly different from the arguments based on the sizes of boundaries of critical sets
that we used in the case of general resolution, it deals with a similar property. In particular, in the
case of a connected set of vertices S (such as a critical set) whose complement also happens to be
connected, it is easy to check that Φ(δ(S)) = |δ(S)| − 1.

Lemma 5.16. [Main Adversary Lemma] Let Π be a regular resolution refutation of a Tseitin
tautology. For any clause C in Π of with information IC,Π = ρ, the probability that adversary
AΠ reaches C conditioned on following a path labeled σ is at most 2−Φ(ρ|σ). In particular, the
probability that the adversary AΠ reaches a clause C with information IC,Π = ρ is at most 2−Φ(ρ).

Proof. For a fixed ρ, we prove the bound by induction on the length of σ, with large σ as the base
case.

If the assignment given by σ contains ρ, the result holds trivially, since the bounding expression
is 1. Similarly, for σ not consistent with ρ the probability of the event is 0, so the bound holds.

Suppose inductively that the result is true for every assignment strictly larger than σ. If the
adversary has followed the path labeled σ in Π, at which point edge e is resolved on, then, by the
induction hypothesis, the bound holds for σ0 = σ ∪ {e = 0} and σ1 = σ ∪ {e = 1}. We always have
Φ(ρ|σ0) = Φ(ρ|σ1) since σ0 and σ1 make assignments to the same set of edges.

Suppose that Φ(ρ|σ) ≤ Φ(ρ|σ0). Since σ is not as large as ρ, the probability that the adversary
reaches C after following σ is a weighted average of the probabilities that the adversary reaches
C after following σ0 and σ1, respectively. Therefore, by induction, the conditional probability of
reaching C after following σ is at most 2−Φ(ρ|σ0) ≤ 2−Φ(ρ|σ) as required.

21

Suppose now that Φ(ρ|σ0) < Φ(ρ|σ). There are two subcases, depending on whether e is assigned
by ρ. Consider first the subcase that e is assigned by ρ. Then dom(ρ)∪dom(σ) = dom(ρ)∪dom(σ0).
Therefore, since Φ(ρ|σ0) < Φ(ρ|σ), we have

0 < Φ(ρ|σ)− Φ(ρ|σ0)

= |dom(ρ)\dom(σ)| − |dom(ρ)\dom(σ0)| − [#(G|(ρ ∪ σ))−#(G|(ρ ∪ σ0))]

+#(G|σ)−#(G|σ0)

= 1 + #(G|σ)−#(G|σ0). (1)

Hence #(G|σ) − #(G|σ0) > −1. Therefore, since #(G|σ) ≤ #(G|σ0) we must have #(G|σ) =
#(G|σ0), which means that e is not a cut edge of G|σ. Moreover, (1) implies that Φ(ρ|σ0) =
Φ(ρ|σ) − 1. By the definition of the adversary, the value the adversary assigns to e is chosen
randomly in this case. However, one of σ0 and σ1 is inconsistent with ρ because ρ assigns some
particular value to e. So, without loss of generality,

Pr
adv

[ρ|σ] =
1

2
Pr
adv

[ρ|σ0] ≤ 2−Φ(ρ|σ) ,

as desired. Now consider the subcase that e is not assigned by ρ. In this case we follow the
definitions of Φ(ρ|σ0) and Φ(ρ|σ) and observe that |dom(ρ)\dom(σ0)| = |dom(ρ)\dom(σ)|. Since
Φ(ρ|σ0) < Φ(ρ|σ) we must have

0 < Φ(ρ|σ)− Φ(ρ|σ0) = −[#(G|(ρ ∪ σ))−#(G|(ρ ∪ σ0))] + #(G|σ)−#(G|σ0) (2)

and hence
#(G|(ρ ∪ σ0))−#(G|(ρ ∪ σ)) > #(G|σ0)−#(G|σ).

The left hand side is equal to 1 or 0 indicating whether e cuts G|(ρ ∪ σ), and the right hand side
indicates whether e cuts G|σ. The inequality implies the former is one and the latter is zero, hence
e is not a cut edge of G|σ but it is a cut edge of G|(ρ ∪ σ). Plugging these facts back in (2), we
see that the potential drop is exactly one; that is, Φ(ρ|σ0) = Φ(ρ|σ) − 1. Again, by the definition
of the adversary, e is assigned randomly here.

Claim 5.17. Only one of σ0, σ1 can permit the adversary to reach ρ.

Suppose to the contrary that π0 and π1 extend σ0 and σ1 respectively, each corresponding to
paths that can be travelled by the adversary and that meet at the target clause C with information
ρ. Then, crit(π0) = crit(π1) 6= ∅, by Lemma 5.5 and Proposition 5.9 (4). But, by the definition of
common information, π0 and π1 extend σ0∪ρ and σ1∪ρ respectively, and by Proposition 2.11 these
two assignments have disjoint critical sets since e cuts G|(ρ∪σ). Since by definition crit is monotone
decreasing over partial assignments, crit(π0) and crit(π1) are also disjoint, a contradiction.

The claim now implies the bound we need exactly as before, and thus completes the proof.

If C is a clause and p is a path from the root of Π, it is most convenient to abbreviate the
conclusion of the lemma as

Pr
adv

[C|p] ≤ 2−Φ(IC,Π|p) .

For our superpolynomial bounds we need to use the following properties of Φ, all of which are
consequences of Φ being a matroid rank function. While these can be proved easily using matroid
theory, we sketch simple proofs for our specific case without relying on matroids.

22

Proposition 5.18. For all non-empty sets of edges A, B, and C in G,

(a) Φ(·) is non-negative and monotone increasing.

(b) Φ(A|B) = Φ(A ∪B)− Φ(B).

(c) (Non-negativity and Monotonicity) Φ(·|·) is non-negative, increasing in its first argument, and
decreasing in its second argument.

(d) (Chain Rule) Φ(A) ≤ Φ(A|B) + Φ(B). More generally, Φ(A|C) ≤ Φ(A|B) + Φ(B|C) when
B ⊇ C.

(e) (Subadditivity) Φ(A ∪B|C) ≤ Φ(A|C) + Φ(B|C).

Proof. Part (a) is immediate from Corollary 5.14. By definition,

Φ(A ∪B)− Φ(B) = |A ∪B| − |B| −#(G|(A ∪B)) + #(G|B)

= |A\B| −#(G|(A ∪B)) + #(G|B)

so part (b) follows. The nonnegativity and monotonicity in the first argument given in (c) follow
from (b) and the monotonicity from (a). The monotonicity in the second argument given in (c)
follows from (b), Proposition 5.12, and the fact that if e is not a cut edge with respect to B ⊇ B′

then e is not a cut edge with respect to B′ either. For part (d), since C ⊆ B, we have B ∪ C = B
and Φ(A ∪ C) ≤ Φ(A ∪B) by the monotonicity of Φ. Therefore by (b),

Φ(A|C) = Φ(A ∪ C)− Φ(C)

≤ Φ(A ∪B)− Φ(B) + Φ(B ∪ C)− Φ(C)

= Φ(A|B) + Φ(B|C)

which yields the chain rule. By the chain rule,

Φ(A ∪B|C) ≤ Φ(A ∪B|B ∪ C) + Φ(B ∪ C|C) ,

but by definition Φ(B ∪ C|C) = Φ(B|C), and also Φ(A ∪ B|B ∪ C) = Φ(A|B ∪ C) which, by
monotonicity, is bounded above by Φ(A|C). Hence subadditivity (e) follows.

We will also need this fact, specific to cut matroids.

Lemma 5.19. [Matroid Cut Argument] Suppose that S is a set of vertices of G, and that δ(S) ⊆ B.
Then for any A,

Φ(A|B) = Φ(A u S|B u S) + Φ(A u S|B u S) ,

where E′ u V ′ := {e ∈ E′ : e is incident to V ′}, for E′ a set of edges and V ′ a set of vertices.

Proof. We can easily prove this by induction on |A|. Suppose that e 6∈ A. We would like to show
that when e is added to A, the equality still holds. If e ∈ B, then none of Φ(A|B), Φ(AuS|B uS),
or Φ(A u S|B u S) can change; so, without loss of generality e 6∈ B. This implies that e 6∈ δ(S) as
well. Without loss of generality, e is adjacent to S but not S, so the only terms that can change
are Φ(A|B) and Φ(A u S|B u S). It is enough to show that these terms must change in the same
way when e is added; so, in fact, it is enough to see that Φ(A ∪ B) changes the same way as
Φ((A ∪B) u S) does when e is added. In light of Proposition 5.12, this holds because an edge e is
a cut edge in a graph G if and only if it is a cut edge in the component containing it.

23

5.3 An isoperimetric inequality for grid graphs

In light of Lemma 5.16, for regular resolution we replace the “isoperimetric inequality” used for
general resolution which showed that medium sized sets S have have many edges on their boundaries
(large δ(S)) by one showing that such sets have large Φ(δ(S)), i.e. large independent subsets in
δ(S).

For every medium size set of vertices S of Gn,`, we will show that δ(S) has large rank (Φ(δ(S))
is large) rather than large cardinality. Moreover, we show that for several medium-sized sets of
vertices S1 . . . Sk of sufficiently separated cardinalities, the rank of

⋃
i δ(Si) grows linearly with k.

We will be able to prove a tight lower bound on these ranks without much more difficulty, and
without giving up much compared to cardinality.

The following is an analog of the properties we proved in the case of general resolution using
transition points and Lemma 4 about endpoints of intervals of increasing sizes. The proof here uses
the same lemma on intervals but directly uses common information rather than transition points.

Lemma 5.20. Let S1 . . . Sk be sets of vertices in Gn,`. If 2kn2 ≤ |S1|, for each i ∈ [k − 1],
4|Si| ≤ |Si+1|, and |Sk| ≤ n`/4, then Φ(

⋃
i δ(Si)) ≥ k(n− 1).

Proof. If any Si contains k(n − 1) partial columns, then each such column contributes a vertical
edge to

⋃
i δ(Si), and these vertical edges together form an independent set of the necessary size,

so we are done.
If no Si contains k(n− 1) partial columns, then by the size bounds on Si, each contains a full

column, and an empty column. In particular, each Si contains a horizontal edge in every row. We
will show that each row contains at least k edges of

⋃
i δ(Si). Choosing any n − 1 rows and the k

edges from each such row give an independent set of size k(n− 1), so this will finish the proof.
Fix a row r. Let ai be the column number of the leftmost vertex in Si and in the r-th row,

let bi be the column number of the rightmost such vertex. Then Si has boundary edges with left
endpoints in columns ai − 1 and bi, provided that these are not 0 or `. Thus all we need to show
is that ∣∣∣∣∣⋃

i

{ai − 1, bi} \ {0, `}

∣∣∣∣∣ ≥ k .
Since 0, ` are the same modulo `, it suffices to show that these intervals meet the conditions for the
first part of Lemma 3.14.

Since Si has fewer then k(n− 1) partial columns, bi− (ai− 1) > |Si|/n−k(n− 1). On the other
hand, the number of full columns in Si is at most |Si|/n, so bi− (ai− 1) < |Si|/n+ k(n− 1). Thus
the ratio of successive differences is at least

bi+1 − (ai+1 − 1)

bi − (ai − 1)
>
|Si+1| − kn(n− 1)

|Si|+ kn(n− 1)
≥ 4|Si| − kn(n− 1)

|Si|+ kn(n− 1)
.

Since |Si| ≥ |S1| ≥ 2kn2, the ratio is at least 7
3 > 2 and we can apply Lemma 3.14 as desired.

It is convenient to have a lower bound on |S1| that does not depend on k. To do this we need
to upper bound `.

Corollary 5.21. Suppose that ` ≤ 2n. Let S1 . . . Sk be sets of vertices in Gn,`. If n3 ≤ |S1|,
4|Si| ≤ |Si+1| for each i, and |Sk| ≤ n`/4, then Φ(

⋃
i δ(Si)) ≥ k(n− 1).

Proof. Since ` ≤ 2n, and |S1| ≥ n3, we have k ≤ 1 + log4(|Sk|/|S1|) ≤ log2 n/2 ≤ n/2 and
Lemma 5.20 applies.

24

5.4 Regular resolution time-space tradeoff for grid graphs

To prove Theorem 5.2, we will begin with a regular resolution refutation Π, and repeatedly subdivide
Π into polynomially many epochs, at each point choosing an epoch in which enough progress

happens that we may continue subdividing it. The process peters out after O
(

logL
log logL

)
steps.

By Corollary 5.10, the adversary path will pass through clauses of every medium complexity
level. In this analysis, an epoch in the refutation is viewed as representing a lot of progress if
there is a path p to a clause appearing in that epoch such that, conditioned on having followed p,
the adversary probably reaches a much smaller complexity clause by the end of that epoch than it
began with. The major technical step is to show how to divide an epoch that represents a significant
amount of progress into much smaller epochs, one of which does a comparable amount of work.

Lemma 5.22. Let 0 < ε < 1 and Π be a regular resolution refutation of a Tseitin tautology on
the grid graph Gn,` for ` ≤ 2n. Suppose that p is a path in Π from the root to some clause C. Let
0 ≤ `1 < · · · < `k satisfy `i+1 ≥ `i + 3 for each i ∈ [k]. If for each i ∈ [k] there is some Ci ∈ L∗`j
appearing in Π with Pradv[Ci|p] ≥ 2−(1−ε)(n−1) then Φ(IC,Π) ≥ kε(n− 1).

Proof. Fix the choices of `i and the associated clauses Ci. In order to make it relatively likely to
reach each of the Ci from C as in the hypothesis, we show that the extra information at Ci over
that at C cannot be too large. On the other hand we can show, using the isoperimetric properties
of the grid graph, that the clauses Ci in total have a large amount of information and hence C
must also. We start with the latter.

Let Si = crit(ICi,Π) for i = 1, . . . , k and S = crit(p). Since `i+1 ≥ `i+3 we have |crit(ICi+1,Π)| ≥
4|crit(ICi,Π)| and Corollary 5.21 implies that

Φ(
⋃
i

δ(Si)) ≥ k(n− 1) (3)

On the other hand, by Lemma 5.16, the hypothesis that Pradv[Ci|p] ≥ 2−(1−ε)(n−1) implies that
Φ(ICi,Π|p) ≤ (1−ε)(n−1) where, as usual, we have identified p with the partial assignment labeling
it. Moreover, since Pradv[Ci|p] > 0, there is some path qi from C to Ci in Π. Therefore,

Si = crit(ICi,Π) = crit(pqi) ⊆ crit(p) = S,

where the third equality follows from Lemma 5.5 and the containment follows since by definition
crit is monotone decreasing over partial assignments. Note that Lemma 5.5 also implies that
p u S = IC,Π u S and Corollary 2.12 implies that δ(S) ⊆ dom(p). Therefore, we may apply
Proposition 5.19 with B = dom(p) to obtain

Φ(ICi,Π|p) ≥ Φ(δ(Si)|p) by monotonicity

= Φ(δ(Si) u S|p u S) + Φ(δ(Si) u S|p u S) by Lemma 5.19

≥ Φ(δ(Si) u S|p u S) by nonnegativity

= Φ(δ(Si)|p u S) since Si ⊆ S
= Φ(δ(Si)|IC,Π u S) by Lemma 5.5

≥ Φ(δ(Si)|IC,Π) by monotonicity.

25

It follows that Φ(δ(Si)|IC,Π) ≤ (1 − ε)(n − 1) for each i ∈ [k]. Hence, by the subadditivity of Φ
given in Proposition 5.18 we have

Φ(
⋃
i

δ(Si)|IC,Π) ≤ (1− ε)k(n− 1).

On the other hand, by the chain rule of Proposition 5.18 and (3) above, we have

Φ(IC,Π) ≥ Φ(
⋃
i

δ(Si))− Φ(
⋃
i

δ(Si)|IC,Π) ≥ k(n− 1)− (1− ε)k(n− 1) = εk(n− 1)

which is what we needed to prove.

The real value of Lemma 5.22 is in its contrapositive. If the proof is small, then by Lemma 5.16,
the vast majority of the time the adversary path will only reach clauses C with Φ(IC,Π) small.
Moreover, there can only be a few medium complexity levels of clauses that the adversary is now
relatively likely to visit. For most of the levels, the adversary on visiting C has essentially no
greater chance to reach any clauses of that complexity level than the chance when the adversary
began at the ⊥ clause.

With this lemma in hand we can now try to implement the overall plan for the proof of The-
orem 5.2. Based on some parameters that we will set later, we first specify a property of clauses,
which, by Lemma 5.16 and a union bound, are rarely encountered by an adversary in any refutation
that is not too large.

Definition 5.23. Let 0 < ε < 1 and m be parameters, which we will fix later. We say that a clause
C has high potential if Φ(IC) ≥ εm(n− 1).

Recall that a refutation is a sequence of clauses ending in ⊥, and that the adversary walks down
the proof DAG starting at ⊥, which involves moving backwards through this sequence, possibly
jumping over intermediate clauses. The ordering on the sequence of clauses gives a sequence of time
steps. Write time(C) for the time step in the proof sequence in which clause C appears. Recall
that every arc in the proof DAG that crosses from one time step to an earlier one corresponds to a
clause that must be in memory during all intervening time steps. Moreover, by Corollary 5.10, the
adversary path must pass through clauses in every L∗i starting from large values of i and ending
with i = 0. For a medium complexity clause C we write level(C) to denote the i such that C|inL∗i .
These properties motivate us to define a way to measure the progress of a portion of the proof.

Definition 5.24. Let C be a medium complexity clause in Π. Say that a path p in Π from the
root to clause C is a (T, gap, δ)-path in Π if, conditioned on following p, with probability at least
1− δ, the adversary AΠ

• does not reach any high potential clauses, and

• reaches a clause C ′ with level(C ′) ≤ level(C)− gap such that time(C ′) ≥ time(C)− T .

Lemma 5.25 (Inductive Step). Let Π be a space S regular resolution refutation of a Tseitin
tautology on Gn,` for n3 ≤ ` ≤ 2n. Suppose that p is a (T, gap, δ)-path in Π, gap ≥ 1, and B is any
natural number. Then there exists a (T ′, gap′, δ′)-path p′ in Π extending p such that

• T ′ = dT/Be,

26

• gap′ = bgap3m c, and

• δ′ = δ +B · S · 2−(1−ε)(n−1).

Proof. If δ ≥ 1 then the claim is vacuous, so assume that δ < 1. Let C be the clause reached by p.
By hypothesis, level(C) ≥ gap and C must not have high potential.

Therefore, by the contrapositive of Lemma 5.22 with k = m, there do not exist m complexity
levels `1 < . . . < `m with `i+1 ≥ `i + 3 such that there is a clause Di ∈ L∗`i with Pradv[Ci|p] ≥
2−(1−ε)(n−1). In particular, this means that there do not exist 3m distinct complexity levels of
clauses L∗j such that there is a clause D ∈ L∗j with Pradv[D|p] ≥ 2−(1−ε)(n−1).

Therefore, there exists a sequence of at least gap′ = bgap3m c consecutive complexity levels between

level(C) and level(C)− gap, such that for any D in one of these levels, Pr[D|p] ≤ 2−(1−ε)(n−1). Let
i′ be the largest level in this sequence, and i′ − gap′ + 1 be the smallest.

Divide the T time steps between time(C) and time(C) − T , into B epochs of length at most
T ′ = dT/Be, and let M denote the union over the B breakpoints between these epochs (including
the start of the first epoch), of the sets of clauses in memory that are of complexity level between
i′ and i′ − gap′ + 1. By a union bound,

Pr[adversary reaches some clause in M] ≤ B · S · 2−(1−ε)(n−1).

Thus, except with probability at most δ′, the adversary AΠ, conditioned on following p,

1. does not hit any high potential clauses,

2. reaches a clause C ′ with level(C ′) ≤ level(C)− gap and time(C ′) ≥ time(C)− T , and

3. does not hit any clause in M.

By averaging, there must exist a path p′ extending p and reaching a clause C ′ ∈ L∗i′ such that this
also holds, except with probability at most δ′.

Then, we claim that p′ is a (T ′, gap′, δ′)-path. Let C ′ denote the clause reached by p′. C ′ falls
in some epoch of length at most T ′. If no clause in M is reached and the adversary has followed
p′, then by the beginning of the epoch containing C ′, the complexity level of the clause reached
by the adversary must be less than or equal to i′ − gap′. Thus, by construction, p′ is indeed a
(T ′, gap′,∆′)-path in Π.

Additionally, whenever we have a (T, gap, δ)-path p in Π with nontrivial gap and δ parameters,
we can show that T is nontrivial.

Lemma 5.26 (Base Case). Let Π be a regular resolution refutation of a Tseitin tautology on Gn,`
for n3 ≤ ` ≤ 2n. If p is a (T, gap, δ)-path in Π with gap > 3m, then T ≥ (1− δ)2(1−ε)(n−1).

Proof. If δ ≥ 1, the claim is trivial. Suppose that δ < 1. Let C be the clause reached by p and
consider the clauses in the epoch between time steps time(C)− T and time(C) in Π.

By Lemma 5.22, there exists some complexity level L∗i with i > level(C) − gap such that,
conditioned on following p, the adversary AΠ

• reaches a clause C ′ ∈ L∗i , with time(C ′) ≥ step(C)− T with probability at least (1− δ), and

• does not reach any fixed clause D in L∗i , except with probability at most 2−(1−ε)(n−1).

27

By a union bound over the clauses in this epoch, we conclude that T ≥ (1− δ)2(1−ε)(n−1).

We now have the ingredients needed to complete the proof of our time-space tradeoff for regular
resolution.

Proof of Theorem 5.2. We begin with a regular resolution proof Π of length T that uses space S
and refutes a Tseitin tautology on Gn,`. There are L = log2(`/(4n2)) distinct medium complexity
levels of clauses with respect to T . By Corollary 5.10, the path followed by adversary AΠ must
pass through clauses with each of these complexity levels.

The outline of the remainder of the proof is as follows:

• First we show, via a union bound over the number of steps in the proof, that there is a
(T, L, δ0)-path in Π for some suitably small δ0. This step only involves calculating the prob-
ability that the adversary passes through some high potential clause. This calculation will
require that ε ·m not be small compared to log2 T

log2 n
.

• Next we choose an appropriate value for B and continually apply the inductive step from
Lemma 5.25, until either the accumulated error δ becomes too large, or the gap becomes too
small. (We use the same value of B at each step.)

• Finally, some number r of rounds, just before gap has become too small after r rounds, we
apply the base case Lemma 5.26 to deduce that the T ′ at the last step is reasonably large,
and that T ≥ Br · T ′.

Let r denote the number of rounds that we will apply the inductive step and let gapi denote
the value of gap after each round and δi denote the value of δ after each round. We will set
gap0 = L = log2(`/(4n2)). By Lemma 5.16, the probability that AΠ reaches a high potential clause
is at most 2−εm(n−1). Therefore if

T · 2−εm(n−1) ≤ δ0 (4)

the adversary must reach some clause of complexity L. Fix any path to such a clause. We obtain
that this path is a (T, L, δ0)-path,

We will choose B so that gap, rather than the error δ, is the limiting resource, so we take

r =
log2 L

log2(3m)
− 1 (5)

Observe that by Lemma 5.25, δr = δ0 + r ·B · S · 2−(1−ε)(n−1). and applying Lemma 5.26 after the
r-th round point yields T ′ ≥ (1− δr)2(1−ε)(n−1). By choosing

δ0 =
1

3
and B =

1

3
· 2(1−ε)(n−1)

S · r
,

we obtain that δr = 2/3 and hence

T ≥ 1

3
2(1−ε)(n−1) ·

(
2(1−ε)(n−1)

3 · S · r

)r
. (6)

Together with the n3 ≤ ` ≤ 2n and the values of δ0, L, and r, inequalities (4) and (6) provide
the only constraints on our parameters. It remains to choose m and ε to optimize them and

28

derive a convenient tradeoff lower bound. It is convenient to choose m = log2 L so that r =
log2 L/ log2(3m) − 1 is between 1

2 log2 L/ log2 log2 L and log2 L/ log2 log2 L. For convenience we
also choose ε to be 2/ log2m = 2/ log2 log2 L. With these choices, the constraint (4) is satisfied

whenever T is at most 1
32

2 log2 L
log2 log2 L

(n−1)
and this upper bound is strictly larger than the lower bound

from (6). On the other hand, since r ≤ log2 L/ log2 log2 L and L ≤ n, the 3r+1rr in the denominator
of the expression in (6) is at most 2(1−ε)(n−1). Hence

T ≥

(
2

(1− 2
log2 log2 L

)(n−1)

S

) log2 L
2 log2 log2 L

.

Since L is grows at least logarithmically with n, the statement of the theorem follows.

6 Conclusion

We have shown superpolynomial size-space tradeoff lower bounds for resolution proofs which are the
first to apply for superlinear space. The two different methods for deriving these bounds are based
on a similar recursive decomposition of proofs into epochs. Our results suggest a number of open
questions: Can this decomposition framework be applied to show size-space tradeoffs for stronger
proof systems? With very small space, resolution size upper bounds for the Tseitin formulas we
consider are log2 n powers of their size for unlimited space. Is this tight? Can we increase the
exponent in our lower bound from Θ(log log n/ log log log n) to Θ(log n)? More generally, is it true
that for every k and every formula of size n with a proof of size nk, there exists a proof in space O(n)
with size nO(logn)? with size 2n

ε
for any ε > 0? Finally, our tradeoff lower bound can be viewed as

a separation between two search paradigms: dynamic programming vs. divide and conquer. Can
we find other settings in which these paradigms may be separated?

References

[1] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. An exponential separation be-
tween regular and general resolution. Technical Report TR01-56, Electronic Colloquium in
Computation Complexity, http://www.eccc.uni-trier.de/eccc/, 2001.

[2] M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and tseitin tautologies. In
Proceedings 43nd Annual Symposium on Foundations of Computer Science, pages 593–603,
Vancouver, BC, November 2002. IEEE.

[3] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. In Pro-
ceedings Eighteenth Annual IEEE Conference on Computational Complexity, pages 239–247,
Aarhus, Denmark, July 2003.

[4] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving #sat and Bayesian inference
with backtracking search. jair, 34:391–442, 2009.

[5] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In Proceedings
37th Annual Symposium on Foundations of Computer Science, pages 274–282, Burlington,
VT, October 1996. IEEE.

29

[6] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal separation of treelike and
general resolution. Combinatorica, 24(4):585–603, 2004.

[7] E. Ben-Sasson and J. Nordström. Short proofs may be spacious: An optimal separation of
space and length in resolution. In Proceedings 49th Annual Symposium on Foundations of
Computer Science, pages 709–718, Philadelphia,PA, October 2008. IEEE.

[8] E. Ben-Sasson and J. Nordström. Understanding space in resolution: Optimal lower bounds
and exponential tradeoffs. Technical Report TR09-034, Electronic Colloquium in Computation
Complexity, http://www.eccc.uni-trier.de/eccc/, 2009.

[9] E. Ben-Sasson and J. Nordström. Understanding space in proof complexity: Separations and
trade-offs via substitutions. Technical Report arXiv:1008.1789, arxiv, 2010.

[10] E. Ben-Sasson and A. Wigderson. Short proofs are narrow – resolution made simple. In
Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 517–
526, Atlanta, GA, May 1999.

[11] S. R. Buss. Polynomial-size Frege and resolution proofs of st-connectivity and Hex tautologies.
Theoretical Computer Science, 357(1–3):35–52, 2006.

[12] Shiteng Chen, Tiancheng Lou, Periklis Papakonstantinou, and Bangsheng Tang. Width-
parameterized sat: Time-space tradeoffs. Technical Report abs/1108.2385, arXiv, 2011.

[13] J. L. Esteban and J. Toran. Space bounds for resolution. In (STACS) 99: 16th Annual
Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in
Computer Science, pages 530–539, Trier, Germany, March 1999. Springer-Verlag.

[14] Z. Galil. On the complexity of regular resolution and the Davis-Putnam procedure. Theoretical
Computer Science, 4:23–46, 1977.

[15] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–305, 1985.

[16] P. Hertel and T. Pitassi. Exponential time/space speedups for resolution and the pspace-
completeness of black-white pebbling. In Proceedings 48th Annual Symposium on Foundations
of Computer Science, pages 137–149, Berkeley, CA, October 2007. IEEE.

[17] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge
University Press, 1996.

[18] João P. Marques-Silva and Karem A. Sakallah. Grasp – a new search algorithm for satisfiability.
In Proceedings of the International Conference on Computer-Aided Design, pages 220–227, San
Jose, CA, November 1996. ACM/IEEE.

[19] J. Nordström. Narrow proofs may be spacious: Separating space and width in resolution.
SIAM Journal on Computing, 39(1):59–121, 2009.

[20] J. Nordström. A simplified way of proving trade-off results for resolution. Information Pro-
cessing Letters, 109(18):1030–1035, 2009.

30

[21] J. Nordström. Pebble games, proof complexity, and time-space trade-offs. Logical Methods in
Computer Science, 2011. To appear.

[22] J. Nordström and J. H̊astad. Towards an optimal separation of space and length in resolution.
In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pages 701–
710, Victoria, BC, May 2008.

[23] Wolfgang J. Paul and Robert E. Tarjan. Time-space trade-offs in a pebble game. Acta Infor-
matica, 10:111–115, 1978.

[24] T. Pitassi and R. Raz. Lower bounds for regular resolution proofs of the weak pigeonhole prin-
ciple. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
pages 347–355, Hersonissos, Crete, Greece, July 2001.

[25] Pavel Pudlák. Proofs as games. American Math. Monthly, June-July:541–500, 2000.

[26] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
128–136, 2000.

[27] Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties
of their circuits. Journal of Computer and System Sciences, 20:118–132, April 1980.

[28] G. S. Tseitin. On the complexity of derivation in the propositional calculus. In A. O. Slisenko,
editor, Studies in Constructive Mathematics and Mathematical Logic, Part II. 1968.

[29] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Efficient conflict
driven learning in a boolean satisfiability solver. In Proceedings of the International Conference
on Computer-Aided Design, pages 279–285, San Jose, CA, November 2001. ACM/IEEE.

A Some Upper Bounds

For the graphs we will consider, some generic upper bounds follow from bounds on their cut width.
The first will form the high space upper bound in our time space trade-off result, and the second
is a low space upper bound we use to argue about the tightness of the lower bound we get for low
space.

Definition A.1. The cut width of a graph G is the smallest W such that there is a linear ordering
of the vertices v1, . . . , vn such that, for every 1 ≤ t ≤ n, there are no more than W edges crossing
the cut ({v1, . . . , vt}, {vt+1, . . . , vn}).

Throughout this section we will use the following well-known fact which we prove for complete-
ness:

The rank of a resolution proof is the height of its proof DAG.

Observation A.2. Any tree-like proof of rank r has size at most 2r+1 and clause space at most
r + 1.

31

Proof. The first is an elementary fact about binary trees of height r. The second, we prove by
induction. In the base case, suppose that a proof has rank 1. Then the proof consists of one step
and so we need 2 units of space to hold both resolvents. Now suppose the inductive hypothesis
holds for rank r, and that we have a proof of rank r+ 1. Suppose C is the last clause of the proof,
and A,B are its children. Then the derivations leading up to A,B are rank r. We then derive C as
follows – run the derivation of A using r clause space, then A is the only remaining active clause
by the tree-like assumption, so clear all of this space and store only A. Then, derive B using r
clause space. When we have B, resolve it with A to finish the derivation of C. We only needed
r + 1 space in total, as desired.

Lemma A.3 (Lemma 2.7). Let G be a graph with n vertices, maximum degree d, and cut width
W . Then there is a resolution refutation of a Tseitin tautology on G using ≤ n · 2d+W resolution
steps, and space ≤ ·2W + d+ 1, plus space for the initial axioms.

Proof. We will specify a sequence of n+ 1 collections Ci of clauses, such that

1. C1 is a subset of the axioms .

2. |Ci| ≤ 2W−1 for all i .

3. Cn = {⊥} .

4. Given a configuration with Ci and the axioms in memory, we derive any clause in Ci+1 using
at most 2d+1 proof steps and d+ 1 extra work cells.

This construction mirrors a construction in [11]. For each 1 ≤ i < n, let Ei be the collection of
at most W edges crossing the cut ({v1 . . . vi}, {vi+1, . . . , vn}) as described in the assumption. Let
Ci be the collection of 2|Ei|−1 clauses whose conjunction is semantically equivalent to the parity
constraint

⊕
e∈Ei xe ≡

⊕
1≤j≤i χ(j).

We’ve defined everything so that (1), (2) and (3) hold immediately. Now we will show that
item (4) holds for i < n− 1.

The symmetric difference of Ei and Ei+1 is, by definition, the edges incident tohas vi+1. Let
Ai+1 denote the axioms associated with vertex vi+1. By definition Ai+1 is logically equivalent to
the constraint

⊕
e∼vi+1

xe ≡ χ(i + 1). If we think of parity constraints as GF(2)-linear equations,
and we add the two equations associated with Ai+1 and Ci, we obtain the equation associated with
Ci+1, so we conclude that

Ai+1, Ci |= Ci+1 .

This move from Ci to Ci+1 thus corresponds to adding two linear equations together and deleting
one of them from memory.

Since resolution is implicationally complete, it is clear that it is possible to complete this move.
We would like to now say that with at most 2d+1 size and d+ 1 space, we can derive any particular
clause of Ci+1, so that we can complete the move using |Ci+1| · 2d+1 size and d + 1 work space in
addition to the space needed just to hold Ci, Ci+1 and the axioms.

Let C be an arbitrary clause in Ci+1. It is well known that we may convert any derivation

Ai+1|¬C , Ci|¬C ` ⊥

into a derivation
Ai+1, Ci ` C ,

32

using exactly the same proof DAG and possibly with some weakening steps added. It should be
clear that weakening steps can be eliminated at the end of our construction without increasing the
space or size used.

Since Ci+1 is logically equivalent to a parity constraint, every C ∈ Ci+1 assigns every variable
Ei+1. Thus the only variables remaining in any of the Ci after the restriction ¬C is applied
correspond to edges incident to vi+1. Thus there are at most d variables in any such derivation,
and this derivation may be carried out trivially in a tree-like fashion using only 2d+1 size and d+ 1
space.

So, by completing a sequence of 2W−1 derivations each of length 2d+1, reusing the d+ 1 space
for each, we may fill 2W−1 new cells with the clauses in Ci+1. We may then safely delete the cells
used to hold Ci, so that we never need more than 2 · 2W−1 + d + 1 space, plus the space for the
axioms.

Finally we will see (4) holds for i = n, that is, from Cn−1 and the axioms, we may derive a
contradiction using 2d+1 size and d+ 1 space.

Since En−1 is just the set of neighbors of vn, Cn−1 is logically equivalent to
⊕

e∼vn xe ≡⊕
1≤j≤n−1 χ(j). But An is logically equivalent to

⊕
e∼vn xe ≡ χ(n), which by assumption that

χ is odd-charged, is of different parity. So Cn−1 and An are contradictory sets of clauses, and on at
most d variables. Thus a contradiction can be derived in tree-like fashion as claimed.

In total we carried out n phases, each with 2W−12d+1 = 2d+W steps, and each using 2·2W−1+d+1
workspace in addition to the axioms. If we include the axioms in the space budget we will need
additional space for n2d−1 clauses.

A little thought shows that this proof may be carried out in regular resolution, since within
each phase, the derivation is tree-like, and the phases can be seen to operate on disjoint sets of
variables.

We will appeal to this lemma to establish upper bounds for large space, against which we
will prove size-space trade-offs. The following lemma shows that for Tseitin graphs satisfying the
conditions of Lemma 2.7, which include the ones that we consider here, even radically restricted
space can only increase the size required by a O(log n) power.

Lemma A.4 (Lemma 2.8). Under the same conditions as Lemma 2.7, the Tseitin tautology on
τ(G) has a tree-like Resolution refutation using space W dlog ne + 1 and ≤ 2W dlogne+1 resolution
steps.

Proof. We prove that when n is a power of two, τ(G) has a tree-like refutation of rank W log n,
which implies the claim. Suppose that G is such a graph of size n. Suppose inductively that the
claim holds on graphs of size n/2. As before let En/2 denote the edges crossing the cut

({v1, . . . , vn/2}, {vn/2+1, . . . , vn}) .

Let C be any clause containing every variable in En/2. Then τ(G)|¬C can be written as a pair
of disjoint Tseitin formulae, one from each side of the cut, one of which is odd and therefore
unsatisfiable. The induced subgraphs on either side of have cut width at most W , therefore τ(G)|¬C
has a tree-like resolution refutation of rank at most W (log n− 1), which can be lifted to a tree-like
derivation of C from the axioms τ(G) in the same rank.

It is easy to see that there is a tree-like refutation of rank |En/2| ≤W using the set of all such C
as axioms. By replacing the appearances of these axioms in that refutation with their W (log n−1)

33

rank tree-like refutations from the τ(G) axioms, we obtain a W log n rank tree-like refutation of
τ(G).

Generalizations

These ideas can be generalized to the stronger notion of carving Width, yielding both a high space
version and a low space version for any graph. For the high space version, we essentially just restate
part of the main result of Aleknovich and Razborov [2]:

Definition A.5. A carving of a graph G is a rooted binary tree T whose leaves are in bijection
with the vertices of G. For t a node of T , we let v(t) denote the vertices corresponding to leaves
which are under t, and Cut(t) denote the edges on the boundary of v(t). The size of the largest
Cut(t) is the width of a particular carving, and the carving width of a graph G is the width of the
narrowest carving of G.

Observation A.6. The carving width is always less than the cut width – given any linear ordering
of the vertices yielding cut width W , we can obtain a carving of width W by taking a maximally
unbalanced binary tree, and assigning vertices to leaves as dictated by the linear ordering. The
cuts corresponding to internal nodes then correspond exactly to the cuts occurring in the definition
of cut width.

Corollary A.7. [2] For every n vertex graph G of carving width W , the corresponding Tseitin
tautology has a regular resolution refutation of size poly(n) · 2O(W), and uses comparable space.

Sketch: There is a natural way to convert a carving into a refutation – for each node t, we will have
an associated set of clauses on the variables Cut(t):

For t a leaf corresponding to vertex v, we will simply take all the axioms associated to vertex v.
For t an internal node, we will take the clauses associated to its children t1, t2, which are on

variables Cut(t1) or Cut(t2), and make all derivations possible which yield clauses on Cut(t) and
only which resolve on variables from Cut(t1) ∪ Cut(t2) \ Cut(t).

To analyze this, we observe there are at most 3|Cut(t)| clauses derived for any node, and each
one can be derived from clauses at the children by resolving on at most 2W variables, hence in 22W

time. There are only 2n nodes in total since there are n leaves, and so there is poly(n) · exp(O(W))
total work, and at most poly(n) · exp(O(W)) active clauses at any point. We omit the proof
that this actually does result in deriving a contradiction at the end – Aleknovich and Razborov
refer to (Krajicek 1992, Theorem 4.2.1). It is very straightforward when considering only Tseitin
tautologies, since then the clauses associated to t will always correspond to a parity constraint on
the variables Cut(t), and the derivation of t from t1, t2 corresponds to addition of linear equations;
Aleknovich and Razborov in fact establish this claim for any tautology.

Lemma A.8. For every graph G on n nodes with carving width W , the corresponding Tseitin
tautology has a tree-like refutation of rank at most W log 3

2
n. In particular, it has a refutation with

size nW log 3
2 , using at most W log 3

2
n+ 1 clause space.

Proof. Given an optimal carving T of G, we use the classic 1
3 ,

2
3 lemma for binary trees to find an

edge which represents a balanced cut in T . Suppose that t is the lower vertex of this edge. (More
explicitly: observe that if we define a function f on nodes of the tree s.t. f(t) = |v(t)|, then f is a

34

subadditive function on the tree, that is f(t) ≤ f(t1) + f(t2), where t1, t2 are the children of t. f
of each leaf is 1, and f of the root is n, therefore there exists t such that n

3 ≤ f(t) ≤ 2n
3 .)

First observe that the induced subgraph on v(t), and the induced subgraph on V \ v(t), both
have carving width at most W , and at most 2

3n vertices by assumption. Therefore by induction
hypothesis, Tseitin tautologies on these graphs have refutations of rank at most W (log 3

2
n − 1).

This implies that every clause containing exactly the variables of Cut(t) has a tree-like derivation
of rank at most W (log 3

2
n− 1), since any such clause falsifies at least one component of G \Cut(t).

If we may start with all clauses on exactly Cut(t), it is easy to see that there is a tree-like
refutation of rank |Cut(t)| ≤ W , by branching on each variable of Cut(t) in succession. By
replacing the leaves in this refutation with corresponding small rank tree-like derivations of these
clauses, we get a tree-like refutation of rank at most W log 3

2
n as desired.

It is worth pointing out that while this lemma shows that small space proofs exist, it generally
does not yield a small space method for finding them, because it is not thought to be possible to
find a good carving or branch decomposition in small space. The question of how find proofs like
this was raised in [2], and important progress has been made by [4], [12].

Some algorithmic upper bounds from the literature

While we have described two different resolution proofs for Tseitin tautologies, it remains to be
seen whether these upper bounds really correspond to the executions of actual algorithms. There
has been a series of SAT algorithms [2, 4, 12] based on branch width or tree width that achieve
this.

Claim A.9. The branch-width based algorithm of Aleknovich and Razborov [2] gives an efficient
implementation of Lemma 2.7, matching the space and time usage up to constants in the exponent.
A recent algorithm of [12] achieves this as well.

Claim A.10. The small space variation of [12] achieves a runtime matching the size of the proof
in Lemma 2.8, up to constants in the exponent, and achieving memory usage which is polynomial
in n = |G|. The branch width-based algorithm [4] achieves memory usage which is near linear in
|G|, after a near optimal branch decomposition has been computed. Both results essentially appeal
to the branch decomposition routine of [2] to achieve their results.

The algorithm of [12] further provides a smooth interpolation between the high space parameters
and the low space parameters. Their quite general results are phrased in terms of of parameterized
SAT, and they show that Time, Space values (T,S) are feasible when α (log T/TW (φ) log |φ) +
β logS ≥ TW (φ) + γ log |φ|, for appropriate constants α, β, γ. It is unclear if an asymptotically
more favorable interpolation is possible. Further, they conjecture that any algorithm running in
time log T = o(TW (φ) log(|φ|) requires space exponential in TW (φ).

We note that one way to prove that this is true at least for backtracking algorithms would be
to improve the lower bound result given in Lemma 3.2 for Tseitin tautologies, by improving the
exponent to match the small space upper bounds.

35

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

