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Abstract
We bound the minimum number w of wires needed to compute any (asymptotically

good) error-correcting code C : {0, 1}Ω(n) → {0, 1}n with minimum distance Ω(n),
using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are:

(1) If d = 2 then w = Θ(n(lg n/ lg lgn)2).
(2) If d = 3 then w = Θ(n lg lg n).
(3) If d = 2k or d = 2k + 1 for some integer k ≥ 2 then w = Θ(nλk(n)), where

λ1(n) = dlg ne, λi+1(n) = dλ∗i (n)e, and the ∗ operation gives how many times one has
to iterate the function λi to reach a value at most 1 from the argument n.

(4) If d = lg∗ n then w = O(n).
Each bound is obtained for the first time in this paper. For depth d = 2, our

Ω(n(lg n/ lg lg n)2) lower bound gives the largest known lower bound for computing
any linear map, improving on the Ω(n lg3/2 n) bound of [PR94].

We find the upper bounds surprising. They imply that a (necessarily dense) gen-
erator matrix for the code can be written as the product of two sparse matrices. The
upper bounds are non-explicit: we show the existence of circuits (consisting of only
XOR gates) computing good codes within the stated bounds.

Using a result by Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08], we also obtain
similar bounds for computing pairwise-independent hash functions.

Furthermore, we identify a new class of superconcentrator-like graphs with connec-
tivity properties distinct from previously-studied ones.
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1 Introduction

Error-correcting codes are fundamental objects with a myriad of applications, for example
in information theory, cryptography, and combinatorial constructions. Of particular impor-
tance are codes over the binary alphabet {0, 1} that are asymptotically good : have constant
rate (encode m bits into n = O(m) bits) and can correct a constant fraction of errors. We
refer to them simply as good codes.

In this paper we study the complexity of encoding good codes. Although the complexity
of decoding is sometimes the bottleneck in applications, other times it is the complexity of
encoding that matters the most. For example, jumping ahead, “efficient” encoding translates
to efficient hashing thanks to a recent result by Ishai, Kushilevitz, Ostrovsky, and Sahai
[IKOS08].

The complexity of encoding good codes has been studied before. It was shown that
some popular encoding methods (e.g. concatenated convolutional codes, or repeat-convolute
codes) cannot yield good codes under some assumptions on the complexity of the encoder
[BMS09, BM05]. For example, Bazzi and Mitter [BM05] prove that if the encoder can be
represented as a binary branching program (or equivalently a random access machine) that
uses linear time and sublinear space, then the code computed cannot be good. This result
should be contrasted with the existence of good codes that can be encoded in linear time
[GDP73]. Explicit constructions of good codes encodable (and decodable) in linear time
and linear space were given by Spielman [Spi95, Spi96]. It follows immediately from bounds
on the noise-sensitivity of small AC0 circuits [LMN93, Bop97] that those circuits cannot
compute good codes. This result was generalized in [Vio04, LV10] (cf. [BM05]).

In this paper we consider unbounded fan-in circuits with arbitrary gates. In particular,
we allow the use of parity gates. Giving lower bounds for arbitrary gates, that is, regardless
of the operations computed by the individual gates, makes our lower bounds stronger. Our
upper bounds hold for circuits that consist of parity gates only. Our focus is the tradeoffs
between the number of wires and the depth of the circuits.

Previously, two main tradeoffs were known. Any code can be computed in depth 1 with
O(n2) wires (since we allow arbitrary gates), and it is also easy to show that Ω(n2) wires
are necessary to compute any good code in depth 1. We can generalize the upper bound to
O(n1+1/d) wires and depth d, for any fixed d, by viewing the message as a d-dimensional cube
and encoding along each dimension. On the other hand, Spielman [Spi96] gives explicit good
codes that can be encoded by bounded fan-in circuits with O(n) wires and depth O(lg n)
(and also decoded in linear time). Thus, optimal number of wires for encoding good codes
can be achieved using depth O(lg n). It is easy to see that with bounded fan-in circuits,
linear number of wires for encoding good codes cannot be achieved in smaller than Ω(lg n)
depth. Can we achieve closer to optimal bounds on the number of wires in small depth with
unbounded fan-in circuits?
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1.1 Our results

We show that already depth 2 is sufficient to have a quasi-linear O(n(lg n/ lg lg n)2) number
of wires for computing asymptotically good codes. This was surprising to us, since one might
have expected that at least n1+Ω(1) wires are necessary for any constant-depth circuit and
any good code. In fact, for any depth we obtain matching upper and lower bounds that
reveal that the optimal number of wires is n times an inverse Ackermann-like function λ(n)
that is parameterized by the depth.

Notation. Let λ1(n) = dlg ne and λi+1(n) = dλ∗i (n)e, where the ∗ operation gives how
many times one has to iterate the function λi to reach a value at most 1 from the argument
n.

We say that an injective function C : {0, 1}m → {0, 1}n is a (ρ, δ)-good code if m ≥ ρn
and any two distinct codewords have hamming distance at least δn. It is well known that
there are constants 0 < ρ0, δ0 < 1 so that (ρ0, δ0)-good codes exist for all m. Indeed one may
pick 1/32 ≤ ρ0 and 1/8 ≤ δ0.

Let wd(C) be the wire complexity of encoding the code C by depth-d unbounded-fan-in
circuits with arbitrary gates, that is the minimum number of wires over all circuits of depth
d computing C. Let wd,ρ,δ(n) = minC wd(C), over all binary (ρ, δ)-good codes C with block-
length n (and thus message length m = ρn, and relative distance δn). A XOR circuit is
a circuit consisting of input gates and XOR gates (i.e., gates that compute parity of their
inputs).

Our results can be summarized in the following main theorem.

Theorem 1 (Complexity of encoding) For any constants 0 < ρ ≤ 1/32 and 0 < δ <
1/8, we have

w2,ρ,δ(n) = Θ(n(lg n/ lg lg n)2),
w3,ρ,δ(n) = Θ(n lg lg n),
if d = 2k or d = 2k + 1 for some integer k ≥ 2 then wd,ρ,δ(n) = Θ(nλk(n)).
The upper bounds are witnessed by (non-explicit) circuits using only XOR gates (hence

computing good codes that are linear). The lower bounds hold for any ρ, δ > 0, for circuits
with arbitrary gates, and computing arbitrary (possibly nonlinear) (ρ, δ)-good codes.

Each bound is obtained for the first time in this paper. For depth 2, our Ω(n(lg n/ lg lg n)2)
lower bound gives the largest known lower bound for computing any linear map, improving
on the Ω(n lg3/2 n) bound by Pudlák and Rödl in [PR94]. Moreover their lower bound only
held against circuits consisting exclusively of XOR gates, as opposed to arbitrary gates in
our result. For an excellent survey of lower bounds for circuits with arbitrary gates, see the
recent book [Juk12] by Jukna.

The lower bounds in Theorem 1 show that to compute good codes with a linear number
of wires, the depth cannot be constant. However, the depth can grow very slowly as the
following theorem indicates.
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Theorem 2 For any constants 0 < ρ ≤ 1/32, 0 < δ < 1/8 and d ≥ 1, we have wλd(n),ρ,δ(n) =
O(n).

Spielman [Spi95] achieves depth O(lg n) for linear-size circuits with bounded fan-in gates,
and this is optimal for computing good codes with bounded fan-in circuits. Our theorem
holds for circuits with unbounded fan-in gates.

Decomposing the generator matrix of good codes into sparse matrices Since
the upper bounds in Theorem 1 hold for circuits with XOR gates only, they correspond
to linear transformations. So those upper bounds can be interpreted as saying that there
exist n × Ω(n) matrices G generating good codes over GF(2), that can be decomposed as
G = G1 ·G2 · · · · ·Gd, where the Gi are sparse (have quasilinear number of ones). By contrast,
note it is easy to see that any generator matrix G itself must have Ω(n2) ones, if it generates
a good code. Our lower bounds show that no such decomposition exists with d = O(1) and
each matrix Gi having O(n) ones.

Coding vs. hashing Our results on the complexity of encoding imply new upper and lower
bounds on the complexity of computing pairwise independent hash functions. This follows
from the close relationships between the complexity of encoding and that of hashing, the
more surprising direction of which (i.e., codes imply hash functions) we extrapolate from an
exciting result by Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08]. The relationships show
that depth-d circuits for codes imply depth-2d circuits for hashing, while depth-d circuits
for hashing imply depth-d circuits for codes; and the wire complexity only multiplies by a
constant. Using this in conjunction with Theorem 1 immediately gives a superlinear lower
bound on the wire-complexity of constant-depth hashing circuits, as well as upper bounds.

It is instructive to compare our results to those of the aforementioned paper [IKOS08].
[IKOS08] obtain circuits with w = O(m) wires (and unspecified depth d ≥ Ω(lgm)) for
computing pairwise independent hash functions mapping m bits to m bits. This disproves a
conjecture by Mansour, Nisan, and Tiwari [MNT93] that Ω(m lgm) wires were needed.

Our results show that one can go below w = Ω(m lgm) wires (e.g. w = O(m lg∗m)) even
with constant-depth circuits. However, to get w = O(m) super-constant depth is necessary.

1.2 Techniques

Lower bounds. Slowly-growing bounds similar to those in our Theorem 1 are known
to hold for the number of edges in superconcentrator graphs. Indeed, to establish our lower
bounds we establish and exploit a relationship between superconcentrators and circuits com-
puting good codes. However, despite this relationship, circuits computing good codes behave
differently from superconcentrator graphs. In fact, jumping ahead, our bounds for depth 2
imply a gap between the wire complexity of circuits computing good codes and the wire
complexity of superconcentrator graphs.
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We now elaborate on the connection with superconcentrators. For simplicity we state
the following properties for circuits with n input nodes and n output nodes (whereas our
circuits have m = Ω(n) input nodes).

There are various connectivity requirements one could ask for in a circuit. Let X be a
subset of input bits and Y be a subset of output bits of the circuit. Denote by f(X, Y ) the
maximum number of vertex disjoint paths from X to Y . For a fixed constant 0 < δ ≤ 1 one
can require:

1. For each k ∈ {1, . . . , n}, for each X and Y of size k, f(X, Y ) ≥ δk.

2. For each k ∈ {1, . . . , n}, for each X and a random Y of size k, EY [f(X, Y )] ≥ δk.

3. For each k ∈ {1, . . . , n}, for random X and Y of size k, EX,Y [f(X, Y )] ≥ δk.

These are various versions of the superconcentrator property ordered by strength. (The
case of random X and fixed Y is symmetric with Property 2.) The classical definition of
superconcentrators [Val75] requires Property 1 to hold for δ = 1. Property 3 corresponds to
the so-called relaxed superconcentrators which were analyzed in [DDPW83, Pud94].

In this work we show that Property 2 is the property satisfied by circuits computing good
codes. This is given by the following lemma.

Lemma 3 Let 0 < ρ, δ < 0 be constants, C ⊆ {0, 1}n be a (ρ, δ)-good code and G be a circuit
computing C. For any 0 < k ≤ ρn, and for any k-element subset X of inputs of G, if we
take uniformly at random a k-element subset Y of outputs of G, then the expected number
of vertex disjoint paths from X to Y in G is at least δk.

We prove this lemma using a classical result in matroid theory. We give a self-contained
proof of the necessary claim in the appendix.

Having established the above lemma, we proceed to prove lower bounds on the number
of wires of circuits satisfying Property 2. For the case of depth 2, we show that a depth-2
circuit satisfying Property 2 has at least Ω(n(lg n/ lglg n)2) wires. Moreover, this is optimal
due to our constructions. We remark that the bounds for circuits satisfying Property 1 and
3 are different. Specifically, by results of Radhakrishnan and Ta-Shma [RTS00], for any fixed
0 < δ ≤ 1, a depth-2 circuit satisfying Property 1 has at least Ω(n lg2 n/ lglg n) wires which
is known to be optimal. ([RTS00] state the claim only for δ = 1 but their proof works for any
constant δ > 0.) For Property 3, [DDPW83, Pud94] show that a depth-2 circuit satisfying
it has at least Ω(n lg n) wires, which is again known to be optimal. An example of a circuit
satisfying this property is a circuit computing the Prefix-XOR function [CFL83, CFL85].
Hence for depth-2 the three properties place different requirements on the circuits.

The lower bound for depth 2. Our Ω(n(lg n/ lglg n)2) lower bound for depth-2 is ob-
tained by modifying the clever lower bound by Radhakrishnan and Ta-Shma [RTS00], which
was tailored for Property 1 and gives a stronger bound. As in [RTS00], we classify the ver-
tices in the intermediate level according to their degree. We consider Ω(lg n/ lg lg n) disjoint
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classes and prove a lower bound Ω(n lg n/ lg lg n) on the number of edges incident with these
vertices for each of them, unless the number of edges non-incident with these vertices is
already εn(lg n/ lg lg n)2 for some absolute constant ε > 0.

Each of the classes on the intermediate level is associated with a number k and we use
the condition of Lemma 3 for this k to prove the lower bound on the number of incident
edges. The class associated with k is denoted by V k

m. The assumption that the number of
edges non-incident with the vertices of the given class V k

m is less than εn(lg n/ lg lg n)2 implies
that for every set of k input vertices and randomly chosen set of k output vertices, there
are in the average δ′k vertex-disjoint paths connecting them through V k

m, for some positive
constant δ′.

To prove the lower bound on the number of edges incident with V k
m, we argue by contra-

diction. We assume that the number of these edges is small, and find a large subset of output
vertices W 0 and a subset of input vertices U0, |U0| ≥ k such that there is no path going
through V k

m that connects U0 with W 0. We show that with our setting of the parameters
this is a contradiction.

To construct the sets U0 and W 0 we use a technique based on the work of Hansel [Han64].
For every vertex v ∈ V k

m, we randomly either delete all edges connecting v with output ver-
tices or all edges connecting v with input vertices. We do the former with small probability,
the latter with high. We put U0 and W 0 to be the set of input (respectively, output) vertices
that are not affected by this process. Since all paths through V k

m have been disconnected,
but no path has been removed between U0 and W 0, the sets U0 and W 0 are not connected
through V k

m in the original graph. This concludes the overview of the proof.
One novelty in our proof is that we use different probabilities for the two possible choices

to obtain W 0 of linear size. In fact, this reflects a qualitative difference between supercon-
centrators and circuits computing good codes. Optimal depth-2 superconcentrators must
have the same average degree for input and output nodes, while our optimal construction of
circuits computing good codes has different average degrees. More detailed discussion of the
difference between our proof and the proof of [RTS00] is provided on page 12, and Section
4.1 discusses the properties of depth-2 superconcentrators.

Lower bounds for depth > 2. For depth > 2, our lower bounds follow from combining
our Lemma 3 with off-the-shelf lower bounds on superconcentrators. Specifically, we use
bounds by Pudlák [Pud94] that improve on those by Dolev et al. [DDPW83]. We note that
these lower bounds are for circuits satisfying (essentially) Property 3 above. Hence, for depth
at least 3, Property 3 is sufficient to obtain a result tight up to constant factors.

Upper bounds Our constructions of circuits computing good codes are probabilistic, and
we leave it as an open problem to obtain explicit constructions. (Jumping ahead, partial
progress towards explicit constructions is discussed in Section 6.)

Basic building blocks of our constructions are circuits that we call range detectors. A
(m,n, `, k, r, s)-range detector is a circuit built from XOR gates that has m inputs, n out-
puts and on any input of Hamming weight between ` and k it outputs a string with Ham-
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ming weight between r and s. We will omit the last parameter if s = n. Clearly, an
(m,O(m), 1,m,Ω(m))-range detector is a circuit computing a good linear code as for linear
codes one has to worry only about the number of ones produced on non-zero inputs. When
` ∈ Θ(k) and n ∈ Θ

(
lg
(
m
k

))
then one can easily construct range detectors of depth one

with r ∈ Θ(n) using O(m lgm) wires, by an application of the probabilistic method. If we
take such range detectors for ` = m/2i and k = m/2i−1, for i = 1, . . . , lgm, in parallel then
on any non-zero input at least one of them will output a constant fraction of ones (and say
also a constant fraction of zeros). Hence, a XOR gate sampling one output from each of
these range detectors will evaluate to one on non-zero input with constant probability. If we
take O(m) of such XOR gates chosen independently at random, then on any non-zero input
a constant fraction of them will evaluate to one with overwhelming probability. Hence, a
particular choice of these XOR gates will have such a property on any non-zero input. That
in essence gives a depth-2 XOR circuit with O(m lg2m) wires computing good codes. By
modifying the parameters slightly one can achieve O(m lg2m/ lg2 lgm)-size depth-2 XOR
circuits for good codes.

To obtain asymptotically better size in higher depth we use a similar recursive approach.
We present the main idea of the construction here. First, one can condense the input using
various depth-1 range detectors and then one can apply on the output of each of the range
detectors a depth-d circuit computing a good code. Adding a layer of XOR gates that sample
outputs of these depth-d range detectors concludes the construction of a depth-d+ 2 circuit
for good codes. A careful choice of parameters leads to the overall reduction in size; the
actual construction is slightly more involved.

This recursive approach is similar to the construction of superconcentrators [DDPW83].
However, there is a notable difference between the construction for codes and for super-
concentrators. In known superconcentrator constructions, the bottom and top layers are
symmetric so the whole circuit can be made symmetric with respect to the middle layer.
In our construction, the bottom and top layers are different and although on intuitive level
they fulfill symmetric functionality they cannot be interchanged with each other in general.
Indeed, as observed before, the size bounds on codes are different than the size bounds on
superconcentrators.

Bounds on hashing Our results on the complexity of encoding imply corresponding re-
sults on the complexity of computing pairwise independent hash functions f : {0, 1}m ×
{0, 1}r → {0, 1}n, i.e. functions such that ∀x 6= y, the joint distribution (f(x, S), f(y, S)) is
uniform over ({0, 1}n)2.

This implication relies on the fact that the complexity of hashing and coding are closely
related. First, an application of the Chernoff bound shows that any pairwise independent
hash function contains a good code, which was explicitly pointed out by Miltersen. This
implication has no over-head. Hence our lower bounds for codes apply to hashing as well.

Fact 4 (Proposition 7 in [Mil98]) Let f : {0, 1}ρn × {0, 1}r → {0, 1}n be a pairwise
independent hash function. For every δ < 1/2 such that 2ρ < 1 − H(δ), there is a fixed R
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such that the map f(·, R) is the encoding function of an error correcting code with relative
distance ≥ δ (and message length ρn and block length n).

For the reverse direction, we rely on a recent result by Ishai, Kushilevitz, Ostrovsky,
and Sahai [IKOS08], who give a construction of pairwise independent hash functions using
circuits with a linear number of wires. We observe that their construction can be seen as a
reduction to encoding, and that the reduction blows up the wires and the depth by only a
constant factor. So plugging our efficient encoding circuits we get correspondingly efficient
hashing circuits.

Theorem 5 (Implicit in [IKOS08]) Suppose there are constant ρ, δ, d, and an increasing
function w(n) ≥ n such that for any n

there is a [n, ρn, δn]2 code that can be generated by a depth-d XOR circuit with w(n)
wires.

Then there is a constant c such that for every m we can compute a pairwise independent
hash function h : {0, 1}m × {0, 1}r → {0, 1}m with r ≤ cm, by a depth-2d circuit with
≤ cw(cm) wires (using arbitrary gates).

Moreover, if the codes are explicit then the hash functions are too.

Organization In Section 2 we prove that circuits computing good codes must satisfy
connectivity Property 2. In Section 3 we prove the lower bounds in Theorem 1. In Section
4 we prove the upper bounds in Theorem 1 and also Theorem 2. The constructions of hash
functions are in Section 5. Finally, we make some remarks on making our upper bounds
explicit in Section 6.

2 Connectivity of circuits computing good codes

In this section we provide a proof of Lemma 3 which establishes that circuits computing
good codes satisfy connectivity Property 2. We restate that lemma next.

Lemma 3 Let 0 < ρ, δ < 0 be constants, C ⊆ {0, 1}n be a (ρ, δ)-good code and G be a circuit
computing C. For any 0 < k ≤ ρn, and for any k-element subset X of inputs of G, if we
take uniformly at random a k-element subset Y of outputs of G, then the expected number
of vertex disjoint paths from X to Y in G is at least δk.

To prove the lemma we need the following definition and lemma. Let X be the set of
inputs and let W be the set of outputs of a directed graph. Given a subset of outputs
Y ⊆ W , we say that a vertex v ∈ W \ Y is bad for Y if the largest number of vertex disjoint
paths from X to Y ∪ {v} is not larger than the largest number of vertex disjoint paths from
X to Y .

Lemma 6 Let V ⊆ W \ Y be a set of bad vertices for Y . Then the largest number of vertex
disjoint paths from X to Y ∪ V is not larger than the largest number of vertex disjoint paths
from X to Y .

7



First note that this statement would easily follow, if any collection of vertex disjoint
paths could be extended to a collection of vertex disjoint paths with the largest possible
cardinality in any graph. Such a property would be similar to having a matroid, where the
sets of vertex disjoint paths form the independent sets. However this property does not hold,
and one cannot define a matroid with vertex disjoint paths forming the independent sets.

Despite the fact that the collections of vertex disjoint paths do not form a matroid, the
collections of their endpoints do. The statement of Lemma 6 is equivalent to the following
statement: the subsets of W formed by the sets of endpoints of vertex disjoint paths from
X to W are independent sets of a matroid over W . This is a well known theorem of matroid
theory, see e.g. Chapter 13 in [Wel76], Chapter 2.4 in [Oxl92], or [Per68]. We include a self
contained and direct proof of Lemma 6 in the Appendix.

In the special case of linear codes a version of Lemma 6 with a different definition of
“bad” vertices would be substantially easier to prove. One could consider the rank of the
submatrices X × Y of the generator matrix describing the code. The bad vertices are those
outputs v that do not increase the rank, that is the rank of the submatrix X×Y ∪{v} is the
same as the rank of the submatrix X×Y . Then, adding the union of all bad vertices cannot
increase the rank either: the bad vertices correspond to columns of the generator matrix
that are in the linear span of the submatrix X × Y . The rank of the submatrix X × Y of
the generator matrix describing the code is at most the number of nodes in the smallest set
S of vertices in the graph of the circuit such that every path from X to Y contains at least
one vertex of the set S, since varying the inputs in X the number of different outputs over
Y cannot be larger than 2|S|. The statement then follows by Menger’s Theorem.

We use the following version of Menger’s Theorem (see e.g. Theorem 4.2 in [FF62]).

Theorem 7 (Menger’s Theorem) Let G be a directed graph, X its set of input (indegree
0) nodes, and Y its set of output (outdegree 0) nodes. The largest number of pairwise vertex
disjoint paths from X to Y equals the smallest number of vertices in a set S such that every
path from X to Y contains a vertex from S.

We refer to a set of vertices S such that every path from X to Y contains a vertex from S
as a (vertex) cut separating X and Y .

We are ready to prove Lemma 3.
Proof of Lemma 3. For a fixed k ∈ {1, . . . , ρn} and given k-element set X of inputs, we
prove that the expected number of vertex disjoint paths from X to a randomly chosen k-
element subset Y of outputs is at least δk. We will pick Y one element at a time by choosing
from the remaining outputs at random.

We claim that as long as |Y | < k (so that there are less than k vertex disjoint paths from
X to Y ) with probability at least δ the next randomly chosen element of Y will increase the
number of vertex disjoint paths from X to the current Y by one.

As above, call an output vertex v bad for Y , if adding it to Y does not increase the
number of vertex disjoint paths from X to Y . We claim that for any Y with |Y | < k, at
least δn output vertices are not bad. This suffices to prove the claim as with probability at
least δ we will sample such a vertex at each step and then by linearity of expectation we get
at least δk vertex disjoint paths on average.
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Let |Y | < k. Denote the set of output vertices bad for Y by B. Let the number of vertex
disjoint paths from X to the current Y be ` < k. By Lemma 6, if we take the union of Y
with all the bad vertices then there are still no more than ` vertex disjoint paths from X
to the union Y ∪B. By Menger’s theorem (Theorem 7), the smallest cut separating X and
Y ∪ B, is of size `. If we set all input bits except for X to 0, then by varying inputs to X
we have 2|X| = 2k different inputs. However, over these 2k inputs, since the cut separating
X and Y ∪B is of size `, outputs belonging to Y ∪B will see at most 2` different settings as
these output bits will be determined by the values at the gates of the cut. Thus there exist
two different inputs of the form 0x1 and 0x2 (they are both 0 outside X, but differ on X),
such that the outputs of our circuit on these two inputs agree on the Y ∪ B part. So the
Hamming distance between the outputs of the circuit on 0x1 and 0x2 is at most the number
of output vertices outside of Y ∪B.

However, since G computes a (ρ, δ)-good code, the Hamming distance between the en-
codings of any two different inputs has to be at least δn. Thus, the number of output vertices
outside of Y ∪B is at least δn. �

3 Lower bounds on computing good codes

In this section we prove lower bounds on the number of wires of circuits computing good
codes. We start with the case of depth 2, then we discuss depth bigger than 2.

3.1 Lower bound for depth two

In this section we prove our lower bound for depth-2 circuits computing good codes:

Theorem 8 wρ,δ,2(n) ∈ Ω

(
n
(

lgn
lglgn

)2
)

.

We need the following lemma, an easy corollary of Chebyshev’s Inequality. Its proof is
included in Appendix for completeness.

Lemma 9 Let X1, . . . , Xk be 0-1 random variables and C, α > 0 be reals. Suppose that for
every i ∈ {1, . . . , k}, there are at most C indices j ∈ {1, . . . , k} such that Xi and Xj are not

independent. Let µ = E
(∑k

i=1Xi

)
. Then

Pr

[∣∣∣∣∣
k∑
i=1

Xi − µ

∣∣∣∣∣ ≥ αµ

]
≤ C

α2µ
.

Proof of Theorem 8. Fix a large enough n and consider the directed graph G that corre-
sponds to a circuit computing a (ρ, δ)-good code on inputs of size m = ρn. Let U be the
set of vertices of G corresponding to the inputs of the circuit, V be the set of vertices of G
that correspond to the middle layer of the circuit, and W be the vertices corresponding to
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the output gates of the circuit. Hence, |U | = m and |W | = n. All the edges in G go either
from U to V or from V to W .

Our goal is to show that for n sufficiently large, the number of edges of G is at least

δ ·min(ρ, δ)

1600
· n ·

(
lg n

lglg n

)2

. (1)

We will prove this by contradiction so we will assume that G has less edges than (1).
By the degree deg(v) of a vertex v in G we understand the number of incident edges

(incoming and outgoing) in G, and for a set of vertices A of G, degA(v) denotes the number
of edges between A and v.

For every integer k such that n1/4 ≤ k ≤ n1/2 we define

V k
h = {v ∈ V ; deg(v) ≥ n

k
lg2 n} (high degree vertices)

V k
m = {v ∈ V ;

n

k
lg2 n > deg(v) ≥ n

k lg2 n
} (medium degree vertices)

V k
l = {v ∈ V ;

n

k lg2 n
> deg(v)} (low degree vertices)

If for all k of the form (lg n)4i, where i is an integer between 1
16
· lgn

lglgn
and 1

8
· lgn

lglgn
, V k

m is
incident with at least

δ ·min(ρ, δ)

100
· n · lg n

lglg n
(2)

edges then we immediately obtain a contradiction with the number of edges in G. So for the
rest of the proof we fix some k such that n1/4 ≤ k ≤ n1/2 where the number of edges incident
with V k

m is less than (2). Since k is fixed, we will omit the upper index k in V k
h , V

k
m and V k

l .
Given the bound (2) on the number of edges incident with Vm, for at most δ

10
n vertices

w from W , degVm(w) > δ
10
· lgn

lglgn
. Call these vertices Wbad, and set Wgood = W \Wbad.

Furthermore, for at most ρ
5
n = m

5
vertices u from U , degVm(u) > δ

10
· lgn

lglgn
or deg(u) >

δ
160
·
(

lgn
lglgn

)2

. Call these vertices Ubad, and set Ugood = U \ Ubad.

Let p = 1/ lg n. Consider the following random process: for each vertex v ∈ Vm, with
probability p remove all the edges between v and W and with the remaining probability 1−p
remove all the edges between v and U . Let

W 0 = {w ∈ Wgood; no edge from w to Vm was removed by the random process},
U0 = {u ∈ Ugood; no edge from u to Vm was removed by the random process}.

Notice, the random process cuts all paths from Ugood to Wgood going through Vm. Since

vertices U0 and W 0 retain all their edges during the process, there is no path from U0 to
W 0 going through Vm in the original graph G.

10



Claim 10 For large enough n, with probability at least 1/3, the following conditions are true
simultaneously:

|W 0| ≥ (1− δ

5
)n,

|U0| ≥ 2ρ

5
m9/10.

In particular, |U0| ≥ k if n is sufficiently large.

Proof of the claim. First we show that the first condition is satisfied with probability at
least 2/3. Each vertex w ∈ Wgood is originally connected to at most δ

10
· lgn

lglgn
vertices in Vm

so the probability of w being in W 0 is

(1− p)degVm (w) ≥ (1− p degVm(w)) ≥
(

1− p δ
10
· lg n

lglg n

)
≥
(

1− δ

10 lglg n

)
Consequently, the expected number of vertices w ∈ Wgood that are not in W 0 is at most

δ
10 lglgn

|Wgood|. Hence by the Markov Inequality, with probability at least 2/3, |W 0| ≥
|Wgood| −

3δ
10 lglgn

|Wgood|. Since |Wgood| ≥ (1− δ
10

)n, for n large enough, |W 0| ≥ (1− δ
5
)n.

Now it suffices to show that the second condition is satisfied with probability at least
2/3. First, we estimate the expected size of U0. Each vertex u ∈ Ugood will end up in U0

with probability

pdegVm (u) ≥
(

1

lg n

) δ
10
· lgn
lglgn

=
1

n
δ
10

Thus, the expected size of U0 is at least 4
5
·m · n− δ

10 ≥ 4ρ
5
·m9/10. We want to use Lemma 9

to show that the size of U0 is close to its expectation with high probability.
For two distinct u, u′ ∈ Ugood, the two events whether u and u′ fall in U0 are independent

if u and u′ do not share a neighbor in Vm. Hence for a given u, there are at most degVm(u) ·
n
k

lg2 n ≤ δ
10
· lgn

lglgn
· n
k

lg2 n ≤ δ
10
· lg3 n

lglgn
n3/4 distinct u′ ∈ Ugood for which the events may

be dependent. In Lemma 9, set C = m4/5, α = 1/2, and for u ∈ Ugood, set Xu to be the

indicator variable whether u ∈ U0. Since E[|U0|] ≥ 4ρ
5
·m9/10, by Lemma 9, the probability

that |U0| ≤ 1
2
· 4ρ

5
·m9/10 goes to zero as n grows. So for n large enough this event happens

with probability less than 1/3. �
For the rest of the proof we fix set U0 and W 0 satisfying the bounds from the previous

claim and we consider the original graph G. We know that there is no path from U0 to W 0

going through Vm in G.
Our goal is to derive a contradiction from the fact that the number of edges incident

with Vm is small, and that there is a small number of edges in the graph overall. We will
consider the following quantities to derive the contradiction. Let X ⊆ U0 and Y ⊆ W . Let
fd(X, Y ) denote the number of vertex disjoint paths connecting X and Y via vertices of Vl,
and fa(X, Y ) denote the number of all paths connecting X and Y via vertices of Vl. We will
derive a contradiction by proving that fd(X, Y ) > fa(X, Y ) for some X and Y .

11



Claim 11 Let X be a random k-element subset of U0 and Y be a random k-element subset
of W . Then the expected value of fd(X, Y ) is at least 3

4
δk.

Proof of the claim. Fix an arbitrary k-element subset X of U0 and pick a random k-element
subset of W . By Lemma 3, the expected number of vertex disjoint paths from X to Y is at
least δk, so in expectation there are at least δk vertex disjoint paths connecting X and Y .
Some of the paths may go via vertices in Vm or Vh. However, an x ∈ X and a y ∈ Y may be
connected via Vm only if y 6∈ W 0, and at most |Vh| vertex disjoint paths can go through Vh.
The expected size of Y \W 0 is at most δk/5, since |W 0| ≥ (1− δ/5)|W |. By the assumption
on the number of edges in G and the degree of vertices in Vh

|Vh| ≤
δ ·min(ρ, δ)

1600
· n ·

(
lg n

lglg n

)2

· k

n lg2 n
≤ δ

1600 · (lglg n)2
· k.

Thus, by linearity of expectation there are at least

δk − δ

5
k − δ

1600 · (lglg n)2
k ≥ 3

4
δk

vertex disjoint paths connecting X and Y via Vl. �
Finally, given our assumptions we derive an upper bound on the expected size of fa(X, Y )

that will contradict the previous claim. Namely, we claim:

Claim 12 Let X be a random k-element subset of U0 and Y be a random k-element subset
of W . Then the expected value of fa(X, Y ) is at most δ

160(lglgn)2
k.

Proof of the claim. By the bounds on the degree of vertices in U0 and Vl, the number of

distinct paths from U0 to W via Vl is at most |U0| · δ
160

(
lgn

lglgn

)2

· n
k lg2 n

= δ
160k(lglgn)2

· |U0| · n.
A given path between U0 and W will be connecting a randomly chosen X and Y with
probability k

|U0| ·
k
|W | . Hence, the expected number of distinct paths between randomly

chosen X and Y going through Vl is at most

δ

160k(lglg n)2
· |U0| · n · k2

|U0| · |W |
=

δ

160(lglg n)2
k.

�
This proves our theorem. �

We make a few more remarks regarding the difference between the above proof and the
one in [RTS00]. We note that the sets U0 of inputs and W 0 of outputs produced by the
random process are both sub-linear in the case of [RTS00]. This is not usable for purposes
of the codes as there might be linear size sets of outputs that are completely disconnected
from the inputs – some bits of the codeword can be constantly set to zero. So we modify
the random process to be asymmetric to obtain linear size set W 0 of outputs; U0 will still
be of polynomial albeit sublinear size.

12



Another difference, that also comes from the difference of Properties 1 and 2 discussed
in the introduction, is in the use of the connectivity. In [RTS00] a part of the argument
uses only the property that any two k elements subsets are connected by at least one paths.
In the case of codes this might not be true for all k-element subsets so we have to argue
differently using the fact that on average we have a fraction of k paths between the sets.

3.2 Lower bounds for depth three and more

To prove the lower bound on the size of circuits of depth more than two computing good
codes we will use known bounds on the number of wires in circuits satisfying connectivity
Property 3. We use the following definitions of Pudlák.

Definition 13 (Pudlák [Pud94]) Let G be a directed acyclic graph with n inputs and n
outputs. Let 0 < ε, δ and 0 ≤ µ ≤ 1. We say that G is ε, δ, µ-densely regular if for every
k, where µn ≤ k ≤ n, there are probability distributions X and Y on k-element subsets of
inputs and outputs, resp., such that for every i, j ∈ {1, . . . , n},

PrX∈X [i ∈ X] ≤ k/δn PrY ∈Y [j ∈ Y ] ≤ k/δn

and the expected number of vertex disjoint paths from X to Y is at least εk for randomly
chosen X ∈ X and Y ∈ Y. We denote by D(n, d, ε, δ, µ) the minimum number of wires in
any depth-d ε, δ, µ-densely regular graph with n inputs and n outputs.

Extending lower bounds on superconcentrator size of Dolev et al. [DDPW83], Pudlák
[Pud94] proves the following:

Theorem 14 (Pudlák [Pud94]) Let ε, δ > 0 be constants. Then for every n, 1/n ≤ µ ≤ 1
and d ≥ 2 the following holds:

D(n, 3, ε, δ, µ) ∈ Ω(n · lg lg 1/µ),
D(n, 2d, ε, δ, µ) ∈ Ω(n · λd(1/µ)),

D(n, 2d+ 1, ε, δ, µ) ∈ Ω(n · λd(1/µ)).

Since Lemma 3 holds for any fixed k-element set X of inputs, it also holds in the case
when the k-element set X of inputs is chosen at random. One gets the following corollary
to Lemma 3.

Corollary 15 Let 0 < ρ, δ < 0 be constants and C be a circuit computing a (ρ, δ)-good code.
If we extend the circuit by (1−ρ)n dummy inputs then its underlying graph is ρδ, ρ, 1

n
-densely

regular.

We add the dummy inputs only to have n inputs and n outputs. The parameters degrade
because we apply the previous Lemma 3 which works only for k up-to ρn. So for k > ρn
we pick a random k-element subset X of inputs by taking all the real inputs and adding a
random (1− ρ)n-element subset of the dummy inputs.
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Theorem 16 wρ,δ,3(n) ∈ Ω (n lglg n), and for any integer d ≥ 2, wρ,δ,2d(n), wρ,δ,2d+1(n) ∈
Ω (nλd(n)).

Proof: The proof directly follows from Corollary 15 and Theorem 14. �

4 Construction of good codes with an efficient encod-

ing

In this section we construct bounded-depth circuits computing good codes. All our circuits
will consist of only parity gates of arbitrary fan-in hence, the codes computed by our circuits
will be linear. Our constructions are probabilistic.

The following proposition immediately follows from the existence of (ρ0, δ0)-good codes.

Proposition 17 For all 1 ≤ m there exists an (m,m/ρ0, 1,m, δ0m)-range detector of depth
1 and size m2.

We will use expander graphs to construct good range detectors. A bipartite graph G =
(V1, V2, E) is a (k, c) (vertex) expander if for all S ⊆ V1 with |S| ≤ k it holds that |Γ(S)| ≥
c|S|. We are interested in expander graphs where c = (1− ε)d, where d is the degree of the
left side vertices V1, for small ε > 0. In this case G is known as a lossless expander. The
reason we are interested in these as that when ε < 1/2 at least (1 − 2ε)d|S| of the vertices
in Γ(S) must have a unique neighbor in S. In particular each of these vertices have an odd
number of neighbors in S. For consistency with our application we will denote m = |V1| and
n = |V2|.

A (k, c) expander G = (V1, V2, E) in particular is a (k, 1 − ck/n) disperser graph, and
a lower bound for such graphs due to Radhakrishnan and Ta-Shma [RTS00] states that

d = Ω
(

lg(m/k)
lg(n/(ck))

)
, when k < m, 2d ≤ n− ck and ck < n/2.

The common setting of parameters for lossless expanders have n � m and n = O(ck),
and as a consequence of the lower bound above implies d = Ω(lgm). We are interested
in having d = O(lgm/ lglgm), and as a consequence we at least require n = Ω(ck lgγm)
for some γ > 0. We show below that this can indeed be achieved. Also, for our setting
of parameters the usual probabilistic existence proof does not work – instead we proceed
similarly to a proof due to Buhrman et.al [BMRV02, Lemma 3.10].

Lemma 18 Let 0 < ε < 1 and γ > 0 and let k ≤ m be an integer. Then there exists
a (k, (1 − ε)d) expander graph G = (V1 = [m], V2 = [n], E) with left side degree d, where
d = (2/εγ) lgm/ lglgm and n = (e/ε)kd lgγm = (2e/ε2γ)k lg1+γm/ lglgm.

Proof: We choose G by choosing (with replacement) d neighbors in V2 for each left side
vertex in V1. We will show that G is a (k, (1− ε)d) expander with positive probability.

Let S ⊆ V1 with |S| = ` ≤ k. We consider the process of choosing the neighbors of S,
by choosing a neighbor one at a time. Let for i = 1, . . . , `d the random variable Xi indicate
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if the ith choice of neighbor was also chosen earlier, and let X =
∑
Xi. We are interested

in bounding the probability Pr[X > ε`d]. To this end, define for i = 1, . . . , `d independent
Bernoulli variables Yi, by Pr[Yi = 1] = `d/n, and let Y =

∑
Yi. Conditioned on any values of

X1, . . . , Xi−1 we have Pr[Xi = 1] ≤ `d/n and thus we can bound Pr[X > ε`d] ≤ Pr[Y > ε`d].
We have E[Y ] = (`d)2/n and by the Chernoff bound for the upper tail, letting α = εn/`d
we have

Pr[Y ≥ ε`d] = Pr[Y ≥ αE[Y ]] ≤
(
eα−1

αα

)E[Y ]

≤
( e
α

)αE[Y ]

=

(
e`d

εn

)ε`d
.

Using n ≥ (e/ε)`d lgγm we have

Pr[X ≥ ε`d] ≤ (lg−γm)ε`d = 2−εγ`d lglgm = 2−2` lgm = m−2` .

Now, taking first a union bound over all
(
m
`

)
≤ m` sets S ⊆ V1 of size |S| = ` and then

another union bound over all ` ≤ k we obtain the stated result. �

Setting ε = 1/4, by the discussion and the lemma above we obtain the following.

Corollary 19 Let γ > 0 be arbitrary. Then for any integers m and ` ≤ k ≤ m there exist
a (m,n, `, k, αn, βn)-range detector with m inputs, n = (32ek lg1+γm)/(γ lglgm) outputs,
β = 1/(4e lgγm), α = (`/2k)β using (8m lgm)/(γ lglgm) wires.

We are now in position to present the construction of depth-2 circuits computing error
correcting codes.

Theorem 20 Let 0 < κ < 1 be arbitrary and let m be an integer. There exists a depth-2
XOR circuit with m inputs and 32m outputs, using O(m (lgm/ lg lgm)2) wires computing
an error correcting code of minimum distance 1/8. Furthermore, the fan-in of each output
gate is O(lg1+κm).

Proof: Let m ≥ 1 be an integer and let γ, λ > 0, be reals such that γ + λ < κ. Let
k be an integer such that k + 1 = d lgm

λ lglgm
e. The middle layer of the circuit will consist

of k + 1 range detectors W0, . . . ,Wk where each Wi is a detector for the range of input
weights lgλim to lgλ(i+1)m. By Corollary 19 we can obtain this using a range detector of
size (8m lgm)/(γ lglgm) with parameters(

m,n, lgλim, lgλ(i+1) m,
n

8e lgγ+λm
,

n

4e lgγm

)
,

where

n =
32e lg1+γ+λ(i+1)m

γ lglgm
.

Note that k + 1 = O(lgm/ lg lgm), and hence we have used O(m (lgm/ lg lgm)2) wires in
total so far.
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Define α = 1/(8e lgγ+λm) and ` = 8e lgγ+λm. For the last layer, each node is an XOR
of (k + 1)` nodes, where we chose ` nodes at random from each Wi. We will have a total of
32m such XOR’s.

Consider now a fixed input x of weight w > 0, and let i be such that lgλim ≤ w ≤
lgλ(i+1) m. Our goal is to show that with high probability over the random choice of neighbors
of the top XOR gates at least 4m of the top XOR gates will evaluate to 1 on x. On input
x we have ensured that in Wi a fraction α of the XOR’s of Wi are odd. Conditioned on the
values of all the XOR’s of the second layer outside Wi, by Proposition 37 the probability that
a given XOR of the last layer is odd is at least α`/4 = 1/4. Letting X be the random variable
indicating the number of XOR’s in the last layer that are odd, we then have E[X] ≥ 8m,
and using the Chernoff bound for the lower tail we have

Pr[X < 4m] ≤ Pr[X < E[X]/2] < exp(−E[X]/8)

≤ exp(−m) < 2−m

Thus taking a union bound over all 2m−1 inputs we have that the circuit can be constructed
to compute an error correcting code of minimum distance 1/8.

Between the second layer and the last layer we have used a total number of

32m(k + 1)8e lgγ+λm = O(m lg1+γ+λm/ lglgm)

wires, and the fan-in of each gate of the last layer is (k+1)8e lgγ+λm = O(lg1+γ+λm/ lglgm).
Thus the total size of the circuit is O(m (lgm/ lg lgm)2) and the top fan-in is O(lg1+κm). �

4.1 Comparison with depth-2 superconcentrators

It is instructive to compare our construction to depth-2 superconcentrators. Radhakrishnan
and Ta-Shma [RTS00] show that depth-2 superconcentrators require size Ω(m lg2m/ lglgm),
while we show error correcting codes can be computed by size O(m (lgm/ lg lgm)2) circuits.
Furthermore we can have the fan-in of the output be O(lg1+κm) for arbitrary κ > 0, while
maintaining the bound on the total size. Dutta and Radhakrishnan [DR06], show that if G
is a depth-2 superconcentrator with m inputs and outputs, where the outputs have average
fan-in a and inputs have average fanout b then a lg (2b/a) lg b = Ω(lg2m) (by symmetry
the reverse relation also holds). In particular if a = lg1+κm for 0 < κ < 1 we have b =

2Ω(lg(1−κ)/2M), hence the size is much bigger than in the case of circuits computing good
codes.

4.2 Depth three and more

In this section we construct circuits of depth higher than two computing good codes. We will
need several kinds of circuits—range detectors of depth 1 described in the following lemmas.

Lemma 21 There exists c0 > 1 such that for all 1 ≤ r ≤ m/k1.5 and c0 ≤ k ≤ m there
exists an (m,m/k, r,m/k1.5, r)-range detector of depth 1 and size 3m.
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Proof: Let n = m/k. The edges of the range detector circuit form a bipartite graph where
we denote by V1 the input gates and by V2 the output XOR gates. The bipartite graph
could be a random graph where all vertices x ∈ V1 have degree 3. However, to simplify the
computation we will pick randomly 3 elements from V2 for every x ∈ V1 allowing repetitions.
So some vertices in V1 may have smaller degree.

Let r ≤ ` ≤ m/k1.5 and let S ⊆ V1, |S| = ` be fixed. Let y1, . . . , y3` be the chosen
neighbors, allowing repetitions. We want to show that S has at least r unique neighbors
with high probability. That will suffice to prove the lower bound on the number of ones in
the output.

For i = 1, . . . , 3`− 1, let Xi be the random variable that is the indicator of the event
yi+1 ∈ {y1, . . . , yi}. Note that the number of unique neighbors is at least 3` − 2

∑
Xi. If

b1, . . . , bj are fixed Pr[Xj+1 = 1|X1 = b1 ∧ · · · ∧ Xj = bj] ≤ 3`
n

. Hence we can apply the

Chernoff bound, as in Lemma 18, to bound Pr[
∑3`−1

i=1 Xi ≥ `]. We have

E[
3`−1∑
i=1

Xi] ≤
3`(3`− 1)

n
≤ 9`2k

m
.

Let α = m
9`k
. We have α > 1 for k > 81 using ` ≤ m/k1.5. By Lemma 35 we get

Pr[
3`−1∑
i=1

Xi ≥ `] ≤
(
eα−1

αα

) 9`2k
m

≤
( e
α

)α 9`2k
m ≤

(
9e`k

m

)`
≤
(

9e√
k

)`
.

If k is sufficiently large, this is less than 2−`. Thus we have nonzero probability that for all
`, r ≤ ` ≤ m1.5, we have r unique neighbors.

�

Corollary 22 There exists c0 > 1 such that for all c2
0 ≤ m there is an (m,

√
m/ρ0, 1,m

1/4, δ0m)-
range detector of depth 2 and size 4m.

Proof: By the previous lemma, there is a depth-1 (m,
√
m, 1,m1/4, 1)-range detector with

3m wires. The result follows by applying Proposition 17 on the output of that range detector.
�

We can amplify the quality of range detectors using the following lemma.

Lemma 23 For any 0 < α and 1 ≤ k ≤ m ≤ n ≤ w, if there is an (m,n,m/k,m, αn)-range
detector of depth d with w wires then there is an (m, 32m,m/k,m, 4m)-range detector of
depth d with 65w/α wires. Consequently, there is an (m, 32m,m/k,m, 4m)-range detector
of depth 1 with 65mk wires.

Proof:
First we construct a circuit of depth d + 1. Each of the 32m output vertices will be a

XOR of at most d2/αe outputs of the depth-d range detector chosen by the following random
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process. In each of d2/αe steps we with probability 1/2 do nothing and with probability 1/2
we pick a random gate of the range detector. We claim that on a fixed input of hamming
weight at least m/k the XOR evaluates to 1 with probability at least 1/4. This follows
immediately from Proposition 37. Hence, if we take 32m of such XOR gates independently
at random, the probability that less than 4m of them are 1 is by the Chernoff bound at most
e−m.

Since we want to maintain the depth of the circuits we cannot add these XOR gates as
another layer but instead we collapse them with the existing output gates and we remove
the original output gates. This possibly leads to an increase in the number of wires. A single
new XOR gate contributes by at most w/αn wires in expectation so the new XOR gates will
contribute by at most 32wm/αn ≤ 32w/α wires in expectation. As all the random choices
are independent by the Chernoff bound, the probability that the new XOR gates contribute
by more than 64w/α wires is at most (e/4)32w/α < (e/4)32m < 2−2m. So there is a particular
choice of the 32m output gates that will contribute by at most 64w/α wires and on any
input of hamming weight at least m/k at least 4m of the output gates will evaluate to 1.
This proves the first part of the lemma.

The existence of the depth-1 range detector follows by noting that a circuit computing
the identity function is an (m,m,m/k,m,m/k)-range detector. �

Combining the two lemmas we get:

Corollary 24 There exists c0 > 1 such that for all c0 ≤ k ≤ m, there exists an
(m, 32m/k,m/k2,m/k1.5, 4m/k)-range detector of depth 2 and size 68m.

We are ready to construct circuits of even depth bigger than two using the following
lemma. The case of depth-three circuits is left to the end of this section.

Lemma 25 Let d ≥ 2 and cd be constants and f(m) ≤ lgm be a non-decreasing unbounded
function. There exists a constant cd+2 such that if for each 1 ≤ r ≤ m, there is a depth-d
(m, 32m,m/r,m, 4m)-range detector with at most cdm · f 2(r) wires then for each 1 ≤ r ≤ m
there is a depth-d+ 2 (m, 32m,m/r,m, 4m)-range detector with at most cd+2m · f ∗(r) wires.

Proof: Let k1 = min{r,m3/4}, let ki+1 = f(ki)
3 and let t be the least integer such that

kt ≤ c1.5
0 . The first layer of the circuit contains an (m,m/f(ki)

2,m/ki,m/f(ki)
3,m/ki)-range

detector provided by Lemma 21, for each i = 1, . . . , t− 1. We assume that the detectors are
disjoint except for the same input vertices. The output of the i-th depth-1 range detector
feeds into depth-d (m/f(ki)

2, 32m/f(ki)
2,m/ki,m/f(ki)

2, 4m/f(ki)
2)-range detector given

by the assumptions of the lemma. Call these depth-d detectors W1,W2, . . . ,Wt−1.
Furthermore, we add the depth-1 (m, 32m,m/kt−1,m, 4m)-range detector, called Wt,

given in Lemma 23. (Observe, that kt−1 < min{a, f(a) > c1.5
0 } so the size of this detector

can be upper-bounded in terms of properties of f .) If r > k1 then to capture the strings
of weights < m/k1 we add the depth-2 (m,

√
m/ρ0, 1,m

1/4, δ0m)-range detector, called W0

from Corollary 22.
For the last layer, we take Cm XOR gates for a sufficiently large constant C and each

of the gates will be fed by at most one randomly picked output gate of each W0, . . . ,Wt
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(W1, . . . ,Wt if r ≤ k1.) For each output XOR gate and each Wi we do not connect them
with probability 1/2 and we connect them with probability 1/2 (via the random output
gate of Wi.) Thus on any input of weight at least m/r, each output XOR gate is one
with probability at least 1/16. An application of the Chernoff bound, as in the proof of
Theorem 20 and amplification by Lemma 23 gives the required range detection property of
the circuit.

To count the number of wires, notice that f 3(f 3(a)) ≤ d3 lg f(a)e3 < f(a) for a suffi-
ciently large, hence there is some constant c depending only on f such that t ≤ 2f ∗(r) + c.
Furthermore, each Wi detector consists of at most cd · m

f(ki)2
·f(ki/f(ki)

2)2 ≤ cm wires. Since

all the other range detectors built into the construction also use only O(m) wires, the total
size of the resulting range detector is O(tm) ∈ O(mf ∗(r)). �

We will use the above lemma recursively. As the base construction we will need also the
following type of range detectors.

Lemma 26 There exists a constant c2 such that for all 1 ≤ r ≤ m, there is a depth-2
(m, 32m,m/r,m, 4m)-range detector with at most c2m · lg2(r) wires.

Proof: This construction is similar to our other constructions so we provide only a brief
sketch. Let k1 = r, let ki+1 = ki/2 and let t be the least integer such that kt ≤ 1. Define
ni = 2dlg

(
m

m/ki

)
e. For i = 1, . . . , t − 1, one can construct (m, 32ni,m/ki,m/ki+1, 4ni)-range

detectors of depth 1 and size O(kini) = O(m lg ki) by a probabilistic argument. Hence,
take these range detectors as the first layer of the circuit. The output layer is formed by
taking random XOR’s of outputs from these detectors similarly as in the proof of Lemma
25. Clearly, the size of the circuit is bounded by O(tm lg r) = O(m lg2 r). �

The previous two lemmas give the following corollary.

Corollary 27 For any d ≥ 2 there exists a constant cd and a family of depth-d circuits with
cdmλd(m) wires that computes (1/32, 1/8)-good codes.

It remains to construct a circuit of depth 3 that has size O(m lg lgm) and computes a
good code.

Theorem 28 There is a family of depth-3 circuits with O(m lg lgm) wires that computes
(1/32, 1/8)-good codes.

Proof: The proof is similar to the proof of Lemma 25. However, we let parameters k1 =
√
m,

ki+1 = k
3/4
i and let t be the least integer such that kt ≤ c0 (i.e., t < lg4/3 lgk1

√
m). To con-

struct the first two layers of the circuit we use the depth-2 (m, 32m/ki,m/k
2
i ,m/k

1.5
i , 4m/ki)-

range detectors for i = 2, . . . , t−1 from Corollary 24, together with the (m, 32m,m/kt,m, 4m)-
range detector of depth 1 from Lemma 23 to capture the input strings of weight > m/kt,
and the depth-2 (m,

√
m/ρ0, 1,m

1/4, δ0m)-range detector from Corollary 22 to capture the
strings of weights ≤ m/k1. In total we use O(m lg lgm) wires for the first two layers.

The output layer is formed by taking random XOR’s of outputs from the above detectors
as in previous proofs. �
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4.3 Unbounded-depth circuits

In this section we prove Theorem 2: we obtain linear-size circuits computing good codes with
slowly-growing depth. To obtain such circuits, consider the constant-depth constructions in
Theorem 1. Then apply the following corollary to trade depth for size.

Corollary 29 Let d ≥ 2, cd be a constant and f(m) ≤ lgm be a non-decreasing un-
bounded function. There exists a constant c such that if for each 1 ≤ m, there is a depth-2d
(m, 32m, 1,m, 4m)-range detector with at most cdm · f(m) wires then for any m ≥ 1 there is
depth-2d+ 2 lgc0 f(m) (m, 32m, 1,m, 4m)-range detector with at most cm wires.

The proof of the above corollary relies on a lemma which we state and prove next.

Lemma 30 For any m ≥ c0, any d and w if there is a depth-d (m/c0, 32m/c0, 1,m/c0, 4m/c0)-
range detector of size w then there is also a depth-d+ 2 (m, 32m, 1,m, 4m)-range detector of
size w + (9 + (2c1.5

0 + 16)32)m.

Proof: Take the (m,m/c0, 1,m/c
1.5
0 , 1)-range detector of depth 1 and size 9m provided

by Lemma 21 and apply on its output the depth-d (m/c0, 32m/c0, 1,m/c0, 4m/c0)-range
detector provided by the lemma. This gives a circuit with the property that on each non-
zero input either the input has at least 1/c1.5

0 fraction of ones or the output of the depth-d
detector has at least 1/8 fraction of ones. Consider a XOR gate that takes at most 2c1.5

0

random bits of the input and at most 16 random outputs of the depth-d range detector and
is obtained as follows: 2c1.5

0 times repeat: with probability 1/2 take a random input bit and
with probability 1/2 take nothing; then repeat 16 times: with probability 1/2 take a random
output bit of the detector and with probability 1/2 take nothing. Such a XOR gate will
evaluate to one with probability at least 1/4 by Proposition 37. By the Chernoff bound, on
any fixed input out of 32m such independently chosen XOR gates at least 4m will evaluate
to one with probability at least 1− e−m. Hence, there is a particular choice of the 32m XOR
gates so that on any non-zero input at least 4m of them will evaluate to one. That forms
our depth-d+ 2 (m, 32m, 1,m, 4m)-range detector of size at most w+ 9m+ (2c1.5

0 + 16)32m.
�

Proof:[of Corollary 29] Let t = dlgc0 f(m)e and for i = 0, . . . , t, define mi = m/ct−i0 . The
depth-2d range detector guaranteed by the assumption of the lemma on inputs of size m0

uses cdm0f(m0) ≤ cdm wires. For i = 1, . . . , t, iteratively apply to this range detector the
previous lemma to construct (mi, 32mi, 1,mi, 4mi)-range detector. The depth of the resulting
range detector is 2d+2t and its size is bounded by cdm+

∑t
i=1(9+(2c1.5

0 +16)32)mi ∈ O(m).
�

Hence, we can get for example linear size circuits of depth lg∗···∗m computing good codes.
Very likely there are circuits of depth λd(m)(m) and linear size with d(m) → ∞, as in the
case of computing various prefix functions, see [CFL85]. But this requires more precise
calculations.
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5 Hash functions

In this section we show how our constructions of efficient encoding circuits imply simi-
larly efficient pairwise independent hash functions. We follow closely the results by Ishai,
Kushilevitz, Ostrovsky, and Sahai [IKOS08]. Our main contribution is observing that their
construction can be applied in our constant-depth setting. In fact, in our setting the proof is
somewhat simpler (the presentation in [IKOS08] relies on several previous results in coding
theory; it also uses an argument about obtaining a circuit for the transpose of the function
computed by another circuit which is immediate in our setting).

A pairwise independent hash function is a map h : {0, 1}m×{0, 1}r → {0, 1}m such that
for fixed m-bit strings x 6= y, the values f(x,R) and f(y,R) are uniformly and independently
distributed for uniform R ∈ {0, 1}r.

Theorem 5 (Implicit in [IKOS08]) Suppose there are constant ρ, δ, d, and an increasing
function w(n) ≥ n such that for any n

there is a [n, ρn, δn]2 code that can be generated by a depth-d XOR circuit with w(n)
wires.

Then there is a constant c such that for every m we can compute a pairwise independent
hash function h : {0, 1}m × {0, 1}r → {0, 1}m with r ≤ cm, by a depth-2d circuit with
≤ cw(cm) wires (using arbitrary gates).

Moreover, if the codes are explicit then the hash functions are too.

We now turn to the proof of the reduction in Theorem 5. The explicitness of the reduction
is immediate from the proof and we will not address it explicitly. The proof needs several
ingredients. First, we need codes over large alphabet with relative distance close to 1. To
achieve this with a linear number of wires, [IKOS08] cite [GI01] (presumably Theorem 11)
which – inspired by [ABN+92] – uses expander graphs on top of the code in [Spi95]. We
observe that a similar approach works in our setting with no blow-up in the depth.

Lemma 31 Under the assumption of Theorem 5, for every ε > 0 there is a constant c ≥ 2
such that for every n we can compute, over an alphabet of size ≤ c, a [cn, ρn, (1− ε)cn] code
by a depth-d circuit with ≤ cw(n) wires.

Proof: Consider an expander graph on n nodes with constant degree and normalized second
largest eigenvalue ≤ 1−Ω(1). Let t = t(ε) be a constant to be determined later. The indexes
of codeword symbols of the new code are identified with walks of length t on the expander.
Since a walk can be written with lg n+ O(t) bits, the block length is n2O(t). For a message
x ∈ {0, 1}ρm, we encode x with the code in Theorem 5 with block-length n. Then we set the
i-th symbol of the new code to be the concatenation of the t bits specified by the walk. Since
to any x 6= y there corresponds in C codewords at constant relative hamming distance, the
encodings of x and y in the new code agree in at most 2−Ω(t) fraction of symbols. Here we
use standard hitting properties of random walks on expanders [AKS87, Kah95]. For large
enough t = O(1), this gives the desired relative distance, with a block length ≤ cn.
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Regarding the complexity, note that the construction just amounts to repeating bits of
the code according to the expander. This clearly does not affect depth. As for the number
of wires, for example we can note that for any index bit i of C, a random walk hits i with
probability ≤ t/n, by the union bound. Since the number of walks is n2O(t), i participates
in at most 2O(t) walks. Therefore, the number of wires increases by a factor ≤ 2O(t) = O(1).
�

Another component of the construction is a resilient function [CGH+85]. A function
f : {0, 1}n → {0, 1}m is resilient to fixing t bits if for every random variable X ∈ {0, 1}n
where at least n − t bits are uniform and i.i.d. and the others are constants, we have that
f(X) is uniform over {0, 1}m. We denote by MT the transpose of the matrix M .

Fact 32 ([CGH+85]) Let G be the n × m generator matrix of a [n,m, δn]2 code. Then
f : {0, 1}n → {0, 1}m defined by f(x) = GTx is resilient to fixing δn− 1 bits.

Proof: Let X ∈ {0, 1}n be a r.v. where at least n − δn + 1 bits are uniform and i.i.d. and
the others are constants. By the XOR lemma in [CGH+85], it is enough to prove that for
any vector a ∈ {0, 1}m the value aGTX is a uniform bit. Note aGTX = (Ga)X. Since G
generates a linear code with distance δn, Ga is a vector of hamming weight ≥ δn. Hence Ga
has a 1 in a position corresponding to a uniform bit of X, and so (Ga)X is unbiased. �

Corollary 33 Under the assumption of Theorem 5, for every n there is a function f :
{0, 1}n → {0, 1}ρn that is resilient to fixing δn− 1 bits and is computable by a depth-d XOR
circuit with w wires.

Proof: The generator matrix G of the code in Theorem 5 can be decomposed as G =
G1G2 · · ·Gd where the sum of the number of 1’s in the matrices is ≤ w. Note GT =
GT
dG

T
d−1 · · ·GT

1 and apply Fact 32. �

We can now prove Theorem 5.
Proof:[of Theorem 5] The construction in [IKOS08] consists of the following 3 steps. On
input x ∈ {0, 1}m and r:

(1) Use Lemma 31 to encode x ∈ {0, 1}m with a code over an alphabet of size ≤ c where
to different messages there correspond codewords with at least (1 − ε) fraction of distinct
symbols, for a sufficiently small ε and a c depending on ε only. For fixed ε, the block length
is n = cm/ρ. Each codeword takes n′ := n lg c = O(m) bits to specify.

(2) Use the randomness R to apply a pairwise-independent function to the bit-vector
representation of every symbol of the codeword, using different seed for each symbol.

(3) Use Corollary 33 to apply a resilient function with input length = n′ and range ρn′

bits that is resilient to fixing δn′ − 1 bits.

For a small enough constant ε, for any x 6= y the corresponding images after (1) have
n(1 − ε) different symbols. After (2), we are in the following situation. There is a set of
S ⊆ [n′] of size ≥ n′(1− ε) such that the projections over S of the encodings of x and y are

jointly distributed, over the choice of R, uniformly over
(
{0, 1}|S|

)2
.
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Setting ε sufficiently small, the complement of S has size εn′ ≤ δn′−1. (Recall δ is fixed.)
Since the function in (3) is resilient to fixing δn′ − 1, the images corresponding to x and y
are uniformly and independently distributed over ρn′ = cm lg c ≥ m bits.

Regarding the complexity, note that (2) can be collapsed with (1) with no increase in
depth and only a constant-factor increase in the number of wires. Using Lemma 31 for (1)
and Corollary 33 we get the desired complexity. �

We remark that in the previous proof if one were to settle for a hashing circuit of depth
2d+ 1 then one could build it from XOR gates and binary AND gates.

6 Some remarks on explicit constructions

In this section we make some remarks on explicit constructions. First, for every d > 0 the
encoding circuit with depth d and size O(n1+1/d) mentioned in the introduction is explicit:
use Θ(n(d−1)/d) explicit depth-one circuits of size O(n2/d) for computing good codes on input
size Θ(n1/d). In the rest of this section we make some steps towards making our depth-2
construction with n · poly lg n wires explicit. For simplicity, we refer to the depth-2 con-
struction of size O(n lg2 n) mentioned in the introduction. Recall in this construction the
input length is m, the output length is n = O(m), and the middle layer is made of the
output gates of lgm range detectors. The i-th range detector has ≤ bm/ci output gates
for some constants b > 1, c > 1. Its property is that for every non-zero input, at least one
range detector has a constant α fraction of its output gates that evaluate to 1. The output
layer of the depth-2 construction then combines the outputs of the range detectors into the
codeword. The next claim obtains this last layer explicitly. It bounds the output degree by
O(lgm) which obviously implies ≤ O(m lgm) wires.

Claim 34 Fix any b > 1, c > 1, α > 0. For all sufficiently large m there is a depth-1 circuit,
consisting of parity gates, with O(m) output gates, O(m) input gates divided in lgm groups
of bm/ci for i = 1, 2, . . . , lgm, and output degree O(lgm) such that: on any input where at
least some group of input bits has ≥ α relative hamming weight, the output has Ω(1) relative
hamming weight.

Proof: We are going to construct a bipartite graph with the same input nodes as the input
gates in the claim, ` := m/ lgm output nodes, and output degree O(lgm), with the property
that on every input as in the statement of the claim a constant fraction of the output nodes
are adjacent to at least one node set to 1. Then the claim follows by replacing each output
node of the graph by a good error-correcting code on its O(lgm) neighbors. The code is
implemented by a depth-1 circuit with O(lgm) output parity gates of output degree O(lgm).
Thus the total number of output gates will be O(lgm)m/ lgm = O(m). The hamming weight
guarantee follows from the fact that each node that is adjacent to at least one node set to 1
will give rise to Ω(lgm) ones.

The graph is constructed by adding neighbors separately for each group.
If the group consists of t ≥ ` nodes, we divide the t nodes in the group into ` blocks of

size t/`, and connect an output node to each node in the corresponding group. The output
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degree is t/` ≤ (bm/ci)/(m/ lgm) = b lgm/ci, if this is the i-th group. Since picking a
random neighbor of a random output node yields a random node in the group, we see that
if this group has a constant fraction of ones we also have a constant fraction of output nodes
that are adjacent to some node set to one.

If the group consists of t < ` nodes, we divide the output nodes in t blocks of size `/t;
and we connect each node in the group to all the output nodes in the corresponding block.
Here the output degree is 1. It is easy to see that if this group has a constant fraction of
ones we also have a constant fraction of output nodes that are adjacent to some node set to
one.

The i-th group contributes ≤ max{1, b lgm/ci} ≤ b lgm/ci to the output degree. Sum-
ming over all groups gives output degree O(lgm). �

It is an open problem to construct suitable range detectors. Specifically, we know of
constructions when the hamming weight to be detected is close to 0 or close to m, but we
do not know how to handle, say, hamming weight mε.

Acknowledgements. We are grateful to Jaikumar Radhakrishnan for explaining us the
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[PR94] Pavel Pudlák and Vojtech Rödl. Some combinatorial-algebraic problems from
complexity theory. Discrete Mathematics, 136(1-3):253–279, 1994.

[Pud94] Pavel Pudlák. Communication in bounded depth circuits. Combinatorica,
14(2):203–216, 1994.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extrac-
tors, and depth-two superconcentrators. SIAM Journal on Discrete Mathemat-
ics, 13(1):2–24, 2000.

[Spi95] Daniel Spielman. Computationally Efficient Error-Correcting Codes and Holo-
graphic Proofs. PhD thesis, Massachusetts Institute of Technology, 1995.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, 42(6):1723–1731, 1996.

[Val75] L. Valiant. On non-linear lower bounds in computational complexity. In Sym-
posium on the Theory of Computing (STOC), pages 45–53, 1975.

[Vio04] Emanuele Viola. The complexity of constructing pseudorandom generators from
hard functions. Computational Complexity, 13(3-4):147–188, 2004.

[Wel76] D. J. Welsh. Matroid theory. Academic Press, London, 1976.

26



7 Appendix

7.1 Some helpful facts

In this section we provide a few simple facts on probability.

Lemma 35 (Multiplicative Chernoff bound) Let X1, . . . , Xn be independent Bernoulli
random variables, and X =

∑
Xi. Then for any ε > 0 we have the upper tail bound

Pr[X ≥ (1 + ε)E[X]] ≤
(

eε

(1 + ε)(1+ε)

)E[X]

≤
(

e

1 + ε

)(1+ε)E[X]

.

and for any 0 < ε < 1 the lower tail bound

Pr[X ≤ (1− ε)E[X]] ≤
(

e−ε

(1− ε)(1−ε)

)E[X]

≤ exp

(
−ε

2

2
E[X]

)
The following formula is well known.

Lemma 36 Let X1, . . . , X` be independent Bernoulli random variables, with Pr[Xi = 1] = α.

Let X = X1 + · · ·+X`. Then Pr[X ≡ 1 (mod 2)] = 1−(1−2α)`

2
.

Proof:

Pr[X ≡ 1 (mod 2)] = E
[
(1− (−1)X)/2)

]
=

1

2
− 1

2
E

[∏̀
i=1

(−1)Xi

]

=
1

2
− 1

2

∏̀
i=1

E
[
(−1)Xi

]
=

1

2
− 1

2

∏̀
i=1

(1− 2α) =
1− (1− 2α)`

2

�

Proposition 37 Let n ≥ 1 be an integer and S ⊆ {1, . . . , n} be an arbitrary set of size at
most n/2. Let further ` ≥ 1 be an integer. Denote α = |S|/n. Let X ∈ {1, . . . , n}` be chosen
uniformly at random.

min(1, α`)

4
< PrX [|{i; Xi ∈ S}| is odd] ≤ 1

2
.

Proof: By the lemma we have

PrX [|{i; Xi ∈ S}| is odd] =
1− (1− 2α)`

2

We can bound
0 ≤ (1− 2α)` < e−2α` ,
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where we use the estimate 1− x < e−x valid for all x 6= 0. If α` ≤ 1 then

(1− 2α)` < e−2α` < e−α` < 1− α`/2 .

using the estimate e−x < 1− x/2 valid for 0 < x ≤ 1.59. If α` > 1 then

(1− 2α)` < e−2α` < 1/4.

�

Lemma 9 Let X1, . . . , Xk be 0-1 random variables and C, α > 0 be reals. Suppose that for
every i ∈ {1, . . . , k}, there are at most C indices j ∈ {1, . . . , k} such that Xi and Xj are not

independent. Let µ = E
(∑k

i=1Xi

)
. Then

Pr

[∣∣∣∣∣
k∑
i=1

Xi − µ

∣∣∣∣∣ ≥ αµ

]
≤ C

α2µ
.

Proof: We need to estimate the variance.

Var

[∑
i

Xi

]
= E

(∑
i

Xi

)2
− µ2

=
∑
i,j

E [XiXj]− µ2

Since any Xi and Xj are 0-1 random variables, E [XiXj] ≤ E [Xi]. Furthermore, if Xi and
Xj are independent then E [XiXj] = E [Xi] · E [Xj]. Since Xj’s are non-negative, we get

∑
i,j

E [XiXj] ≤
∑
i

E [Xi]

C +
∑

j, j indep. of i

E [Xj]


≤ µ(C + µ)

Thus, Var [
∑

iXi] ≤ Cµ. The lemma now follows from Chebyshev’s Inequality.
�

7.2 Proof of Lemma 6

We will use induction on the number of vertices in V . The statement is trivial if |V | = 1.
First we prove the statement for |V | = 2. We will see later, that this is sufficient to prove
the induction step.

Let ` be the largest number of vertex disjoint paths from X to Y . Let v1 and v2 be bad
vertices for Y , that is the largest number of vertex disjoint paths from X to Y ∪ {v1} and
from X to Y ∪ {v2} is also `.
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Suppose for a contradiction, that there are ` + 1 vertex disjoint paths from X to Y ∪
{v1, v2}. Fix a collection of ` + 1 vertex disjoint paths from X to Y ∪ {v1, v2}. Note that
both v1 and v2 must participate in this collection. Let us denote the paths in the collection
by Q1, . . . , Q`−1, R1, R2, where v1 is the endpoint of R1 and v2 is the endpoint of R2. Fix
also a collection of ` vertex disjoint paths from X to Y , call them P1, . . . , P`.

We refer to the paths Pi as “solid” paths, and the paths Qi as “dotted” paths. The paths
R1 and R2 are “curly”. Note that while the solid paths form a vertex disjoint collection,
they can intersect the dotted and curly paths in various ways. Some solid paths may even
be identical to some dotted paths. It is also possible that the dotted collection of paths is a
subcollection of the solid collection, but this does not have to be the case.

Next we note that since the largest number of vertex disjoint paths from X to Y ∪ {v1}
is `, by Menger’s theorem (Theorem 7), there exists a cut of size `. That is, there are `
vertices, such that every path from X to Y ∪{v1} contains one of them. We will refer to this
cut as the blue cut, and call the vertices in it blue vertices. Similarly, there are ` vertices,
such that every path from X to Y ∪ {v2} contains one of them. We will refer to this cut as
the red cut, and call the vertices in it red vertices. Note that the blue cut and the red cut
may intersect. We call the vertices that participate in both cuts purple vertices.

Next note that the solid paths P1, . . . , P` must be blocked by both cuts. Since the ` solid
paths are vertex disjoint, this means that each solid path either contains one blue and one
red vertex, or it contains one purple vertex. The collection Q1, . . . , Q`−1, R1 is blocked by
the blue cut, thus each dotted path and the path R1 contains exactly one vertex of the blue
cut. Similarly, the collection Q1, . . . , Q`−1, R2 is blocked by the red cut, thus each dotted
path and the path R2 contains exactly one vertex of the red cut. Since Q1, . . . , Q`−1, R1, R2

are vertex disjoint, the vertex of the blue cut on R1 cannot participate in the red cut, so
it cannot be purple. We call the vertex of the blue cut on R1 the blue star. Similarly, the
vertex of the red cut on R2 cannot participate in the blue cut, so it cannot be purple. We call
the vertex of the red cut on R2 the red star. We also get that just like the solid paths, each
dotted path either contains one blue and one red vertex, or it contains one purple vertex.

Since both the blue cut and the red cut consists of ` vertices, the above implies that the
blue star must be at the intersection of R1 with some solid path, and the red star must be
at the intersection of R2 with some solid path. All other vertices in the cuts (blue, red and
purple) must be at the intersection of a solid path with a dotted path.

Recall that each solid path contains either a blue and a red vertex, or one purple vertex.
Since the blue star cannot be purple, the solid path containing the blue star must also contain
a red vertex. Similarly, the solid path containing the red star must also contain a blue vertex.

One of the consequences of the following two claims is that the blue star and the red star
cannot be on the same solid path.

Claim 38 Let P ′ from x′ ∈ X to y′ ∈ Y be the solid path that contains the blue star. Then
the red vertex on P ′ must appear later in the path (that is closer to the output) than the blue
star.

Proof: Suppose that the red vertex on P ′ appears before the blue star. Suppose that the
path R1 starts at the vertex x1, that is R1 is a path from x1 to v1. Consider the path P ∗
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that consists of the first part of R1 from x1 to the blue star, and the second part of P ′ from
the blue star to y1. Then, we can show that the path P ∗ does not contain any vertex of the
red cut. This is however a contradiction, since P ∗ is a path from X to Y and the red cut
blocks every path from X to Y ∪ {v2}. Recall that the red star is on the path R2, and all
other vertices of the red cut are at the intersection of some solid path with a dotted path.
However, R1 is vertex disjoint from R2 as well as from all dotted paths. Thus, the part of
P ∗ from R1 cannot contain any vertex of the red cut. On the other hand, the second part
of P ∗ is part of the solid path P ′. But P ′ contains only one vertex of the red cut, which
appears before the blue star on the path P ′. Thus, the common part of P ′ and P ∗ cannot
contain any vertex from the red cut. Hence, P ∗ is not blocked by the red cut, which is a
contradiction. �

We get the following analogous claim for the red star, by the same argument.

Claim 39 Let P ′′ from x′′ ∈ X to y′′ ∈ Y be the solid path that contains the red star. Then
the blue vertex on P ′′ must appear later in the path (that is closer to the output) than the
red star.

To continue the proof of the lemma, consider the following walk starting from the blue
star. Recall that since the blue star cannot be purple, the solid path P ′ containing the blue
star must also contain a red vertex, say r1. We start the walk by following the segment of
P ′ from the blue star to the red vertex r1. By Claim 38, the red vertex r1 appears after the
blue star on the path P ′. Thus, by Claim 39, the red vertex on P ′ cannot be the red star.
Thus, r1 is at the intersection of P ′ with some dotted path, say Q1.

Note that while some solid paths may be identical to a dotted path, this is never the
case for the solid paths containing the blue star and the red star, since R1 and R2 are vertex
disjoint from all dotted paths. Thus, Q1 is not identical to P ′. Moreover, since Q1 intersects
P ′, and the solid paths are vertex disjoint, Q1 cannot be identical to any solid path. By
similar reasoning, the walk below never reaches a solid path that is identical to a dotted
path.

Since r1 is red (not purple), Q1 must also contain a blue vertex, say b1. We continue the
walk by following the segment of Q1 from r1 to b1. Note that b1 may appear either before
or after r1 on the path Q1, so we may be walking in the opposite direction (e.g. towards
the inputs), in case b1 appears before r1 on the path Q1. Note that since each dotted path
is vertex disjoint from R1, b1 cannot be the blue star. On the other hand, b1 is also at the
intersection of Q1 with some solid path P1, that must be a different path than P ′ (since b1

is not the blue star). P1 must also contain a red vertex, say r2 and we continue the walk
by following the segment of P1 from b1 to r2. Note that r2 6= r1 since P ′ and P1 are vertex
disjoint. Unless we reached the red star, the red vertex r2 is at the intersection of P1 with a
dotted path Q2. Since r2 6= r1, and each dotted path contains only one vertex from the red
cut, we get that Q2 is a different path than Q1. Note that we can never run into a purple
vertex, since we arrive to each new path at either a blue or a red vertex, and the paths that
contain a blue or a red vertex never contain a purple vertex. Note also that along the walk,
we always get to the next red vertex following a solid path. This guarantees that we do not
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revisit a previously visited red vertex, since the collection of solid paths is vertex disjoint.
Similarly, we always get to the next blue vertex by following a dotted path. This guarantees
that we do not revisit a previously visited blue vertex, since the collection of dotted paths
is vertex disjoint. We never get back to the blue star, since the collection of dotted paths
is vertex disjoint from R1. Thus, we get a walk starting from the blue star, and passing
through the vertices r1, b1, r2, b2, . . . until we reach the red star.

Claim 40 In the walk constructed this way, we traverse each solid segment in the direction
towards the outputs, and each dotted segment in the direction towards the inputs.

Proof: Recall that by Claim 38, the red vertex r1 appears after the blue star on the path
P ′. Thus, we start the walk by following the segment of P ′ from the blue star to r1 in the
direction towards the outputs.

Suppose that the claim does not hold. This means that there must be two consecutive
segments during the walk, where we do not switch direction: if we switched direction between
each segment of the walk, we would have to traverse each solid segment of the walk in the
direction towards the outputs, and each dotted segment in the direction towards the inputs.

We will show that having two consecutive segments of the walk where we do not switch
direction gives a contradiction. Suppose without loss of generality, that the segments from
bi−1 to ri and from ri to bi are both going towards the outputs. That is on the solid path
Pi−1, ri appears after bi−1, and on the dotted path Qi, bi appears after ri. (Note that possibly
Pi−1 could be P ′, in which case bi−1 would be the blue star.)

Consider the path P ∗ that consists of the first part of Qi from some input vertex to ri,
and the second part of Pi−1 from ri to some output vertex. Then, we can show that the path
P ∗ does not contain any vertex of the blue cut. This is however a contradiction, since P ∗

is a path from X to Y and the blue cut blocks every path from X to Y ∪ {v1}. Recall that
each dotted path contains exactly one vertex of the blue cut. The blue vertex bi appears on
the dotted path Qi after the vertex ri, thus the first part of P ∗ that consists of the first part
of Qi from some input to ri does not contain any vertex of the blue cut. Similarly, each solid
path contains exactly one vertex of the blue cut. The blue vertex bi−1 appears on the solid
path Pi−1 before the vertex ri, thus the second part of P ∗ that consists of the second part of
Pi−1 from ri to some output does not contain any vertex of the blue cut. Hence, P ∗ is not
blocked by the blue cut, which is a contradiction. �

Let bk be the last blue vertex visited during the walk, before we reach the red star. Recall
that by Claim 39 the blue vertex bk must appear after the red star on the path P ′′. Thus,
we finish the walk by following the segment of P ′′ between the red star and the vertex bk
in the reverse direction, from bk to the red star, that is in the direction towards the inputs.
This however contradicts Claim 40. This concludes the proof of the statement of the Lemma
when |V | = 2.

Next we show that this also implies the statement for any number of bad vertices. We
use induction on the size of V . We have already seen that the statement holds when |V | = 1
and when |V | = 2. Suppose the statement of the lemma holds for |V | = j, we show that this
implies the statement for |V | = j + 1.
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Let Y ⊆ W be a set of outputs, and let V = {v1, . . . , vj, vj+1} be a set of bad vertices
for Y . Let ` be the largest number of vertex disjoint paths from X to Y . Let Y ′ =
Y ∪ {v1, . . . , vl−1}. Since the statement of the lemma holds for |V | ≤ j, we have that the
largest number of vertex disjoint paths from X to Y ′ is `, and that vj and vj+1 must be bad
for Y ′. Applying the statement with two bad vertices for Y ′ implies that the largest number
of vertex disjoint paths from X to Y ′∪{vj, vj+1} = Y ∪V is also `. This concludes the proof
of the lemma.
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