
Is the Valiant-Vazirani Isolation Lemma Improvable?

Valentine Kabanets∗

School of Computing Science
Simon Fraser University

Burnaby, BC
Canada V5A 1S6

kabanets@cs.sfu.ca

Osamu Watanabe
Tokyo Institute of Technology

Tokyo, Japan
watanabe@is.titech.ac.jp

November 9, 2011

Abstract

The Valiant-Vazirani Isolation Lemma [TCS, vol. 47, pp. 85–93, 1986] provides an efficient
procedure for isolating a satisfying assignment of a given satisfiable circuit: given a Boolean
circuit C on n input variables, the procedure outputs a new circuit C ′ on the same n input
variables with the property that the set of satisfying assignments for C ′ is a subset of those
for C, and moreover, if C is satisfiable then C ′ has exactly one satisfying assignment. The
Valiant-Vazirani procedure is randomized, and it produces a uniquely satisfiable circuit C ′ with
probability Ω(1/n).

Is it possible to have an efficient deterministic witness-isolating procedure? Or, at least, is it
possible to improve the success probability of a randomized procedure to Ω(1)? We argue that
the answer is likely ‘No’. More precisely, we prove that

1. a non-uniform deterministic polynomial-time witness-isolating procedure exists if and only
if NP ⊆ P/poly, and

2. if there is a randomized polynomial-time witness-isolating procedure with success proba-
bility bigger than 2/3, then coNP ⊆ NP/poly.

Thus, an improved witness-isolating procedure would imply the collapse of the Polynomial-Time
Hierarchy. Finally, we consider a black-box setting of witness isolation (generalizing the setting
of the Valiant-Vazirani Isolation Lemma), and give the upper bound O(1/n) on the success
probability for a natural class of randomized witness-isolating procedures.

1 Introduction

The Isolation Lemma of Valiant and Vazirani [VV86] (as well as the related Isolation Lemma of
Mulmuley, Vazirani, and Vazirani [MVV87]) is a basic tool with many important applications in
complexity theory (see, e.g., [Tod91, BDCGL92, RA00] for just a few such applications). This
lemma provides an efficient randomized algorithm to “isolate” a single object from a collection of
objects satisfying a given efficiently decidable property. More precisely, given a Boolean circuit
C(x1, . . . , xn), the algorithm produces a new Boolean circuit C ′(x1, . . . , xn) such that (i) with

∗Most of this research was done during a visit to the Tokyo Institute of Technology in the Summer of 2011.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 151 (2011)

probability one (over internal randomness of the algorithm), the satisfying assignments for C ′ also
satisfy C, and (ii) if C is satisfiable, then, with probability Ω(1/n), C ′ has exactly one satisfying
assignment. Thus, in case C is satisfiable, the unique satisfying assignment for C ′ is an “isolated”
assignment from among the satisfying assignments for C.

The obvious question (raised already in [VV86]) is whether efficient deterministic isolation is
possible. That is, is there a deterministic polynomial-time algorithm that would map an input
circuit C(x1, . . . , xn) to an output circuit C ′(x1, . . . , xn) so that (i) if C is unsatisfiable, then so
is C ′, and (ii) if C is satisfiable, then C ′ has exactly one satisfying assignment, and moreover,
the unique satisfying assignment for C ′ also satisfies C? Another natural question is whether the
success probability Ω(1/n) for randomized isolation can be improved to, say, constant probability.
We show that the answer to both questions is likely negative.

1.1 Our results

If NP = P, then efficient deterministic isolation is trivially possible: Given a circuit C, one can
use the standard “search-to-decision” reduction to find in deterministic polynomial time some
satisfying assignment w for C, and then construct a circuit C ′ so that C ′ accepts the single input
w. Naively, it seems impossible to produce, efficiently deterministically, a circuit C ′ with exactly one
satisfying assignment that also satisfies C, without actually finding such an assignment efficiently
deterministically. In other words, naively it seems that efficient deterministic isolation must be
equivalent to NP = P.

We show that such an equivalence is actually true in the non-uniform setting! We prove that
if there is a non-uniform family of polynomial-size circuits that achieve deterministic isolation (in
the sense defined above), then every language in NP can be decided by a non-uniform family
of polynomial-size circuits, i.e., NP ⊆ P/poly. Since the standard “search-to-decision” reduction
for NP can be run also in the non-uniform setting, we immediately get the other direction: if
NP ⊆ P/poly, then non-uniform efficient deterministic isolation is possible.

Given that deterministic isolation is unlikely, what can we say about the existence of a better
randomized isolation algorithm? A natural question is whether one can achieve randomized isolation
with success probability better than Ω(1/n) achieved in [VV86]. For example, can one achieve
(large) constant success probability?

We show that the answer is likely negative. We prove that if there is a randomized isolation
algorithm with success probability greater than 2/3, then coNP ⊆ NP/poly (and, consequently, the
polynomial-time hierarchy collapses).

Finally, we consider a natural black-box setting for isolation (generalizing the setting of [VV86]),
and observe that O(1/n) is an upper bound on success probability for randomized isolation in this
black-box setting.

1.2 Related work

The problem of efficient deterministic isolation is related to the problem of multi-valued vs. single-
valued NP-computable functions [Sel94], which received considerable attention in the 1990’s. In
fact, it easily follows from the work of Hemaspaandra et al. [HNOS96] that efficient deterministic
isolation yields collapse of the polynomial-time hierarchy. More precisely, [HNOS96] implies that
efficient deterministic isolation leads to NP ⊆ (NP∩coNP)/poly, which in turn is known to imply the
collapse of the polynomial-time hierarchy to the second level (in fact, to ZPPNP). In contrast, we

2

prove that the same assumption implies NP ⊆ P/poly. This conclusion is stronger, and, as observed
above, is actually equivalent to the existence of efficient non-uniform deterministic isolation.

The problem of efficient deterministic isolation as defined above is different from the problem of
derandomizing the Valiant-Vazirani Isolation Lemma as studied, e.g., in [KM02]. In the setting of
[KM02], randomized isolation is defined via the existence of an efficient randomized algorithm that
maps an input circuit C to a list of circuits C1, . . . , Cm so that if C is unsatisfiable then every Ci

is also unsatisfiable, and if C is satisfiable then, with high probability, at least one of the circuits
Ci is uniquely satisfiable; this kind of randomized isolation also follows from the Valiant-Vazirani
Isolation Lemma.

Derandomizing such isolation means designing an efficient deterministic algorithm that produces
such a list C1, . . . , Cm. One of the results in [KM02] is that this kind of derandomization is likely
(as it follows from some plausible circuit complexity assumptions). However, if we want to get a
single circuit C ′ that is uniquely satisfiable if C is satisfiable, no better way is known other than
to pick one of the circuits on the list at random. But then we end up with a randomized isolation
procedure with inverse-polynomial success probability. Thus, while it may be possible to design an
efficient deterministic algorithm mapping a given input circuit C to a list of circuits C1, . . . , Cm

achieving isolation in the sense of [KM02], it is unlikely that there is an efficient deterministic
isolation mapping C to a single circuit C ′. Also, by our results, it is unlikely that there is a
[KM02]-style randomized isolation algorithm mapping a satisfiable circuit C to a list of circuits
where more than 2/3 of the circuits on the list are uniquely satisfiable.

The question of existence of efficient deterministic isolation is also related to the question
whether every NP language can be decided by a nondeterministic polynomial-time Turing machine
that has exactly one accepting computation for every string in the language, i.e., whether NP = UP.
Clearly, if deterministic polynomial-time isolation is possible, then NP = UP. However, the converse
is not necessarily true. It remains an open question whether the assumption NP = UP yields any
unexpected consequences, e.g., if it implies any collapse of the polynomial-time hierarchy.

1.3 Our techniques

Our proof arguments use the notion of p-selectivity [Sel79] and its generalizations [HNOS96], as well
as some new ideas. Below we sketch the proof of one of our main results that efficient deterministic
isolation implies NP ⊆ P/poly.

Suppose there is an efficient deterministic algorithm A achieving isolation for Boolean circuits.
That is, given a circuit C(x1, . . . , xn), our algorithm outputs a circuit C ′(x1, . . . , xn) such that (i)
if C is unsatisfiable, then so is C ′, and (ii) if C is satisfiable, then C ′ has exactly one satisfying
assignment w, and moreover, w is also a satisfying assignment for the original circuit C.

Such an algorithm yields a nondeterministic procedure that can “uniquely select” a satisfiable
circuit from a pair of circuits C1(x1, . . . , xn) and C2(x1, . . . , xn) when C1 ∨C2 is satisfiable: Apply
the algorithm A to the circuit C1 ∨ C2, getting a circuit C ′; nondeterministically guess the unique
satisfying assignment w for C ′; if w satisfies only one of the circuits C1 and C2, then select that
circuit; if w satisfies both circuits, then select the lexicographically smaller one. Note that even
though the described procedure is nondeterministic, it always produces the same answer, i.e., it is
a single-valued NP-computable function.

The described selection procedure shows that the language Circuit SAT is essentially p-selective,
with the only difference that the standard definition of p-selectivity [Sel79] requires that the selection
procedure be deterministic. Ko [Ko83] showed that every p-selective language is in P/poly. As

3

observed in [HNOS96], Ko’s techniques can be applied also in the case of a single-valued NP-
computable selection procedure. In our case, this yields that Circuit SAT is in (NP ∩ coNP)/poly,
where the advice is used to encode a polynomial number of satisfiable circuits. Since Circuit SAT
is NP-complete, we get that NP ⊆ (NP ∩ coNP)/poly.

To get the deeper collapse of NP to P/poly, we apply our isolation algorithm A recursively! Our
new selection procedure takes as input a pair of circuits C1 and C2, applies the algorithm A to both
of them, getting the new circuits C ′1 = A(C1) and C ′2 = A(C2), and then runs the original selection
procedure on C ′1 and C ′2. As before, we get a non-uniform algorithm that needs a polynomial
number of satisfiable circuits as advice. The crucial point is that all of these circuits are uniquely
satisfiable (as they are of the form A(C) for some satisfiable circuit C). Thus we can also include
in the advice all satisfying assignments for these circuits. This new advice (still of polynomial size)
turns out to be sufficient in order to decide Circuit SAT in deterministic polynomial time, yielding
that NP ⊆ P/poly.

Remainder of the paper. Section 2 contains basic definitions. We prove our conditional im-
possibility results for determinisitc and randomized isolation in Section 3. In Section 4, we prove
our unconditional impossibility result for “black-box” randomized isolation. We give concluding
remarks in Section 5.

2 Preliminaries

We use standard definitions and notation for complexity classes such as P, NP, and P/poly (see,
e.g., [AB09]). By a slight abuse of notation, we extend the notation P, NP, and P/poly to not
necessarily Boolean functions from {0, 1}∗ to {0, 1}∗. Thus, a function f : {0, 1}∗ → {0, 1}∗
is called P-computable if it is computable by some deterministic polynomial-time algorithm. It
is NP-computable if there is a nondeterministic polynomial-time algorithm such that, for every
x ∈ {0, 1}∗, the algorithm on x has at least one accepting computation, and every accepting
computation produces the same value f(x). Finally, the function f is called P/poly-computable if
it can be computed by a family of polynomial-size circuits.

We will use the NP-complete problem Circuit SAT: Given a Boolean circuit C(x1, . . . , xn),
decide if it is satisfiable. We say that a circuit C(x1, . . . , xn) is uniquely satisfiable if there is
exactly one binary string w ∈ {0, 1}n that satisfies C. We will encode circuits using binary strings,
and will use the length of such an encoding as the size of the circuit. For a circuit C, we will denote
its size by |C|. We assume that the encoding is efficient so that, e.g., for circuits C and D of size
m each, the size of the circuit C ∨D is O(m).

By isolation1, we will mean an efficient algorithm mapping a given Boolean circuit C(x1, . . . , xn)
to a Boolean circuit C ′(x1, . . . , xn) such that (i) every satisfying assignment for C ′ also satisfies C,
and (ii) if C is satisfiable then C ′ is uniquely satisfiable. Depending on the type of the algorithm,
we have deterministic uniform (P-computable) or non-uniform (P/poly-computable) isolation. We
also have randomized isolation where a randomized polynomial-time algorithm mapping C to C ′

must satisfy condition (i) with probability one (over its internal randomness), and condition (ii)

1It is possible to talk about witness isolation for arbitrary “witness-checking” predicates R(x, y), where R is P-
computable and |y| ∈ |x|O(1). However, for simplicity of presentation, we restrict ourselves to the generic NP-complete
problem Circuit SAT.

4

holds with some probability δ = δ(n); we shall call such a reduction a randomized δ-isolation. Note
that Valiant and Vazirani [VV86] proved the existence of randomized Ω(1/n)-isolation.

3 Isolation is unlikely to exist

Here we show that both deterministic (non-uniform) isolation and randomized isolation would lead
to surprising complexity-theoretic consequences, and hence are unlikely to exist.

3.1 Deterministic isolation

Here we will prove the following.

Theorem 3.1. If P/poly-computable isolation exists, then NP ⊆ P/poly.

By the standard “search-to decision” reduction for Circuit SAT, we get that the assumption
NP ⊆ P/poly implies the existence of the P/poly-computable isolation. Together with Theorem 3.1,
this yields the following.

Corollary 3.2. P/poly-computable isolation exists iff NP ⊆ P/poly.

Proof of Theorem 3.1. We first show that Circuit SAT ∈ (NP ∩ coNP)/poly (using the techniques
similar to those in [HNOS96]). and then we explain how to get the stronger conclusion that Circuit
SAT ∈ P/poly.

Let F be the assumed P/poly-computable isolation reduction for Circuit SAT. Consider the
following NP/poly-computable “selection” algorithm which selects one of the two given Boolean
circuits C1 and C2, under the assumption that at least one of C1 and C2 is satisfiable.

Selection algorithm A: Given an unordered pair of distinct (encodings of) Boolean
circuits C1(x1, . . . , xn) and C2(x1, . . . , xn) (where C1 is lexicographically smaller than
C2) such that at least one of the circuits is satisfiable, define the satisfiable circuit
C(x1, . . . , xn) = C1(x1, . . . , xn) ∨ C2(x1, . . . , xn). Apply the isolation reduction F to
C, getting a uniquely satisfiable circuit C ′(x1, . . . , xn). Nondeterministically guess the
unique satisfying assignment w ∈ {0, 1}n for C ′. If C1(w) = 1, then output C1; otherwise
output C2.

We make several observations about the described selection algorithm A. First, given the
advice necessary for the isolation reduction F , our nondeterministic selection algorithm has exactly
one accepting computation (and so defines a single-valued NP function). Secondly, the selection
algorithm always outputs a satisfiable circuit, since, by the definition of isolation, the unique
satisfying assignment w of the circuit C ′ must be also satisfying for C, and so must be satisfying
for at least one of C1 and C2; if w satisfies both C1 and C2, we break the tie by choosing the
lexicographically smaller of the two circuits.

Claim 3.3. Let S be any non-empty set of satisfiable circuits on n inputs. Then there is a circuit
C∗ ∈ S such that PrC∈S\{C∗}[A(C∗, C) = C] > 1/2.

Proof. Consider the following random experiment: Pick a uniformly random circuit C0 ∈ S, then
a uniformly random circuit C1 ∈ S \ {C0}, and finally pick a uniformly random bit b ∈ {0, 1}.

5

Observe that once C0 and C1 are chosen, the output of the selection algorithm A(C0, C1) is
uniquely defined. Suppose that A(C0, C1) = Cr for some r ∈ {0, 1}. Then the probability that our
random experiment chooses b = r is exactly 1/2. Since the choice of b is independent of the choice
of C0 and C1, we get by an averaging argument that there is some fixed value b∗ ∈ {0, 1} such that
PrC0,C1 [A(C0, C1) = Cb∗] > 1/2. Define b̄ = 1 − b∗. We have that with probability at least 1/2

over the choice of C0 and C1, the algorithm A does not choose C b̄.
Note that the random choices of C0 and C1 made by our random experiment induce the uniform

distribution over all 2-element subsets of S. The same uniform distribution is induced if our
random experiment were first to choose C1 uniformly from S, and then C0 uniformly from S \
{C1}. Since the selection algorithm A treats its input as an unordered pair of circuits, we get
PrC b̄∈S,Cb∗∈S\{C b̄}[A(C b̄, Cb∗) 6= C b̄] > 1/2. By averaging, we can fix the choice of C b̄ to some

circuit C∗ so that PrC∈S\{C∗}[A(C∗, C) = C] > 1/2, as required.

Now suppose we wish to solve Circuit SAT for circuits C(x1, . . . , xn) of the binary encoding
size m (for some m > n). Set S to be the set of all satisfiable circuits of size m on n inputs; note
that |S| 6 2m. By Claim 3.3, there is a satisfiable circuit C1 ∈ S such that for at least 1/2 of the
remaining satisfiable circuits C in S, the algorithm A(C1, C) = C. Call such circuits C covered
by C1. Remove the covered circuits from S, and apply Claim 3.3 again, getting another satisfiable
circuit C2 that covers at least 1/2 of the remaining circuits in S. After at most m iterations, we
get t 6 m satisfiable circuits C1, . . . , Ct so that each satisfiable circuit C(x1, . . . , xn) of size m is
covered by some Ci for 1 6 i 6 t. On the other hand, if a given circuit C(x1, . . . , xn) of size m
is covered by some Ci, 1 6 i 6 t, then we know that C is satisfiable (since A always selects a
satisfiable circuit). Thus, we get

C(x1, . . . , xn) is satisfiable ⇔ ∃i ∈ {1, . . . , t} A(Ci, C) = C. (1)

Equivalently,
C(x1, . . . , xn) is unsatisfiable ⇔ ∀i ∈ {1, . . . , t} A(Ci, C) = Ci. (2)

Let us fix the advice needed by the isolation reduction F for circuits of size m on n inputs; this
advice has size polynomial in m. Let us add to the advice the list of circuits C1, . . . , Ct defined
above; note that the new advice is still of size polynomial in m since t 6 m and each circuit Ci is of
size at most m. Once the advice is fixed, we can use it to decide in NP both Circuit SAT by Eq. (1)
and Circuit UNSAT by Eq. (2), since A is single-valued NP-computable function and t 6 m. So
we get that Circuit SAT ∈ (NP ∩ coNP)/poly.

Next, to show that Circuit SAT ∈ P/poly, we modify our argument as follows. Suppose we want
to decide Circuit SAT for circuits C(x1, . . . , xn) of size m. For each such circuit C(x1, . . . , xn),
define the circuit C ′(x1, . . . , xn) = F (C1). That is, C ′ is obtained from C by applying the isolation
reduction F to C. Let m′ be the size bound for the new circuits C ′ = F (C); note that m′ is
polynomial in m.

Clearly, C is satisfiable iff C ′ is satisfiable. Moreover, we have that if C ′ is satisfiable, then it
is uniquely satisfiable. Consider the set S of D′ = F (C) for all satisfiable circuits C. By applying
Claim 3.3 to S for at most m′ times, we get a list of satisfiable circuits C ′1, . . . , C

′
t, for t 6 m′, so that

each satisfiable circuit C ′ in S is covered by some circuit C ′i on the list. Let w1, . . . , wt ∈ {0, 1}n
be the unique satisfying assignments for the respective circuits C ′1, . . . , C

′
t. As before, we have

C is satisfiable ⇔ C ′ = F (C) is satisfiable ⇔ ∃i ∈ {1, . . . , t} A(C ′, C ′i) = C ′. (3)

6

Claim 3.4. Let C ′i be a fixed circuit of size m′, with the unique satisfying assignment wi. Then there
is a P/poly algorithm to decide, for any uniquely satisfiable circuit C ′ of size m′ (where C ′ is different
from C ′i), whether A(C ′, C ′i) = C ′. Moreover, the advice needed by the algorithm is exactly the advice
needed for the isolation reduction F on circuits of the size max{|C ′i ∨ C ′|, |C ′ ∨ C ′i|} ∈ O(m′) and
the unique assignment wi of C ′i.

Proof. Let us first assume that C ′ is lexicographically smaller than C ′i. By definition, we have
A(C ′, C ′i) = C ′ iff the unique satisfying assignment of the circuit D = F (C ′ ∨ C ′i) satisfies C ′. We
have two cases to consider. If D(wi) = 0, then the unique satisfying assignment of D is some string
other than wi, and so it must satisfy C ′. Hence, A will select C ′. If, on the other hand, D(wi) = 1,
then for A to select C ′ it must be the case that C ′(wi) = 1. Overall, A(C ′, C ′i) = C ′ iff either
D(wi) = 0 or D(wi) = C ′(wi) = 1.

Now let us assume that C ′i is lexicographically smaller than C ′. Let D = F (C ′i ∨ C ′). By
definition, A(C ′, C ′i) = C ′ iff the unique satisfying assignment of D satisfies C ′ but not C ′i, which
happens iff D(wi) = 0. Thus, in this case, A(C ′, C ′i) = C ′ iff D(wi) = 0.

Finally, to decide if A(C ′, C ′i) = C ′, we do as follows: If C ′ is lexicographically smaller than
C ′i, then output True iff [D(wi) = 0] ∨ [D(wi) = C ′(wi) = 1], where D = F (C ′ ∨ C ′i). If C ′ is
lexicographically larger than C ′i, then output True iff D(wi) = 0, where D = F (C ′i ∨ C ′).

Clearly, we can perform all the necessary computation in P, given the advice needed by F .

Now, to decide if a an arbitrary circuit C of size m is satisfiable, we will use the algorithm
suggested by Eq. (3). We need the advice that allows us to compute the isolation reduction F on
circuits of size m (to compute C ′ = F (C)) and size O(m′) (to compute F inside Claim 3.4), as well
as the circuits C ′1, . . . , C

′
t and their unique satisfying assignments w1, . . . , wt. Note that this whole

advice is of size polynomial in m. Using Claim 3.4, we conclude that Circuit SAT is in P/poly.

Suppose we strengthen the requirement on the deterministic isolation to isolate a particular
satisfying assignment, e.g., the lexicographically smallest one. Let us call isolation F strong if it
satisfies the following additional property: if a given input circuit C(x1, . . . , xn) is satisfiable and
if w ∈ {0, 1}n is the lexicographically smallest satisfying assignment for C, then the circuit F (C)
is uniquely satisfied by w.

Theorem 3.5. Suppose there is P-computable strong isolation F . Then NP = P.

Proof. We can decide Circuit SAT in P as follows: Given a circuit C(x1, . . . , xn), check if C(1, . . . , 1) =
1; if so, then output “Yes” and halt; otherwise, construct the circuit C̃(x1, . . . , xn) = [C(x1, . . . , xn)∨
[x1 = 1∧· · ·∧xn = 1]]; apply F to C̃, getting the uniquely satisfiable circuit C ′; if C ′(1, . . . , 1) = 0,
then output “Yes”, else output “No”.

For correctness, suppose that C(1, . . . , 1) = 0 yet C is satisfiable. Then C̃ has some satisfying
assignment other than 1 . . . 1. Hence C ′ must be satisfiable by some assignment other than 1 . . . 1
(by our assumption that F isolates the lexicographically smallest satisfying assignment), and so
C ′(1, . . . , 1) = 0 in that case (as C ′ is uniquely satisfiable).

Since the standard “search-to-decision” reduction for Circuit SAT can produce the lexicograph-
ically smallest satisfying assignment for a given satisfiable circuit, we get the following.

Corollary 3.6. P-computable strong isolation exists iff NP = P.

7

3.2 Randomized isolation

Here we show that randomized isolation is also unlikely to exist.

Theorem 3.7. If, for some constant δ > 2/3, there exists randomized polynomial-time δ-isolation,
then coNP ⊆ NP/poly.

For the proof, we generally follow the same strategy as in the first half of the proof of Theo-
rem 3.1, but with an important change in the definition of a selection algorithm, where we need to
account for the fact that our isolation is no longer deterministic. We provide the details next.

Proof of Theorem 3.7. Suppose that, for some constant δ > 2/3, there is a randomized polynomial-
time algorithm F mapping a Boolean circuit C(x1, . . . , xn) to a Boolean circuit C ′(x1, . . . , xn) so
that (i) with probability one, the satisfying assignments of C ′ are also satisfying for C, and (ii)
with probability δ, if C is satisfiable, then C ′ is uniquely satisfiable; here the probability is over the
internal randomness of F . We would like to use this F in order to define a selection algorithm for
choosing between a given pair of circuits C1(x1, . . . , xn) and C2(x1, . . . , xn), similarly to the proof
of Theorem 3.1.

First we define a new randomized algorithm that, on a given circuit C(x1, . . . , xn) of size
m, runs the reduction F for t = O(m) times, and outputs a list of the obtained t circuits
C ′1(x1, . . . , xn), . . . , C ′t(x1, . . . , xn). For a satisfiable circuit C, we expect to see at least δ · t uniquely
satisfiable circuits on our list. By the standard Chernoff bound, for some constant α, 2/3 < α 6 δ,
the probability of getting fewer than α · t uniquely satisfiable circuits is less than 2−m, if we choose
t = c · m for a sufficiently large constant c. By averaging, there is a choice of randomness for
the algorithm so that, for every satisfiable circuit C(x1, . . . , xn) of size m, the output list contains
at least α · t uniquely satisfiable circuits. With this good choice of randomness put into advice
(of size polynomial in m), we get a P/poly-computable deterministic algorithm F ′ mapping every
satisfiable circuit C to a list of t circuits, where at least α fraction of the circuits on the list are
uniquely satisfiable. Note that each of the remaining circuits on the list is either unsatisfiable or
has more than one satisfying assignment.

Next we define the following NP/poly-computable “selection” algorithm A′.

Selection algorithm A′: Given an unordered pair of distinct (encodings of) Boolean
circuits C1(x1, . . . , xn) and C2(x1, . . . , xn) (where C1 is lexicographically smaller than
C2) such that at least one of the circuits is satisfiable, define the satisfiable circuit
C(x1, . . . , xn) = C1(x1, . . . , xn)∨C2(x1, . . . , xn). Apply the algorithm F ′ to C, getting a
list of t circuits C ′1(x1, . . . , xn), . . . , C ′t(x1, . . . , xn). Nondeterministically guess a subset
I ⊆ {1, . . . , t} of size α · t. For each i ∈ I, nondeterministically guess a string wi ∈
{0, 1}n. If, for any i ∈ I, C ′i(wi) = 0, then halt with rejection. Otherwise, if for every
i ∈ I, C1(wi) = 1, then output C1; else, if for every i ∈ I, C1(wi) = 0, output C2;
otherwise, output ⊥.

We make several observations about the described selection algorithm A′.

Claim 3.8. On input C1, C2, with at least one of the circuits satisfiable, there is always an accepting
computation of A′ that outputs C1, C2, or ⊥.

Proof. There are at least α fraction of satisfiable (in fact, uniquely satisfiable) circuits on the list
produced by F ′. Thus there is a nondeterministic guess of the set I of satisfiable circuits.

8

Claim 3.9. If, on input (C1, C2), with at least one of circuits satisfiable, A′ has an accepting
computation that outputs Ci, for i ∈ {1, 2}, then Ci is satisfiable.

Proof. If C1 is output, then it is obviously satisfiable. If C2 is output, we have wi that satisfies
C1 ∨ C2 and falsifies C1, and so wi must satisfy C2.

Claim 3.10. If, on input (C1, C2), with at least one of the circuits satisfiable, A has an accepting
computation that outputs ⊥, then both C1 and C2 are satisfiable.

Proof. Note that, if ⊥ is output, each wi, for i ∈ I, must be satisfying for C1 ∨ C2. If not all wi’s
satisfy C1, then some of them must satisfy C2. Similarly, if not all wi’s falsify C1, then some must
satisfy C1.

Finally, the crucial property of the selection algorithm A′ is given in the following claim.

Claim 3.11. On input (C1, C2), with at least one the circuits satisfiable, A′ cannot have two
accepting computations such that one of them outputs C1 and the other one outputs C2.

Proof. For a given list of circuits C ′1, . . . , C
′
t produced by F ′(C1∨C2), let U ⊆ {1, . . . , t} be a subset

of α · t positions such that each Ci, i ∈ U , is uniquely satisfiable. Every set I nondeterministically
chosen by A′ must contain at least (α − (1 − α))t = (2α − 1)t > t/3 positions from U , since
α > 2/3. For these positions, the satisfying assignments wi are unique, and so will be the same on
any nondeterministic computation.

Suppose that one accepting computation selects C1. Then, by the above, more than t/3 circuits
among C ′1, . . . , C

′
t have unique satisfying assignments that all satisfy C1. Thus there are fewer than

2t/3 < α · t circuits among C ′1, . . . , C
′
t that may have satisfying assignments which all falsify C1.

The latter implies that there cannot exist an accepting computation that selects C2.

We have by Claims 3.8 and 3.11 that A′(C0, C1), for a satisfiable circuit C0 ∨C1, always has an
accepting computation. Exactly one of the following happens:

1. each accepting computation of A′ outputs some value from {C0,⊥}, or

2. each accepting computation of A′ outputs some value from {C1,⊥}.

In the first case, we will say that A′ avoids C1; in the second case, we say that A′ avoids C0.

Claim 3.12. Let S be any non-empty set of satisfiable circuits on n inputs. Then there is a circuit
C∗ ∈ S such that PrC∈S\{C∗}[A′(C∗, C) avoids C∗] > 1/2.

Proof. The same averaging argument as in the proof of Claim 3.3 applies.

By repeatedly applying Claim 3.12, we get the existence of at most m satisfiable circuits
C1(x1, . . . , xn), . . . , C`(x1, . . . , xn) such that, for every satisfiable circuit C(x1, . . . , xn) of size m,
there is i ∈ {1, . . . , `} so that A′(Ci, C) avoids Ci. Also note that, by Claims 3.9 and 3.10, if
A′(Ci, C) avoids Ci, then C must be satisfiable.

It follows that a given circuit C(x1, . . . , xn) of size m is unsatisfiable iff, for every 1 6 i 6 `,
A′(Ci, C) avoids C. The latter can be checked in NP/poly (where the advice is whatever needed
by F ′ on n-input circuits of size O(m)): simply guess an accepting computation of A′(Ci, C) that
outputs Ci or ⊥. Hence, we get that coNP ⊆ NP/poly, as required.

9

Finally, suppose we strengthen our notion of randomized isolation so that there are no false
negatives. That is, define a zero-error randomized δ-isolation to be a randomized algorithm that
maps a circuit C(x1, . . . , xn) to a circuit C ′(x1, . . . , xn) so that (i) if C is unsatisfiable then so
is C ′ (always), (ii) if C is satisfiable then so is C ′ (always), and moreover, the set of satisfying
assignments of C ′ is a subset of those of C, and (iii) if C is satisfiable then, with probability at
least δ, the circuit C ′ is uniquely satisfiable.

This type of randomized isolation is unlikely to exist even for small δ = poly(1/n).

Theorem 3.13. If , for some δ = poly(1/n), there is a zero-error randomized polynomial-time
isolation for n-input Boolean circuits, then coNP ⊆ NP/poly.

Proof. The proof is similar to that of Theorem 3.7. We first define a randomized algorithm that
maps an input circuit C to a list of t circuits, for t = poly(m, 1/δ), so that, if C is satisfiable, then,
with probability greater than 1 − 2−m, at least one circuit on the list is uniquely satisfiable (and,
by definition of the zero-error isolation reduction, all circuits on the list are satisfiable). Then we
fix the randomness to get a P/poly-computable such mapping, which we denote by F ′. Then we
use the selection algorithm A′ from the proof of Theorem 3.7 with the parameter α = 1 (and so
the set I = {1, . . . , t}).

This modified selection algorithm A′ still enjoys all the properties given in Claims 3.8-3.11.
Claims 3.8-3.10 are proved in exactly the same way as before. To see why Claim 3.11 still holds,
observe that the list of circuits produced by F ′ contains a uniquely satisfiable circuit with some w
as its only satisfying assignment; if A′ outputs C1, then C1(w) = 1; on the other hand, in order for
A′ to output C2 on some other nondeterministic branch it must be the case that C1(w) = 0, which
is impossible.

The remainder of the proof is then exactly the same as that of Theorem 3.7.

3.3 Generalized randomized isolation

Here we consider some generalizations of the definition of randomized isolation given earlier. Before
we considered a randomized δ-isolation mapping C(x1, . . . , xn) to a new circuit C ′(x1, . . . , xn) on
the same variables. We can generalize this to allow C ′(x1, . . . , xn, y1, . . . , yk) to depend on more
variables. Rather than requiring that all satisfying assignments of C ′ be also satisfying for C,
we require that the projection of any satisfying assignment for C ′ to the first n coordinates be a
satisfying assignment for C. The δ-isolation property changes as follows: if C is satisfiable, then,
with probability at least δ, the circuit C ′(x1, . . . , xn, y1, . . . , yk) is such that

∃!w ∈ {0, 1}n ∃z ∈ {0, 1}k C ′(w, z) = 1.

That is, while C ′ may have many satisfying assignments, they all must have the same value on the
first n variables. Let us call such a reduction a generalized randomized δ-isolation. The proof of
Theorem 3.7 can be easily adapted to prove the following.

Theorem 3.14. If, for some constant δ > 2/3, there is generalized randomized polynomial-time
δ-isolation, then coNP ⊆ NP/poly.

Proof. The proof is essentially identical to that of Theorem 3.7, with the obvious modification of the
selection procedure A′ to use the projections to the first n coordinates of the satisfying assignments
w for the circuits C ′i(x1, . . . , xn, y1, . . . , yk), for 1 6 i 6 t.

10

Consider now generalized deterministic polynomial-time isolation reductions (which are gener-
alized randomized polynomial-time 1-isolation reductions). Note first that such a reduction exists
if NP = coNP.

Lemma 3.15. If coNP = NP, then there is a generalized deterministic polynomial-time isolation
reduction.

Proof. Indeed, given a circuit C(x1, . . . , xn) and an assignment w ∈ {0, 1}n, we can verify in
coNP that w is the lexicographically smallest satisfying assignment of C. If coNP = NP, this
verification can be performed in NP. Let y1, . . . , yk be a witness for this NP-computable verification.
Let C ′(x1, . . . , xn, y1, . . . , yk) be a deterministic circuit that checks if y1 . . . yk is a valid witness
certifying that x1 . . . xn is the lexicographically smallest satisfying assignment of C; such a circuit
of polynomial size can be obtained from an NP-machine by standard methods. Clearly, if C is
satisfiable, then the constructed circuit C ′ is also satisfiable and all of its satisfying assignment
agree on the first n variables (which is the unique lexicographically smallest satisfying assignment
of C).

One can easily extend the proof of Lemma 3.15, to get the following.

Lemma 3.16. If coNP ⊆ NP/poly, then there is a generalized deterministic P/poly-computable
isolation reduction.

Using Theorem 3.14 and Lemma 3.16, we obtain the following “derandomization” result.

Corollary 3.17. If, for some constant δ > 2/3, there is generalized randomized polynomial-time
δ-isolation, then there is also a P/poly-computable generalized deterministic isolation.

Obviously, Theorem 3.14 applies to the case of generalized deterministic polynomial-time isola-
tion reductions. Moreover, it is easy to see that the same conclusion coNP ⊆ NP/poly follows also
from the assumption that there is generalized deterministic P/poly-computable isolation reduction
(the advice used by the isolation reduction is simply added to the advice of an NP/poly-algorithm in
the conclusion of Theorem 3.14). This generalization of Theorem 3.14 and Lemma 3.16 immediately
yield the following.

Corollary 3.18. P/poly-computable generalized deterministic isolation exists iff coNP ⊆ NP/poly.

Remark 3.19. It is possible to relax the definition of isolation even further as follows. We require
that there be an efficient “witness-extraction” procedure G such that, when a satisfiable circuit C is
mapped to a circuit C ′, the procedure G, given a satisfying assignment for C ′, outputs a satisfying
assignment for C. The proof of Theorem 3.7 can be adapted to this generalization of isolation as
well; we omit the details.

4 Black-Box Isolation

We consider a general situation where some randomized procedure is used to isolate one element in
a given unknown set W in some specified familyW of subsets of {0, 1}n. The randomized procedure
can be designed depending on W, but it is not given any information on which W ∈ W is chosen.
The randomized procedure can check whether a given w ∈ {0, 1}n is chosen or not; in other words,
it is specified as a distribution D over subsets of {0, 1}n, where each D ∈ D is the set of strings

11

that the randomized procedure selects when its random seed is fixed. This leads to the following
type of isolation. Below, for a distribution D and an element D from the support of D, we denote
by D : D the fact that D is chosen according to the distribution D.

For any familyW of nonempty subsets of {0, 1}n, its blackbox isolation procedure is a distribution
D over subsets D of {0, 1}n. For any D ∈ D and any W ∈ W, we say that D succeeds on W if
|D ∩W | = 1. The isolation probability of D for W is defined as minW∈W PrD:D[|D ∩W | = 1].

While this is regarded as the “worst-case” isolation probability, we may also consider an average
isolation probability. For this, we regard W as a distribution over subsets of {0, 1}n.

For any distribution W over subsets of {0, 1}n and any blackbox isolation procedure D, its
average isolation probability for W is defined as EW :W [PrD:D[|D ∩W | = 1]]. Clearly, the average
isolation probability for a distribution W is an upper bound of the isolation probability for the
corresponding subset family W.

Below we show that the average isolation probability is O(1/n) for some distribution W. Here
we first give a key relation for our analysis. Consider any distribution W over subsets of {0, 1}n
and any blackbox isolation procedure D for W. For any W ∈ W and D ∈ D, by Iso(D,W) we
denote the indicator of the isolation; that is, Iso(D,W) = 1 if |D ∩W | = 1 and Iso(D,W) = 0
otherwise. Then we have that the average success probability EW :W [PrD:D[|D ∩W | = 1]] equals

∑
W :W

W(W) ·

(∑
D∈D
D(D) · Iso(D,W)

)
=

∑
D:D
D(D) ·

(∑
W∈W

W(W) · Iso(D,W)

)
=

∑
D:D
D(D) · Pr

W :W
[|D ∩W | = 1]. (4)

Below we let N = 2n, and for any K, 1 ≤ K ≤ N , let pK = K/N . For defining a distribution
over subsets of {0, 1}n, we consider a random procedure that generates a subset of {0, 1}n. First for
any fixed K = o(N), consider a simple procedure that chooses each w ∈ {0, 1}n with probability
pK independently, and let WK denote the distribution corresponding this procedure. Roughly,
W :WK has K strings on average. That is, we consider the isolation when we can approximate the
target set size well. In this case, by the isolation technique by Valiant-Vazirani we can achieve 1/4
isolation probability. The following theorem shows that one cannot go beyond 1/e by any black
box isolation procedure.

Theorem 4.1. Let K = o(N). For any black-box isolation procedure D, its average isolation
probability for WK is at most e−1(1 + o(N−1)).

Proof. Consider any set D with H elements. Then its isolation probability for WK is

Pr
W :WK

[|D ∩W | = 1] = H · pK (1− pK)H−1 =
HK

N

(
1− K

N

)H (
1− o

(
1

N

))−1

≤ HK

N
e−HK/N

(
1 + o

(
1

N

))
≤ e−1(1 + o(N−1)),

where this upper bound is obtained by choosing H = N/K. Since the bound is the same for any
D, this gives an upper bound for any distribution D by (4).

12

Next consider a more general case. We define a distribution W0 by the following random pro-
cedure generating a subset of {0, 1}n: First define K = 2k by choosing k ∈ {0, . . . , n−1} uniformly
at random, and then generate W following WK , i.e., by selecting each string with probability pK
independently. For this distribution, we have the following bound.

Theorem 4.2. For any black-box isolation procedure D, its average isolation probability for W0 is
O(1/n).

Proof. We again give a uniform isolation probability bound for any set D. Consider any D and let
H be the number of its elements. Note that

Pr
W :W0

[|D ∩W | = 1] =

n−1∑
k=0

1

n
· Pr
W :W

2k

[|D ∩W | = 1] =
1

n
·
∑
K∈K

Pr
W :WK

[|D ∩W | = 1],

where K = {1, 2, 4, . . . , 2n−1} = {1, 2, 4, . . . , N/2}. Thus, we estimate the above sum. From the
previous proof, we have

∑
K∈K

Pr
W :WK

[|D ∩W | = 1] ≤
∑
K∈K

2HK

N

(
1− K

N

)H

≤
∑

K∈K&K≤N/H

2HK

N

(
1− K

N

)H

+
∑

K≥N/H

2HK

N
e−HK/N

=
∑

K∈K&K≤N/H

2HK

N

(
1− K

N

)H

+O(1),

where the last bound is from the fact that
∑

x≥1 xe
−x = O(1). On the other hand, since we have

that
2HK

N

(
1− K

N

)H

≤ 2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)
,

and that

∑
K∈K&K≤N/H

2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)
≤ 2H

N
· 2N

H
− 2H2

N2
· 4N2

3H2
+

2H3

2N3
· 8N3

7H3
≤ 3,

we can conclude that

∑
K∈K

Pr
W :WK

[|D ∩W | = 1] ≤
∑

K∈K&K≤N/H

2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)

+O(1) = O(1),

which proves the desired bound.

5 Conclusions

We have considered different ways in which one might want to strengthen the Valiant-Vazirani
isolation: deterministic isolation, randomized isolation with large constant success probability, or

13

zero-error randomized isolation with inverse-polynomial success probability. We showed that any
such strengthening would lead to a collapse of the polynomial-time hierarchy, and thus, is unlikely.
We also showed that a natural “black-box” isolation procedure (generalizing the one of Valiant and
Vazirani) cannot have success probability better than O(1/n) (achieved by the Valiant-Vazirani
isolation).

Our result that an efficient deterministic isolation procedure would imply NP ⊆ P/poly (The-
orem 3.1) can be interpreted as saying that derandomizing the Isolation Lemma (in the strong
sense, where the output of the isolation procedure is a single circuit) would imply circuit upper
bounds for NP. This is in contrast to the previous results showing that derandomization would
imply circuit lower bounds for NEXP [IKW02, KI04]. Also, while such strong derandomization of
the Isolation Lemma seems unlikely, the derandomization in the weak sense, where a satisfiable
circuit is mapped to a list of circuits with at least one being uniquely satisfiable, is likely to exist
(under plausible complexity assumptions) [KM02].

There are several interesting open questions. While we have argued that an efficient randomized
δ-isolation with success probability δ > 2/3 is unlikely to exist, we do not know about intermediate
values of δ, for 2/3 > δ > ω(1/n). Also, suppose one relaxes the isolation requirement so that a given
satisfiable circuit is mapped to a circuit with an odd number of satisfying assignments (rather than
unique satisfying assignment). Is it possible to rule out (under suitable complexity assumptions) an
efficient deterministic algorithm for isolating an odd number of satisfying assignments? Note that
for this version of isolation, there is an efficient randomized isolation procedure achieving constant
success probability [Gup98]. Finally, it remains a very interesting open question whether the
assumption NP = UP would lead to any surprising consequences (e.g., a collapse of the polynomial-
time hierarchy).

Acknowledgements We would like to thank Leslie Valiant for his insightful comments on the
results presented in the paper.

References

[AB09] S. Arora and B. Barak. Complexity theory: a modern approach. Cambridge University
Press, New York, 2009.

[BDCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average-case
complexity. Journal of Computer and System Sciences, 44(2):193–219, 1992.

[Gup98] S. Gupta. Isolating an odd number of elements and applications in complexity theory.
Theory of Computing Systems, 31:27–40, 1998.

[HNOS96] L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing solutions uniquely
collapses the polynomial hierarchy. SIAM Journal on Computing, 25(4):697–708, 1996.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Ex-
ponential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences, 65(4):672–694, 2002.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1–2):1–46, 2004.

14

[KM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002.

[Ko83] K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and System
Sciences, 26:209–211, 1983.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM Journal
on Computing, 29:1118–1131, 2000.

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior of polynomial time
reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[Sel94] A. Selman. A taxonomy of complexity classes of functions. Journal of Computer and
System Sciences, 48:357–381, 1994.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

