
The NOF Multiparty Communication Complexity of

Composed Functions

Anil Ada∗ Arkadev Chattopadhyay† Omar Fawzi‡ Phuong Nguyen§

November 21, 2011

Abstract

We study the k-party ‘number on the forehead’ communication complexity of composed
functions f ◦ ~g, where f : {0, 1}n → {±1}, ~g = (g1, . . . , gn), gi : {0, 1}k → {0, 1} and for
(x1, . . . , xk) ∈ ({0, 1}n)k, f ◦ ~g(x1, . . . , xk) = f(. . . , gi(x1,i, . . . , xk,i), . . .). When ~g = (g, g, . . . , g)
we denote f ◦ ~g by f ◦ g. We show that there is an O(log3 n) cost simultaneous protocol for
SYM ◦ g when k > 1 + log n, SYM is any symmetric function and g is any function. When
k > 1 + 2 log n, our simultaneous protocol applies to SYM ◦ ~g with ~g being a vector of any n
functions. We also get a non-simultaneous protocol for SYM ◦ ~g of cost O(n/2k · log n + k log n)
for any k ≥ 2. In the setting of k ≤ 1 + log n we study more closely functions of the form
MAJORITY ◦ g, MODm ◦ g, and NOR ◦ g, where the latter two are generalizations of the well-
known and studied functions Generalized Inner Product and Disjointness respectively. We
characterize the communication complexity of these functions with respect to the choice of g.
In doing so, we answer a question posed by Babai et al. (SIAM Journal on Computing, 33:137–
166, 2003) and determine the communication complexity of MAJORITY ◦ QCSBk, where QCSBk

is the “quadratic character of the sum of the bits” function.
In the second part of our paper we utilize the connection between the ’number on the fore-

head’ model and Ramsey theory to construct a large set without a k-dimensional corner (k-
dimensional generalization of a k-term arithmetic progression) in (Fn

2
)k, thereby obtaining the

first non-trivial bound on the corresponding Ramsey number. Furthermore, we give an explicit
coloring of [N ]× [N ] without a monochromatic 2-dimensional corner and use this to obtain an
explicit 3-party protocol of cost O(

√
n) for the EXACTN function. For x1, x2, x3 n-bit integers,

EXACTN (x1, x2, x3) = −1 iff x1 + x2 + x3 = N .
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1 Introduction

The ‘number on the forehead’ (NOF) model of communication complexity was introduced by
Chandra, Furst and Lipton [CFL83] who used it to obtain branching program lower bounds. In
this model, k players wish to evaluate a function F : X1 × · · · × Xk → {±1} on a given input
(x1, . . . , xk). The input is distributed among the players in a way that Player i sees every xj for j 6=
i. This scenario is visualized as xi being written on the forehead of Player i. In order to compute
F (x1, . . . , xk), the players communicate by means of broadcasting, according to a protocol which
they have agreed upon beforehand. The goal is to compute F (x1, . . . , xk) by communicating as
few bits as possible. Note that for k = 2, this model is equivalent to the standard two player
model introduced by Yao [Yao79]. We will be mainly interested in the case of Xi = {0, 1}n for
all i. Here, every function can be trivially computed using n + 1 bits of communication, and
protocols of cost at most polylogarithmic in n are considered to be efficient. Deterministic, non-
deterministic, randomized and quantum communication complexity models naturally manifest
themselves in this setting. The overlap of information among the players is what makes NOF
model interesting, powerful and fruitful in terms of applications. Apart from the aforementioned
application in branching programs, this model also has very important applications in boolean
circuit complexity, proof complexity and pseudorandom generators.

The class ACC
0 represents functions computable by polynomial-size, constant-depth circuits

with unbounded fan-in AND, OR, NOT and MODm gates. Separating ACC
0 from NP is one of

the frontiers in complexity theory. It is well known that a function inACC
0 has a polylog(n) k-party

deterministic communication complexity, where k is polylog(n) [HG91, BT94]. In fact the protocol
is simultaneous where all the players, without interacting, speak once to an external referee who
determines the output based only on the messages she receives. Proving that a function in NP

requires super-polylogarithmic communication in the simultaneous model for polylogarithmic
number of players would result in a major breakthrough. Currently no non-trivial lower bound is
known for an explicit function for k = log n and this has proven to be a formidable barrier. Despite
intense effort, even the 3 player model is far from being well understood and many important
problems that have been solved in the 2 player setting remain open for the 3 player setting. For
example, in the 3 player setting, there is no known explicit function that is hard in the deterministic
model but easy in the randomized model. On the other hand, the equality function is a canonical
example of such a function in the 2 player setting.

Arguably the most well known and studied functions in the standard two party as well as
the multiparty models are the generalized inner product function GIP and the disjointness function
DISJ. The GIP function is a hard function (or conjectured to be hard) in almost every model of
communication complexity. As such, strong lower bounds can be proven for many different kinds
of boolean circuits using GIP [HG91, Nis93, FKL+01, Gro98]. It is also used in obtaining decision
tree lower bounds [Nis93], in the construction of pseudorandom generators, time/space tradeoffs
for Turing Machines and branching program lower bounds [BNS92].

The DISJ function, unlike GIP, is easy in the non-deterministic model. Proving lower bounds
for DISJ in the randomized model even for 2 players was a major challenge. A strong lower
bound for 3 players has been proven only very recently [LS09, CA08]. Both the 2 player and
multiplayer lower bounds on DISJ lead to the development of interesting techniques and a deeper
understanding of communication complexity in general. Apart from this, the interest in studying
DISJ also stems from the fact that it is very suitable for reductions: communication complexity
lower bounds for DISJ (and slight variations) have been successfully used to give lower bounds
in the context of data streaming [AMS99], proof complexity [PPS07], data structures [MNSW98],

2



game theory [CS04, NS06], boolean circuits [NW93], and property testing [BBM11].

The functions GIP and DISJ have the following ‘composed’ structure. Let f : {0, 1}n → {±1}
be a function and ~g = (g1, . . . , gn) be a vector of functions gi : {0, 1}k → {0, 1}. Define f ◦
~g(x1, . . . , xk) = f(. . . , gi(x1,i, x2,i, . . . , xk,i), . . .), where xj,i denotes the ith coordinate of the n-
bit string xj . When all the gi are the same function, say g, we denote f ◦ ~g by f ◦ g. In this
notation, GIP = MOD2 ◦ AND and DISJ = NOR ◦ AND, where NOR is the negation of OR. In
both the two party and the multiparty models, functions of the form f ◦ AND have been studied
extensively [Raz95, Raz03, Kla07, She07, SZ09b, LS09, CA08, BHN09], with an emphasis on SYM ◦
AND, where SYM represents a symmetric function. For instance, in the important paper [Raz03],
Razborov shows that the 2 party quantum and classical communication complexities of SYM◦AND

are polynomially related. Functions of the form f ◦ XOR have also received a lot of attention in the
2 player setting [Raz95, Kla07, SZ09a, MO09], especially the hamming distance problem THRt ◦ XOR

where THRt is a threshold function1. Notably, Shi and Zhang [SZ09a] obtain 2 party classical and
quantum equivalence of functions of the form SYM ◦ XOR.

Observe that the focus so far in the literature has been to fix an inside function g and vary
the outside function f . In this paper, we propose a new dual approach. We study the multiparty
communication complexity of composed functions by fixing the outside function to some natural
function and vary the inside function. This dual approach is particularly interesting in the multi-
party setting where the choice for inside function increases as k increases. Note that when k = 2,
AND and XOR are really the only interesting inside functions as other functions are either trivial or
reduce to the case of AND or XOR.

First, we consider functions of the form SYM ◦ g in the setting of k > log n. This rich class
contains many interesting functions and possible candidates to break the log n barrier mentioned
earlier. Since the majority function MAJ = THRn/2 is conjectured to be outside of ACC

0, it is of
interest to try to determine the communication complexity of MAJ ◦ g for all g. For instance, Babai,
Kimmel and Lokam [BKL95] identify MAJ ◦ MAJ as a candidate function to be hard for more than
log n many players. Later, in a significantly expanded version of [BKL95], Babai et al. [BGKL03]
show that MAJ ◦ MAJ has an efficient simultaneous protocol when k > 1 + log n. Their upper
bound in fact applies to SYM ◦ g where SYM is any symmetric function and g is any symmetric
“compressible” function, a small subset of all symmetric functions2. In the same paper, the authors
ask about the communication complexity of MAJ◦g for a specific symmetric g called “the quadratic
character of the sum of the bits”, which they show is not compressible. We show that functions
of the form SYM ◦ g are easy in the simultaneous model when k > 1 + log n, for any choice of the
inside function g.

In the setting of k ≤ log n, we study more closely functions of the form MAJ ◦ g, MODm ◦
g and NOR ◦ g, where the latter two are generalizations of GIP and DISJ respectively. We are
able to obtain dichotomies, with respect to the choice of g, that characterize the communication
complexity of MAJ ◦g, MODm ◦g and NOR ◦g for every g. Furthermore, our results show that these
functions have polynomially related quantum and classical communication complexities. Below
we summarize our results. Note that by the work of [LSS09], all our lower bounds hold in the
quantum model, but we confine ourselves to the classical setting for simplicity.

1Even though XOR and MOD2 both represent the parity function, we use the notation XOR for an inside function g

and MOD2 for an outside function f .
2A random symmetric function is not compressible with high probability.
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Our Results:

Symmetric of ~g. We show that, for any g, there is a simultaneous deterministic k-party protocol for
SYM ◦ g of cost O(log3 n) when k > 1 + log n. When k > 1 + 2 log n, our simultaneous protocol
applies to SYM ◦ ~g for any vector of functions ~g. Furthermore, we obtain a deterministic protocol
(non-simultaneous) for SYM ◦~g of cost O(n/2k · log n + k log n) for any k (Theorem 3.2). Our result
rules out functions of the form SYM ◦ g as a candidate to break the k = log n barrier. Furthermore,
this result has an application in Ramsey theory which we will discuss in the next subsection.

Previously, an efficient non-simultaneous protocol for k ≥ log n players was known for SYM ◦
AND due to Grolmusz [Gro94]. Using Grolmusz’s ideas, Pudlák [Pud06] obtained the same result
with a slightly different protocol. Babai et al. [BGKL03] gave an efficient simultaneous protocol,
which works only when k > 1 + log n, for SYM ◦ g when g is symmetric and compressible. We
obtain our protocols by extending the ideas of Grolmusz and Pudlák, and employing a beautiful
lemma of Babai et al [BGKL03, Lemma 6.10]. We note that our upper bound results for the func-
tions listed below use the key insights of the protocol for SYM ◦ ~g, in particular Fact 3.3.

Majority of g. LetS0 = {y ∈ g−1(1) : y has even weight} and S1 = {y ∈ g−1(1) : y has odd weight}.
We show that if |S0| = |S1|, MAJ ◦ g has a k-party simultaneous deterministic protocol of cost
O(k log n), and if |S0| 6= |S1|, then MAJ ◦ g is hard in the randomized bounded error model for up
to ≈ 1

2 log n many players (Theorem 3.8). As immediate applications, we can show for instance
that MAJ ◦MAJ and MAJ ◦ XOR are hard in the randomized model for up to≈ 1

2 log n many players.
Our upper bound for MAJ ◦g when |S0| = |S1| follows directly from Fact 3.3. For the lower bound,
we observe that MAJ ◦ g is hard if there is a symmetric f such that f ◦ g is hard. This follows from
a reduction that uses a binary search strategy. We get the desired lower bound for MAJ ◦ g using
our lower bound for MODm ◦ g, which is described below.

As a corollary to our result, we answer an open question posed by Babai et al. [BGKL03]. For
any odd prime k, let QCSBk : {0, 1}k → {0, 1} be defined as QCSBk(y1, . . . , yk) = 1 iff y1 + · · ·+yk is
a quadratic residue modulo k. Babai et al. show that QCSBk is not compressible and they ask the
question of determining the communication complexity of MAJ ◦ QCSBk. Our result implies that
if k ≡ 1 mod 4, MAJ ◦ QCSBk has cost O(k log n) in the simultaneous deterministic model, and if
k ≡ 3 mod 4, the function is hard in the randomized model for up to c log n many players with
c < 1/2 (Corollary 3.9). For k > 1 + log n, our efficient simultaneous protocol for SYM ◦ g implies
an O(log3 n) upper bound on the simultaneous communication complexity for every g.

Mod m of g. We show that if m divides |S0| − |S1|, then MODm ◦ g has a simultaneous deter-
ministic protocol of cost O(k log m), and if m does not divide |S0| − |S1|, MODm ◦ g is a very hard

function3 in the randomized model, up to ≈ 1
2 log n many players and m up to n

1
2
−δ for a constant

δ > 0 (Theorem 3.4). These types of functions generalize the GIP = MOD2 ◦ AND function. The
first strong lower bounds in the NOFmodel were obtained by Babai, Nisan and Szegedy [BNS92],
who showed a very strong lower bound for the GIP function. Grolmusz [Gro95] extended the
technique of [BNS92] to show a lower bound for MODm ◦ AND. We obtain our lower bound for
MODm ◦ g, where m is coprime to |S0| − |S1|, by extending the analysis of [CT93, Raz00]. For
other m for which MODm ◦ g is hard (i.e., m and |S0| − |S1| are not coprime but m does not divide
|S0| − |S1|), we obtain the lower bound through a reduction to the previous case, employing ideas
from our protocol for SYM◦g. Our upper bound result follows from Fact 3.3 with aminor addition.

3Here ’very hard’ means that even if the error probability of the protocol is allowed to be exponentially close to 1/2,
the function does not have an efficient protocol. Note that achieving error probability 1/2 is trivial for any function.
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Nor of g. Functions of the form NOR ◦ g generalize the DISJ function. We observe that if g’s
support size is 1, then NOR ◦ g is hard in the randomized bounded error model for k up to 1

2 log n.
This follows trivially from the best known lower bound result on the DISJ function [She11]. If
g’s support size is not 1, we show that NOR ◦ g has a classical randomized protocol of cost O(k)
(Theorem 3.11). Thus, the hardness of DISJ crucially relies on the fact that g has singleton support.
Our upper bound is obtained by combining our deterministic upper bound for MOD2 ◦ g with a
random sampling strategy.

1.1 Connections with Ramsey theory

For an Abelian group G, define ck(G) to be the minimum number of colors we can use to color G
so that no k-term arithmetic progression is monochromatic. Also let rk(G) be the cardinality of the
largest subset of G that contains no length k arithmetic progression. Let N = |G|. We use the no-
tation ck(N) and rk(N) when working over [N ] rather than an Abelian group G. The famous Van
der Waerden’s Theorem and Szemerédi’s Theorem are equivalent to showing ck(N) = ω(1) and
N/rk(N) = ω(1) respectively. Obviously we have N/rk(N) ≤ ck(N). Obtaining good quantitative
bounds on ck(N) and rk(N) is one of the major challenges in combinatorial mathematics.

The best known bounds for rk(N) are as follows (we write the bounds in terms of N/rk(N) as
the interest is in this fraction). Sanders [San11] recently showed that

N

r3(N)
≥ Ω

(

log N

(log log N)5

)

,

and the best upper bound comes from Behrend’s construction of a setwithout a 3-term progression
[Beh46] (in [Elk10], Elkin obtains a minor improvement):

N

r3(N)
≤ O

(

2
√

8 log N (log N)1/4
)

.

For general k, the best bounds are

N

rk(N)
≥ Ω

(

(log log N)tk
)

,

(tk is a positive constant that depends only on k) due to Gowers [Gow01], and

N

rk(N)
≤ C · 2O((log N)1/ log k+log log N),

for a constant C , due to O’Bryant [O’B11].

It has been observed several times that the above lower bound results are in fact easier and
cleaner to handle when working over F

n
p as one can exploit linear algebraic tools. As Green

notes [Gre05], another motivation to work in the finite field setting is inspired by Bourgain’s work
[Bou99], which can be interpreted to show how to convert results obtained in the finite fields
setting to arbitrary groups.

Very recently Bateman and Katz [BK11], in a breakthrough work, show that

N

r3(F
n
3 )

≥ Ω
(

(log N)1+ǫ
)

.

5



Non-trivial upper bounds are harder to come by in the finite field setting. Behrend’s construction
does not work over F

n
p . The best upper bound we have for N/r3(F

n
3 ) is much weaker and is about

N0.28, which comes from design theory; see e.g., [Gre05, Section 4]. It is reasonable to expect, both
in the setting of [N ] and F

n
p , that the lower bounds are far from being tight. For instance, Green

[Gre05] conjectures that
N

r3(Fn
3 )

≥ N δ,

for an absolute constant δ.

A well known generalization of Van der Waerden’s Theorem and Szemerédi’s Theorem is
called the multidimensional version or the corners problem. In the k dimensional setting, our space
is Gk rather than G, and the structure we are looking for is a corner rather than an arithmetic
progression. A k dimensional corner is a set of k + 1 points in Gk of the form

(x1, x2, . . . , xk), (x1 + λ, x2, . . . , xk), (x1, x2 + λ, . . . , xk), . . . , (x1, x2, . . . , xk + λ),

for some non-zero λ ∈ G.

Let c∠

k (G) be the minimum number of colors we can use to color Gk so that no k-dimensional
corner is monochromatic. Also let r∠

k (G) be the cardinality of the largest subset of Gk that contains
no k-dimensional corner. As before, we use the notation c∠

k (N) and r∠

k (N) when working over
[N ]k.

In a far reaching extension of Szemerédi’s Theorem, Gowers [Gow07] obtains an explicit lower
bound on Nk/r∠

k (N), but the bound is of Ackerman type and we do not state it here4. This bound
remains best known for arbitrary fixed k. In the two dimensional case (which can be thought of
as the generalization of Roth’s Theorem [Rot53], i.e., Szemerédi’s Theorem for k = 3.), Shkredov
[Shk06b, Shk06a] obtains the bound

N2

r∠
2 (N)

≥ (log log N)ǫ.

The best upper bound comes from Behrend’s construction via a reduction. In the finite field set-
ting, a better lower bound is obtained by Lacey and McClain [LM07]:

N2

r∠
2 (Fn

p )
≥ log log N

log log log N
.

To the best of our knowledge, no non-trivial upper bound on Nk/r∠

k (Fn
p ) is mentioned in the

literature.

There is an interesting connection between the coloring number for corners and multiparty
communication complexity. Define the EXACTN function to be equal to -1 if and only if x1 + · · ·+
xk = N , where xi are the inputs, each an n-bit integer in [N ]. Chandra Furst and Lipton [CFL83]
show that the k+1 party deterministic communication complexity of EXACTN is essentially equal
to log c∠

k (N). The known lower bounds on Nk/r∠

k (N) [FK78, Gow07] imply superconstant lower
bounds on c∠

k (N) and using this, they conclude that the deterministic k-party communication
complexity of EXACTN is superconstant for all constant k. Furthermore, they convert the known
upper bound on N/r3(N) due to Behrend into an upper bound on c∠

2 (N) and obtain a surprising

4The bound Gowers obtains is similar to what Szemerédi obtains in the setting of progressions. This is because
Gowers generalizes Szemerédi’s Regularity Lemma to hypergraphs and this step is responsible for the horrendous
bound.
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non-explicit protocol of cost O(
√

n) for the EXACTN function for 3 players. Although this and
other kinds of communication complexity bounds have been proven using Ramsey theory (e.g.
[CFL83, Pud03, Tes03, CKK+07, BGG06]), no bounds on Ramsey numbers have been proven via
communication complexity bounds before.

For an Abelian group G, define EVALG : Gk → {±1} to be equal to -1 if and only if x1 + · · · +
xk = 0, where the xi ∈ G are the inputs, and 0 denotes the identity element of G. As observed
in [BGG06], the proof of [CFL83] also shows that the k + 1 party communication complexity of
EVALG is essentially equal to log c∠

k (G). In this paper, we are interested in upper bounds on
c∠

k (N) and c∠

k (Fn
2 ), which in return give upper bounds for Nk/r∠

k (N) and Nk/r∠

k (Fn
2 ).

Our Results:

• We observe that EVALFn
2
is the same function as NOR ◦ XOR. Using our protocol for SYM ◦

g discussed in the first part of the introduction, we get the upper bound Nk/r∠

k (Fn
2 ) ≤

c∠

k (Fn
2 ) ≤ O(N1/2k−2

logk+1 N) (Corollary 4.3). As far as we are aware, this result gives the
first non-trivial upper bound and we suspect that it is essentially tight. For k ≥ log log N ,
our bounds imply the following strong bounds: Nk/r∠

k (Fn
2 ) ≤ c∠

k (Fn
2 ) ≤ O((log N)5+log log N ).

The coloring induced by the protocol does not give an explicit large set without a corner. We
provide such an explicit set with a simple description (Theorem 4.4). Our results can be
considered as the first application of communication complexity to Ramsey theory.

• Recall that Behrend [Beh46] showed N/r3(N) ≤ O(2
√

8 log N (log N)1/4). This result does not
imply any bounds for c3(N). We observe that Behrend’s idea can be used to give an ex-

plicit coloring of [N ] and obtain the bound c3(N) ≤ 2
√

8 log N (2 log N)1/2. This upper bound,
via a standard reduction, also gives an upper bound for c∠

2 (N). Using this, we present an
explicit protocol of cost O(

√
n) for the EXACTN function for 3 players. As mentioned be-

fore, [CFL83] gets the same upper bound with a non-explicit protocol using a probabilistic
argument.

Organization of the paper: In Section 2, we set the notation and give the necessary background on
communication complexity. In Section 3, we present our results on the communication complexity
of composed functions. Section 4 is devoted to the connections with Ramsey theory. Finally in
Section 5, we conclude with some open problems.

2 Preliminaries

In the k-party ‘number on the forehead’ model of communication complexity, there are k players
who are given k inputs x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk respectively. Player i sees every input that
is not assigned to her, i.e., player i sees xj for all j 6= i. Given a function F : X1 × · · · ×Xk → {±1},
the players communicate, by broadcasting bits, according to a predetermined protocol. Their goal
is to compute the value F (x1, . . . , xk). The protocol determines, in every round:

• whose turn it is to communicate, as a function of the communicated bits thus far,

• what the player communicates, as a function of the inputs the player sees and the commu-
nicated bits thus far.
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Once the protocol determines that communication between players is over, it determines the out-
put bit as a function of all the communicated bits. The cost of the protocol is the maximum over
all possible inputs of the number of bits communicated. The k-party deterministic communica-
tion complexity of F , denoted Dk(F ), is the cost of the most efficient protocol that computes F
correctly on every input.

In the simultaneous model, the players, without interacting with each other, communicate bits
to a referee who does not see the input. The referee then determines the output based on the

messages she receives. The simultaneous communication complexity of F , denoted by D
||
k(F ), is

the cost of the most efficient simultaneous protocol that computes F .

In the randomized model, the players have access to an unbounded length random string
which they all see. Furthermore, we allow the randomized protocol to make an error with proba-
bility at most ǫ on every input. The ǫ-error randomized communication complexity of F , denoted
R

ǫ
k(F ), is the cost of themost efficient randomized protocol for F (the number of random bits used

does not count towards the cost). A stronger model allowing quantum communication between
the players can similarly be defined; see e.g., [LSS09]. As mentioned earlier, we point out that all
the lower bounds in the randomized model that we prove here carry over to the quantum model
using the results of [LSS09].

We say that a subset Ci of the input space X1 × · · · × Xk is a cylinder in the ith direction if
membership in Ci does not depend on the ith coordinate, i.e., if (x1, . . . , xi, . . . , xk) ∈ Ci, then
(x1, . . . , x

′
i, . . . , xk) ∈ Ci for every x′

i ∈ Xi. A cylinder intersection C is an intersection of k cylin-
ders, one in each direction. It is well known that a k-party deterministic protocol for F of cost
c partitions the input space into at most 2c monochromatic (with respect to F ’s output) cylinder
intersections. We identify a cylinder intersection C ⊆ X1 × · · · ×Xk with its characteristic function
C : X1 × · · · × Xk → {0, 1}.

An equivalent way of defining a cylinder intersection is through the notion of a star. A set of k
points

(x′
1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)

in X1 × · · · ×Xk is called a star if x′
i 6= xi for all i ∈ [k]. The point (x1, x2, . . . , xk) is called the center

of the star. It is not difficult to show that C is a cylinder intersection if and only if the center of
every star in C also belongs to C as well.

We define the discrepancy of F : X1 × · · · × Xk → C under µ and with respect to a cylinder
intersection C as

discµ(F,C) = |Ex∼µ [F (x)C(x)]| .
Note that when F is ±1 valued, the discrepancy measures how balanced F is under µ in the
cylinder intersection C . The discrepancy of F under µ is

discµ(F ) = max
C

discµ(F,C),

where the maximum is over all possible cylinder intersections C . If the discrepancy of a function
is small (e.g. exponentially small), then all large cylinder intersections are balanced with respect
to F ’s output. The well-known discrepancy method gives a lower bound for R

ǫ
k(F ) in terms of

discµ(F ). Informally it states that to lower bound R
ǫ
k(F ), it suffices to find a distribution µ and

upper bound the discrepancy discµ(F ).
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Lemma 2.1 (Discrepancy Method). Let F : X1 × · · · × Xk → {±1} be a function and µ a distribution
over the input space. Then,

R
ǫ
k(F ) ≥ log

(

1 − 2ǫ

discµ(F )

)

.

(All logarithms in this paper are to base 2.)

In order to upper bound the discrepancy we will use the cube measure. Let µ be a product
distribution over X1 × · · · × Xk, i.e., µ(x1, . . . , xk) = µ1(x1) · · ·µk(xk), where µi is a distribution
over Xi. We define the cube measure of a complex valued function F under µ as

Eµ(F ) = Ex0
1,x0

2,...,x0
k

x1
1,x1

2,...,x1
k





∏

u∈{0,1}k

Cu1+···+uk(F (xu1
1 , . . . , xuk

k ))



 ,

where in the expectation, x0
i and x1

i are distributed according to µi, and C denotes the complex
conjugation operator: Cb(z) = z if b is even, and Cb(z) = z otherwise. It is not difficult to verify

that the cube measure is always a non-negative real number. In fact, the quantity (EU (F ))1/2k
,

where U is the uniform distribution, is known as the hypergraph uniformity norm and is a measure
of “quasirandomness” of F . When F (x1, . . . , xk) = f(x1 ⊕ · · · ⊕ xk), the hypergraph uniformity
norm of F corresponds to Gowers uniformity norm of f over F

n
2 (here ⊕ denotes bit-wise xor of

the strings).

Lemma 2.2 ([CT93, Raz00, VW08]). Let F : X1 × · · · × Xk → C be a complex valued function and µi a
distribution over Xi. Define the distribution µ as the product of the µi. Then,

discµ(F ) ≤ (Eµ(F ))1/2k
.

In this paper we will be mainly interested in the case where Xi = {0, 1}n for all i. We let x =
(x1, . . . , xk) denote an input in ({0, 1}n)k. Often we will view the input as a k×n dimensional ma-
trixX, where the ith row ofX is xi. We reserve the variables xi to denote an n-bit string whose j-th
bit is denoted by xi,j , and reserve the variables yi to denote a single bit. Most of the communica-
tion functions that we are interested in will be composed functions f ◦~g, where f : {0, 1}n → {±1},
~g = (g1, . . . , gk) with gi : {0, 1}k → {0, 1}, and f ◦ ~g(x1, . . . , xk) = f(. . . , gi(x1,i, x2,i, . . . , xk,i), . . .).
That is, we apply gi to the ith column of X, and then apply f to the resulting n-bit string to obtain
the output. When all the gi are the same function g, we denote the composed function by f ◦ g.
Whenever the domain of f is {0, 1}n′

instead of the usual {0, 1}n, the function is denoted fn′
.

LetHk denote the k dimensional hypercube where the vertex set is {0, 1}k and there is an edge
between two vertices iff their Hamming distance is 1. Given an input in the k × n dimensional
matrix form X, we associate each column of X with the corresponding vertex of Hk. For each
vertex v ∈ {0, 1}k , we define nv to be the number of occurrences of v as a column of X.

3 Communication complexity of composed functions

3.1 SYM ◦ g

A boolean function f : {0, 1}n → {±1} is called symmetric if the output depends only on the
number of input variables set to 1. In other words, for any permutation σ on [n], f(y1, . . . , yn) =
f(yσ(1), . . . , yσ(n)) holds for every (y1, . . . , yn) ∈ {0, 1}n. In this section we present a deterministic

9



protocol for SYM ◦ ~g where SYM denotes an arbitrary symmetric function and ~g = (g1, . . . , gn) is a
vector of n arbitrary boolean functions gi. The protocol becomes simultaneous and efficient when
k > 1 + 2 log n. For k > 1 + log n we obtain an efficient simultaneous protocol for SYM ◦ g for an
arbitrary function g.

A multiparty non-simultaneous protocol for such a function, GIP = MOD2 ◦ AND, was first
discovered by Grolmusz [Gro94]. This protocol is non-trivial for all k but only efficient when k
reaches log n. It is not difficult to see that the protocol also works for SYM ◦ AND. Later Pudlák
[Pud06] gave a non-simultaneous protocol for SYM ◦ AND, which can be considered as a very ele-
gant reinterpretation of Grolmusz’s protocol (Pudlák’s protocol is described in detail in [Cha08]).
Babai et al. [BGKL03], using a new idea, obtained a simultaneous protocol for SYM ◦ g where g
is a symmetric and compressible function, when k > 1 + log n (see [BGKL03, Section 6] for the
definition of a compressible function). Although the class of symmetric compressible functions
contains natural functions like THRt and MODm, this class is only a small portion of all symmetric
functions as a random symmetric function is not compressible with high probability. Babai et al.
[BGKL03] in fact identify the quadractic character of the sum of bits function as a symmetric inside
function g for which their method fails.

We improve upon the result of [BGKL03] in two ways. First, we remove the symmetry and
compressibility conditions on g and allow inside function(s) to be selected arbitrarily, and second,
we provide a non-trivial protocol even when k ≤ 1 + log n. We obtain our protocols in the non-
simultaneous model by extending the ideas of Grolmusz and Pudlák. We combine this with a
beautiful lemma of Babai et al. [BGKL03, Lemma 6.10] in order to make our protocols simultane-
ous.

Lemma 3.1 ([BGKL03]). Suppose k > 1+ log n and let X be a k×n boolean matrix given as an input for
a k party communication problem. Let ni be the number of columns of X with Hamming weight i. Then
there is a simultaneous deterministic protocol in which each player sends at most O(k log n) bits to a referee,
who then can compute ni for all i ∈ {0, . . . , n}.

Theorem 3.2. Let f : {0, 1}n → {±1} be a symmetric function, g : {0, 1}n → {0, 1} an arbitrary
function, and ~g = (g1, . . . , gn) a vector of n functions where gi : {0, 1}k → {0, 1} are arbitrary functions.
Then,

(a) Dk(f ◦ ~g) ≤ O(n/2k · log n + k log n),

(b) for k > 1 + log n: D
||
k(f ◦ g) ≤ O(log3 n),

(c) for k > 1 + 2 log n: D
||
k(f ◦ ~g) ≤ O(log3 n).

Proof. We first prove part (a). Fix an input for f ◦ ~g given in k × n matrix form X. The protocol
proceeds in two steps. In the first step, the players determine the column positions of some u ∈ Hk.
At the second step, they use this information to compute the output of f ◦ ~g.

We now describe the first step. Let X≥3 denote the (k − 2) × n dimensional submatrix of X
where the first two rows are deleted. Since X≥3 has n columns and there are 2k−2 possible strings
of length k − 2, the string s ∈ {0, 1}k−2 that appears the least number of times as a column of
X≥3 appears at most n/2k−2 times. Without any communication, Player 1 and Player 2 agree
on this string (breaking ties in say lexicographical order). Player 2, using at most n/2k−2 bits
of communication, sends Player 1 the bits on Player 1’s forehead corresponding to the positions
where string s appears. With this information, Player 1 knows the positions of four vertices 00s,
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01s, 10s and 11s in Hk. Now Player 1 announces one of these vertices (call it u) and the column
indices corresponding to u. The total cost is at most O(k + n/2k · log n).

We proceed to step 2. To convey the main idea of the protocol, we start by considering func-
tions of the form f ◦g, i.e., the inner function is g for all the columns. Let S = g−1(1) be the support
of g. Recall that nv denotes the number of occurrences of v as a column of X. As f is symmetric,
f ◦ g(X) can be computed without communication from the quantity

∑

v∈S nv. Note that after the
first step, nu is known to all the players. Now fix some v ∈ S. Consider a shortest path between v
and u in Hk: v = w1, w2, . . . , wt = u, where t ≤ k + 1. It is not difficult to see that we can write a
telescoping sum to compute nv:

nv =

(

t−1
∑

i=1

(−1)i+1(nwi + nwi+1)

)

+ (−1)t+1nu. (1)

A crucial observation is that each term (−1)i+1(nwi + nwi+1) is known by some player. In fact,
as wi and wi+1 are adjacent vertices of the hypercube, they differ in exactly one coordinate p ∈
{1, . . . , k}. Thus, Player p can compute (−1)i+1(nwi + nwi+1) simply by looking at the portion
of the input she sees; we say that Player p is responsible for the term (−1)i+1(nwi + nwi+1). If
each player communicates the term she is responsible for, it is simple to compute nv. We should
mention that these observations are already present in [Gro94, Pud06]. But recall that the quantity
we want to compute is

∑

v∈S nv. For this, we write

∑

v∈S

nv =
∑

v∈S

((

t−1
∑

i=1

(−1)i+1(nwi + nwi+1)

)

+ (−1)t+1nu

)

, (2)

where we omitted the dependence on v for wi and t to keep the notation simple. For every v, each
player can compute the term she is responsible for as described above. But observe that the players
need not announce their terms for different vertices v individually. In fact, it is sufficient for each
player to announce the sum of the terms she is responsible for. Moreover, since

∑

v∈S nv ≤ n, it
actually suffices to send this value evaluated modulo n + 1. This requires at most ⌈log(n + 1)⌉ bits
of communication so that in total we only need k · ⌈log(n + 1)⌉ bits of communication for step 2 of
the protocol.

Extending step 2 of the protocol for general functions f ◦~g with possibly different functions for
different columns is straightforward. One can associate a hypercube to each column j of the input
and the objective is to compute a sum over all columns of a term analogous to (2). We provide the
details of the proof for completeness and to introduce notation that will be used for the proof of
part (c). Denote by Sj the support of gj , that is, Sj = g−1

j (1). For v ∈ {0, 1}k , let 1j(v) = 1 if v is in
column j, and 1j(v) = 0 otherwise. To compute the output of f ◦ ~g, it suffices to compute

n
∑

j=1

∑

v∈Sj

1j(v). (3)

Observe that for the columns j of X that u appears in (which are known to all players using the
first step), we can easily compute

∑

v∈Sj
1j(v). Indeed, we have in this case

∑

v∈Sj
1j(v) = 1

if u ∈ Sj and 0 otherwise. It now remains to compute the sum over the remaining columns.
Let j be a column in which u does not appear, and consider a shortest path from v to u in Hk:
v = w1, w2, . . . , wt = u. Since 1j(u) = 0, we have

1j(v) =

t−1
∑

i=1

(−1)i+1(1j(wi) + 1j(wi+1)). (4)
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As described earlier, each term (1j(wi) + 1j(wi+1)) above is known by some player because wi

and wi+1 differ only in one coordinate. Thus, to compute (3), each player announces the part of
the sum she is responsible for, modulo n + 1. Therefore this step of the protocol has cost at most
k · ⌈log(n + 1)⌉. This completes the proof of part (a). Observe that the second step of the protocol
is simultaneous while the first step is not. When k is sufficiently large, we will be able to bypass
the first step using Lemma 3.1.

We now prove part (c). Let ℓ = ⌊2 + 2 log n⌋. Only the first ℓ players will speak. For each
column j, the rows ℓ + 1 to k naturally induce a function g′j : {0, 1}ℓ → {0, 1}; g′j(u) = gj(u · v)

where v ∈ {0, 1}k−ℓ appears in column j from row ℓ + 1 to k. Thus our task reduces to finding a

protocol for f ◦ ~g′ with ℓ players. From now on we drop the superscript in g′j and denote the inner
function by gj .

As before we are interested in computing

n
∑

j=1

∑

v∈Sj

1j(v). (5)

Let ~0 be the all 0 vertex. Let v ∈ Sj and let v = w1, . . . , wt = ~0 be a shortest path between v and ~0.
Then we have

1j(v) =

(

t−1
∑

i=1

(−1)i+1(1j(wi) + 1j(wi+1))

)

+ (−1)|v|1j(~0). (6)

Substitute (6) into (5). Since the quantity in (5) is at most n, we can do arithmetic modulo n + 1.
As before, each term (1j(wi) + 1j(wi+1)) in the sum is known to a player so the part of the sum
involving these terms can be computed by the players using at most ℓ · ⌈log(n + 1)⌉ bits. For each
j ∈ {1, . . . , n}, we group the terms involving 1j(~0) when substituting (6) into (5) and let cj be the
coefficient of 1j(~0) modulo n + 1. We need to compute

∑

j cj1j(~0), which can be done as follows.
From the original ℓ × n input matrix X, we create a new matrix X ′ by duplicating the jth column
cj many times. Observe that the coefficient cj only depends on the function gj and not on the
input X and is thus known to all the players. As X ′ has at most n2 columns and ℓ > 1 + log(n2)
rows, we can apply Lemma 3.1 on X ′ to compute the number of all 0 columns in X ′, which is
exactly what we want. In this step, each player sends a message of size O(log2 n) leading to a total
cost of O(log3 n). So putting things together, we can compute (5) with at most O(log3 n) bits of
communication. The whole protocol is easily seen to be simultaneous. This completes the proof
of part (c).

We conclude with the proof of part (b). The strategy is exactly the same as above. We need to
calculate

∑

j cj1j(~0). Since all the gj are the same, cj = c for all j for some c. Sowewant to compute

c
∑

j 1j(~0), which is precisely cn~0. We can compute n~0 using Lemma 3.1 when k > 1 + log n. So

putting things together, we can compute (5) using at most O(k2 log n) bits of communication.
Using part (c) whenever k > 1 + 2 log n, this concludes the proof of part (b).

Remark. For functions of the form SYM◦g, we canmake a small improvement to part (a) and show
Dk(SYM ◦g) ≤ O(n/2k−2 +(k +1) log n) as follows. In light of the proof of part (b) above, in step 1
of the protocol, all Alice needs to communicate is a vertex u and the value nu. The column indices
corresponding to u are not needed. Thus the cost of step 1 is at most n/2k−2 + k + ⌈log(n/2k−2)⌉ =
n/2k−2+⌈log n⌉+2. Combined with step 2, the total cost is at most n/2k−2+(k+1)·⌈log(n+1)⌉+2.
In addition, we can also improve part (c) when we allow ourselves to be non-simultaneous and
show Dk(SYM ◦ ~g) ≤ O(log2 n). To see this, set ℓ = ⌈log(n + 1)⌉ in the proof of part (c). Observe
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that there is a vertex u ∈ {0, 1}ℓ that does not appear as a column in the first ℓ rows of the input
matrix. Player k announces this vertex using ℓ bits. We replace ~0 with u in the proof and note that
1j(u) = 0 for all j. Therefore the desired output can be computed using ℓ + ℓ · ⌈log(n + 1)⌉ =
⌈log(n + 1)⌉2 + ⌈log(n + 1)⌉. These slightly improved upper bounds will be used in Section 4.1.

In what follows, we will determine the communication complexities of MODm ◦ g, MAJ ◦ g
and NOR ◦ g, for any boolean function g. All these functions are of the form SYM ◦ g and so for
k > 1 + log n, the O(log3 n) simultaneous communication complexity upper bound just presented
applies to these functions. We note that we will not mention this O(log3 n) upper bound explicitly
and consider ourselves in the setting of k ≤ 1 + log n.

3.2 MODm ◦ g

For (y1, y2, . . . , yn) ∈ {0, 1}n, the function MODm(y1, y2, . . . , yn) takes values in {−1, 1}, and

MODm(y1, y2, . . . , yn) = −1 if and only if
n
∑

j=1

yj = 0 mod m.

In this section, we determine the k-party communication complexity of MODm ◦ g, for every
function g. Babai, Nisan and Szegedy [BNS92] show a lower bound of Ω(n/4k) for the k-party
randomized communication complexity of generalized inner product GIP = MOD2 ◦ AND. Their
proof is later refined by [CT93, Raz00], where the technique of upper bounding the discrepancy via
the cube measure (Lemma 2.2) is introduced. Grolmusz [Gro95] extends the analysis of [BNS92]
to get an Ω(n/4k) lower bound for MODm ◦ AND, for constant m. Viola and Wigderson [VW08]
obtain the same result by extending the analysis of [CT93, Raz00].

In this section we show that in general, the communication complexity of MODm ◦ g is deter-
mined by the quantity

∣

∣|S0| − |S1|
∣

∣, where Si is the subset of the support of g that consists of all
inputs whose Hamming weight has parity i. (For the case where g = AND, considered in the
mentioned papers, the support of g is (1, 1, . . . , 1), so

∣

∣|S0| − |S1|
∣

∣ = 1.) We prove a dichotomy for
the communication complexity of MODm ◦ g. When m divides |S0| − |S1|, we exhibit an efficient
protocol by using ideas from the protocol for SYM ◦ g presented in the previous section. On the
other hand, when m does not divide |S0| − |S1|, we show an Ω(n/m24k) lower bound (ignoring
some additive logarithmic factors). The case of m not dividing |S0| − |S1| is analyzed in two parts.
When m and |S0| − |S1| are coprime, we use the Discrepancy Method (Lemma 2.1) in conjunction
with a careful analysis of the cube measure to obtain the desired lower bound. We prove that
there is also a strong lower bound for randomized protocols in the remaining case (where m and
|S0| − |S1| are not coprime but m does not divide |S0| − |S1|) by giving a reduction to the previous
case.

In the analysis of discrepancy, we will make use of the characterization of the MODm function
in terms of exponential sums. Fix 2 ≤ m ∈ N and 0 ≤ a, b ≤ m − 1. Let ω = e2πi/m be an m-th root

of unity. For (y1, y2, . . . , yn) ∈ {0, 1}n the function EXP
a,b
m (y1, y2, . . . , yn) is defined to be

EXP
a,b
m (y1, y2, . . . , yn) = ωa((

Pn
j=1 yj)−b).

It is straightforward to check that for any b,

1

m

m−1
∑

a=0

EXP
a,b
m (y1, y2, . . . , yn) ∈ {0, 1}
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and
1

m

m−1
∑

a=0

EXP
a,0
m (y1, y2, . . . , yn) = 1 if and only if MODm(y1, y2, . . . , yn) = −1. (7)

Before presenting the main result of this section, we first state a fact which we need for our up-
per bound (when m divides |S0|− |S1|) and our reduction (when m and |S0|− |S1| are not coprime
but m does not divide |S0|− |S1|). This fact essentially follows from the argument presented in the
proof of Theorem 3.2.

Fact 3.3. Let S0 = {u1, . . . , ur} and S1 = {v1, . . . , vr} be two subsets of the vertices of Hk such that for
each i, the distance between ui and vi is odd. The sum

∑r
i=1 nui +

∑r
i=1 nvi mod m can be computed by

the players in the simultaneous model using at most k · ⌈log m⌉ bits. Similarly, if for each i, the distance
between ui and vi is even,

∑r
i=1 nui−

∑r
i=1 nvi mod m can be computed in the simultaneous model using

at most k · ⌈log m⌉ bits.

Proof. Note that we are interested in computing
∑r

i=1(nui + nvi) mod m. Each term (nui + nvi)
can be written as a telescoping sum as in (1). Each term in the telescoping sum is known by
a player. Since we can do arithmetic modulo m, the desired value can be computed with each
player sending their part of the sum modulo m. So the total cost is k · ⌈log m⌉. The second part
holds similarly.

Theorem 3.4. Let m ≥ 2 be an integer, g : {0, 1}k → {0, 1} be a boolean function and S = {y ∈ {0, 1}k :
g(y) = 1} be its support. Define S0 = {y ∈ S : y has even weight} and S1 = {y ∈ S : y has odd weight}.
Then the function MODm ◦ g satisfies the following:

(a) If m divides |S0| − |S1|, then D
||
k(MODm ◦ g) ≤ k ⌈log m⌉.

(b) Otherwise, Rǫ
k(MODm ◦ g) ≥ 5n

m24k + log(1 − 2ǫ) − (k + 1)⌈log m⌉ − 1.

Proof. Part (a): Suppose that m divides |S0| − |S1|; we will give an efficient protocol for MODm ◦ g.
Assume without loss of generality that |S0| ≥ |S1|. We choose (arbitrarily) a subset S′

0 ⊆ S0 of
size |S1|. As the distance between an element of S′

0 and an element of S1 is odd, we can compute
∑

v∈S′
0
nv+

∑

v∈S1
nv mod m using Fact 3.3. For the remaining elements in S0−S′

0, we simply pair

themwith~0. Therefore, using Fact 3.3 once again, we can compute (|S0|−|S1|)n~0 +
∑

v∈S0−S′
0
nv ≡

∑

v∈S0−S′
0
nv mod m. Thus, we have computed

∑

v∈S0∪S1
nv mod m, from which the output of

MODm ◦ g is determined. Observe that the sums
∑

v∈S′
0
nv +

∑

v∈S1
nv mod m and

∑

v∈S0−S′
0
nv

mod m need not be computed separately and that we can compute
∑

v∈S0∪S1
nv mod m in one

shot using k ⌈log m⌉ bits of communication.

Part (b), Case 1: We consider two cases, depending on whether m and |S0| − |S1| are coprime
or not. The first case is when m and |S0| − |S1| are coprime.

For (y1, y2, · · · , yn) ∈ {0, 1}n, define fm(y1, . . . , yn) =
∑

j yj mod m. Also for b ∈ {0, 1, . . . ,m−
1}, let f b

m(y1, . . . , yn) = 1 if
∑

j yj ≡ b mod m, and 0 otherwise. Note that f b
m are 0/1 valued

functions rather than ±1 valued like MODm. We define Fm = fm ◦ g and F b
m = f b

m ◦ g.

The strategy is as follows. Assume g is not constant. First note that by an elementary argument,
one can show that the fraction of points x with Fm(x) = b is roughly (with an exponentially small
error) 1/m for all b ∈ {0, 1, . . . ,m − 1}. It is possible to show that the same holds within any

cylinder intersection that is not very small by analyzing the cubemeasure of the functions EXP
a,b
m ◦g
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with respect to the uniform distribution. This step uses the assumption that |S0| − |S1| and m are
coprime. It follows that in any sufficiently large cylinder intersection, the number of points x with
F 0

m(x) = 1 is roughly the same as the number of points x with F 1
m(x) = 1. Define the distribution

µ that puts equal weight to all x with F 0
m(x) = 1 and F 1

m(x) = 1. All other points get 0 weight. The
discrepancy discµ(MODm ◦ g) can now be easily upper bounded and this yields the desired lower
bound via the Discrepancy Method (Lemma 2.1).

Let C be a cylinder intersection and U denote the uniform distribution over ({0, 1}n)k. Recall
that we use C to denote both a set C ⊆ ({0, 1}n)k and this set’s characteristic function. For any b,
we have

Ex

[

F b
m(x)C(x)

]

= Ex

[

1

m

m−1
∑

a=0

EXP
a,b
m ◦ g(x)C(x)

]

=
1

m

m−1
∑

a=0

Ex

[

EXP
a,b
m ◦ g(x)C(x)

]

,

where all the expectations are with respect to the uniform distribution. The term corresponding

to a = 0 contributes 1
m

|C|
2nk to the sum, and thus we can write

1

m

|C|
2nk

− error ≤ Ex

[

F b
m(x)C(x)

]

≤ 1

m

|C|
2nk

+ error, (8)

where error = 1
m

∑m−1
a=1

∣

∣

∣
Ex

[

EXP
a,b
m ◦ g(x)C(x)

]∣

∣

∣
. Note that the terms of this sum are exactly

discU (EXPa,b
m ◦ g,C), which can be upper bounded using the cube measure (Lemma 2.2). The

following lemma gives an upper bound on the cube measure of EXPa,b
m ◦ g.

Lemma 3.5. Assume m and |S0|−|S1| are coprime. For any a ∈ {1, 2, . . . ,m−1} and b ∈ {0, 1, . . . ,m−
1},

EU (EXPa,b
m ◦ g) ≤ 1

e8n/(m22k)
.

We defer the proof of this lemma to the end of the section to not break the flow. We can now
upper bound the error:

error <
1

e8n/(m24k)
.

From this, it easily follows that the number of points with F 0
m(x) = 1 is very close to the number

of points with F 1
m(x) = 1, with exponentially small error:

∣

∣Ex

[

(F 0
m(x) − F 1

m(x))C(x)
]∣

∣ =
∣

∣Ex

[

F 0
m(x)C(x)

]

− Ex

[

F 1
m(x)C(x)

]∣

∣ ≤ 2 · error.
Recall the definition of µ, and let α > 0 be the non-zero weight that µ assigns to a point in the
support of F 0

m and F 1
m. Then,

discµ(MODm ◦ g,C) =

∣

∣

∣

∣

∣

∑

x

MODm ◦ g(x)C(x)µ(x)

∣

∣

∣

∣

∣

= α ·

∣

∣

∣

∣

∣

∣

∣

∑

x:
F 0

m(x)=1 or F 1
m(x)=1

MODm ◦ g(x)C(x)

∣

∣

∣

∣

∣

∣

∣

= α ·
∣

∣

∣

∣

∣

∑

x

(F 0
m(x) − F 1

m(x))C(x)

∣

∣

∣

∣

∣

= α · 2nk ·
∣

∣Ex

[

(F 0
m(x) − F 1

m(x))C(x)
]∣

∣

≤ α · 2nk · 2 · error.
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It is not hard to check that α will be roughlym/2·1/2nk and so the error term above will dominate.
To see this, note that the whole input space ({0, 1}n)k is a cylinder intersection and so we can use
(8) to obtain Ex

[

F 0
m(x)

]

= 1/2nk · |support(F 0
m)| = 1/m± error. Similarly 1/2nk · |support(F 1

m)| =
1/m ± error. Since α · 2nk = 2nk/(|support(F 0

m)| + |support(F 1
m)|), we have

α · 2nk ≤ 1

2/m − 2 · error .

Putting things together we get

1

discµ(MODm ◦ g,C)
≥ 1/m − error

error
≥ e8n/(m24k)

m
− 1 ≥ 211n/(m24k)

m
− 1.

Finally, we can apply the discrepancy method to conclude

R
ǫ
k(MODm ◦ g) ≥ 11n

m24k
+ log(1 − 2ǫ) − log m − 1. (9)

Part (b), Case 2: We now consider the case where m does not divide |S0| − |S1|, but gcd(m, |S0| −
|S1|) > 1. The lower bound here is obtained via a reduction to the previous case. We assume for
the remainder of the proof that |S0| − |S1| > 0. The case |S0| − |S1| < 0 can be handled in the
same way. Let 1 < d = gcd(m, |S0| − |S1|), and let m = dq and |S0| − |S1| = dr, where q and r are
coprime integers. Because m does not divide |S0| − |S1|, q ≥ 2. Our strategy is to use a protocol
for MODm ◦ g in order to construct a protocol for MODq ◦ g′ for some function g′ for which we can
apply the lower bound on the randomized communication complexity given in (9).

We start by partitioning the set S0 into sets S′
0, T1, . . . , Td with |S′

0| = |S1| and |T1| = · · · =
|Td| = r. Let g′ be the function whose support is T1. Note that the support of g′ has size r and
consists only of inputs of evenHamming weight. Sowe can apply the lower bound (9) toMODq◦g′.

Using a protocol for MODm ◦ g, we will construct a protocol for MODq ◦ g′ as follows. Fix an
input X ∈ {0, 1}k×n′

in matrix form. Recall that for each v ∈ {0, 1}k , nv denotes the number of
occurrences of v as a column of X. First, using Fact 3.3 we can compute

∑

v∈S′
0∪S1

nv mod m

using k ⌈log m⌉ bits of communication. Again using Fact 3.3, for any ℓ ∈ {2, . . . , d}, the difference
∑

v∈Tℓ
nv −

∑

v∈T1
nv mod m can also be computed at a cost of k ⌈log m⌉ bits. As a result, we can

compute

∑

v∈S′
0∪S1

nv +
d
∑

ℓ=2

(

∑

v∈Tℓ

nv −
∑

v∈T1

nv

)

≡
∑

v∈S

nv − d
∑

v∈T1

nv mod m.

Let s = s(X) denote this number. Observe that
∑

v∈T1
nv ≡ 0 mod q if and only if d

∑

v∈T1
nv ≡

0 mod m. So
∑

v∈T1
nv ≡ 0 mod q if and only if

∑

v∈S nv ≡ s mod m. The latter can be deter-
mined by running the protocol for MODm ◦ g on the input which is obtained from X (viewed as an
k × n′ array) by appending m − s columns all of which belong to S.

In short, the protocol for MODq ◦ g′ on inputs from ({0, 1}n′
)k consists of two steps: First, the

players compute s. Then they simulate the protocol for MODm ◦ g on the input of size ({0, 1}n)k

specified above, where n = n′ + (m − s).

Suppose that we can use c bits to compute MODm ◦ g(X) when X is of size k × n. Then the
cost of the above protocol is c + k ⌈log m⌉. Using the fact that n′ = n − (m − s) > n/2, and (9), we
conclude

c + k⌈log m⌉ ≥ 5n

m24k
+ log(1 − 2ǫ) − log m − 1.
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That is,

R
ǫ
k(MODm ◦ g) ≥ 5n

m24k
+ log(1 − 2ǫ) − (k + 1)⌈log m⌉ − 1.

Corollary 3.6. If g : {0, 1}k → {0, 1} has even support size, then D
||
k(MOD2 ◦ g) ≤ k. Otherwise,

R
ǫ
k(MOD2 ◦ g) ≥ n

4k + log(1 − 2ǫ) − k − 2.

Proof of Lemma 3.5

By definition of the cube measure, we have

EU (EXPa,b
m ◦ g) = Ex0

1,x0
2,...,x0

k

x1
1,x1

2,...,x1
k





∏

u∈{0,1}k

Cu1+···+uk(EXPa,b
m ◦ g(xu1

1 , . . . , xuk
k ))





= Ex0
1,x0

2,...,x0
k

x1
1,x1

2,...,x1
k





∏

u∈{0,1}k

Cu1+···+uk

(

ωa
Pn

j=1 g(x
u1
1,j ,x

u2
2,j ,...,x

uk
k,j)−ab

)



 .

In the exponent of ω, we can safely ignore ab since exactly half of the terms in the product are
conjugated. So without loss of generality we assume b = 0.

The first standard step is to write the cube measure EU (EXPa,0
m ◦ g) as the n-fold product of the

cube measure of ωa·g(y1,...,yk). That is,

EU (EXPa,0
m ◦ g) =



Ey0
1,...y0

k

y1
1,...,y1

k

[

ω
a

P

(u1,...,uk)∈{0,1}k (−1)u1+···+uk ·g(y
u1
1 ,...,y

uk
k )
]





n

,

where in the expectation, y0
j and y1

j are independent and uniformly distributed over {0, 1}.
Observe that for every setting of y0

j , y
1
j (for 1 ≤ j ≤ k) where y0

j = y1
j for some j, the sum in the

exponent is 0, and thus the expression inside the expectation evaluates to 1. This happens with
probability (1− 1

2k ). Now consider a setting of y0
j , y

1
j (for 1 ≤ j ≤ k) where y0

j 6= y1
j for all 1 ≤ j ≤ k.

Simply write yj for y0
j . Then we can nicely write yu

j as yj ⊕ u, for u ∈ {0, 1}. Consequently,
∑

(u1,...,uk)∈{0,1}k

(−1)u1+···+uk · g(yu1
1 , . . . , yuk

k ) =
∑

(u1,...,uk)∈{0,1}k

(−1)u1+···+ukg(y1 ⊕ u1, . . . , yk ⊕ uk).

By letting vi = yi ⊕ ui, the last sum becomes

(−1)y1+···+yk
∑

(v1,...,vk)∈{0,1}k

(−1)v1+···+vkg(v1, . . . , vk) = (−1)y1+···+yk
∑

(v1,...,vk)∈S

(−1)v1+···+vk

= (−1)y1+···+yk(|S0| − |S1|).

This is either |S0| − |S1| or |S1| − |S0|, depending on the parity of y1 + y2 + · · · + yk. Among all
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tuples (y1, y2, . . . , yk), exactly half of them have even parity. As a result,

Ey0
1 ,...y0

k

y1
1 ,...,y1

k

[

ω
a

P

u∈{0,1}k (−1)u1+···+uk ·g(y
u1
1 ,...,y

uk
k )
]

= (1 − 1

2k
) +

ωa(|S0|−|S1|) + ωa(|S1|−|S0|)

2k+1

= (1 − 1

2k
) +

Re(ωa(|S0|−|S1|))
2k

= 1 − 1 − cos
(

2π
m · a(|S0| − |S1|)

)

2k

= 1 − 2 sin2(a(|S0| − |S1|)π/m)

2k
.

Becausem and |S0|−|S1| are coprime, a(|S0|−|S1|)π/m is not a multiple of π, for 1 ≤ a ≤ m−1.
So sin2(a(|S0| − |S1|)π/m) ≥ sin2(π/m) ≥ 4/m2. (Here we use the fact that sin(x) ≥ 2x/π for
0 ≤ x ≤ π/2.) Thus,

EU (EXPa,0
m ◦ g) ≤

(

1 − 8

m22k

)n ≤ 1

e8n/(m22k)
.

3.3 MAJ ◦ g

For each n ≥ 1, the majority function MAJn : {0, 1}n → {−1, 1} is defined as MAJn(y1, . . . , yn) = −1
if and only if

∑

i yi ≥ n/2. When no confusion arises we will drop the supercript n from MAJn. It
is not difficult to show that the MAJ ◦ g functions are the hardest among the functions of the form
SYM ◦ g:

Proposition 3.7. Let g : {0, 1}k → {0, 1} be a boolean function and f : {0, 1}n → {−1, 1} be a symmetric
function on n variables. For any ǫ ≥ 0,

R
ǫ′

k (f ◦ g) ≤ R
ǫ
k(MAJ

2n ◦ g) · ⌈log(n + 1)⌉ ,

where ǫ′ = ǫ ⌈log(n + 1)⌉.

Proof. If g is constant, the statement clearly holds. We assume g is not constant in the following.
By a binary search strategy we will show how to use a communication protocol for MAJ2n ◦ g to
compute a function f ◦ g. Let Π2n be a randomized protocol with cost c computing MAJ2n ◦ g with
error ǫ. We are going to use this protocol to build a protocol that determines the number, w, of
ones in {g(x1,1, . . . , xk,1), . . . , g(x1,n, . . . , gk,n)}. Since f is symmetric, f ◦ g(x1, . . . , xk) can then be
computed from w without communication.

The binary search algorithm for computing w proceeds in stages. During the search we main-
tain the condition that w ∈ [ℓ, u] for some interval [ℓ, u] whose length is halved after each stage.
Initially, ℓ = 0 and u = n. Suppose that at some stagewe have ℓ ≤ w ≤ u. In order to determine the
values ℓ′, u′ for the next stage, we will determine whether w ≤

⌊

ℓ+u
2

⌋

or not. Then, if w ≤
⌊

ℓ+u
2

⌋

,

we set ℓ′ = ℓ and u′ =
⌊

ℓ+u
2

⌋

, otherwise we set ℓ′ =
⌊

ℓ+u
2

⌋

+ 1 and u′ = u. Clearly, it takes at most
⌈log(n + 1)⌉ stages to arrive at the exact value of w.

Players use a protocol for MAJ2n ◦ g to compare w and
⌊

ℓ+u
2

⌋

as follows. As g is not constant,
we can define auxiliary input variables x′

1, . . . , x
′
k, all of which are bit strings of length n, such

that the number of ones in g(x′
1,1, . . . , x

′
k,1), . . . , g(x′

1,n, . . . , x′
k,n) is exactly n−

⌊

ℓ+u
2

⌋

. Now run the
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protocol for MAJ2n ◦ g on the input x1x
′
1, . . . , xkx

′
k, where each xix

′
i is a 2n-bit string obtained by

concatenating xi and x′
i. Clearly the output of this protocol tells us whehter w ≤

⌊

ℓ+u
2

⌋

or not.

We now analyze the error and communication cost of this protocol. Since there are ⌈log(n + 1)⌉
stages, the total cost is at most ⌈log(n + 1)⌉ times the cost for the majority protocol. Also, by a
union bound, the protocol makes an error with probability at most ⌈log(n + 1)⌉ · ǫ.

We can combine Proposition 3.7 with our lower bounds for MODm ◦ g functions (Theorem 3.4)
to obtain a characterization for the communication complexity of MAJ ◦ g for every g.

Theorem 3.8. Let g : {0, 1}k → {0, 1} be a boolean function and S = {y ∈ {0, 1}k : g(y) = 1} be
its support. Define S0 = {y ∈ S : y has even weight} and S1 = {y ∈ S : y has odd weight}. Then the
function MAJ ◦ g satisfies the following:

• If |S0| = |S1|, then D
||
k(MAJn ◦ g) ≤ k · ⌈log(n + 1)⌉.

• Otherwise, R
1/3
k (MAJn ◦ g) ≥ Ω

(

n
(k log k)2·4k log n log log n

)

.

Proof. The case where |S0| = |S1| follows from Fact 3.3 by setting m = n + 1.

Now consider the case where |S0| 6= |S1|. We use Proposition 3.7 to prove a lower bound on
the randomized communication complexity of MAJ2n ◦ g. Observe that for some large enough
constant c,

∏

p≤ck log k:p prime p > 2k ≥ ||S0| − |S1|| because there are at least k primes in the set

{2, 3, . . . , ck log k}. Thus, there exists a prime m ≤ ck log k that does not divide |S0| − |S1|. Now
applying Proposition 3.7 with ǫ = 1

3⌈log(n+1)⌉ , together with Theorem 3.4, and also using m ≤
k log k and k ≤ log n, we get

R
ǫ
k(MAJ

2n ◦ g) ≥ R
1/3
k (MODm ◦ g)/ ⌈log(n + 1)⌉ ≥ Ω

(

n

(k log k)2 · 4k log n
− log log n

)

.

By a standard boosting argument we have

R
1/3
k (MAJ

2n ◦ g) ≥ Ω

(

n

(k log k)2 · 4k log n log log n

)

.

Finally, since MAJ2n+1 ◦ g is at least as hard as MAJ2n ◦ g, we obtain the desired result.

To illustrate the above theorem, we apply it to some natural choices of inner functions g. Let
THRt(y1, . . . , yk) = 1 if

∑

yi ≥ t and THRt(y1, . . . , yk) = 0 otherwise. If g is the threshold function
THRt for some 0 < t < n, then it is simple to show that MAJ◦THRt is always a hard function as long
as the number of players is at most ≈ 1/2 log n. The functions MAJ ◦ MODm exhibit an interesting
behaviour: For even m, the function MAJ ◦ MODm is always hard as long as the number of players
is at most ≈ 1/2 log n. By contrast, for odd m, it has an efficient protocol for some values of k,
namely when k is an odd multiple of m.

Theorem 3.8 can also be used to determine the communication complexity of a class of func-
tions considered by Babai et al. [BGKL03]. For an odd prime k, define the function QCSBk :
{0, 1}k → {0, 1} by QCSBk(y1, . . . , yk) = 1 if and only if y1 + · · ·+ yk is a quadratic residue modulo
k. Recall that z ∈ Fk is a quadratic residue if there exists a ∈ Fk such that z = a2. The authors of
[BGKL03] prove that QCSBk is not ‘compressible’, so their protocol for k > 1+log n does not apply
for SYM ◦ QCSBk. They leave as an open question the problem of finding good upper or lower
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bounds for the communication complexity of the function MAJ ◦ QCSBk. The following corollary
completely determines the hardness of this function for any number of players k, except in the
range between≈ 1/2 log n and log n.

Corollary 3.9. Let k be an odd prime.

• If k ≡ 1 mod 4, then D
||
k(MAJ ◦ QCSBk) ≤ O(k log n).

• If k ≡ 3 mod 4, then R
1/3
k (MAJ ◦ QCSBk) ≥ Ω

(

n
(k log k)24k log n log log n

)

.

• If k > 1 + log n, then D
||
k(MAJ ◦ QCSBk) ≤ O(log3 n).

Proof. Let S be the support of QCSBk and define S0 and S1 as in Theorem 3.8. It is known that
when k ≡ 1 mod 4, z ∈ {0, . . . , k − 1} is a quadratic residue modulo k if and only if −z ≡ k − z
mod k is a quadratic residue modulo k; see e.g., [Sho09, Theorem 2.21]. As k is odd, z is even if
and only if k − z is odd. In other words, the function (y1, . . . , yk) 7→ (1 − y1, . . . , 1 − yk) defines
a bijection between S0 and S1. Thus, |S0| = |S1| whenever k ≡ 1 mod 4. Otherwise, if k ≡ 3
mod 4, then the number |S| of quadratic residues modulo k is odd; see e.g., [Sho09, Theorem 2.20].
This implies that |S0| 6= |S1|. For k > 1 + log n, we can use Theorem 3.2.

3.4 NOR ◦ g

In this section, we obtain a simple and perhaps surprising characterization for the k-player ran-
domized communication complexity of NOR ◦ g, where NOR(y1, . . . , yn) = −1 iff (y1, . . . , yn) =
(0, . . . , 0). In a very recent paper, Sherstov significantly improves on the bounds of [LS09],[CA08]
and [BHN09] on the multiparty bounded error communication complexity of disjointness:

Theorem 3.10 ([She11]).

R
1/3
k (DISJ) ≥ Ω

( n

4k

)1/4
.

First we observe that the above lower bound for disjointness applies - via a simple reduction -
to NOR ◦ g where g’s support size is 1. We complement this with an efficient randomized protocol
for NOR ◦ g when g’s support size is more than one.

Theorem 3.11. Let g : {0, 1}k → {0, 1} be a boolean function and S = {y ∈ {0, 1}k : g(y) = 1} be its
support. For some constant ǫ < 1/2,

• If |S| = 1, R
1/3
k (NOR ◦ g) ≥ Ω

(

n
4k

)1/4
,

• Otherwise, Rǫ
k(NOR ◦ g) ≤ O(k).

Proof. For the first part, let S = {v}with v ∈ {0, 1}k . Then, we can solve NOR ◦AND on input X by
first flipping all the input bits of the rows i for which vi = 0 and then run a protocol for NOR ◦ g.
The lower bound then follows from Theorem 3.10.

For the upper bound, first assume that |S| is even. In this case, by Corollary 3.6, we have a
deterministic protocol Π for MOD2 ◦g of cost k. We will use this protocol Π as a subroutine to com-
pute NOR ◦g. As before, denote by X the k×n dimensional matrix representing the input. Denote
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by Xr a random matrix obtained from X by deleting every column independently with probabil-
ity 1/2. The players can agree on Xr without any communication using their public random bits.
We output −1 if Π(Xr) = −1 and output 1 otherwise.

Observe that if NOR ◦ g(X) = −1, then NOR ◦ g(Xr) = −1, and so MOD2 ◦ g(Xr) = −1. In
this case our protocol does not make an error. If NOR ◦ g(X) = 1, then the bit string g(X) is not
the all-zero string and thus the parity of a random subset is uniformly distributed on {0, 1}, i.e.,
MOD2 ◦ g(Xr) = 1 with probability 1/2. So in this case, the error probability is 1/2. Repeating this
protocol t times would reduce the error probability to 1/2t.

Now assume |S| is odd and greater than 1. Divide S into two non-disjoint parts S1 and S2

of even size each. Let g1 be the boolean function with support S1 and g2 be the boolean function
with support S2. Observe that NOR ◦ g(X) = −1 if and only if both NOR ◦ g1(X) = −1 and
NOR ◦ g2(X) = −1. Since we covered the case of even support size, we are done.

4 Upper bounds on coloring numbers for corners

Recall from Section 1.1 the definitions of the Ramsey numbers c∠

k (N), c∠

k (G), r∠

k (N), r∠

k (G), and
the functions EXACTN and EVALG, where G is an Abelian group.

First, we state a result by Chandra, Furst and Lipton that connects multiparty communication
complexity with coloring numbers for corners:

Lemma 4.1 ([CFL83]).

log

(

c∠

k

(⌈

N − 1

k

⌉))

≤ Dk+1(EXACTN ) ≤ k + log(c∠

k (N)).

As observed in [BGG06], such a connection, with essentially the same proof, also holds for the
EVALG function. We provide a proof in the Appendix.

Lemma 4.2.

log(c∠

k (G)) ≤ Dk+1(EVALG) ≤ k + log(c∠

k (G)).

4.1 Finite field setting

In Section 3.1, we presented a protocol for functions of the form SYM◦g. Observe that EVALFn
2
can

be written as NOR ◦ XOR and therefore the protocol described in Theorem 3.2 works for EVALFn
2
.

Using Lemma 4.2, we get an upper bound on c∠

k (Fn
2 ), and this in return gives a lower bound on

r∠

k (Fn
2 ). The bounds below are obtained using the remark made right after the proof of Theorem

3.2.

Corollary 4.3. Let N = 2n. For any k,

c∠

k (Fn
2 ) ≤ 16N1/2k−1

logk+2 N.

In particular, when k > log n,
c∠

k (Fn
2 ) ≤ 32(log N)3+log log N .
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The coloring above does not give an explicit large set that does not contain a corner. Below,
we provide such an explicit set with a simple description that is inspired from the protocol of
Theorem 3.2.

For X = (x1, . . . , xk) ∈ (Fn
2 )k, we denote by ni(X) the number of columns ofX with Hamming

weight i, i.e. ni(X) = |{j ∈ {1, . . . , n} :
∑k

ℓ=1 Xℓ,j = i}|, where the sum
∑k

ℓ=1 Xℓ,j should be

understood as an operation over the integers. Let Ni =

⌊

(k
i)

2k−1
n

⌋

for i ∈ {1, . . . , k − 1} and Nk =

n −∑k−1
i=1 Ni and

Sk =
{

X ∈ (Fn
2 )k : ∀i ∈ {1, . . . , k}, ni(X) = Ni

}

. (10)

Observe that this implies that for all X ∈ Sk, n0(X) = 0 and ni(X) ≥ 1 for i ∈ {1, . . . , k}.
Theorem 4.4. Let n ≥ 2 and 2 ≤ k ≤ ⌈log n⌉, and let N = 2n. The set Sk defined above does not contain
a corner, and

|Sk| ≥ Ck
Nk

N− log(1−2−k) logk/2 N

where Ck only depends on k. For k = ⌈log n⌉,

|Sk| ≥ Nk

(log N)C log log N
.

for some constant C > 0.

Proof. We first prove that Sk does not contain a corner. This part of the proof does not make use
of the particular values chosen for Ni, in fact we prove that Sk as defined in (10) does not contain
a corner for any choice of N1, . . . , Nk satisfying

∑

i Ni = n. Recall that n0(X) = 0 for all X ∈ Sk,
and this is crucial for the argument. Assume that there exists X ∈ Sk and non-zero λ ∈ F

n
2 such

that for all ℓ ∈ {1, . . . , k}, X + λℓ ∈ Sk where λℓ ∈ (Fn
2 )k is zero except for the ℓ-th row where it is

equal to λ. Consider the columns of X corresponding to indices j such that λj = 1. Let t denote
the minimum Hamming weight among these columns. Note that t > 0. By the minimality of t,
the columns of X with Hamming weight t − 1 remain intact in X + λℓ for all ℓ ∈ {1, . . . , k}. So
nt−1(X + λℓ) ≥ nt−1(X) = Nt−1 for every ℓ. On the other hand, observe that by the choice of t,
there is some ℓ′ such that nt−1(X + λℓ′) > nt−1(X). This is a contradiction.

We nowmove on to estimate the size of Sk. The values of Ni were picked so that Sk is as large
as possible while keeping the size estimation simple. We will prove generally that for any k ≥ 2,

|Sk| ≥ (2k − 1)n · 1

nk/2
· 1

2

e−2k−2k2

√
2π

k−1
(1 + k)

.

Then, to obtain the advertised bound, we write

(2k − 1)n ≥ (2n)k(1 − 2−k)n =
Nk

N− log(1−2−k)
,

andwe defineCk = 1
2

e−2k−2k2

√
2π

k−1
(1+k)

. To obtain the bound for k = ⌈log n⌉, we observe thatN− log(1−2−k) ≤
(1 − 1/n)−n ≤ 4.

We use Stirling’s approximation: for all n ≥ 1
(n

e

)n √
2πn ≤ n! ≤ e ·

(n

e

)n √
2πn.
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We define the reals αi such that ni = αi

2k−1
n. Note that αi ≤

(k
i

)

for all i ∈ {1, . . . , k − 1} and

nk ≤ 1
2k−1

n + k so that αk ≤ 1 + 2k−1
n k.

|Sk| =

(

n

n1 n2 · · · nk

)

·
(

k

1

)n1

· · ·
(

k

k

)nk

≥
(

n
e

)n √
2πn

ek (n1e−1)n1 · · · (nke−1)nk
√

(2π)kn1 · · ·nk

·
(

k

1

)n1

· · ·
(

k

k

)nk

≥
(

n
e

)n √
2πn

ek
(

α1

2k−1
ne−1

)n1

· · ·
(

αk

2k−1
ne−1

)nk √

(2π)kn1 . . . nk

·
(

k

1

)n1

· · ·
(

k

k

)nk

≥ (2k − 1)n
√

2πn

ekαnk
k

√

(2π)kn1 . . . nk

.

Observe that

αnk
k ≤

(

1 +
(2k − 1)k

n

)

n

2k−1
+k

≤ ek+2k2
,

where we used the fact that (2k − 1)/n ≤ 2 as k ≤ ⌈log n⌉. Moreover,

n1 · · ·nk ≤
(k
1

)

· · ·
(k−1

k

)

(1 + k)

(2k − 1)k
nk ≤ 2k2 · (1 + k)nk

(2k − 1)k
,

which gives the desired bound.

4.2 An explicit O(
√

n)-protocol for EXACTN for 3 players

Using an elegant argument, Behrend [Beh46] shows that for any N sufficiently large, there is a
subset of [N ] = {1, 2, . . . , N} of size at least

Ω

(

N

2
√

8 log N (log N)1/4

)

(11)

that does not contain any (nontrivial) 3-term arithmetic progressions. We observe that Behrend’s
argument can actually be made to give an explicit coloring of [N ] using at most

2
√

8 log N (2 log N)1/2 (12)

colors such that there is nomonochromatic 3-term arithmetic progression. Furthermore, Behrend’s
argument also shows that in our coloring there is a color class of the size stated in (11). This
coloring will be used to obtain an explicit protocol for EXACTN for three players.

Note that Behrend’s result has been used in [CFL83] to show the existence of a O(
√

n)-cost pro-
tocol for the EXACTN function for three players. In fact, the large set which exists by Behrend’s
argument gives a large subset of [N ] × [N ] that does not contain a corner. Then a probabilistic ar-
gument shows that with high probability, a sufficiently large number of translations of this subset
will cover the whole space [N ] × [N ]. Each of these translations is colored by a distinct color, and
this shows the existence of a protocol of cost O(

√
n).
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Our observation shows that we can bypass the probabilistic step above. Moreover, the explicit
protocol we obtain might give insight into how three players can cooperatively offer a much more
efficient protocol than two players. Note also that the recent improvements on Behrend’s result
[Elk10, GW08, O’B11] only give a large set without a corner; to show the existence of a coloring,
and hence of a protocol, one may have to use the probabilistic argument as in [CFL83]. So these
do not give a protocol more efficient than the protocol presented below.

Let m and d be some parameters to be determined later. The first step is as in [Beh46]: for each
x ∈ [N ] we write x − 1 in base (2m) as

x − 1 = x0 + x1(2m) + x2(2m)2 + . . . + xd−1(2m)d−1, (13)

where 0 ≤ xi < 2m for 0 ≤ i < d. Then, our coloring for [N ] is as follows. Define S(x) to be the
subset of indices i such that xi < m, and define

t(x) =
(

∑

j∈S(x)

x2
j

)

+
(

∑

j 6∈S(x)

(xj − m)2
)

.

Now we color x with the pair (S(x), t(x)).

Lemma 4.5. In the above coloring of [N ] there is no monochromatic 3-term arithmetic progression. More-

over, for d =
√

2 log N andm = 2

q

1
2

log N−1
, the total number of colors needed is at most 2

√
8 log N (2 log N)1/2.

Proof. The fact that there is no monochromatic 3-term arithmetic progression can be seen as fol-
lows. Suppose that x, y, z have the same color, and that x + y = 2z. First, since x, y, z have the
same color, we have

S(x) = S(y) = S(z).

From this and the hypothesis that x+y = 2z, we can prove by reverse induction on i that xi +yi =
2zi, for all 0 ≤ i < d. From this it follows that x2

i +y2
i ≥ 2z2

i and (xi −m)2 +(yi −m)2 ≥ 2(zi −m)2,
and equality holds if and only if xi = yi = zi. As a result, t(x) + t(y) ≥ 2t(z), and equality holds if
and only if x = y = z. Now because x, y, z have the same color,

t(x) = t(y) = t(z),

so equality does indeed hold. It follows that x = y = z. This shows that there is nomonochromatic
(nontrivial) 3-term arithmetic progression.

Now the total number of colors is at most 2d(d(m − 1)2 + 1), because there are 2d possible sets
S(x), and t(x) ≤ d(m−1)2. So for the values of d and m given in the lemma, it is easy to verify that
the total number of colors needed is as stated in (12). Also, with this setting of the parameters, the
analysis in [Beh46] shows that there is a color class of size given in (11).

Note that the above setting of the parameters is optimal for the total number of colors needed
in our coloring. This is because we need (2m)d ≥ N in order to write N − 1 as in (13). This setting
is also optimal for Behrend’s analysis.

By a standard argument, i.e., mapping each (x, y) ∈ [N ]2 to x + 2y, we can exhibit an explicit
coloring of [N ]2 without a monochromatic corner. Here we will use this to describe an explicit
O(

√
n)-protocol for the 3 player communication problem EXACT2n . Recall that in this problem

there are three players: Alice, Bob, and Charlie, with inputs x, y, z (0 ≤ x, y, z ≤ 2n) respectively
on their foreheads. The players want to determine whether x + y + z = 2n.
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Our protocol is obtained by combining the above explicit coloring and the argument from
[CFL83] (that shows how to obtain a protocol from a coloring, as in the proof of Lemma 4.2). It is
based on the following observation. Let

x′ = 2n + y − z, y′ = 2n+1 − x − 2z, z′ = x + 2y.

Then y′ + z′ = 2x′, i.e. y′, x′, z′ form a 3-term arithmetic progression. Moreover, x + y + z = 2n

if and only if x′ = y′ = z′. In addition, x′, y′, and z′ can be computed by Alice, Bob, and Charlie,
respectively, without any communication.

The Protocol:

• Alice sends the color of x′;

• Bob and Charlie send one bit each indicating whether y′ and z′ have the same color as x′;

• The players conclude that x + y + z = 2n if and only if x′, y′, z′ have the same color.

Here the colors of x′, y′, z′ are determined as above, but note that x′, y′, z′ ∈ [2N ]. So we set

d =
√

2(n + 1) and m = 2
√

(n+1)/2. The cost of the protocol is at most

2 +
⌈

log(2ddm2)
⌉

≤ 2
√

2(n + 1) +
1

2
log(n + 1) + 4.

5 Open problems

There are many interesting open problems related to the topics studied in this paper. We state here
a few of them.

The most natural direction to pursue is determining the communication complexity of f ◦g for
other natural functions f . For example, characterizing the communication complexity of THRt ◦ g
for all t and g would be quite interesting.

Getting good bounds on c∠

k (G) and r∠

k (G) is a major challenge. Can one make progress on
this using the connection with communication complexity? Observe that EVALG has O(1) com-
plexity in the randomized model as it reduces to the 2 player EQUALITY function, which is the
canonical example of a function with a very efficient randomized protocol. Hence, to show a good
lower bound on Dk(EVALG), one needs to use a lower bound technique that does not apply to
randomized protocols. So far, the only strong lower bound technique we have in the NOF model
is the discrepancy method (and its extension called the generalized discrepancy method) which
proves lower bounds for the randomized model. It is a major open problem in the NOF model to
exhibit an explicit function which is easy in the randomized model but hard in the deterministic
model, even for 3 players5. The EVALG function is of course a natural candidate. Can we develop
new lower bound techniques that work only for the deterministic model?

Chandra, Furst and Lipton [CFL83] showed that the EXACTN function for 3 players has an
O(

√
n)-cost protocol. Our protocol for EVALF

n
2
has cost Θ(n) when k is a constant, but it has cost

5It is proved in [BDPW10], by a clever counting argument, that such functions exist.
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O(log2 n) when k ≥ log n. Does EXACTN have an efficient protocol for log n many players? Is it
possible to get a o(n) cost protocol for EVALFn

2
for 3 players? We suspect that the answer to the

latter question is no.

Our protocol for EVALFn
2
does not work for EVALFn

3
. Can one get a similar bound for EVALFn

3
,

and for EVALFn
p
in general? The complexity of EVALG for other G is also interesting to study.
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[BKL95] László Babai, Peter G. Kimmel, and Satyanarayana V. Lokam. Simultaneousmessages
vs. communication. In In 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 361–372. Springer, 1995.
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Appendix

Proof of Lemma 4.2

Upper bound: Fix a coloring of Gk with c∠

k (G) colors so that there is no monochromatic corner.
Denote the players’ input by x1, . . . , xk+1. For i = 1, . . . , k, define x′

i = −∑j 6=i xj , where the ad-
dition represents the operation of the group. Observe that EVALG(x1, . . . , xk+1) = 1 if and only if
xi = x′

i for all i = 1, . . . , k. Now, for i = 1, . . . , k, Player i computes the color of (x1, . . . , x
′
i, . . . , xk).

Player k + 1 computes the color of (x1, . . . , xk). One player announces her color and the rest
compare it with their color. If the colors are the same, they accept. Otherwise they reject. If
EVALG(x1, . . . , xk+1) = 1 then obviously all the colors are the same. If EVALG(x1, . . . , xk+1) = 0,
then setting z = −∑n

j=1 xi, we have x′
i = xi + z for all i ∈ {1, . . . , n}. Thus the k + 1 points that
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the players compute the colors for form a corner. By assumption, this corner is not monochro-
matic and the correctness of the protocols follows. The number of bits communicated is clearly as
advertised.

Lower bound: Let c be the cost of an optimal (k + 1)-party protocol for EVALG. We will color
Gk with 2c colors so that no corner is monochromatic. The coloring is as follows. We know the
protocol partitions the input space Gk+1 into at most 2c cylinder intersectionsC1, C2, . . . , C2c , each
of which has the same value with respect to EVALG’s output. We color a point (x1, . . . , xk) in Gk

with the label of the cylinder intersection that contains (x1, . . . , xk,−(x1 + · · ·+ xk)). To show that
this is indeed a legal coloring, suppose there is a corner which is monochromatic:

(x1, x2, . . . , xk),

(x1 + λ, x2, . . . , xk),

(x1, x2 + λ, . . . , xk),

...

(x1, x2, . . . , xk + λ).

These are colored respectively with the colors of

(x1, x2, . . . , xk,−(x1 + · · · + xk) − λ + λ),

(x1 + λ, x2, . . . , xk,−(x1 + · · · + xk) − λ),

(x1, x2 + λ, . . . , xk,−(x1 + · · · + xk) − λ),

...

(x1, x2, . . . , xk + λ,−(x1 + · · · + xk) − λ).

This is a star, contained in a cylinder intersectionwith value 1, and its center is (x1, x2, . . . , xk,−(x1+
· · · + xk) − λ). Hence the center must also be in the same cylinder intersection and must have the
value 1. But this is not true since the sum of the coordinates is λ which is non-zero by definition.
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