
Improved Lower Bounds for the Shortest

Superstring and Related Problems

Marek Karpinski∗ Richard Schmied†

Abstract

We study the approximation hardness of the Shortest Superstring, the
Maximal Compression and the Maximum Asymmetric Traveling Salesperson
(MAX-ATSP) problem. We introduce a new reduction method that produces
strongly restricted instances of the Shortest Superstring problem, in which
the maximal orbit size is eight (with no character appearing more than eight
times) and all given strings having length at most six. Based on this reduction
method, we are able to improve the best up to now known approximation
lower bound for the Shortest Superstring problem and the Maximal Compres-
sion problem by an order of magnitude. The results imply also an improved
approximation lower bound for the MAX-ATSP problem.

1 Introduction

In the Shortest Superstring problem, we are given a finite set S of strings and
we would like to construct their shortest superstring, which is the shortest possible
string such that every string in S is a proper substring of it.

The task of computing a shortest common superstring appears in a wide va-
riety of application related to computational biology (see. e.g. [L88] and [L90]).
Intuitively, short superstrings preserve important biological structure and are good
models of the original DNA sequence. In context of computational biology, DNA
sequencing is the important task of determining the sequence of nucleotides in a
molecule of DNA. The DNA can be seen as a double-stranded sequence of four
types of nucleotides represented by the alphabet {a, c, g, t}. Identifying those
strings for different molecules is an important step towards understanding the
biological functions of the molecules. However, with current laboratory methods,
it is quite impossible to extract a long molecule directly as a whole. In fact, bio-
chemists split millions of identical molecules into pieces each typically containing
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at most 500 nucleotides. Then, from sometimes millions of these fragments, one
has to compute the superstring representing the whole molecule.

From the computational point of view, the Shortest Superstring problem is an
optimization problem, which consists of finding a minimum length superstring for
a given set S of strings over a finite alphabet Σ. The underlying decision version
was proved to be NP-complete [MS77]. However, there are many applications
that involve relatively simple classes of strings. Motivated by those applications,
many authors have investigated whether the Shortest Superstring problem be-
comes polynomial time solvable under various restrictions to the set of instances.
Gallant et al. [GMS80] proved that this problem in the exact setting is still NP-
complete for strings of length three and polynomial time solvable for strings of
length two. On the other hand, Timkovskii [T90] studied the Shortest Superstring
problem under restrictions to the orbit size of the letters in Σ. The orbit size of a
letter is the number of its occurrences in the strings of S. Timkovskii proved that
this problem restricted to instances with maximal orbit size two is polynomial time
solvable. He raised the question about the status of the problem with maximal or-
bit size k for any constant k ≥ 3. It is known that the Shortest Superstring problem
remains NP-hard for the following strongly restricted instances, such as

(i) all strings have length four and the maximal orbit size is six [M94],

(ii) the size of the alphabet of the instance is exactly two [GMS80], and

(iii) all strings are of the form 10p10q, whereby p, q ∈ N [M98].

In order to cope with the exact computation intractability, approximation algo-
rithms were designed to deal with this problem. The first polynomial time ap-
proximation algorithm with a constant approximation ratio was given by Blum et
al. [BJL+94]. It achieves an approximation ratio 3. This factor was improved in
a series of papers yielding approximation ratios of 2.88 by Teng and Yao [TT93];
2.83 by Czumaj et al. [CGP+94]; 2.79 by Kosaraju, Park, and Stein [KPS94]; 2.75 by
Armen and Stein [AS95]; 2.67 by Armen and Stein [AS98] and 2.596 by Breslauer,
Jiang, and Jiang [BJJ97]. The currently best known approximation algorithm is
due to Sweedyk [S99] and yields an approximation ratio of 2.5.

On the lower bound side, Blum et al. [BJL+94] proved that approximating the
Shortest Superstring problem is APX-hard. However, the constructed reduction
produces instances with arbitrarily large alphabets. In [O99], Ott provided the
first explicit approximation hardness result and proved that the problem is APX-
hard even if the size of the alphabet is two. In fact, Ott proved that instances
over a binary alphabet are NP-hard to approximate with an approximation
ratio 17246

17245
(1.000057) − ǫ for every ǫ > 0. In 2005, Vassilevska [V05] established

an improved approximation lower bound of 1217

1216
(1.00082) by using a natural

construction. The instances constructed in [V05] have a special structure. More
precisely, Vassilevska proved that there are instances of the Shortest Superstring
problem with maximal orbit size 20 such that approximating these instances with
less than 1217

1216
(1.00082) is NP-hard. In this paper, we prove that even instances

of the Shortest Superstring problem with maximal orbit size 8 are NP-hard to
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approximate with less than 345

344
(1.0029).

Maximal Compression problem. We are given a collection of strings
S = {s1, . . . , sn}. The task is to find a superstring for S with maximum com-
pression, which is the difference between the sum of the lengths of the given
strings and the length of the superstring.

In the exact setting, an optimal solution to the Shortest Superstring problem
is an optimal solution to this problem, but the approximate solutions can differ
significantly in the sense of approximation ratio. The Maximal Compression prob-
lem arises in various data compression problems (cf. [SS82], [S88] and [MJ75]).
The decision version of this problem is NP-complete [MS77]. Tarhio and Ukko-
nen [TU88] and Turner [T89] gave approximation algorithms with approximation
ratio 2. The best known approximation upper bound is 1.5 [KLS+05] by reducing
it to the MAX-ATSP problem, which is defined below.

On the approximation lower bound side, Blum et al. [BJL+94] proved the
APX-hardness of the Maximal Compression problem. The first explicit approx-
imation lower bounds were given by Ott [O99], who proved that it is NP-hard
to approximate this problem with an approximation factor 11217

11216
(1.000089) − ǫ for

every ǫ > 0. This hardness result was improved by Vassilevska [V05] implying
a lower bound of 1072

1071
(1.00093) − ǫ for any ǫ > 0, unless P = NP. In this

paper, we prove that approximating the Maximal Compression problem with an
approximation ratio less than 207

206
(1.0048) is NP-hard.

Maximum Asymmetric Traveling Salesperson (MAX-ATSP) problem. We
are given a complete directed graph G and a weight function w assigning each
edge of G a nonnegative weight. The task is to find a closed tour of maximum
weight visiting every vertex of G exactly once .

This problem has various applications and in fact, a good approximation al-
gorithm for MAX-ATSP yields a good approximation algorithm for many other
optimization problems such as the Shortest Superstring problem, the Maximum
Compression problem and the Minimum Asymmetric (1,2)-Traveling Salesperson
(MIN-(1,2)-ATSP) problem. The latter problem is the restricted version of the Min-
imum Asymmetric Traveling Salesperson problem, in which we restrict the weight
functionw to weights one and two. The MAX-ATSP problem can be seen as a gener-
alization of the MIN-(1,2)-ATSP problem in the sense that any ( 1

α
)-approximation

algorithm for the former problem transforms in a (2 − α)- approximation algo-
rithm for the latter problem. Due to this reduction, all negative results concerning
the approximation of the MIN-(1,2)-ATSP problem imply hardness results for the
MAX-ATSP problem. Since MIN-(1,2)-ATSP is APX-hard [PY93], there is little
hope for polynomial time approximation algorithms with arbitrary good precision
for the MAX-ATSP problem. On the other hand, the first approximation algorithm
for the MAX-ATSP problem with guaranteed approximation performance is due to
Fisher, Nemhauser, and Wolsey [FNW79] and achieves an approximation factor
of 2. After that Kosaraju, Park, and Stein [KPS94] gave an approximation algo-
rithm for that problem with performance ratio 1.66. This result was improved by
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Bläser [B02] who obtained an approximation upper bound of 1.63. Lewenstein
and Sviridenko [LS03] were able to improve the approximation upper bound for
that problem to 1.60. Then, Kaplan et al. [KLS+05] designed an algorithm for the
MAX-ATSP problem yielding the best known approximation upper bound of 1.50.

On the approximation hardness side, Engebretsen [E99] proved that, for any
ǫ > 0, there is no (2805

2804
− ǫ)-approximation algorithm for MIN-(1,2)-ATSP, unless

P = NP, which yields an approximation lower bound of 2804

2803
(1.00035) − ǫ for

the MAX-ATSP problem. The negative result was improved by Engebretsen and
Karpinski [EK06] to 321

320
(1.0031) − ǫ for the MIN-(1,2)-ATSP problem. It implies

the best known approximation lower bound of 320

319
(1.0031)−ǫ, unless P = NP. In

this paper, we prove that approximating the MAX-ATSP problem with an approxi-
mation ratio less than 207

206
(1.0048) is NP-hard.

2 Preliminaries

In the following, we introduce some notation and abbreviations.

Throughout, for i ∈ N, we use the abbreviation [i] for the set {1, . . . , i}.
Given an finite alphabet Σ, a string is an element of Σ∗. Given two strings
v = v1⋯vn and w = w1⋯wm over Σ, we define the length of v denoted by ∣v∣ as n.
Furthermore, v is a substring of w, if m ≥ n and there exists a j ∈ {0, .., n −m} such
that for all i ∈ [m], vi = wj+i. w is said to be a superstring of v if v is a substring of
w. Given a set of strings S = {s1, ..., sn} ⊂ Σ∗, a string s ∈ Σ∗ is a superstring for S
if s is a superstring of every si ∈ S. Given a superstring s for S, the compression of
s, denoted as comp(S, s) is defined as

comp(S, s) = ∑
si∈S

∣si∣ − ∣s∣.

In addition, we introduce the notion of the maximal orbit size of S which is given
by

max
a∈Σ
∣{sji ∈ Σ ∣ a = s

j
i , si = s

1

i⋯s
ni

i , si ∈ S}∣.

We are ready to give the definition of the Shortest Superstring problem and the
Maximal Compression problem.

Definition 1. Given an alphabet Σ and a set of strings S = {s1, ..., sn} ⊂ Σ∗ such

that no string in S is a substring of another string in S, in the Shortest Superstring

problem we have to find a string s for S of minimum length, whereas in the Max-

imum Compression problem, we have to find a superstring s for S with maximum

compression.

In the following, we concentrate on the traveling salesperson problems. We begin
with the definition of the MAX-ATSP problem. For this reason, we introduce the
notion of a Hamiltonian tour. Given a directed graph G = (V,A), a Hamiltonian
tour is a cycle in G visiting each vertex of G exactly once.
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Definition 2 (MAX-ATSP). Given a complete directed graph G = (V,A) and a weight

function w assigning each edge of G a nonnegative weight, the MAX-ATSP problem

consists of finding a Hamiltonian tour of maximum weight in G.

Next, we give the definition of the MIN-(1,2)-ATSP problem, which is closely re-
lated to the MAX-ATSP problem.

Definition 3 (MIN-(1,2)-ATSP). In the MIN-(1,2)-ATSP problem, we are given a

complete directed graph G = (V,A) and a weight function w ∶ A → {1,2}. The task is

to find a Hamiltonian tour of minimum weight in G.

3 Related Work

In the following, we present some results related to the problems studied in this
paper. In particular, we describe briefly some reductions, which we use later on.

The following theorem is due to Vassilevska [V05] and deals with best known
approximation lower bounds for the Shortest Superstring problem as well as for
the Maximal Compression problem.

Theorem 1 ([V05]). For any ǫ > 0, it is NP-hard to approximate the Shortest

Superstring problem and the Maximal Compression problem restricted to instances

with equal length strings in polynomial time within a factor of

• 1.00082 − ǫ and

• 1.00093 − ǫ, respectively.

In addition, the maximal orbit size of the constructed instances in [V05] is 20

and all strings have length four. In the same paper, it was proved that the Short-
est Superstring problem is the hardest to approximate on instances over a binary
alphabet.

Theorem 2 ([V05]). Suppose the Shortest Superstring problem can be approximated

by a factor α on instances over a binary alphabet. Then, the Shortest Superstring

problem can be approximated by a factor α on instances over any alphabet.

Given an instance S of the Shortest Superstring problem, consider the associated
weighted complete graph, in which the vertices are represented by the strings in
S and the weight of an edge is given by the the number of maximum overlapped
letters of the corresponding strings. Then, the optimal compression is equivalent
to the weight of a maximum Hamiltonian path. By introducing a special vertex
representing the start and the end of the Hamiltonian cycle, the Maximal Com-
pression problem is equivalent to the MAX-ATSP problem on this graph. This fact
was used in [KLS+05] in order to obtain an improved approximation algorithm for
the Maximal Compression problem.
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Fact 1. An α-approximation algorithm for the MAX-ATSP problem implies an α-

approximation algorithm for the Maximal Compression problem.

Another interesting relation can be derived by replacing all edges with weight two
of an instance of the MIN-(1,2)-ATSP problem by edges of weight zero and then,
computing a Hamiltonian tour of maximum weight. Vishwanathan[V92] proved
that this transformation relates the MIN-(1,2)-ATSP problem to the MAX-ATSP
problem in the following sense.

Theorem 3 ([V92]). An ( 1
α
)- approximation algorithm for the MAX-ATSP problem

implies an (2 − α)- approximation algorithm for the MIN-(1,2)-ATSP problem.

Due to this reduction, every hardness result concerning the MIN-(1,2)-ATSP prob-
lem can be transformed into a hardness result for the MAX-ATSP problem. The
best known approximation lower bound for the MIN-(1,2)-ATSP problem is proved
in [EK06] and it yields the following hardness result .

Theorem 4 ([EK06]). For any constant ǫ > 0, it is NP-hard to approximate the

MIN-(1,2)-ATSP problem with an approximation ratio 1.0031 − ǫ.

According to Theorem 3, it implies the hardness result for the MAX-ATSP problem
stated below.

Corollary 1. For any constant ǫ > 0, it is NP-hard to approximate the MAX-ATSP

problem within 1.0031 − ǫ.

3.1 Hybrid Problem

In their paper on approximation hardness of bounded occurrence instances of sev-
eral combinatorial optimization problems, Berman and Karpinski [BK99] intro-
duced the Hybrid problem and proved that this problem is NP-hard to approxi-
mate with some constant.

Definition 4 (Hybrid problem). Given a system of linear equations mod 2 containing

n variables, m2 equations with exactly two variables, and m3 equations with exactly

three variables, find an assignment to the variables that satisfies as many equations

as possible.

In the aforementioned paper, Berman and Karpinski proved the following hardness
result.

Theorem 5 ([BK99]). For any constant ǫ > 0, there exists instances of the Hybrid

problem with 42ν variables, 60ν equations with exactly two variables, and 2ν equa-

tions with exactly three variables such that:

(i) Each variable occurs exactly three times.

(ii) Either there is an assignment to the variables that leaves at most ǫν equations

unsatisfied, or else every assignment to the variables leaves at least (1 − ǫ)ν
equations unsatisfied.
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(iii) It is NP-hard to decide which of the two cases in item (ii) above holds.

Analyzing the details of their construction, it can be seen that every instance of the
Hybrid problem produced by it has an even more special structure. The equations
containing three variables are of the form x⊕ y ⊕ z = {0,1}. Those equations arise
from the Theorem of Håstad [H01] concerning the hardness of approximating
equations with exactly three variables called the MAX-E3-LIN problem, which can
be seen as a special instance of the Hybrid problem.
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Figure 1: An example of a Hybrid instance with circles Cx, Cy, Cz, and hyperedge
e = {z7, y21, x14}.

For every variable x of the original instance E3 of the MAX-E3-LIN problem, they
introduced a corresponding set of variables Vx. If the variable x occurs tx times in
E3, then, Vx contains 7tx variables x1, . . . , x7tx . Furthermore, the variables in Vx are
connected by equations of the form xi ⊕ xi+1 = 0 with i ∈ [7tx − 1] and x1 ⊕ x7tx = 0.
This construction induces the circle Cx on the variables Vx. In addition to it,
every circle Cx possesses an associated matching Mx. The variables contained in
CVx = {xi ∣ i ∈ {7ν ∣ ν ∈ [tx]}} are called contact variables, whereas the variables in
Vx/CVx are called checker variables.

Let E3 be an instance of the MAX-E3-LIN problem and H be its corresponding
instance of the Hybrid problem. We denote by V (E3) the set of variables which
occur in the instance E3. Then, H can be represented graphically by ∣V (E3)∣ cir-
cles Cx with x ∈ V (E3) containing the variables V (Cx) = {x1, . . . , xnx} as vertices.
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The edges are identified by the equations included in H. The equations with ex-
actly three variables are represented by hyperedges e with cardinality ∣e∣ = 3. The
equations xi ⊕ xi+1 = 0 induce a circle containing the vertices {x1, . . . , xnl} and the
matching equations xi⊕xj = 0 with {i, j} ∈Mx induce a perfect matching on the set
of checker variables. An example of an instance of the Hybrid problem is depicted
in Figure1.

In summary, we notice that there are four type of equations in the Hybrid
problem (i) the circle equations xi ⊕ xi+1 = 0 with i ∈ [7tx − 1], (ii) circle border
equations x1 ⊕ x7tx , (iii) matching equations xi ⊕ xj = 0 with {i, j} ∈Mx, and (iv)
equations with three variables of the form x⊕ y ⊕ z = {0,1}.
In the remainder, we assume that equations of the form x ⊕ y ⊕ z = {0,1} contain
only unnegated variables due to the transformation x̄⊕ y ⊕ z = 0 ≡ x⊕ y ⊕ z = 1.

4 Our Contribution

We now formulate our main result.

Theorem 6. Given an instance H of the Hybrid problem with n circles, m2 equations

with two variables and m3 equations with exactly three variables with the proper-

ties described in Theorem 5, we construct in polynomial time an instance SH of the

Shortest Superstring problem and Maximal Compression problem with the following

properties:

(i) If there exists an assignment φ to the variables of H which leaves at most u

equations unsatisfied, then, there exist a superstring sφ for SH with length at

most ∣sφ∣ = 5m2 + 22m3 + 7n + u.

(ii) From every superstring s for SH with length ∣s∣ = 5m2 + 22m3 + u + 7n, we can

construct in polynomial time an assignment ψs to the variables of H that leaves

at most u equations in H unsatisfied.

(iii) If there exists an assignment φ to the variables of H which leaves at most u

equations unsatisfied, then, there exist a superstring sφ for SH with compression

at least comp(SH, sφ) = 3m2 + 14m3 − u + 5n .

(iv) From every superstring s for SH with compression comp(SH, s) = 3m2 + 14m3 −

u + 5n, we can construct in polynomial time an assignment ψs to the variables

of H that leaves at most u equations in H unsatisfied.

(v) The maximal orbit size of the instance SH is eight and the length of a string in

SH is bounded by six.

The former theorem can be used to derive an explicit approximation lower bound
for the Shortest Superstring problem by reducing instances of the Hybrid problem
of the form described in Theorem 5 to the Shortest Superstring problem.

Corollary 2. For every ǫ > 0, it is NP-hard to approximate the Shortest Superstring

problem with an approximation factor 345

344
(1.0029) − ǫ.
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Proof. First of all, we choose k ∈ N and δ > 0 such that 345−δ
344+δ+ 42

k

≥ 345

344
− ǫ holds.

Given an instance E3 of the MAX-E3-LIN problem, we generate k copies of E3 and
produce an instance H of the Hybrid problem. Then, we construct the correspond-
ing instance SH of the Shortest Superstring problem with the properties described
in Theorem 6. We conclude according to Theorem 5 that there exist a superstring
for SH with length at most

5 ⋅ 60νk + 22 ⋅ 2νk + δνk + 7n ≤ (344 + δ +
7n

kν
)νk ≤ (344 + δ +

7 ⋅ 6

k
)νk

or the length of a superstring for SH is bounded from below by

5 ⋅ 60νk + 22 ⋅ 2νk + (1 − δ)νk + 7n ≥ (344 + (1 − δ))νk ≥ (345 − δ)νk.

From Theorem 5, we know that the two cases above are NP-hard to distinguish.
Hence, for every ǫ > 0, it is NP-hard to find a solution to the Shortest Superstring
problem with an approximation ratio 345−δ

344+δ+ 42

k

≥ 345

344
− ǫ.

Analogously, Theorem 6 can be used to derive an approximation lower bound for
the Maximal Compression problem.

Corollary 3. For every ǫ > 0, it is NP-hard to approximate the Maximal Compression

problem with an approximation factor 207

206
(1.0048) − ǫ.

By applying Fact 1, we obtain the following hardness result for the MAX-ATSP
problem.

Corollary 4. For every ǫ > 0, it is NP-hard to approximate the MAX-ATSP problem

with an approximation factor 207

206
(1.0048) − ǫ.

5 Reduction from the Hybrid Problem

5.1 Main Ideas and Overview

Given an instance of the Hybrid problem H, we want to transform H into an
instance of the Shortest Superstring problem. Fortunately, the special structure
of the linear equations in the Hybrid problem is particularly well-suited for our
reduction, since a part of the equations with two variables form a circle and every
variable occurs exactly three times. For every equation gi+1 ≡ xi ⊕ xi+1 = 0 included
in this circle, we introduce a set S(gi+1) containing two strings, which can be
aligned advantageously in two natural ways. If those fragments corresponding to
two successively following equations xi−1 ⊕ xi = 0 and xi ⊕ xi+1 = 0 use the same
natural alignment, we are able to overlap those fragments by one letter. From a
high level view, we can construct an associated superstring for each circle in H,
which contains the natural aligned strings. In fact, we define for every equation
g ∈ H an associated set of strings S(g) and the corresponding natural alignment.
The instance SH of the Shortest Superstring problem is given by the union of all
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sets S(g). Due to the construction of the sets S(g), there is a particular way to
interpret an alignment of the strings in S(g) included in the resulting superstring
as an assignment to the variables in the Hybrid instance. The major challenge in
the proof of correctness is to prove that every superstring for SH can be interpreted
as an assignment to the variables in the Hybrid instance H with the property that
the number of satisfied equations is connected to the length of the superstring.

5.2 Constructing SH from H

Given an instance of the Hybrid problem H, we are going to construct the
corresponding instance SH of the Shortest Superstring problem. Furthermore, we
introduce some notations and conventions.

For every equation g ∈ H, we define a set S(g) of corresponding strings.
The corresponding instance SH of the Shortest Superstring problem is given by
SH = ⋃

g∈H
S(g). The strings in the set S(g) differ by the type of considered equation

g ∈ H. Let us start with the description of SH. Therefore, we need to specify the
instance of the Hybrid problem more precisely.
Let E3 be an instance of the MAX-E3-LIN problem and H its corresponding
instance of the Hybrid problem with n circles. For every variable x ∈ V (E3), there
is an associated circle Cx. Each circle consists of mx

2
− 1 circle equations gxi+1

with i ∈ [mx
2
− 1], a circle border equation gx

1
≡ x1 ⊕ xmx

2
= 0 and ∣Mx∣ matching

equations gxe with e ∈ Mx. Furthermore, we have m3 equations g3j with exactly
three variables. We are going to specify the sets S(g) differing by the type of
equation g, whereby we distinguish four types of equations contained in H.

(i) circle equations

(ii) matching equations

(iii) circle border equations

(iv) equations with exactly three variables

We begin with the description of the strings corresponding to circle border equa-
tions.

Strings Corresponding to Circle Border Equations

Given an instance of the hybrid problem H, a circle Cx in H and its circle border
equation gx

1
≡ x1 ⊕ xn = 0, we introduce six associated strings, that are all included

in the set S(gx
1
). Due to the construction of the circle Cx, the variable xn is a

contact variable. This means that xn appears in an equation g3j with exactly three
variables. The strings in the set S(gx

1
) differ by the type of equation g3j . We begin

with the case g3j ≡ xn ⊕ y ⊕ z = 0.
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The string LxC l
x is used as the initial part of the superstring corresponding

to this circle, whereas Cr
xRx is used as the end part. Furthermore, we introduce

strings that represent an assignment that sets either the variable x1 to 0 or the
variable xn to 1. The corresponding two strings are

C l
xx

m0

1 xl1nC
r
x and xl1nC

r
xC

l
xx

m0

1 .

Finally, we define the last two strings of the set S(gx
1
)

C l
xx

r1
1 x

m0

n Cr
x and xm0

n Cr
xC

l
xx

r1
1 .

having a similar interpretation. Both pairs of strings can be overlapped by two
letters. Those natural alignments have a crucial influence during the process
of constructing a superstring. For this reason, we introduce a notation for this
alignments. By the 0-alignment of the strings in S(gx

1
), we refer to the following

alignment of the four strings. In the following, (↓) will denote the overlapping of
the strings.

C l
xx

m0

1 xl1nC
r
x and xl1nC

r
xC

l
xx

m0

1 C l
xx

r1
1 x

m0

n Cr
x and xm0

n Cr
xC

l
xx

r1
1 .

↓ ↓

C l
xx

m0

1 xm1

n Cr
xC

l
xx

m0

1 and xl0nC
r
xC

l
xx

r1
1 x

l0
nC

r
x

On the other hand, we the define the 1-alignment of the strings in S(gx
1
) as

follows.

C l
xx

m0

1 xl1nC
r
x and xl1nC

r
xC

l
xx

m0

1 C l
xx

r1
1 x

m0

n Cr
x and xm0

n Cr
xC

l
xx

r1
1 .

↓ ↓

xl1nC
r
xC

l
xx

m0

1 xl1nC
r
x and C l

xx
r1
1 x

m0

n Cr
xC

l
xx

r1
1

Both ways to join the four strings are called simple alignments.

After having described how the strings corresponding to S(gx
1
) in case of

g3j ≡ xn⊕y⊕z = 0 are defined, we are going to deal with the case g3j ≡ xn⊕y⊕z = 1.
As before, we use LxC l

x as the initial part of the superstring corresponding to
this circle, whereas Cr

xRx is used as the end part. Furthermore, we define the
remaining four strings contained in S(gx

1
) by the following.
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C l
xx

m0

1 xm1

n Cr
x xm1

n Cr
xC

l
xx

m0

1

and

C l
xx

r1
1 x

l0
nC

r
x xl0nC

r
xC

l
xx

r1
1

Both pairs of strings can be overlapped by two letters. We introduce a notation
for this alignments.

C l
xx

m0

1 xm1

n Cr
x and xm1

n Cr
xC

l
xx

m0

1 C l
xx

r1
1 x

l0
nC

r
x and xl0nC

r
xC

l
xx

r1
1 .

↓ ↓

C l
xx

m0

1 xm1

n Cr
xC

l
xx

m0

1 and xl0nC
r
xC

l
xx

r1
1 x

l0
nC

r
x

The former introduced alignment is called the 0-alignment of the strings in S(gx
1
).

On the other hand, we the define the 1-alignment of the strings in S(gx
1
) as

follows.

C l
xx

m0

1 xm1

n Cr
x and xm1

n Cr
xC

l
xx

m0

1 C l
xx

r1
1 x

l0
nC

r
x and xl0nC

r
xC

l
xx

r1
1 .

↓ ↓

xm1

n Cr
xC

l
xx

m0

1 xm1

n Cr
x and C l

xx
r1
1 x

l0
nC

r
xC

l
xx

r1
1

In the remainder, we refer to both ways to overlap the four strings as simple

alignments. Next, we describe the strings corresponding to matching equations.

Strings Corresponding to Matching Equations

Let Cx be a circle in H and Mx its associated perfect matching. Let {i, j} be an
edge inMx and gx

{i,j}
≡ xi⊕xj = 0 the associated matching equation. We now define

the corresponding set S(gx
{i,j}
) consisting of two strings, whereby we assume i < j.

Then, we introduce two strings of the form

xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j

corresponding to the matching equation. There are two ways to align those two
strings to obtain an overlap of two letters. In the remainder, we refer to those
alignments as simple.
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xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j

↙ ↘

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j x

l0
j

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i x

l1
i

The first way to overlap the strings is called the 0-alignment, whereas the second
one is called the 1-alignment. Next, we describe the strings corresponding to circle
equations.

Strings Corresponding to Circle Equations

Let Cx be a circle in H and Mx its associated matching. Furthermore, let {i, j} and
{i + 1, j′} be both contained in Mx. We assume that i < j. Then, we introduce the
corresponding strings for xi ⊕ xi+1 = 0. If i + 1 < j′, we have

xm1

i xm1

i+1x
r0
i x

l0
i+1 and xr0i x

l0
i+1x

m1

i xm1

i+1.

Otherwise (i + 1 > j′), we have

xm1

i xl1i+1x
r0
i x

m0

i+1 and xr0i x
m0

i+1x
m1

i xl1i+1.

In case of i > j and i + 1 > j′, we use

xr1i x
l1
i+1x

m0

i xm0

i+1 and xm0

i xm0

i+1x
r1
i x

l1
i+1

Finally, if i > j and i + 1 < j′, we introduce

xr1i x
m1

i+1x
m0

i xl0i+1 and xm0

i xl0i+1x
r1
i x

m1

i+1

Let xi be a variable in H contained in an equation g3j with three variables. We now
define the corresponding strings for the equations xi−1 ⊕ xi = 0 and xi ⊕ xi+1 = 0.
We assume that {i − 1, j} and {i + 1, j′} are both included in Mx. Furthermore, we
assume i − 1 < j and i + 1 < j′. If the equation g3j is of the form xi ⊕ y ⊕ z = 0, we
introduce

xm1

i−1x
r1
i x

r0
i−1x

m0

i and xr0i−1x
m0

i xm1

i−1x
r1
i .

for xi−1 ⊕ xi = 0. Furthermore, for xi ⊕ xi+1 = 0, we use the strings

xl1i x
m1

i+1x
m0

i xl0i+1 and xm0

i xl0i+1x
l1
i x

m1

i+1.

On the other hand, if the equation g3j is of the form xi ⊕ y ⊕ z = 1, we introduce

xm1

i−1x
m1

i xr0i−1x
r0
i and xr0i−1x

r0
i x

m1

i−1x
m1

i .
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corresponding to the equation xi−1 ⊕ xi = 0. For xi ⊕ xi+1 = 0, we use the strings

xm1

i xm1

i+1x
l0
i x

l0
i+1 and xl0i x

l0
i+1x

m1

i xm1

i+1.

Accordingly, we introduce the notation of simple alignments for the strings in
S(gxi+1). For the strings

xm1

i xm1

i+1x
r0
i x

l0
i+1 and xr0i x

l0
i+1x

m1

i xm1

i+1,

we define the following alignments as simple.

xm1

i xm1

i+1x
r0
i xl0

i+1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xm1

i xm1

i+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
i
xl0
i+1

xm1

i
xm1

i+1

xr0i x
l0
i+1x

m1

i xm1

i+1 and

xr0
i xl0

i+1x
m1

i xm1

i+1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0i x

l0
i+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm1

i
xm1

i+1
xr0
i
xl0
i+1

xm1

i xm1

i+1x
r0
i x

l0
i+1

The the former alignment is called the 1-alignment and the latter one is called the
0-alignment. Next, we describe the strings corresponding to equations with three
variables.

Strings Corresponding to Equations with Three Variables

We now concentrate on equations with exactly three variables. Let g3j be an equa-
tion with three variables in H. For every equation g3j , we define two corresponding
sets SA(g3j ) and SB(g3j ), which both contain exactly three strings. Finally, the
set S(g3j ) is defined by the union SA(g3j ) ∪ SB(g3j ). We distinguish whether g3j
is of the form x⊕y⊕z = 1 or x⊕y⊕z = 0. The description starts with the former case.

An equation of the form x ⊕ y ⊕ z = 0 is represented by SA(g3j ) containing
the strings

xr1A1

jx
l1yr1A2

jy
l1 yr1A2

jy
l1xm0A3

jCj xm0A3

jCjx
r1A1

jx
l1

and by SB(g3j ) containing the strings

xr1B1

jx
l1zr1B2

j z
l1 zr1B2

j z
l1CjB

3

jx
m0 CjB

3

jx
m0xr1B1

jx
l1

On the other hand, for equations of the form g3j ≡ x⊕y⊕z = 1, we introduce SA(g3j )
containing the following strings.

xr0A1

jx
l0yr0A2

jy
l0 yr0A2

jy
l0xr1A3

jCj xr1A3

jCjx
r0A1

jx
l0

Furthermore, we give the definition of SB(g3j ), which includes the following
strings.

xr0B1

jx
l0zr0B2

j z
l0 zr0B2

j z
l0CjB

3

jx
l1 CjB

3

jx
l1xr0B1

jx
l0

The strings in the set SA(g3j ) can be aligned in a cyclic fashion in order to obtain
different strings which we will use in our reduction. Every specific alignment pos-
sesses its own abbreviation given below.
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xr1A1

jx
l1yr1A2

jy
l1 yr1A2

jy
l1xm0A3

jCj xm0A3

jCjx
r1A1

jx
l1

↓

xr1A1

jx
l1yr1A2

jy
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1A1

jx
l1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1A2

j
yl1xm0A3

j
Cj

yr1A2

jy
l1

xm0A3

jCjx
r1A1

jx
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xm0A3

jCjx
r1A1

jx
l1 ≡ xr1Ajx

l1 called x1- alignment

↓

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1A2

j
yl1xm0A3

j
Cj

yr1A2

jy
l1

xm0A3

jCjx
r1A1

jx
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xm0A3

jCj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1A1

j
xl1yr1A2

j
yl1

xr1A1

jx
l1yr1A2

jy
l1 ≡ yr1Ajy

l1 called y1- alignment

↓

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm0A3

j
Cjxr1A1

j
xl1

xm0A3

jCj

xr1A1

jx
l1yr1A2

jy
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1A1

jx
l1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1A2

j
yl1xm0A3

j
Cj

yr1A2

jy
l1xm0A3

jCj ≡ x
m0AjCj called left-x0- alignment

Analogously, the strings in SB(g3j ) can also be aligned in a cyclic fashion. We are
going to define the abbreviations for those alignments.

xr1B1

jx
l1zr1B2

j z
l1 zr1B2

j z
l1CjB

3

jx
m0 CjB

3

jx
m0xr1B1

jx
l1

↓

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CjB

3

j
xm0xr1B1

j
xl1

CjB
3

jx
m0

xr1B1

j x
l1zr1B2

j z
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1B1

jx
l1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1B2

j
zl1CjB

3

j
xm0

zr1B2

j z
l1CjB

3

jx
m0 ≡ CjBjx

m0 called right-x0- alignment

↓

xr1B1

j x
l1zr1B2

j z
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1B1

jx
l1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1B2

j
zl1CjB

3

j
xm0

zr1B2

j z
l1

CjB
3

j x
m0xr1B1

j x
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
CjB

3

jx
m0xr1B1

jx
l1 ≡ xr1Bjx

l1 called x1- alignment

↓

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1B2

j
zl1CjB

3

j
xm0

zr1B2

j z
l1

CjB
3

j x
m0xr1B1

j x
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
CjB

3

jx
m0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1B1

j
xl1zr1B2

j
zl1

xr1B1

jx
l1zr1B2

j z
l1 ≡ zr1Bjz

l1 called z1- alignment
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The strings in SB(g3j ) and SA(g3j ) can be overlapped in a special way that corre-
sponds to assigning the value 0 to x.

xr1A1

jx
l1yr1A2

jy
l1 yr1A2

jy
l1xm0A3

jCj xm0A3

jCjx
r1A1

jx
l1

zr1B2

j z
l1CjB

3

jx
m0 CjB

3

jx
m0xr1B1

jx
l1 xr1B1

jx
l1zr1B2

j z
l1

↓

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0A3

j
Cjxr1A1

j
xl1

xr0A3

jCj

xr1A1

jx
l1yr1A2

jy
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1A1

jx
l1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1A2

j
yl1xm0A3

j
Cj

yr1A2

jy
l1xm0A3

j

CjB
3

j x
m0xr1B1

j x
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
CjB

3

jx
m0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1B1

j
xl1zr1B2

j
zl1

xr1B1

jx
l1

zr1B2

j z
l1CjB

3

j x
m0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
zr1B2

j z
l1CjB

3

jx
m0

In the remainder, we call this alignment the x0-alignment of S(g3j ) and use the
abbreviation xm0Cjxm0 for this string.

5.3 Constructing the Superstring sφ from φ

Given an assignment φ to the variables of H, we are going to construct the
associated superstring sφ for the instance SH.

For every g ∈ H, we formulate rules for aligning the corresponding strings
in S(g) according to the assignment φ. We start with sets corresponding to
circle border equations and circle equations. Afterwards we show how the actual
fragments can be overlapped with strings from the sets corresponding to matching
equations and equations with three variables. Furthermore, we analyze the
relation between the assignment φ and the length of the obtained superstring sφ.
We begin with the description of the alignment of strings corresponding to circle
border equations in H.

Aligning Strings Corresponding to Circle Border Equations

Let Cx be a circle in H and x1 ⊕ xn = 0 its circle border equation. Furthermore,
we assume that xn is contained in a equation with three variables of the form
xn ⊕ y ⊕ z = 0. First, we set the string LxC l

x as the initial part of our superstring
corresponding to the circle Cx. Then, we use the φ(x1)-alignment of the strings

C l
xx

m0

1 xm1

n Cr
x, xm1

n Cr
xC

l
xx

m0

1 , C l
xx

r1
1 x

l0
nC

r
x, and xl0nC

r
xC

l
xx

r1
1 .

In this condition, one of the strings sl can be overlapped from the left side with
LxC l

x by one letter. The other string sr will be joined from the right side with
Cr

xRx by one letter. This construction will help us to check whether the variable
xn is assigned the same value as x1 by φ. The string sr can be interpreted as the
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φ(x1)-alignment of the strings corresponding to xn ⊕ xn+1 = 0, since the first letter
of sr is either xm1

n or xl0n .

The parts corresponding to a circle border equation with xn ⊕ y ⊕ z = 1 can
be constructed analogously. Next, we are going to align strings corresponding to
circle equations.

Aligning Strings Corresponding to Circle Equations

Let xi ⊕ xi+1 = 0 be a circle equation contained in H. Furthermore, let the corre-
sponding strings are given by

xm0

i xr0i+1x
l1
i x

m1

i+1 and xl1i x
m1

i+1x
m0

i xr0i+1.

In dependence of the given assignment φ, we use simple alignments to overlap
the considered strings. More precisely, we make use of the φ(xi+1)-alignment. For
every pair of associated strings, we derive an overlap of two letters. We are going
to align those fragments with strings corresponding to matching equations and
equations with three variables.

Aligning Strings Corresponding to Matching Equations

Let xi ⊕ xj = 0 be a matching equation in H. Let us assume that i < j. We define
the alignment of the strings in S(gx

{i,j}
) according to the value of φ(xi+1). More

precisely, we use the φ(xi+1)-alignment of the strings

xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j .

Due to this alignment, we obtain an overlap of two letters. We are going to
analyze the length of the resulting superstring in dependence of the assignment φ
to the variables xi, xi+1, xj and xj+1. We start with the case φ(xi+1) = φ(xj+1) = 1.

Case φ(xi+1) = φ(xj+1) = 1:
We use the 1-alignment of the strings xr1i x

l1
i x

r0
j x

l0
j and xr0j x

l0
j x

r1
i x

l1
i . The situation

is depicted below. ( The two triangle notation ▷▷ and ◁◁ will be explained
hereafter.)

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xl1i ◁◁m▷▷ Yj x

r1
i x

l1
i x

r0
j x

l0
j xm1

j ◁◁e

↓

b▷▷ Xi

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i xl1i ◁◁m▷▷ Yj xm1

j ◁◁e
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The actual superstring s is denoted by the following sequence.

s = b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xl1i ◁◁m▷▷ Yj x

r1
i x

l1
i x

r0
j x

l0
j xm1

j ◁◁e

The part ▷▷ Xi represents a simple alignment of the strings corresponding to
xi−1 ⊕ xi = 0 ending with the letter Xi ∈ {xm0

i , xr1i }, which means

▷▷ Xi ∈ {xm0

i−1x
m0

i xl1i−1x
r1
i x

m0

i−1x
m0

i , xl1i−1x
r1
i x

m0

i−1x
m0

i xl1i−1x
r1
i }.

The letter in the box emphasizes the letter which can be used to overlap from

the right side with other strings. Furthermore, the string xl1i ◁ ◁ denotes

xl1i x
r1
i+1x

m0

i xm0

i+1x
l1
i x

r1
i+1. Analogously, ▷ ▷ Yj is a simple alignment of the strings

corresponding to xj−1 ⊕ xj = 0, whereby Yj ∈ {xr0j , x
m1

j }. Furthermore, we use

xm1

j ◁◁ to denote xm1

j xm1

j+1x
l0
j x

r0
j+1x

m1

j xm1

j+1. Finally, b, m and e are sequences of

letters, which we do not specify in detail. They define the remaining parts of the
superstring s.
If Xi = xr1i holds, we align ▷ ▷ Xi with xr1i x

l1
i x

r0
j x

l0
j x

r1
i x

l1
i to achieve an ad-

ditional overlap of one letter. An analogue situation holds for ▷ ▷ Yj and

xm1

j ◁◁. All in all, we obtain an overlap of three letters if φ(xi) = φ(xi+1) = 1

and φ(xj+1) = φ(xj) = 1 holds. Otherwise, we lose an overlap of one letter per
unsatisfied equation.

Case φ(xi+1) = φ(xj+1) = 0:

We use the 0-alignment of the strings xr1i x
l1
i x

r0
j x

l0
j and xr0j x

l0
j x

r1
i x

l1
i .

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xm0

i ◁◁m▷▷ Yj x
r1
i x

l1
i x

r0
j x

l0
j xl0j ◁◁e

↓

b ▷▷ Xi xm0

i ◁◁m▷▷ Yj

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j xl0j ◁◁e

In this case, we use xm0

i ◁ ◁ as an abbreviation for xm0

i xm0

i+1x
l1
i x

r1
i+1x

m0

i xm0

i+1 and

xl0j ◁ ◁ for xl0j x
r0
j+1x

m1

j xm1

j+1x
l0
j x

r0
j+1. If Xi = xm0

i holds, we align ▷ ▷ Xi with

xm0

i ◁ ◁ and gain an additional overlap of one letter. An analogue situation

holds for ▷▷ Yj and xl0j ◁◁. Hence, we obtain an overlap of three letters if

φ(xi+1) = φ(xi) = 0 and φ(xj+1) = φ(xj) = 0 holds. If the corresponding equation
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with two variables is not satisfied, we lose an overlap of one letter.

Case φ(xi+1) ≠ φ(xj+1) = 1:

In this case, we use the 0-alignment of the strings xr1i x
l1
i x

r0
j x

l0
j and xr0j x

l0
j x

r1
i x

l1
i .

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xm0

i ◁◁m▷▷ Yj x
r1
i x

l1
i x

r0
j x

l0
j xm1

j ◁◁e

↓

b▷▷ Xi xm0

i ◁◁m▷▷ Yj xm1

j ◁◁e

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j x

l0
j

We attach xr0j x
l0
j x

r1
i x

l1
i x

r0
j x

l0
j at the end of our actual solution sφ without having

any overlap with the so far obtained superstring. Notice that we obtain in each
case an additional overlap of one letter if the corresponding equation with two
variables is satisfied, i.e. Xi = xm0

i and Yj = xm1

j .

Case φ(xi+1) ≠ φ(xj+1) = 0:

According to φ, we use the 1-alignment of the strings xr1i x
l1
i x

r0
j x

l0
j and xr0j x

l0
j x

r1
i x

l1
i .

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xl1i ◁◁m▷▷ Yj x

r1
i x

l1
i x

r0
j x

l0
j xl0j ◁◁e

↓

b▷▷ Xi

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i xl1i ◁◁m▷▷ Yj xl0j ◁◁e

We join xr1i x
l1
i x

r0
j x

l0
j x

r1
i x

l1
i from the right side with xl1i ◁◁ and obtain an overlap

of one letter. This reduces the length of the superstring by one letter independent
of the assignment φ(xj). In case of Xi = xr1i , we achieve another overlap of one

letter, since we are able to align▷▷ Xi from the right side with xr1i x
l1
i x

r0
j x

l0
j x

r1
i x

l1
i .

It corresponds to the satisfied equation xi ⊕ xi+1 = 0. Hence, we obtain at least the
same number of overlapped letters as satisfied equations.

In summary, we note that we are able to achieve an overlap of at least one
letter in each case if the corresponding equation is satisfied by φ. Hence, we
obtain an overlap of at most three letters.
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The other cases concerning equations xi ⊕ xj = 0 with i > j can be analyzed
analogously. Next, we are going to align strings corresponding to equations with
three variables.

Aligning Strings Corresponding to Equations with Three Variables

Let g3j ∈ H be an equation with three variables x, y and z. Furthermore, let
xi−1 ⊕ x = 0, x ⊕ xi+1 = 0, yj−1 ⊕ y = 0, y ⊕ yj+1 = 0, zk−1 ⊕ z = 0 and z ⊕ zk+1 = 0

be the equations with two variables, in which the variables x, y and z occur.
Given the assignment φ to x, y and z, we are going to define the alignment of the
corresponding strings. Let us start with equations of the form g3j ≡ x ⊕ y ⊕ z = 0.
Then, we define the rule for aligning strings in SA(g3j ) and SB(g3j ) as follows,
whereby we handle the cases φ(xi+1) + φ(yj+1) + φ(zk+1) = {3,2,1,0} separately
starting with φ(xi+1) + φ(yj+1) + φ(zk+1) = 3.

Case φ(xi+1) + φ(yj+1) + φ(zk+1) = 3:
In this case, we align the strings in S(g3j ) in such a way that we obtain the former
introduced strings yr1Ajyl1 and zr1Bjzl1. The situation, which we want to analyze
is depicted below.

b ▷▷ X xl1 ◁◁m1 ▷▷ Y yr1Ajy
l1 yl1 ◁◁m2 ▷▷ Z zr1Bjz

l1 zl1 ◁◁e

↓

b ▷▷ X xl1 ◁◁m1▷▷ Y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ajyl1

yr1Aj yl1 ◁◁m2 ▷▷ Z

zr1Bjz
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
zr1Bj zl1 ◁◁e

Similarly to the situations that we discussed concerning the matching equations,
we define the actual superstring s in the way described below.

s = b ▷▷ X xl1 ◁◁m1 ▷▷ Y yr1Ajy
l1 yl1 ◁◁m2 ▷▷ Z zr1Bjz

l1 zl1 ◁◁e

Here, b, m1, m2 and e denote parts of s, which we do not specify in detail to
emphasize the parts corresponding to the equation with three variables.

The string xl1 ◁ ◁ denotes the φ(xi+1)-alignment of the corresponding strings

in S(gxi+1). The strings zl1 ◁ ◁ and yl1 ◁ ◁ are defined analogously. In

this situation, we want to analyze the cases X ∈ {xr1, xm0}, Y ∈ {yr1, ym0} and
Z ∈ {zr1, zm0}. We infer that we obtain an overlap of four letters if all equations
with two variables are satisfied. Otherwise, we lose an overlap of one letter per
unsatisfied equation with two variables.
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Case φ(xi+1) + φ(yj+1) + φ(zk+1) = 2:
Let α,γ ∈ {xi+1, yj+1, zk+1} be variables such that φ(γ) = φ(α) = 1 holds. Then, we
use the α1-alignment and γ1-alignment of the strings in SA(g3j ) and SB(g3j ) break-
ing ties arbitrary. We display exemplary the situation for φ(zk+1) = φ(xi+1) = 1.

b▷▷ X xr1Ajx
l1 xl1 ◁◁m1▷▷ Y ym0

◁◁m2▷▷ Z zr1Bjz
l1 zl1 ◁◁e

↓

b▷▷ X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1Ajxl1

xr1Aj xl1 ◁◁m1▷▷ Y ym0 ◁◁m2 ▷▷ Z

zr1Bjz
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
zr1Bj zl1 ◁◁e

In this case, we achieve an overlap of five letters if all equations with two variables
are satisfied. Otherwise, we lose an overlap of one letter per unsatisfied equation
with two variables.

Case φ(xi+1) + φ(yj+1) + φ(zk+1) = 1:
If φ(zk+1) + φ(xi+1) = 1 holds, we align the strings in SB(g3j ) and SA(g3j ) to
obtain xr1Ajxl1 and zr1Bjzl1. Otherwise, we make use of the strings xr1Bjxl1 and
yr1Ajyl1. We display the situation for φ(yj+1) = 1.

b▷▷ X xr1Bjx
l1 xm0

◁◁m1▷▷ Y yr1Ajy
l1 yl1 ◁◁m2 ▷▷ Z zm0

◁◁e

↓

b▷▷ X xm0 ◁◁m1▷▷ Y

yr1Ajy
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
yr1Aj yl1 ◁◁m2▷▷ Z zm0 ◁◁exr1Bjx

l1

Notice that we obtain an overlap of four letters if the equations with two variables
are satisfied, i.e. X = xm0, Z = zm0 and Y = yr1. Otherwise, we lose an overlap of
one letter per unsatisfied equation with two variables.

Case φ(xi+1) + φ(yj+1) + φ(zk+1) = 0:
In this case, we use the x0-alignment of the strings in S(g3j ). The situation is
displayed below.
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b▷▷ X xm0Cjx
m0 xm0 ◁◁m1 ▷▷ Y ym0 ◁◁m2▷▷ Z zm0 ◁◁e

↓

b▷▷ X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xm0Cjxm0

xm0Cj xm0
◁◁m1 ▷▷ Y ym0

◁◁m2▷▷ Z zm0
◁◁e

Here, we are able to achieve an overlap of five letters if all equations with two
variables are satisfied, i.e. X = xm0, Z = zm0 and Y = ym0.

In summary, we state that we can achieve an overlap of at least one letter
independent of the assignment φ. Additionally, we gain another overlap of one
letter if the corresponding equation is satisfied by φ.

The situation for equations of the form x ⊕ y ⊕ z = 1 can be analyzed analo-
gously. We are going to define the assignment ψs, which is associated to a given
superstring for SH.

5.4 Defining the Assignment

Given a superstring s for SH, we are going to define the associated assignment
ψs to the variables of H. In order to deduce the values assigned to the variables
in H from s, we have to normalize the given superstring s. For this reason, we
define rules that transform a superstring for SH into a normed superstring for SH
without increasing the length.

First, we introduce the definition of a normed superstring for SH.

Definition 5 (Normed Superstring s for SH). Let H be an instance of the Hybrid

problem, SH the corresponding instance of the Shortest Superstring problem and s a

superstring for SH. We refer to s as a normed superstring for SH if for every g ∈ H,

the superstring s contains sg as a proper substring, whereby sg is resulted due to a

simple alignment of the strings included in S(g).

After having defined a normed superstring, we are going to state rules which trans-
form a superstring for SH into a normed superstring for SH without increasing the
length of the underlying superstring. All transformation can be performed in poly-
nomial time. Once accomplished to generate a normed superstring, we are able to
define the assignment ψs and analyze the number of overlapped letters in depen-
dence of the number of satisfied equations in H by ψs. Let us start with transfor-
mations of strings corresponding to circle equations and circle border equations.

Normalizing Strings Corresponding to Circle and Circle Border Equations

Let xi ⊕ xi+1 = 0 be a circle equation in H. Furthermore, let xm0

i xr0i+1x
l1
i x

m1

i+1 and
xl1i x

m1

i+1x
m0

i xr0i+1 be its corresponding strings. We observe that those strings can
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have an overlap of at most one letter from the left side as well as from the right
side with other strings in SH. Given a superstring s for SH, we obtain at least the
same number of overlapped letters if we use one of the simple alignments in s.
In particular, we have to use the simple alignment that maximizes the number of
overlapped letters.

Given a superstring s for SH, we separate the strings xm0

i xr0i+1x
l1
i x

m1

i+1 and
xl1i x

m1

i+1x
m0

i xr0i+1 from s. Consequently, this results in at most three strings bxm0

i ,
xm1

i+1mx
l1
i and xr0i+1e such that

s = bxm0

i xr0i+1x
l1
i x

m1

i+1mx
l1
i x

m1

i+1x
m0

i xr0i+1e.

Then, we define the transformed superstring s′ with at least the same number of
overlapped letters by

s′ = bxm0

i xr0i+1x
l1
i x

m1

i+1x
m0

i xr0i+1ex
m1

i+1mx
l1
i .

In order to define the simple alignment, which is used in s by the strings in
S(gxi+1), we are going to state a criterion.

Let s be a superstring for SH and gxi+1 a circle equation. Let the correspond-
ing strings are given by xm0

i xr0i+1x
l1
i x

m1

i+1 and xl1i x
m1

i+1x
m0

i xr0i+1. Then, we say that
the strings in S(gxi+1) use a 1-alignment in s if there are more strings s1 in
SH/S(gxi+1) such that either s1 is overlapped by one letter from the right side
with xl1i x

m1

i+1x
m0

i xr0i+1 or s1 is overlapped by one letter from the left side with
xm0

i xr0i+1x
l1
i x

m1

i+1 in s than strings s0 in SH/S(gxi+1) such that either s0 is overlapped
by one letter from the left side with xl1i x

m1

i+1x
m0

i xr0i+1 or s0 is overlapped by one letter
from the right side with xm0

i xr0i+1x
l1
i x

m1

i+1 in s. Otherwise, the strings in S(gxi+1) use a
0-alignment in s.

Given a superstring s for SH, we define informally a part of the backbone
of our transformed superstring by the strings sg, whereby sg is resulted due to
a simple alignment used in s of the strings S(g) for every circle equation g ∈ H.
Afterwards, we use this construction to align them with strings corresponding to
matching equations, equations with three variables and circle border equations.
Moreover, it will help us to define the assignment ψs and relate the number of
satisfied equations to the number of overlapped letters. But first, we concentrate
on circle border equations.

Let x1 ⊕ xn = 0 be a circle border equation. Furthermore, let the corresponding
strings are given by

LxC
l
x, C l

xx
m0

1 xl1nC
r
x, xl1nC

r
xC

l
xx

m0

1 , C l
xx

r1
1 x

m0

n Cr
x, xm0

n Cr
xC

l
xx

r1
1 , and Cr

xRx.

Since the simple alignments of the strings in S(gx
1
) achieve an overlap of two

letters for each pair {C l
xx

m0

1
xl1nC

r
x, x

l1
nC

r
xC

l
xx

m0

1
} and {C l

xx
r1
1
xm0
n Cr

x, x
m0
n Cr

xC
l
xx

r1
1
},

we argue as before that those strings can be rearranged in a given superstring for
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SH such that the pairs use a simple alignment without increasing the length of
the underlying superstring for SH. In this situation, we are able to overlap one of
the pairs using a simple alignment with LxC l

x from the left side and the other one
with Cr

xRx from the right side without increasing the length. This construction
checks whether the variables x1 and xn have the same assigned value, which is
rewarded by another overlap of one letter of the corresponding strings using a
simple alignment.

For any fixed order of the circles Cx in H, we build the backbone of our su-
perstring consisting of the concatenation of the strings sxsy⋯sz, whereby a string
sx is associated to its circle Cx. Furthermore, sx consists of the corresponding
simple alignments of the strings in S(gxi ) used in s, whereby the order of the
strings is given by the order of the variables in Cx. The string sx starts with the
letter Lx and ends with Rx.

Notice that similar transformations can be applied to strings corresponding
to matching equations and to equations with three variables, but we are going
to define the transformation for those strings in detail while analyzing the upper
bound of overlapped letters for simple aligned strings corresponding to circle
equations, which are contained in a given superstring s for SH.

Before we start our analysis, we define the assignment ψs based on the ac-
tual superstring s for SH, which is not necessarily a normed superstring for SH.
By applying the transformations, which we are going to define, the assignment ψs

will change in dependence to the actual considered superstring.

ψs(xi) = 1 if the strings in S(gxi ) use a 1-alignment in s

= 0 otherwise

Due to the transformations for the strings corresponding to circle and circle border
equations, the assignment ψs is well-defined.

Defining the Assignment for Checker Variables

Let x ∈ V (E3), Cx be the corresponding circle in H and Mx its associated perfect
matching. Furthermore, let xi ⊕ xi+1 = 0, xi−1 ⊕ xi = 0, xj−1 ⊕ xj = 0, xj ⊕ xj+1 = 0
and xi ⊕ xj = 0 be equations in H, whereby {i, j} ∈ Mx and i < j holds. Let s be a
superstring for SH such that the strings corresponding to circle and circle border
equations are using a simple alignment in s. Based on the the simple alignments of
the strings corresponding to gxi , gxi+1, g

x
j and gxj+1, which are used in the superstring

s, we are going to define the assignment to the variables xi and xj. Furthermore,
we analyze the number of overlapped letters that can be achieved given the sim-
ple aligned strings and relate them to the number of satisfied equations inH by ψs.

In the remainder, we will assume that the underlying superstring for SH
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contains simple aligned strings corresponding to circle and circle border equa-
tions. Before we start our analysis, we introduce the notation of a constellation
that denotes which of the simple alignments are used by the strings corresponding
to the equations gxi , gxi+1, g

x
j and gxj+1 in s.

Given a superstring s for SH and {i, j} ∈ Mx, a constellation c is defined by
(XiXi+1,Xj−1Xj+1)s{i,j} with Xi,Xi+1,Xj ,Xj+1 ∈ {0,1}, whereby Xk = 1 if and only

if the strings in S(gxk) use the 1-alignment in s for k ∈ {i, i + 1, j, j + 1}. We call a
constellation c inconsistent if there is an entry A1A2 with A1 ≠ A2. Otherwise, c is
called consistent.

Based on the given constellations, we are going to define ψs.

Definition 6 (Assignment ψs to Checker Variables). Let H be an instance of the

Hybrid problem, SH its corresponding instance of the superstring problem and s a

superstring for SH. Given the constellation (XiXi+1,XjXj+1)s{i,j}, we define ψs in the

following way.

(i) ψs(xi) =Xi and ψs(xj) =Xj if Xi ⊕Xj = 1 and c is consistent

(ii) ψs(xi) =Xi and ψs(xj) =Xj if Xi ⊕Xj = 0

(iii) ψs(xi) = 1 −Xi and ψs(xj) = Xj if Xi ⊕Xj = 1 and Xi ≠ Xi+1

(iv) ψs(xi) =Xi and ψs(xj) = 1 −Xj if Xi ⊕Xj = 1, Xj ≠Xj+1 and X1

i =Xi+1

We are going to analyze the the different constellations and discuss the cases
(i)-(iv) of the definition of ψs. We start with case (i).

CASE (i) Xi ⊕Xj = 1 and c is consistent:
There are two constellations, which we have to analyze, namely (11,00)s

{i,j}

and (00,11)s
{i,j}

. Starting with the former constellation, we obtain the scenario

depicted below. The string ▷ ▷ Xi with Xi ∈ {xm0

i , xr1i } represents a simple
alignment of the strings in S(gxi ). Analogously, the string

Xi+1 ◁◁ with Xi+1 ∈ {xm0

i , xl1i }

represents a simple alignment of the strings in S(gxi+1). Since we know that using
the most profitable simple alignment of the strings in S(gx

{i,j}
) does not increase

the length of the superstring, we make use of the 1-alignment and transform the
superstring s in the superstring s′, which are both depicted below.
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s = b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j xl1i ◁◁m▷▷ xr0j xr0j x

l0
j x

r1
i x

l1
i xl0j ◁◁e

↓

s′ = b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i xl1i ◁◁m ▷▷ xr0j xl0j ◁◁e

Let us analyze the upper bound on the overlap of letters, whereby we are
interested in the overlap of letters, which are additional to the overlap of two
letters due to the simple alignment. In both cases, either by using the 1-alignment
or the 0-alignment of the strings in S(gx

{i,j}
), we cannot obtain more than an

overlap of two letters. It corresponds to the number of satisfied equations, which
are xi ⊕ xi+1 = 0 and xj ⊕ xj+1 = 0.

In case of the constellation (00,11)s
{i,j}

, we separate the strings xr1i x
l1
i x

r0
j x

l0
j

and xr0j x
l0
j x

r1
i x

l1
i from the superstring s. Then, we attach the aligned string

xr1i x
l1
i x

r0
j x

l0
j x

r1
i x

l1
i at the end of the actual solution. The considered situation is

depicted below.

b▷▷ xm0

i xr1i x
l1
i x

r0
j x

l0
j xm0

i ◁◁m▷▷ xm1

j xr0j x
l0
j x

r1
i x

l1
i xm1

j ◁◁e

↓

b

▷▷ xm0

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm0

i ◁◁m

▷▷ xm1

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm1

j ◁◁e

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i x

l1
i

In this scenario, the best that we are able to obtain is an overlap of two letters.
This corresponds to the number of satisfied equations, namely xi ⊕ xi+1 = 0 and
xj ⊕ xj+1 = 0.

CASE (ii) Xi ⊕Xj = 0 :
Let us start with the constellation (0Xi+1,0Xj+1)s{i,j}. In this case, we set ψ(xi) = 0

and ψ(xj) = 0. Given the strings ▷▷ xm0

i , Xi+1 ◁◁, ▷▷ xr0j and Xj+1 ◁◁

with Xi+1 ∈ {xm0

i , xl1i } and Xj+1 ∈ {xm1

j , xl0j }, we obtain the following scenario:
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b▷▷ xm0

i xr1i x
l1
i x

r0
j x

l0
j Xi+1 ◁◁m▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b▷▷ xm0

i Xi+1 ◁◁m▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j x

l0
j Xj+1 ◁◁e

The most advantageous simple alignment in this case is the 0-alignment of
the strings in S(gx

{i,j}
). If ψ(xi) = ψ(xi+1) = 0 holds, which means Xi+1 = xm0

i ,

we obtain another overlap of one letter by aligning ▷ ▷ xm0

i with xm0

i ◁ ◁.

A similar argument holds for ψ(xj) = ψ(xj+1) = 0. Notice that the equation
xi ⊕ xj = 0 is satisfied by ψs. In summary, we state that we obtain an overlap of
one additional letter per satisfied equation. Hence, we obtain an overlap of three
letters according to the satisfied equations xi⊕xi+1 = 0, xi⊕xj = 0 and xj⊕xj+1 = 0.

Consider the constellation (1Xi+1,1Xj+1)s{i,j}. Hence, we are given the strings

▷ ▷ xr1i , Xi+1 ◁ ◁, ▷ ▷ xm1

j and Xj+1 ◁ ◁ with Xi+1 ∈ {xm0

i , xl1i } and

Xj+1 ∈ {xm1

j , xl0j }. We obtain the scenario displayed below.

b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j Xi+1 ◁◁m▷▷ xm1

j xr0j x
l0
j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i x

l1
i Xi+1 ◁◁m▷▷ xm1

j Xj+1 ◁◁e

In this case, we use the 1-alignment of the strings in S(gx
{i,j}
). If ψ(xi) = ψ(xi+1) = 1

holds, which means Xi+1 = xl1i , we obtain another overlap of one letter by aligning

▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i x

l1
i with xl1i ◁◁.

In case of ψ(xj) = ψ(xj+1) = 1, we may apply a similar argument. Notice that
the equation xi ⊕ xj = 0 is satisfied by ψs. In summary, we state that we obtain
an overlap of one additional letter per satisfied equation. Hence, we obtain an
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overlap of three letters according to the satisfied equations xi ⊕xi+1 = 0, xi ⊕xj = 0
and xj ⊕ xj+1 = 0.

CASE (iii) Xi ⊕Xj = 1 and Xi ≠ Xi+1:
Let us begin with the constellation (10,0Xj+1)s{i,j}. We consider the scenario

depicted below, in which we are given the strings ▷▷ xr1i , xm0

i ◁◁, ▷▷ xl0j

and Xj+1 ◁◁ with Xj+1 ∈ {xl0j , x
m1

j }.

b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j xm0

i ◁◁m▷▷ xr0j xr0j x
l0
j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b

▷▷ xm0

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm0

i ◁◁m ▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j x

l0
j Xj+1 ◁◁e

Instead of using the 1-alignment of the strings in S(gxi ), we rather switch to

the 0-alignment, i.e. we obtain the string ▷ ▷ xm0

i and define ψ(xi) = 0. It

results directly in gaining two additional satisfied equations and an overlap of
one additional letter. As a matter of fact, we might lose an overlap of one letter,
because the string ▷ ▷ xm

1
might have been aligned from the right side with

another string. Furthermore, the equation xi−1 ⊕ xi = 0 might be unsatisfied.
But all in all, we obtain at least 2 − 1 additional satisfied equations by switching
the value without increasing the superstring. Notice that we may achieve an
additional overlap of one letter if Xj+1 = xl0j holds, which means that ψs satisfies
the equation xj ⊕ xj+1 = 0.

The next constellation we are going to analyze is (01,1Xj+1)s{i,j}. Hence, we

are given the strings ▷ ▷ xm0

i , xl1i ◁ ◁, ▷ ▷ xm1

j and Xj+1 ◁ ◁, with

Xj+1 ∈ {xl0j , x
m1

j }. The situation is displayed below.
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b▷▷ xm0

i xr1i x
l1
i x

r0
j x

l0
j xl1i ◁◁m▷▷ xm1

j xr0j x
l0
j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i xl1i ◁◁m▷▷ xm1

j Xj+1 ◁◁e

We obtain a similar situation, in which we switch ▷▷ xm0

i to ▷▷ xr1i . Accord-

ingly, we define ψs(xi) = 1.. We obtain at least one additional satisfied equation
by switching the value without increasing the length of the superstring. Notice
that we may achieve an additional overlap of one letter if Xj+1 = xm1

j holds. It
corresponds to the satisfied equation xj ⊕ xj+1 = 0.

CASE (iv) Xi ⊕Xj = 1, Xj ≠Xj+1 and Xi =Xi+1:
Starting our analysis with the constellation (00,10)s

{i,j}
, we obtain the following

scenario.

b▷▷ xm0

i xr1i x
l1
i x

r0
j x

l0
j xm0

i ◁◁m▷▷ xm1

j xr0j x
l0
j x

r1
i x

l1
i xl0j ◁◁e

↓

b

▷▷ xm0

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm0

i ◁◁m▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j xl0j ◁◁e

In this case, we argue that we switch the string ▷▷ xm1

j to ▷▷ xr0j . This means

that we set ψs(xj) = 0. This transformation yields an overlap of at least the same
number of letters, since we might lose an overlap of one letter from the left side.
On the other hand, we align the string

▷▷ xr0j with

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i
xl1
i
xr0
j
xl0
j

xr1i x
l1
i x

r0
j xl0j ◁◁

from the right side by one letter. Notice that we gain at least one additional
satisfied equation.

The last constellation we are going to analyze is (11,01)s
{i,j}

. The corre-
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sponding situation is depicted below.

b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j xl1i ◁◁m▷▷ xr0j xr0j x

l0
j x

r1
i x

l1
i xm1

j ◁◁e

↓

b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j
xl0
j
xr1
i
xl1
i

xr0j x
l0
j x

r1
i xl1i ◁◁m

▷▷ xm1

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm1

j ◁◁e

In this case, we switch the string ▷▷ xr0j to ▷▷ xm1

j . Similarly to the former

case, this transformation does not increase the length of the superstring. By
defining ψs(xj) = 1, we achieve at least one more satisfied equation.

In summary, we note that we achieve at least the same number of satisfied
equations as the number of overlapped letters. By applying the defined trans-
formation, the superstring contains only strings corresponding to matching
equations, which use a simple alignment.

In case of matching equations xi ⊕ xj = 0 with i > j can be analyzed analo-
gously. We are going to define the assignment for contact variables.

Defining the Assignment for Contact Variables

Let g3j ≡ x ⊕ y ⊕ z = 0 be an equation with exactly three variables in H. Given
a simple alignment of the strings corresponding to the equations xj1−1 ⊕ x = 0,
x⊕ xj1+1 = 0, yj2−1 ⊕ y = 0, y ⊕ yj2+1 = 0, zj3−1 ⊕ z = 0, and z ⊕ zj3+1 = 0, we are going
to define an assignment based on the underlying simple alignments and analyze
the number of satisfied equations in dependence of the number of overlapped
letters in the superstring.

For a given superstring s for SH and equation g3j ≡ x ⊕ y ⊕ z = 0, we define
a constellation c given by (X1X2, Y1Y2,Z1Z2)sj with X1,X2, Y1, Y2,Z1,Z2 ∈ {0,1},
whereby C = 1 if and only if the strings in the corresponding set are using a
1-alignment in s. A constellation denotes which of the simple alignments is used
by the strings in s. We call a constellation inconsistent if there is an entry A1A2

such that A1 ≠ A2. Otherwise, c is called consistent.

Based on a constellation for a given superstring and an equation g3j with
three variables, we are going to define the assignment ψs for the variables in g3j .

Definition 7 (Assignment ψs to Contact Variables). Let H be an instance of the
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Hybrid problem, SH its corresponding instance of the superstring problem, s a super-

string for SH and g3j ≡ x ⊕ y ⊕ z = 0 an equation with three variables in H. For the

associated constellation c = (X1X2, Y1Y2,Z1Z2)sj , we define ψs in the following way.

(i) If c is consistent, then, we define ψs(x) =X1, ψs(y) = Y1 and ψs(z) = Z1

(ii) Otherwise, let A1A2 be an entry in c with A1 ≠ A2 and α its corresponding

variable. Furthermore, let β and γ be variables associated with the entry B1B2

and C1C2, respectively. If A1⊕B1⊕C1 = 0 holds, we define ψs(α) = A1, ψs(β) =
B1 and ψs(γ) = C1.

(iii) Otherwise, we have A1⊕B1⊕C1 = 1. Then, we define ψs(α) = 1−A1, ψs(β) = B1

and ψs(γ) = C1.

We are going to analyze the following three cases and define the transforma-
tions for the actual superstring for SH.

(i) X1 ⊕ Y1 ⊕Z1 = 1 and c is consistent

(ii) X1 ⊕ Y1 ⊕Z1 = 0 and c is inconsistent

(iii) X1 ⊕ Y1 ⊕Z1 = 1 and c is inconsistent

Let us begin with case (i).

CASE (i) X1 ⊕ Y1 ⊕Z1 = 1 and c is consistent:

In this case, we start with the constellation (11,11,11)sj . We depict the considered
situation below.

b▷▷ xr1 xl1 ◁◁m1▷▷ yr1 yr1Ajy
l1 yl1 ◁◁m2▷▷ zr1 zr1Bjz

l1 zl1 ◁◁e

↓

b▷▷ xr1 xl1 ◁◁m1▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ayl1

yr1 Aj yl1 ◁◁m2▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bzl1

zr1 Bj zl1 ◁◁e

According to the definition of ψs, we have ψ(x) = ψ(y) = ψ(z) = 1. Notice that the
equation x⊕y⊕z = 0 is unsatisfied. On the other hand, the assignment ψs satisfies
the equations x⊕ xj1+1 = 0, y ⊕ yj2+1 = 0 and z ⊕ zj3+1 = 0.
We note that a string corresponding to SA(g3j ) or SB(g3j ) using a simple alignment
can have an overlap of at most one letter from the right side as well as from the
left side. Therefore, the best we can hope for is to overlap the string yr1Ayl1 with

▷▷ yr1 and yl1 ◁◁ by one letter in each case. The same holds for the string

zr1Bjzl1. Consequently, we conclude that the number of overlapped letters is
bounded from above by four.
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In case of X1 + Y1 + Z1 = 1, we analyze exemplary the constellation (00,00,11)sj .
We set ψ(z) = 1, ψ(x) = 0 and ψ(y) = 0. This situation is displayed below.

b▷▷ xm0 xm0 ◁◁m1▷▷ ym0 yr1Ajy
l1 ym0 ◁◁m2▷▷ zr1 zr1Bjz

l1 zl1 ◁◁e

↓

b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▷▷ xm0

▷▷ xm0
◁◁m1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▷▷ ym0

▷▷ ym0
◁◁m2 ▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bj zl1 ◁◁e y
r1Ajy

l1

Due to the z1-alignment of the strings in SB(g3j ), we obtain an overlap of two

letters. Additionally, we align the string▷▷ xm0 from the left with xm0 ◁◁. The

same holds for ▷▷ ym0 and ym0 ◁◁. Notice that it is not more advantageous

to align the string xm0BjCj with ▷▷ xm0 , since we lose the overlap of one letter

with xm0 ◁◁. Hence, we are able to get an overlap of at most four letters, which
corresponds to the satisfied equations x⊕ xj1+1 = 0, y ⊕ yj2+1 = 0 and z ⊕ zj3+1 = 0.

CASE X1 ⊕ Y1 ⊕Z1 = 0 and c is inconsistent:

First, we concentrate on the constellations with the property X1 + Y1 + Z1 = 2.
Exemplary, we analyze the constellation (0X2,1Y2,1Z2)sj depicted below.

b▷▷ xm0 X2 ◁◁m1▷▷ yr1 yr1Ajy
l1 Y2 ◁◁m2▷▷ zr1 zr1Bjz

l1 Z2 ◁◁e

↓

b▷▷ xm0 X2 ◁◁m1▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ajyl1

yr1 Ajy
l1 Y2 ◁◁m2▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bj z
l1 Z2 ◁◁e

The strings ▷ ▷ yr1 and ▷ ▷ zr1 can be used to align from the right side

with zr1Bzl1 and yr1Ayl1, respectively. It yields an overlap of two letters. If the
corresponding equations with two variables are satisfied, which means X2 = xm0,
Y2 = yl1 and Z2 = zl1, we gain an overlap of one letter per satisfied equation.
Notice that using the x0-alignment of S(g3j ) does not yield more overlapped
letters. In summary, it is possible to attain an overlap of at most five letters, which
corresponds to the constellation (00,11,11)sj . An analogue argumentation holds
for the constellations (1X2,1Y2,0Z2)sj and (1X2,0Y2,1Z2)sj .
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Next, we discuss constellations with the property X1 + Y1 + Z1 = 0. For this
reason, we consider the constellation (0X2,0Y2,0Z2)sj .

b▷▷ xm0 X2 ◁◁m1 ▷▷ ym0 yr1Bjy
r1 Y2 ◁◁m2▷▷ zm0 yr1Bjy

r1 Z2 ◁◁e

↓

b▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm0ACj

xm0 A

CjBxm0

³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
CjBx

m0 X2 ◁◁m1▷▷ ym0 Y2 ◁◁m2▷▷ zm0 Z2 ◁◁e

Recall that xm0Cjxm0 denotes the x0-alignment of S(g3j ). This string can be
aligned from the left with ▷▷ xm0. If X2 = xm0 holds, we achieve another overlap

of one letter. Furthermore, the string ▷▷ ym0 can be aligned from the right with

Y2 ◁◁ if and only if Y2 = ym0 holds. A similar argumentation can be applied

to the strings ▷▷ zm0 and Z2 ◁◁. Finally, we note that we cannot benefit by

aligning the string yl1 ◁ ◁ with yr1Ayl1. Consequently, we see that using the

string xm0Cjxm0 is generally more profitable. All in all, we gain an additional
overlap of one letter for satisfying x ⊕ y ⊕ z = 0 and another overlap of one letter
if the equation with two variables corresponding to the considered variable is
satisfied.

CASE X1 ⊕ Y1 ⊕Z1 = 1 and c is inconsistent:
Let us start with constellations satisfying X1 + Y1 + Z1 = 3. Exemplary, we analyze
the constellation (10,1Y2,1Z2)sj . Due to the definition of ψs, we set ψ(x) = 1 −X1,
ψ(y) = 1 and ψ(z) = 1. Notice that ψs satisfies the equation x ⊕ y ⊕ z = 0. By
switching the value ψs(x) from X1 to 1 − X1, the equation xj1−1 ⊕ x = 0 might
become unsatisfied. Furthermore, we might lose an overlap of one letter by
flipping the 1-alignment of the strings corresponding to xj1−1 ⊕ x = 0 to the
0-alignment. On the other hand, we gain an overlap of one letter by aligning the

string ▷▷ xm0 from the right side with xm0 ◁◁. This transformation yields at
least one more satisfied equation. In addition, the strings yr1Ajyl1 and zr1Bzl1 can

be aligned by one letter with ▷▷ yr1 and ▷▷ zr1 , respectively. If Z2 = zl1 and

Y2 = yl1 holds, we achieve another overlap of one letter in each case. The situation
is depicted below.
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b▷▷ xr1 xm0
◁◁m1 ▷▷ yr1 yr1Ayl1 Y2 ◁◁m2▷▷ zr1 zr1Bzl1 Z2 ◁◁e

↓

b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▷▷ xm0

▷▷ xm0 ◁◁▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ajyl1

yr1 Ajy
l1 Y2 ◁◁▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bjz
l1 Z2 ◁◁

The other constellations satisfying X1 + Y1 +Z1 = 3 can be analyzed analogously.

The remaining constellations (X1X2, Y1Y2,Z1Z2)sj to be discussed satisfy
X1 + Y1 + Z1 = 1 and are inconsistent. Exemplary, we analyze the constella-
tion (01,0Y2,1Z2)sj . For (01,0Y2,1Z2)sj , we set ψ(x) = 1 − X1, ψ(y) = Y1 and
ψ(z) = Z1. The scenario is depicted below.

b▷▷ xm0 xr1Ajx
l1 xl1 ◁◁m1▷▷ ym0 Y2 ◁◁m2▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bjz
l1 Z2 ◁◁e

↓

b▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xr1Ajxl1

xr1 Aj xl1 ◁◁m1 ▷▷ ym0 Y2 ◁◁m2▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bzl1

zr1 Bzl1 Z2 ◁◁e

By flipping the 0-alignment of the strings corresponding to xj1−1 ⊕ x = 0 to the

1-alignment, we can overlap xr1Ajxl1 from the left side with ▷▷ xr1 and with

xl1 ◁◁ from the right side. This transformation achieves an overlap of at most
one more letter. Moreover, we obtain at least one more satisfied equation by using
this definition of ψs. If Z2 = zl1 and Y2 = ym0 holds, it yields an overlap of three
additional letters, which corresponds to the constellation (11,00,11)sj .

In summary, we note that it is possible to achieve an overlap of at least one
letter in each case. In addition to it, the assignment ψs yields at least the same
number of satisfied equations as the number of overlapped letters, which can be
achieved due to the transformations. This means that if ψs satisfies the equations
g3j , x ⊕ xj1+1 = 0, y ⊕ yj2+1 = 0 and z ⊕ zj3+1 = 0, the corresponding strings in s can
have an overlap of at most five letters.
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5.5 Proof of Theorem 6

Given an instance H of the Hybrid problem with n circles, m2 equations with
two variables and m3 equations with exactly three variables with the properties
described in Theorem 5, we construct in polynomial time an instance SH of the
Shortest Superstring problem with the properties described in section 5.2. Let φ be
an assignment to the variables of H which leaves at most u equations unsatisfied.
According to section 5.3, the length of the superstring sφ is at most

∣sφ∣ ≤ 7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u,

since the length of the superstring increases by at most one letter for every unsat-
isfied equation of the assignment. Regarding the compression measure, we obtain
the following.

comp(SH, sφ) ≥ ∑
s∈SH

∣s∣ − (7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u)

= (4 + 8)n + 8 ⋅m2 + 36 ⋅m3 − (7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u)
= 5n + 3m2 + 14m3 − u

On the other hand, given an superstring s for SH with length

∣s∣ = 5m2 + 22m3 + u + 7n,

we can construct in polynomial time an normed superstring s′ without increasing
the length of it by applying the transformations defined in section 5.4. This enables
us to define an assignment ψs to the variables of H according section 5.4 that
leaves at most u equations in H unsatisfied. A similar argumentation leads to the
conclusion that given a superstring s for SH with compression

comp(SH, sφ) = 5n + 3m2 + 14m3 − u,

we construct in polynomial time an assignment to the variables in H such that at
most u equations are unsatisfied.

6 Concluding Remarks

It seems that a new method is needed now in order to obtain better approxima-
tion lower bounds. Perhaps direct PCP constructions are the natural next step for
proving stronger approximation hardness results for the problems considered in
this paper.
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