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Abstract

For a {0, 1}-valued matrix M let CC(M) denote the deterministic communication complexity
of the boolean function associated with M . The log-rank conjecture of Lovász and Saks [FOCS
1988] states that CC(M) ≤ logc(rank(M)) for some absolute constant c where rank(M) denotes
the rank of M over the field of real numbers. We show that CC(M) ≤ c · rank(M)/ log rank(M)
for some absolute constant c, assuming a well-known conjecture from additive combinatorics
known as the Polynomial Freiman-Ruzsa (PFR) conjecture.

Our proof is based on the study of the “approximate duality conjecture” which was recently
suggested by Ben-Sasson and Zewi [STOC 2011] and studied there in connection to the PFR
conjecture. First we improve the bounds on approximate duality assuming the PFR conjecture.
Then we use the approximate duality conjecture (with improved bounds) to get the aforemen-
tioned upper bound on the communication complexity of low-rank martices, where this part
uses the methodology suggested by Nisan and Wigderson [Combinatorica 1995].

1 Introduction

This paper presents a new connection between communication complexity and additive combina-
torics, showing that a well-known conjecture from additive combinatorics known as the Polynomial
Freiman-Ruzsa Conjecture (PFR, in short), implies better upper bounds than currently known
on the deterministic communication complexity of a boolean function in terms of the rank of its
associated matrix. More precisely, our results show that the PFR Conjecture implies that every
boolean function has communication complexity O(rank(M)/ log rank(M)) where rank(M) is the
rank, over the reals, of the associated matrix. This is a weakening of a well-known conjecture in
communication complexity, known as the log-rank conjecture, which postulates that every boolean
function has communication complexity logO(1) rank(M).

Our analysis relies on the study of approximate duality, a concept closely related to the PFR
Conjecture, which was introduced in [BZ]. Our main technical contribution is improved bounds on
approximate duality, assuming the PFR Conjecture. We then use these bounds in order to prove
the new upper bounds on communication complexity.
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1.1 Communication complexity and the log-rank conjecture

In the two-party communication complexity model two parties — Alice and Bob — wish to compute
a function f : X × Y → {0, 1} on inputs x and y where x is known only to Alice and y is
known only to Bob. In order to compute the function f they must exchange bits of information
between each other according to some (deterministic) protocol. The (deterministic) communication
complexity of a protocol is the maximum total number of bits sent between the two parties, where
the maximum is taken over all pairs of inputs x, y. We henceforth omit the adjective “deterministic”
from our discourse because our results deal only with the deterministic model. The communication
complexity of the function f , denoted by CC(f), is the minimum communication complexity of a
protocol for f .

For many applications it is convenient to associate the function f : X × Y → {0, 1} with
the matrix M ∈ {0, 1}X×Y whose (x, y) entry equals f(x, y). For a {0, 1}-valued matrix M , let
CC(M) denote the communication complexity of the boolean function associated with M . Let
rank(M) denote the rank of M over the reals. We will occasionally consider the rank of M over
the two-element field F2 and will denote this by rankF2(M).

It is well-known that log rank(M) ≤ CC(M) ≤ rank(M) (cf. [KN97, Chapter 1.4]) and it is a
fundamental question to find out what is the true dependency of CC(M) on the rank. The log-rank
conjecture due to Lovász and Saks [LS88] postulates that the gap between the above lower bound
and upper bound on CC(M) is polynomial rather than exponential:

Conjecture 1.1 (Log-rank). For every {0, 1}-valued matrix M

CC(M) = logO(1) rank(M).

Lovász and Saks also point out that the above conjecture has several other interesting equivalent
formulations. One of them, due to Nuffelen [Nuf76] and Fajtlowicz [Faj88], is the following:

Conjecture 1.2. For every graph G, χ(G) ≤ logO(1) rank(G), where χ(G) is the chromatic number
of the complement of G, and rank(G) is the rank of the adjacency matrix of G over the reals.

Though considerable effort has been made in an attempt to resolve this conjecture since its
introduction 25 years ago, to this date not much is known regarding to it. The best currently known
upper bound on the communication complexity of a {0, 1}-valued matrix M with respect to its rank
is CC(M) ≤ log(4/3) · rank(M) = (0.415...) · rank(M) due to Kotlov [Kot97] and it improves on the
previous best bound of CC(M) ≤ rank(M)/2 by Kotlov and Lovász [KL96]. In the other direction,
the best lower bound is CC(M) ≥ Ω(logt rank(M)) for t = log3 6 = 1.631... due to Kushilevitz
(unpublished, cf. [NW95]) which improved on a previous bound with t = log2 3 = 1.585... due to
Nisan and Wigderson [NW95].

Our main result is an upper bound of O(rank(M)/ log rank(M)) on the communication com-
plexity of a {0, 1}-valued matrix M assuming a well-known conjecture from additive combinatorics
— the Polynomial Freiman-Ruzsa conjecture — discussed next.

1.2 Additive combinatorics and the Polynomial Freiman-Ruzsa conjecture

Quoting the (current) Wikipedia definition, additive combinatorics studies “combinatorial estimates
associated with the arithmetic operations of addition and subtraction”. As such, it deals with a
variety of problems that aim to ’quantify’ the amount of additive structure in subsets of additive
groups. One such a problem is that which is addressed by the Polynomial Freiman-Ruzsa conjecture
(we shall encounter a different problem in additive combinatorics when we get to “approximate
duality” later on).
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For A ⊆ F
n
2 , let A + A denote the sum-set of A

A + A := {a + a′ | a, a′ ∈ A}

where addition is over F2. It is easy to see that |A + A| = |A| if and only if A is an affine subspace
of F

n
2 . The question addressed by the Freiman-Ruzsa Theorem is whether the ratio of |A + A| to

|A| also ’approximates’ the closeness of A to being a subspace, or in other words, whether the fact
that A + A is small with respect to the size of A also implies that span (A) is small with respect to
the size of A. The Freimnan-Ruzsa Theorem [Ruz99] says that this is indeed the case.

Theorem 1.3 (Freiman-Ruzsa Theorem [Ruz99]). If A ⊆ F
n
2 has |A+A| ≤ K|A|, then |span (A) | ≤

K22K4 |A|.

The above Theorem was improved in a series of works [GR06, San08, GT09] and the best

currently known upper bound on the ratio |span(A)|
|A| is 2(2+o(1))K due to Green and Tao [GT09].

This can be seen to be almost tight (up to the o(1) term) by letting A = {u1, u2, . . . , ut}, where
u1, u2, . . . , ut ∈ F

n
2 are linearly independent vectors. Then in this case we have |A + A| ≈ t

2 |A|,
while |span (A) | = 2t.

The same example also shows that the ratio |span(A)|
|A| must depend exponentially on K. However,

this example does not rule out the existence of a large subset A′ ⊆ A for which the ratio |span(A′)|
|A′|

is just polynomial in K, and this is exactly what is suggested by the PFR Conjecture:

Conjecture 1.4 (Polynomial Freiman-Ruzsa (PFR)). There exists an absolute constant r, such
that if A ⊂ F

n
2 has |A + A| ≤ K|A|, then there exists a subset A′ ⊆ A of size at least K−r|A| such

that |span (A′) | ≤ |A|.

Note that the above conjecture implies that |span (A′) | ≤ |A| ≤ Kr|A′|. The PFR conjecture
has many other interesting equivalent formulations, see the survey of Green [Gre05] for some of
them. It is conjectured to hold for subsets of general groups as well and not only for subsets of the
group F

n
2 but we will be interested only in the latter case. Significant progress on this conjecture

has been achieved recently by Sanders [San10], using new techniques developed by Croot and Sisask

[CS10]. Sanders proved an upper bound on the ratio |span(A′)|
|A′| which is quasi-polynomial in K:

Theorem 1.5 (Quasi-polynomial Freiman-Ruzsa Theorem [San10]). Let A ⊂ F
n
2 be a set such

that |A + A| ≤ K|A|. Then there exists a subset A′ ⊆ A of size at least K−O(log3 K)|A| such that
|span (A′) | ≤ |A|.

Our main result is the following:

Theorem 1.6 (Main.). Assuming the PFR Conjecture 1.4, for every {0, 1}-valued matrix M

CC(M) = O(rank(M)/ log rank(M)).

We end this section by mentioning two other recent applications of the PFR Conjecture to
theoretical computer science. The first application is to the area of low-degree testing, and was
discovered by Lovett [Lov10] and, independently, by Green and Tao [GT]. The second application
is to the construction of two-source extractors due to Ben-Sasson and Zewi [BZ]. The latter paper
also introduced the notion of approximate duality which plays a central role in our proof method
so we describe it now.

3



1.3 Approximate duality

Our main technical contribution is improved bounds on approximate duality, assuming the PFR
conjecture. These new bounds lie at the heart of our proof of the Main Theorem 1.6.

The notion of approximate duality was first introduced in [BZ]. For A, B ⊆ F
n
2 , we define the

duality measure of A, B in (1) as an estimate of how ‘close’ this pair is to being dual

D(A, B) :=

∣

∣

∣

∣

Ea∈A,b∈B

[

(−1)〈a,b〉2
]

∣

∣

∣

∣

, (1)

where 〈a, b〉2 denotes the binary inner-product of a, b over F2, defined by 〈a, b〉2 =
∑n

i=1 ai ·bi where
all arithmetic operations are in F2.

Remark 1.7. The duality measure can be alternatively defined as the discrepancy of the inner
product function on the rectangle A × B (up to a normalization factor of 2n

|A||B|). Nevertheless we
chose to use the term ’duality measure’ instead of ’discrepancy’ because of the algebraic context in
which we use it, as explained below.

It can be verified that if D(A, B) = 1 then A is contained in an affine shift of B⊥ which is the
space dual to the linear F2-span of B. The question is what can be said about the structure of
A, B when D(A, B) is sufficiently large, but strictly smaller than 1. The following theorem from
[BZ] says that if the duality measure is a constant very close to 1 (though strictly smaller than 1)
then there exist relatively large subsets A′ ⊆ A, B′ ⊆ B, such that D(A′, B′) = 1.

Theorem 1.8 (Approximate duality for nearly-dual sets, [BZ]). For every δ > 0 there exists a
constant ǫ > 0 that depends only on δ, such that if A, B ⊆ F

n
2 satisfy D(A, B) ≥ 1 − ǫ, then there

exist subsets A′ ⊆ A, |A′| ≥ 1
4 |A| and B′ ⊆ B, |B′| ≥ 2−δn|B|, such that D(A′, B′) = 1.

It is conjectured that a similar result holds also when the duality measure is relatively small,
and in particular when it tends to zero as n goes to infinity. Furthermore, the following theorem
from [BZ] gives support to this conjecture, by showing that such bounds indeed follow from the
PFR conjecture.

Theorem 1.9 (Approximate duality assuming PFR, [BZ]). Assuming the PFR Conjecture 1.4,
for every pair of constants α, δ > 0 there exists a constant ζ > 0, depending only on α and δ, such
that the following holds. If A, B ⊆ F

n
2 satisfy |A|, |B| > 2αn and D(A, B) ≥ 2−ζn, then there exist

subsets A′ ⊆ A, |A′| ≥ 2−δn|A| and B′ ⊆ B, |B′| ≥ 2−δn|B| such that D(A′, B′) = 1.

Our main technical contribution is an improved bound on approximate duality assuming the
PFR conjecture.

Lemma 1.10 (Main technical lemma). Suppose that A, B ⊆ F
n
2 satisfy D(A, B) ≥ 2−

√
n.

Then assuming the PFR conjecture 1.4, there exist subsets A′, B′ of A, B respectively such that
D(A′, B′) = 1, and |A′| ≥ 2−cn/ log n|A|, |B′| ≥ 2−cn/ log n|B| for some absolute constant c.

Remark 1.11. The bound on min
{

|A′|
|A| ,

|B′|
|B|

}

— which in the lemma above is 2−cn/ log n — cannot be

improved beyond 2−O(
√

n) even if we assume D(A, B) > 0.99. To see this take A = B =
(

n
c′
√

n

)

to be

the set of all {0, 1}-vectors with exactly c′
√

n ones, where c′ is a sufficiently small positive constant
that guarantees D(A, B) ≥ 0.99. It can be verified that if A′ ⊂ A, B′ ⊂ B satisfy D(A′, B′) = 1
then the smaller set is of size 2−Ω(

√
n) · |A|.
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The proof of Lemma 1.10 appears in Section 2. Note that this lemma improves on Theorem 1.9
in two ways. First, in the lemma the ratios |A′|/|A|, |B′|/|B| are bounded from below by 2−cn/ log n,
whereas in Theorem 1.9 we only get a smaller bound of the form 2−δn for some constant δ > 0.
Note however that this improvement comes with a requirement that the duality measure D(A, B)
is larger — in the above lemma we require that it is at least 2−

√
n while in Theorem 1.9 we only

require it to be at least 2−ζn ≪ 2−
√

n. We note however that the bound D(A, B) ≥ 2−
√

n can be
replaced by D(A, B) ≥ exp(−n1−ǫ) for any ǫ > 0 at the price of a larger constant c = c(ǫ). The
second improvement is that the parameters in the lemma do not depend on the sizes of the sets A
and B whereas in Theorem 1.9 they do depend on |A|, |B|.

These two improvements are precisely what enables us to prove the new upper bound of
O(rank(M)/ log rank(M)) on the communication complexity of {0, 1}-valued matrices assuming
the PFR conjecture, and we go on to sketch our proof method next.

1.4 Proof overview

First we show how our Main Theorem 1.6 is deduced from the improved bounds on approximate
duality in Lemma 1.10. Then we give an overview of the proof of Lemma 1.10 itself.

From approximate duality to communication complexity upper bounds. We follow the
approach of Nisan and Wigderson from [NW95]. Let the size of a matrix M be the number of
entries in it and if M is {0, 1}-valued let δ(M) denote its (normalized) discrepancy, defined as the
absolute value of the difference between the fraction of zero-entries and one-entries in M . Informally,
discrepancy measures how “unbalanced” is M , with δ(M) = 1 when M is monochromatic — all
entries have the same value — and δ(M) = 0 when M is completely balanced.

Returning to the work of [NW95], they observed that to prove the log-rank conjecture it suffices
to show that a {0, 1}-valued matrix M of rank r always contains a monochromatic sub-matrix of

size |M |/q.poly(r) where q.poly(r) = rlogO(1) r means quasi-polynomial in r. Additionally, they
used spectral techniques (i.e., arguing about the eigenvectors and eigenvalues of M) to show that
any {0, 1}-valued matrix M of rank r contains a relatively large submatrix M ′ — of size at least
|M |/r3/2 — that is somewhat biased — its discrepancy is at least 1/r3/2. We show, using tools from
additive combinatorics, that M ′ in fact contains a pretty large monochromatic submatrix (though
not large enough to deduce the log-rank conjecture).

To this end we start by working over the two-element field F2. This seems a bit counter-
intuitive because the log-rank conjecture is false over F2. The canonical counterexample is the
inner product function IP (x, y) = 〈x, y〉2 — It is well-known (see e.g. [KN97][Chapters 1.3., 2.5.])
that rankF2(MIP ) = n while CC(IP ) = n. However, rather than studying M over F2 we focus on
the biased submatrix M ′ and things change dramatically. (As a sanity-check notice that MIP does
not contain large biased submatrices and this does not contradict the work of [NW95] because the
rank of MIP over the reals is 2n − 1.)

Thus, our starting point is a large submatrix M ′ that has large discrepancy. It is well-known
that rankF2(M

′) ≤ rank(M ′) ≤ r and that this implies M ′ can be written as M ′ = A⊤ · B
where A, B are matrices whose columns are vectors in F

r
2. Viewing each of A, B as the set of its

columns, we have in hand two sets that have a large duality measure as defined in (1), namely,
D(A, B) = δ(M ′) ≥ 1/r3/2. This is setting in which we apply our Main Technical Lemma 1.10
and deduce that A, B contain relatively large subsets A′, B′ with D(A′, B′) = 1. One can now
verify that the submatrix of M ′ whose rows and columns are indexed by A′, B′ respectively is
indeed monochromatic, as needed. We point out that to get our bounds we need to be able to
find monochromatic submatrices of M ′ even when M ′ is both small and skewed (i.e., has many
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more columns than rows or vice versa). Fortunately, Lemma 1.10 is robust enough to use in such
settings.

Improved bounds on approximate duality assuming PFR. We briefly sketch the proof of
our Main Technical Lemma 1.10. We use the spectrum of a set as defined in [TV06, Chapter 4]:

Definition 1.12 (Spectrum). For a set B ⊆ F
n
2 and α ∈ [0, 1] let the α-spectrum of B be the set

Specα(B) := {x ∈ F
n
2 | | Eb∈B

[

(−1)〈x,b〉2] |≥ α}. (2)

Notice that A ⊆ Specǫ(B) implies D(A, B) ≥ ǫ (cf. (1)). In the other direction, Markov’s
inequality can be used to deduce that D(A, B) ≥ ǫ implies the existence of A′ ⊆ A of relatively
large size — |A′| ≥ ǫ

2 |A| — such that A′ ⊆ Specǫ/2(B). To prove our lemma we start with A1 = A′

and establish a sequence of sets

A2 ⊆ A1 + A1, A3 ⊆ A2 + A2, . . .

such that Ai ⊆ Specǫi
(B) for all i. This holds by construction for A1 with ǫ1 = ǫ/2, and we show

that it is maintained throughout the sequence for increasingly smaller values of ǫi (we shall use
ǫi = ǫ2i−1).

Moving our problem from the field of real numbers to the two-element field F2 now pays off.
Each Ai is of size at most 2n so there must be an index i ≤ n/ log K for which |Ai+1| ≤ K|Ai|, let t
be the minimal such index. We use the PFR conjecture together with the Balog–Szemerédi–Gowers
Theorem 2.2 from additive combinatorics to show that our assumption that |At+1| ≤ K|At| implies
that a large subset A′′

t of At has small span (over F2).
We now have in hand a set A′′

t which is a relatively large fraction of its span and additionally
satisfies D(A′′

t , B) ≥ ǫt because by construction A′′
t ⊆ Specǫt

(B). We use an approximate duality
claim from [BZ] (Lemma 2.3) which applies when one of the sets is a large fraction of its span (in
our case the set which is a large fraction of its span is A′′

t ). This claim says that A′′
t and B each

contain relatively large subsets A′
t, B

′
t satisfying D(A′

t, B
′
t) = 1. Finally, recalling A′

t is a (carefully
chosen) subset of At−1 + At−1, we argue that At−1 contains a relatively large subset A′

t−1 that is
“dual” to a large subset B′

t−1 of B′
t, where by “dual” we mean D(A′

t−1, B
′
t−1) = 1 (in other words

A′
t−1 is contained in an affine shift of the space dual to span

(

B′
t−1

)

). We continue in this manner
to find pairs of “dual” subsets for t − 2, t − 3, . . . , 1 at which point we have found a pair of “dual”
subsets of A, B that have relatively large size, thereby completing the proof.

Paper organization. The next section contains the proof of the Main Technical Lemma 1.10.
The proof of Main Theorem 1.6 given the Main Technical Lemma 1.10 appears in Section 3.

2 Improved bounds on approximate duality assuming PFR

In this section we prove our Main Technical Lemma 1.10 by proving the following more general
version of it.

Lemma 2.1 (Main technical lemma, general form). Suppose that A, B ⊆ {0, 1}n satisfy D(A, B) ≥
ǫ. Then assuming the PFR Conjecture 1.4, for every K ≥ 1 and t = n/ log K, there exist subsets
A′, B′ of A, B respectively such that D(A′, B′) = 1, and

|A′| ≥ poly

(

(ǫ/2)2
t

nK

)

(4n)−t|A|, |B′| ≥ poly

(

(ǫ/2)2
t

nK

)

2−t|B|. (3)

Proof of Lemma 1.10. Follows from Lemma 2.1 by setting K = 24n/ log n, t = log n
4 , ǫ = 2−

√
n.
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Additive combinatorics preliminaries In what follows all arithmetic operations are taken
over F2. For the proof of Lemma 2.1 we need two other theorems from additive combinatorics. The
first is the well-known Balog–Szemerédi–Gowers Theorem of [BS94, Gow98].

Theorem 2.2 (Balog–Szemerédi–Gowers). There exist fixed polynomials f(x, y), g(x, y) such that
the following holds for every subset A of an abelian additive group. If A satisfies Pra,a′∈A[a + a′ ∈
S] ≥ 1/K for |S| ≤ C|A|, then one can find a subset A′ ⊆ A such that |A′| ≥ |A|/f(K, C), and
|A′ + A′| ≤ g(K, C)|A|.

The second is a lemma from [BZ] which can be seen as an approximate duality statement which
applies when one of the sets has small span:

Lemma 2.3 (Approximate-duality for sets with small span, [BZ]). If D(A, B) ≥ ǫ, then there

exist subsets A′ ⊆ A, B′ ⊆ B, |A′| ≥ ǫ
4 |A|, |B′| ≥ ǫ2

4
|A|

|span(A)| |B|, such that D(A′, B′) = 1. If

A ⊆ Specǫ(B) then we have |A′| ≥ |A|/2 and |B′| ≥ ǫ2 |A|
|span(A)| |B| in the statement above.

Recall the definition of the spectrum given in (2):

Specα(B) := {x ∈ F
n
2 | | Eb∈B

[

(−1)〈x,b〉2] |≥ α}.

Finally, for S ⊂ F
n
2 and x ∈ F

n
2 let repS(x) be the number of different representations of x as an

element of the form s + s′ where s, s′ ∈ S. repS(x) can also be written, up to a normalization
factor, as 1S ∗ 1S(x) where 1S is the indicating function of the set S and ∗ denotes convolution.

Proof overview We construct a decreasing sequence of constants

ǫ1 = ǫ/2, ǫ2 = ǫ21/2, ǫ3 = ǫ22/2, . . .

and a sequence of sets

A1 := A ∩ Specǫ1(B), A2 ⊆ (A1 + A1) ∩ Specǫ2(B), A3 ⊆ (A2 + A2) ∩ Specǫ3(B), . . .

Since each of the sets in the sequence is of size at most 2n there must be an index i ≤ n/ log K for
which

|Ai+1| ≤ K|Ai| (4)

and let t be the minimal such index. The PFR Conjecture 1.4 together with the Balog–Szemerédi–
Gowers Theorem 2.2 will be used to deduce from (4) that a large subset A′′

t of At has small span.
Applying Lemma 2.3 to the sets A′′

t and B implies the existence of large subsets A′
t ⊆ At and

B′
t ⊆ B such that D(A′

t, B
′
t) = 1. Finally we argue inductively for i = t − 1, t − 2, . . . , 1 that there

exist large subsets A′
i ⊆ Ai and B′

i ⊆ B such that D(A′
i, B

′
i) = 1. The desired conclusion will follow

from the i = 1 case. To be able to “pull back” and construct a pair of large sets A′
i−1, B

′
i−1 from

the pair A′
i, B

′
i we make sure every element in Ai is the sum of roughly the same number of pairs

in Ai−1 × Ai−1.

The sequence of sets Let ǫ1 := ǫ/2, A1 := A ∩ Specǫ1(B). Assuming Ai−1, ǫi−1 have been
defined set ǫi = ǫ2i−1/2 and let ji ∈ {0, . . . , n − 1} be an integer index which maximizes the size of

{

(a, a′) ∈ Ai−1 | a + a′ ∈ Specǫi
(B) and 2ji ≤ repAi−1

(a + a′) ≤ 2ji+1
}

. (5)

and set

Ai := {a + a′ : a, a′ ∈ Ai−1, a + a′ ∈ Specǫi
(B) and 2ji ≤ repAi−1

(a + a′) ≤ 2ji+1}. (6)
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Claim 2.4. For i = 1 we have |A1| ≥ (ǫ/2)|A|. For i > 1 we have

Pr
a,a′∈Ai−1

[a + a′ ∈ Ai] ≥ ǫi/n (7)

and additionally

|Ai| ≥
ǫi

2ji+1n
|Ai−1|2. (8)

Proof. The case of i = 1 follows directly from Markov’s inequality. For larger i we argue that

Pr
a,a′∈Ai−1

[a + a′ ∈ Specǫi
(B)] ≥ ǫi.

To see this use Cauchy-Schwarz to get

Ea,a′∈Ai−1
|Eb∈B(−1)〈a+a′,b〉| = Eb∈B(Ea∈Ai−1 [(−1)〈a,b〉])2 ≥ (Ea∈Ai−1,b∈B[(−1)〈a,b〉])2 = ǫ2i−1

and apply Markov’s inequality to deduce that an ǫi-fraction of (a, a′) ∈ Ai−1 × Ai−1 sum to an
element of Specǫi

(B). Selecting ji to maximize (5) yields inequality (7). Since every element x ∈ Ai

can be represented as x = a + a′ with a, a′ ∈ Ai−1 in at most 2ji+1 different ways we deduce (8)
from (7) and complete the proof.

The inductive claim Let t be the minimal index such that |At+1| ≤ K|At| and note that
t ≤ n/ log K because all sets Ai are contained in F

n
2 . We shall prove the following claim by

backward induction.

Claim 2.5 (Inductive claim). For i = t, t − 1, . . . , 1 there exist subsets

A′
i ⊆ Ai, B′

i ⊆ Bi

such that D(A′
i, B

′
i) = 1 and A′

i, B
′
i are not too small:

|A′
i| ≥ poly

(

ǫt+1

nK

)

(4n)−(t−i)

( t
∏

ℓ=i

ǫℓ+1

)

|Ai|, |B′
i| ≥ poly

(

ǫt+1

nK

)

2−(t−i)|B|

We split the proof of the claim to two parts. The base case (Proposition 2.6) is proved using
the tools from additive combinatorics listed in the beginning of this section. The inductive step is
proved in Proposition 2.7 using a graph construction. Before proving Claim 2.5 we show how it
implies Lemma 2.1.

Proof of Main Technical Lemma 2.1. Set i = 1 in Claim 2.5 above. Recall that ǫi+1 = ǫ2i /2 for all
i, so

ǫℓ+1 = ǫ2
ℓ

/22ℓ−1 ≥ (ǫ/2)2
ℓ

.

Thus we have ǫt+1 ≥ (ǫ/2)2
t

and
∏t

ℓ=1 ǫℓ+1 ≥ (ǫ/2)2
t+1

. This gives the bounds on A′, B′ stated in
(3).

Proposition 2.6 (Base case of Claim 2.5 (i = t)). There exist subsets A′
t ⊆ At, B′

t ⊆ Bt such that
D(A′

t, B
′
t) = 1 and A′

t, B
′
t are not too small:

|A′
t| ≥ poly

(

ǫt+1

nK

)

|At|, |B′
t| ≥ poly

(

ǫt+1

nK

)

|B|.
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Proof. By assumption |At+1| ≤ K|At| and Pra,a′∈At
[a + a′ ∈ At+1] ≥ ǫt+1/n by (8). Hence we

can apply the Balog–Szemerédi–Gowers Theorem (Theorem 2.2) to the set At to obtain a subset
Ãt ⊆ At such that

|Ãt| ≥ poly

(

ǫt+1

nK

)

|At|,

and

|Ãt + Ãt| ≤ poly

(

nK

ǫt+1

)

|At| = poly

(

nK

ǫt+1

)

|Ãt|.

Now we can apply the PFR Conjecture 1.4 to the set Ãt which gives a subset A′′
t ⊆ Ãt such

that

|A′′
t | ≥ poly

(

ǫt+1

nK

)

|Ãt| = poly

(

ǫt+1

nK

)

|At|,

and

|span
(

A′′
t

)

| ≤ |Ãt| = poly

(

nK

ǫt+1

)

|A′′
t |.

Recall that A′′
t ⊆ Specǫt

(B), and in particular D(A′′
t , B) ≥ ǫt. Applying Lemma 2.3 to the sets

A′′
t and B we conclude that there exist subsets A′

t ⊆ A′′
t , B′ ⊆ B such that D(A′

t, B
′) = 1, and

which satisfy |A′
t| ≥ 1

2 |A′′
t | and

|B′
t| ≥ ǫ2t

|A′′
t |

|span (A′′
t ) |

|B| = poly

(

ǫt+1

nK

)

|B|.

This completes the proof of the base case.

Proposition 2.7 (Inductive step of Claim 2.5). For every i = t − 1, . . . , 1 there exist subsets
A′

i ⊆ Ai, B′
i ⊆ Bi such that D(A′

i, B
′
i) = 1 and A′

i, B
′
i are not too small:

|A′
i| ≥ poly

(

ǫt+1

nK

)

(4n)−(t−i)

( t
∏

ℓ=i

ǫℓ+1

)

|Ai|, |B′
i| ≥ poly

(

ǫt+1

nK

)

2−(t−i)|B|.

Proof. Suppose that the claim is true for i argue it holds for index i − 1. Let G = (Ai−1, E) be
the graph whose vertices are the elements in Ai−1, and (a, a′) is an edge if a + a′ ∈ A′

i. We bound
the number of edges in this graph from below. Recall from (6) that every a ∈ A′

i (where A′
i ⊆ Ai)

satisfies 2ji ≤ repAi−1
(a) ≤ 2ji+1. Using this we get

|E| ≥ 2ji · |A′
i| (repAi−1

(x) ≥ 2ji for all x ∈ A′
i)

≥ 2ji · poly

(

ǫt+1

nK

)

(4n)−(t−i)

(

∏t
ℓ=i ǫℓ+1

)

|Ai| (induction hypothesis)

≥ 2ji · poly

(

ǫt+1

nK

)

(4n)−(t−i)

(

∏t
ℓ=i ǫℓ+1

)

ǫi

2ji+1n
|Ai−1|2 (by (8))

= 2 · poly

(

ǫt+1

nK

)

(4n)−(t−(i−1))

(

∏t
ℓ=i−1 ǫℓ+1

)

|Ai−1|2.

Let M := poly

(

ǫt+1

nK

)

(4n)−(t−(i−1))

(

∏t
ℓ=i−1 ǫℓ+1

)

. Since our graph has at least 2M |Ai−1|2

edges and |Ai−1| vertices, it has a connected component with at least 2M |Ai−1| vertices and denote
by A′′

i−1 the set of vertices in it.
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Choose an arbitrary element a in A′′
i−1. Partition B′

i into two sets B′
i,0 and B′

i,1 such that all
elements in B′

i,0 have inner product 0 with a, and all elements in B′
i,1 have inner product 1 with a.

Let B′
i−1 be the larger of B′

i,0,B
′
i,1, and note that |B′

i−1| ≥ |B′
i|/2. Recall that our assumption was

that D(A′
i, B

′
i) = 1. Abusing notation, let 〈A′

i, B
′
i〉2 denote the value of 〈a′, b′〉2 for some a′ ∈ A′

i, B
′
i

(the choice of a′, b′ doesn’t matter because D(A′
i, B

′
i) = 1). Next we consider two cases — the case

where 〈A′
i, B

′
i〉2 = 0, and the case where 〈A′

i, B
′
i〉2 = 1.

In the first case we have that for every a, a′ ∈ A′′
i−1 which are neighbors in the graph, a+a′ ∈ A′

i,
and therefore 〈a + a′, b〉2 = 0 for every b ∈ B′

i−1. This implies in turn that 〈a, b〉2 = 〈a′, b〉2 for
all elements a, a′ ∈ A′′

i−1 which are neighbors in the graph, b ∈ B′
i−1. Since A′′

i−1 induces a
connected component, and due to our choice of B′

i−1, this implies that D(A′′
i−1, B

′
i−1) = 1 so we set

A′
i−1 = A′′

i−1.
In the second case we have that 〈a + a′, b〉2 = 1 for every a, a′ ∈ A′′

i−1 which are neighbors in the
graph, b ∈ B′

i−1. In particular this implies that 〈a, b〉2 = 〈a′, b〉2 + 1 for every elements a, a′ ∈ A′′
i−1

which are neighbors in the graph, b ∈ B′
i−1. This means that A′′

i−1 can be partitioned into two sets
A′

i−1,0, A
′
i−1,1, where the first one contains all elements in A′′

i−1 that have inner product 0 with all
elements in B′

i−1, while the second set contains all elements in A′
i−1 that have inner product 1 with

all elements in B′
i−1. We set A′

i−1 to be the larger of these two sets and get D(A′
i−1, B

′
i−1) = 1 and

|A′
i−1| ≥ M |Ai−1|.
Concluding, in both cases we obtained subsets A′

i−1, B
′
i−1 of Ai−1, B respectively, such that

D(A′
i−1, B

′
i−1) = 1 and A′

i−1, B
′
i−1 are not too small:

|A′
i−1| ≥ poly

(

ǫt+1

nK

)

(4n)−(t−(i−1))

( t
∏

ℓ=i−1

ǫℓ+1

)

|Ai−1|,

and

|B′
i−1| ≥

1

2
|B′

i| ≥
1

2
poly

(

ǫt+1

nK

)

2−(t−i)|B| = poly

(

ǫt+1

nK

)

2−(t−(i−1))|B|.

This concludes the proof of the inductive claim.

3 From approximate duality to communication complexity upper

bounds

In this section we prove our main theorem, Theorem 1.6 given the main technical lemma, Lemma
1.10. The proof of the main technical lemma is deferred to Section 2.

We start by repeating the necessary definitions. For a {0, 1}-valued matrix M , let CC(M)
denote the communication complexity of the boolean function associated with M . Let rank(M)
and rankF2(M) denote the rank of M over the reals and over F2, respectively. We denote by |M |
the total number of entries in M , and by |M0| and |M1| the number of zero and non-zero entries
of M , respectively. We say that M is monochromatic if either |M | = |M0| or |M | = |M1|. Finally,

we define the discrepancy δ(M) of M to be the ratio ||M0|−|M1||
|M | .

Recall the statements of Theorem 1.6 and Lemma 1.10.

Theorem 1.6 - Main theorem (restated). Assuming the PFR conjecture (Conjecture 1.4), for
every {0, 1}-valued matrix M,

CC(M) = O(rank(M)/ log rank(M)).

10



Lemma 1.10 - Main technical lemma (restated). Suppose that A, B ⊆ F
n
2 satisfy

D(A, B) ≥ 2−
√

n. Then assuming the PFR conjecture, there exist subsets A′, B′ of A, B respec-
tively such that D(A′, B′) = 1, and |A′| ≥ 2−cn/ log n|A|, |B′| ≥ 2−cn/ log n|B| for some absolute
constant c.

We first prove that the above lemma is equivalent to the following one:

Lemma 3.1 (Main technical lemma, equivalent matrix form). Let M be a {0, 1}-valued matrix
with no identical rows or columns, of rank at most r over F2, and of discrepancy at least 2−

√
r.

Then assuming the PFR conjecture (Conjecture 1.4), there exists a monochromatic submatrix M ′

of M of size at least 2−cr/ log r|M | for some absolute constant c.

Proof. We prove only the Lemma 1.10 ⇒ Lemma 3.1 implication. The proof of the converse
implication is similar. Denote the number of rows and columns of M by k, ℓ respectively. It is
well known that the rank of M over a field F equals r if and only if M can be written as the
sum of r rank one matrices over the field F. Since rankF2(M) ≤ r this implies in turn that there
exist subsets A, B ⊆ F

r
2, A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bℓ} such that Mi,j = 〈ai, bj〉2 for all

1 ≤ i ≤ k, 1 ≤ j ≤ ℓ. Since M has no identical rows or columns we know that |A| = k, |B| = ℓ.
Note that D(A, B) = δ(M) ≥ 2−

√
r.

Lemma 1.10 now implies the existence of subsets A′ ⊆ A, B′ ⊆ B, |A′| ≥ 2−cr/ log r|A|, |B′| ≥
2−cr/ log r|B|, such that D(A′, B′) = 1. Let M ′ be the submatrix of M whose rows and columns
correspond to the indices in A′ and B′ respectively. The fact that D(A′, B′) = 1 implies that
Mi,j = 〈ai, bj〉2 ≡ const for all ai ∈ A′, bj ∈ B′. Therefore M ′ is a monochromatic submatrix of M
of which satisfies

|M ′| = |A′||B′| ≥ 2−2cr/ log r|A||B| = 2−2cr/ log r|M |,
as required.

In order to prove Theorem 1.6 we follow the high-level approach of Nisan and Wigderson
[NW95] which was explained in the previous section. They showed that in order to prove the
log-rank conjecture it suffices to prove that every {0, 1}-valued matrix of low rank has a large
monochromatic submatrix. We start with the following lemma.

Lemma 3.2 (Existence of large monochromatic submatrix assuming PFR). Assuming the PFR
conjecture, every {0, 1}-valued matrix M with no identical rows or columns has a monochromatic
submatrix of size at least 2−O(rank(M)/ log rank(M))|M |.

In order to prove the above lemma we use Lemma 3.1, together with the following theorem from
[NW95], which says that every {0, 1}-valued matrix M contains a submatrix of high discrepancy:

Theorem 3.3 (Existence of submatrix with high discrepancy [NW95]). Every {0, 1}-valued matrix
M has a submatrix M ′ of size at least (rank(M))−3/2|M | and with δ(M ′) ≥ (rank(M))−3/2.

Proof of Lemma 3.2. Let r = rank(M). Theorem 3.3 implies the existence of a submatrix M ′ of
M with |M ′| ≥ (rank(M))−3/2|M |, and δ(M ′) ≥ r−3/2 ≫ 2−

√
r. Note also that

rankF2(M
′) ≤ rank(M ′) ≤ rank(M) = r.

Lemma 3.1 then implies the existence of a monochromatic submatrix M ′′ of M ′ of size at least
2−cr/ log r|M ′| for some absolute constant c. So we have that M ′′ is a monochromatic submatrix of
M which satisfies

|M ′′| ≥ 2−cr/ log r|M ′| ≥ 2−cr/ log rr−3/2|M | = 2−O(r/ log r)|M |

11



Proof of Theorem 1.6. Let M be a {0, 1}-valued matrix. We will construct a deterministic protocol
for M with communication complexity O(rank(M)/ log rank(M)). We may assume w.l.o.g that M
has no repeated rows or columns, otherwise we can eliminate the repeated row or column and the
protocol we construct for the “compressed” matrix (with no repeated rows/columns) will also be a
protocol for M .

We follow the high level approach of the proof of Theorem 2 from [NW95]. We will show a
protocol with 2O(r/ log r) leaves. This will suffice since it is well-known that a protocol with t leaves
has communication complexity at most O(log t) (cf. [KN97, Chapter 2, Lemma 2.8]).

Now we describe the protocol. Let Q be the largest monochromatic submatrix of M . Then Q
induces a natural partition of M into 4 submatrices Q, R, S, T with R sharing the rows of Q and S
sharing the columns of Q.

M =

(

Q R
S T

)

Let U1 be a subset of the rows of (Q|R) whose restriction to the columns of R span the rows
of R. Similarly, let U2 be a subset of the rows of (S|T ) whose restriction to the columns of S
span the rows of S. Note that if Q is the all zeros matrix then the rows of U1 are independent
of the rows of U2. Otherwise, if Q is the all ones matrix then the rows of U1 are independent
of all the rows of U2 except possibly for the vector in U2 whose restriction to the columns of
S is the all ones vector (if such vector exists). Thus since Q is monochromatic we have that
rank(R) + rank(S) = |U1| + |U2| ≤ rank(M) + 1.

If rank(R) ≤ rank(S) then the row player sends a bit saying if his input belongs to the rows of Q
or not. The players continue recursively with a protocol for the submatrix (Q|R) or the submatrix
(S|T ) according to the bit sent. If rank(R) ≥ rank(S) the roles of the row and column players are
switched.

Suppose without loss of generality that rank(R) ≤ rank(S). Then after sending one bit we
continue with either the matrix (Q|R) which is of rank at most rank(M)/2 or with the matrix
(S|T ) which — thanks to Lemma 3.2 — is of size at most (1 − δ)|M | for δ ≥ 2−cr/ log r.

Let L(m, r) denote the number of leaves in the protocol starting with a matrix of area at most
m and rank at most r. Then we get the following recurrence relation:

L(m, r) ≤
{

L(m, r/2) + L(m(1 − δ), r) r > 1
1 r = 1

It remains to show that in the above recursion L(m, r) = 2O(r/ log r). Applying the recurrence
iteratively 1/δ times to the right-most summand we get

L(m, r) ≤ δ−1L(m, r/2) + L(m(1 − δ)1/δ, r) ≤ 2cr/ log(r)L(m, r/2) + L(m/2, r).

Set A(m, r) := 2−2cr/ log rL(m, r). Then we have A(m, r) ≤ A(m, r/2) + A(m/2, r) which together
with A(1, r), A(m, 1) ≤ 1 imply A(m, r) ≤

(

log m+log r
log r

)

since we may apply the recursion iteratively
at most log r times to the left term and log m times to the right term before we reach A(1, r) or
A(m, 1). This in turn implies A(m, r) ≤

(

log m+log r
log r

)

≤ rO(log r) due to the fact that r ≤ m ≤ 22r,
since we may assume there are no identical rows or columns in the matrix M .

Concluding, we have L(m, r) ≤ 22cr/ log r+O(log2 r), which implies in turn CC(M) = O(r/ log r)
as claimed.
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of length four. Geom. Funct. Anal., 8(3):529–551, 1998.

[GR06] Ben Green and Imre Z. Ruzsa. On rank vs. communication complexity. Bulletin of the
London Mathematical Society, 01(38):43–52, 2006.

[Gre05] Ben Green. Finite field models in additive combinatorics. In London Mathematical Society
Lecture Note Series, volume 324. Cambridge University Press, 2005.

[GT] B. Green and T. Tao. An equivalence between inverse sumset theorems and inverse
conjectures for the u3 norm. Math. Proc. Cambridge Philos. Soc., 149(1).

[GT09] Ben Joseph Green and Terence Tao. Freiman’s theorem in finite fields via extremal set
theory. Combinatorics, Probability & Computing, 18(3):335–355, 2009.
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